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Introduction to BASM for Beginners BASM A &2/

The series of articles named “BASM for beginners” currently consists of 7

articles and no. 8 and 9 are in progress. Common for the articles, and coming
articles, is that they explain some BASM issues by use of an example function.
Most often this function is first implemented in Pascal and then the compiler
generated assembler code is copied from the CPU view in Delphi and then analyzed
and optimized. Sometimes optimization involves the usage of MMX, SSE or SSE2
instructions.

“BASM AITHF” RAISCEMHTEE 7 . 5 8 WA 9 IEAESEM.

e NOIAHITORE, 4 8, 9 WL 2003 445N, 4 8, 9 FEAAT

64 P EPEERES MMX $54, EARTERIE).

XL R T IS BRIk A4 BASM. T, IXSE AT ] Pascal 4, AR JE A
Delphi 4iif#st] CPU & I K gmAH, 2 5 T A Ak . A dEAH MMX, SSE
5 SSE2 fRAMikfL.

By taking the code made by the compiler from a Pascal function the most commonly
used instructions from the big 32-bit Intel Architecture instruction set are

introduced to the beginner first. Seeing which code the compiler generates is

leading to a valuable insight in the effectiveness of compiler generated code in
general and into the Delphi compiler specifically.

TR gn i e gmi Pascal pAEU=AMIVEACHS, AWIZEENHT K 32 A7 Intel (AFK
LERNFR AR . TG E 28 77 AR IR ACHD B A FRAT S0 7 28 g B 28 72 A AL 80, TRl AT Bh T
Tt Delphi 2 PEa% 1R 1

As specific assembly code optimizations are introduced generalizations will be
introduced when suitable. These general optimizations are suitable for
implementation in compilers and most compilers including Delphi have them. At
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some point in the future a tool that automatically optimizes assembler code will
be developed.

AR A 2 — 28l H R i A AL B 3K 830 T AL FOR 2B G 1 2 8
Al 45 Delphio. 7EXC4ST7, —2 g fas A sh it T RABRHIT A .

Knowledge about the target processor is often needed when optimizing code and
therefore are a lot of CPU details, such as pipelines, explained in the series
too.As far as | know there is only little literature available that explains all

these issues on a level where beginners can follow it. | hope this series will

help fill this void.

DA IR 284 22 FH B OCAL B R PR AR B SE DORE, ROV TEZBOR, BRI RV Bk
I PPN TR P SCRR GO RHE BRI 228 R R I L Y, Py BRI SE S g
g SHANX 5 T (125 o

Best regards
Dennis Kjaer Christensen.
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Lesson 1 55 1 ¥ (#¥uzH)

The first little example gets us started. It is a simple function in Pascal with
multiplies an integer with the constant 2.

=AM ITER AT BASM Zjik. X — MW 2 RICLL— M DR H.

function Mulint2(1 : Integer) : Integer;
begin

Result:=1~* 2;
end;

Lets steal the BASM from the CPU view. | compiled with optimizations turned on.

M CPUVIEW RO Sif %o g I 4TIT T LA It

function MulInt2_BASM(I : Integer) : Integer;
begin

Result := 1 * 2;

{

add eax,eax

ret

}
end;
From this we see that | am transferred to the function in eax and that the result
is transferred back to the caller in eax too. This is the convention for the
register calling convention, which is the default in Delphi. The actual code is
very simple, the times 2 multiplication is obtained by adding I to itself,
I+1 = 2I. The ret instruction returns execution to the line after the one which
called the function.

M ERTATELE HZHUE N eax f& AN, JFI eax iz[Al. 3X3E Delphi BRIAMIIHHIZIE
LB ARH 5, RO 2 ST A S, 1+1=21,
Ret #4120 21 H b AR 11— 2R 48 AL

Lets code the function as a pure asm function.
FLAi g R B T

function Mulint2_BASM2(I : Integer) : Integer;
asm

//Result := 1 * 2;

add eax,eax

Ilret
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end;
Observe that the ret function is supplied by the inline assembler.

AR, ret AR g ds A B e it

Let us take a look at the calling code.This is the Pascal code
IRAVE B WA s 2 A% . Pascal A% T:

procedure TForm1.Button1Click(Sender: TObject);
var
I, J: Integer;
begin
| := StrTolInt(IEdit. Text);
J := Mullnt2_BASM2(1);
JEdit. Text := IntToStr(J);
end;

The important line is

BT
J ;= MulInt2_BASM2(]);

From the cpu view

7t CpuView ] DL

call StrTolint
call Mullnt2_BASM2
mov esi,eax

After the call to StrTolnt from the line before the one, which calls our function,
I am in eax. (StrTolnt is also following the register calling convention).
Mulint2_BASM2 is called and returns the result in eax, which is copied, to esi
in the next line.

EVAH AL Mulint2_BASM2 2156 T StrTolnt, StrTolnt iR[FIZEH | f7/7E eax
t(StrTolnt WG 27 AEA7 2 215E) . Mulint2_BASM2 G, ZiRAEN eax, I Hk
N ATRISE IR esi

Optimization issues: Multiplication by 2 can be done in two more ways. Use the
mul instruction or shifting left by one. In the Intel 1A32 SW developers manual
2 page 536 mul is described. It multiplies the value in eax by another register
and the result is returned in the register pair edx:eax. A register pair is needed
because a multiplication of two 32 bit numbers results in a 64 bit result, just

like 9*9=81 - two one digit numbers (can) result in a two digit result.
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AT e 2 ey ZMorik. T mul SETRS s et — LA T LLoE Btk T Bg . 72
IA32 BAFFFRTFM 2 (M5 536 TIAH T mule BIREATFHAE Eax, AT HE AL 7
fras, GERMENZAEANT edx: eax o (IR A RTINS R AN 32 A7 BAR afe 4 R

64 {7, wifg 9*9=81, Wi (ARG E] T AL

This raises the issue of which registers must be preserved by a function and which
can be used freely. This is explained in the Delphi help."An asm statement must
preserve the EDI, ESI, ESP, EBP, and EBX registers, but can freely modify the EAX,
ECX, and EDX registers."

FERXFPFIL T, IRAT ZF A7 2 M R SR E 5 A ReftFH . 7E Delphi Help A iR :
“LEN gwiBvEd, WifR{F EDI, ESI, ESP, EBP, EBX %ifret , {H/2& EAX, ECX, EDX
" LLHE B .

We can conclude that it is no problem that edx is modified by the mul instruction
and our function can also be implemented like this.

G, FATRTLAAf 2 LR 4 mul B0 edx A HATATIRE FRATT bR 5t o] LB SOy
LU

function Mulint2_BASM3(I : Integer) : Integer;
asm

/IResult :=1*2;

mov ecx, 2

mul ecx
end;
ecx is used also but this is also ok. As long as the result is less than the range
of integer it is returned correctly in eax. If | am bigger than half the range of
integer overflow will occur and the result is incorrect.

Ecx A AT AL HELE RMETE Integer YUFEI A, eax AFHCIRISIE 1Al (1 45 SAE .
WA RTHEL) 2, WatREE RS, eax fELBBAHEN T .

Implementation with shift

AL IR S

function Mulint2_BASMA4(I : Integer) : Integer;
asm
/IResult :=1*2;
shl eax,1
end;
Timing can reveal which implementation is fastest. We can also consult Intel or
AMD documents with latency and throughput tables. Add & mov is 0.5 cycles latency
and throughput, mul is 14-18 cycles latency and 5 cycles throughput. shl is 4
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cycles latency and 1 cycle throughput. The version chosen by Delphi is the most
efficient on P4 and this will probably also be the case on Athlon and P3.

EANPATLER ] EARm . AR AT LS 0T A 4 Rk /19 Intel 3¢ AMD
XH. Add B¢ Mov $542 0.5 AW, Mul j& 14~18 ANFEIF 5 ANFrik
i, Shl & 4 NEFE IR 1 ANk, XAWAK Delphi AARS7E P4 R &AM,
1t Athlon f1 P3 i g,

Issues not covered: mul versus imul and range checking, other calling conventions,
benchmarking, clock count on other processors, clock count for call + ret, location
of return address for ret etc..

RAWARAZEELLIEL: mul 5 imul (AR, RS, JHREHZE, Jeik, 1
31, R BRI Bl SY], RIBIA U hE ret 2545

B

1. Cpu ¥ JEFa24Hx

MMX(Multi Media eXtension, % GRS éfa44E),

SSE(Streaming SIMD Extensions, 454 £ 34l id i)

SSE2(Streaming SIMD Extensions 2, Intel B 45 #54 SIMD A & 2 s iz &
ZHIY iR 5 2).

2. Latency and throughput
http://www.yesky.com/120/1645120.shtml

Latency: (KM, M0 B TR SCZ BEBINAER, 2B b, ERoREaIT—MES
P (KD Bk 39T, P ARIYIAR Ao PR OR UL, RIS — MR N B AR ) 4 A%
LA R 2 x86 1R #l i 2240 5 AN B A, (HIXLe 2 AT HR 7 e 5 e R ATk
FEHEIK OFATARED, A CPU i & A (138 ORI 22 U S B (1 I i) 4

Throughput: &, EAFEHAE L.

Hi Rl BATSRARA DT I IR R A, D o AT IR R, N4 FR A
B AT IR LR AR

FEFb: AR AR AT R 2R HL AR RO

3. % 1IRHSEH 1A, 1B, 1C M. XET 1A,
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Lesson 2 5 2 R (FFREUI2H)

This is the second chapter of the introduction to BASM programming with Delphi.
The first chapter was a short introduction to integer code and this second one

is about floating point code.Our example functions can evaluate a second order
polynomial. The parameters A, B and C that defines the polynomial is coded as
local constants. Input to the function is the variable X of type double and the
result is also of type double. The function looks like this.

X Delphi BASM [ 5. 2] /4 T HEEEES, AR TR R TR
Lo BATIEI 72K —A 2 kU, W A B, C 22U R KBNS HILIT R
e X, FORPHE TR . s R s

function SecondOrderPolynomial1(X : Double) : Double;

const

A Double = 1;

B : Double = 2;

C : Double = 3;
begin

Result := A*X*X + B*X + C;
end;

Copying the assembler code from the CPU view gives us this.

S CPU view HFIE A0 R

function SecondOrderPolynomial2(X : Double) : Double;

const
A Double = 1;
B : Double = 2;
C : Double = 3;
begin
{
push ebp
mov  ebp,esp
add  esp,-$08
}
Result := A*X*X + B*X + C;
{

fld  qword ptr [A]
fmul qword ptr [ebp+$08]
fmul qword ptr [ebp+$08]
fld  qword ptr [B]
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fmul qword ptr [ebp+$08]
faddp st(1)
fadd qword ptr [C]
fstp qword ptr [ebp-$08]
wait
fld  qword ptr [ebp-$08]
}
{
pop  ecx
pop  ecx
pop  ebp
}
end;
Lets explain the asm code line by line.

R RATATRAREACH,

The begin results in this code.

begin 45774 N HIfRI4CAS

begin
{
push ebp
mov  ebp,esp
add  esp,-$08
}

which sets up a stack frame for the function.

A stack frame is just a piece of memory that is reserved for the stack.A stack
frame is accessed through two pointers, the base pointer and the stack pointer.
The base pointer is in ebp and the stack pointer is in esp. These two registers

are reserved for use by these pointers only.

The line push ebp backsup the base pointer. The line mov ebp, esp sets up a new
base pointer,which is pointing to the top of the stack. The line add esp, -$08
moves the stack pointer 8 bytes down.As a curiosity the stack grows downward and
the last line could more intuitively have been sub esp,8.The new stack frame that
was created by these three lines is standing on top of, or actually hanging under,
the last stack frame, which was probably allocated by the function that called
our SecondOrderPolynomial function.

TR AR & FH A v B ek BB ) A

HEARAE AP ORBE 1 — B X3, HER @It PSR E R ), EHEFREF FIAR T FR £
FEHEFREM AT ebp P, MERRSREIAEIAE esp HHo XA ZFALRS AL LTI KU o) HERR 1)
Push esb frf7 ebp #5%l,

Mov ebp, esp K FEHEFREFE ) 24 17 IR T,
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add esp, -$08 FEHRIiFREHAE N 8 NS

HERR I BEK 7 24 R IR, 54T subesp, 8 FLMLME R TIXAN R
BRI B e T I 3 ATARAS A, sfr L& ZE A SecondOrderPolynomial 2 J&
AT

The next line of Pascal was compiled into no less than 9 lines of ASM.
4T pascal fCHEB IR 9 1T ASM ARhH,

Result ;= A*X*X + B*X + C;

{

fld  qword ptr [A] I ¥ A ZEN st(0)

fmul gword ptr [ebp+$08] // st(0) * X ->st(0)

fmul  qword ptr [ebp+$08] // st(0) * X ->st(0) 5Ekk A* X * X

fld  qword ptr [B] 1 stO) AR 7%, BRI HAT — IR ARRERVE: 45 st(0)->st(1)

Il B->st(0). St(0) A& MkTi.

fmul gqword ptr [ebp+$08] // st(0) * X ->st(0) =B * X

faddp st(1) Il st(1) + st(0) ->st(1), ATHIER, [t st(1)->st(0)

fadd qword ptr [C] I st(0) + C -> st(0)

fstp qword ptr [ebp-$08] // £ 5% st(0) £\ [ebp-$08].

wait Il F2 FPU 5 CPU: {#1k CPU Iiz1y, HE| FPU S84 HT#HAE
figh

fld  qword ptr [ebp-$08] // 4547 st(0)
}

For those that is used to HP calculators floating point code is very easy to
understand. The first line,fld gword ptr [A], loads the constant A onto the
floating-point register stack. The line,fmul gword ptr [ebp+$08], multiplies A
with X. This makes sense by watching the Pascal code,but what means "qword ptr
[ebp+$08]". gword ptr says "pointer to a quad word,which is the size of a double.
(64 bit).

XU RS IR B S Bl . 2R 4T fld qword ptr [A], REEH R A PV SEA A AR HE
Heo XAT fmul qword ptr [ebp+$08], H X e A, XLEnT LUl pascal fUH B 42 i
A X AE " qword ptr [ebp+$08]"# st 4We. qword ptr ot ] — N PUA T ER,
B ANTE R R N 64 £7)s

The value of the pointer is between the brackets in [ebp+$08].

ebp is the base pointer and $08 is - well just 8.

Because the stack grows down the memory location 8 bytes above the base pointer
is in the previous stack frame.Here X was placed by the function, which called

our function.The register calling convention decides this placement of a double
variable.

FEEH RS 5 Z IR U ebp+$8.

-10-
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ebp JEIELE, SR 8. DUNFE E—HERA, HERRMIERER PR T 8 Al
LR RS X HEIX L,
WA HIZE Y€ T—A> Double A2 EEINL .

A double variable does not fit into the 32 bit integer registers,but it fits
perfectly onto the floating-point registers. Borland decided to pass double
variables via the stack,but passing them in floating point registers would have
been more efficient. The next 3 lines need no further explanation, but the line,
faddp st(1), needs some.All floating-point instructions starts with an f. add

is addition. st(1) is floating point register 1,which is the second because st(0)
is the first!

AN BE R 32 AL AR RSN R, (HR S RG] ANV SRS
Borland @i HikkfE 4 Double Axte, L@ V7 mi B0 A7 A7 A AR AT T 12 5 A R0
BRI ZATATT B Z MR, WA IX—17 faddp st(l) 2t — . JI HIVF s 5
TR A f FFk. add FoRiik. st(l) /& 1 SVFm%L HEERE AT,
K st(0) /25!

The floating point registers are combined into a stack and instructions implicitly
works on the top of the stack, which is st(0).faddp st(1) is the same as faddp
st(0), st(1) and it adds register st(0) to register st(1) and place the result in
st(1).The p in faddp means pop st(0) of the stack. This way the result ends up

in st(0).The line fadd qword ptr [C] completes the calculations and the only thing
left is to place the result in st(0).

It is actually already there and the two lines are redundant.

TR AL R G o — MR, TR BaS EARTI st(0) 1%

faddp st(1) 55 faddp st(1), st(0) AH[Rl, "E¥7Ff7ds st(0) InFIZFFAE4% st(l), 45k

7E st(l) . faddp 1) p £k st(0) s HERk. XFELS AR st(1) B3| st(0) .
fadd qword ptr [C] SERITE, FERE RN st(0).

A EE R OAAE st0) T, X AT IR IN:

fstp qword ptr [ebp-$08]
fld  qword ptr [ebp-$08]

They just copy the result into the stack frame and loads it back in again.

Such a waste of precious time and energy :-).

The line wait makes sure that any exceptions that might have been raised by one
of the floating-point instructions are checked. See Intel SW Developers Manual
\Volume 2 page 822 for the full explanation.

EAER st(0) EMRIMERL, RJE FFMHEREE st(0).
AR WBLIR 2 Bt I T RS T )
wait 5K AVE SR SR AR ES . WIS Intel AR TG 2 55 822

-11 -
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TR PEAR R -

Then there are only three lines of asm back to explain.
& AT R T EE AR — K

{
pop ecx
pop ecx
pop  ebp
}

end;

These are removing the stack frame, by restoring the values of esp and ebp back
to the values they had when the function was entered. This code is much more
intuitive and does the same thing

add esp, 4

pop ebp

it is also more effective and | do not know why the compiler is incrementing the
stack pointer in this cumbersome way. Remember that ecx can be used for free and
assigning values to it is just like pouring them into a waste bucket.

EATE MR, RN BN ORAF I esp. ebp MIME. HIEZRHIR SR
add esp, 4

pop ebp

KASE AR o FRANFIE A A G 122 FH SRR BRAD ) 7 v 18 In HERR TR 1
W3 ecx AL E EATHI A, pop ecx F i ARAGIE T BRI T by A

Now we only need to investigate what is hiding behind the [A] in the line

fld qword ptr [A].We know that A must be a pointer to the place where A is placed
in memory.The address of A is coded in the instruction. This is the full line

from the cpu view.

00451E40 DD05803C4500 fld qword ptr [B]

00451E40 is the address of this instruction in the exe file.

DD05803C4500 is the machine code for the line and fld qword ptr [B] is the more
human readable format of it.By consulting the Intel SW Developers Manual Volume
2 on page 280 we see that the opcode for fld is D9, DD,DB or D9CO0 depending on
the type of data it should load. We recognize DD that is the opcode for fld double.
What is left is 05803C4500. 05 is (Somebody help me !'). 803C4500 is the 32-bit
address of A.

PAEBATA T EZWT5A0S fld qword ptr [A] FHEERAE [A] Je I 2R 74
BAHIE A HEE AR A AL E P FRE .

A [FhELERR A gt . cpu view H ISR ERACS AN R

00451E40 DD05803C4500 fld qword ptr [B]
00451E40 J& exe "HiEA bl

-12 -
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DD05803C4500 AL #Ai, fld qword ptr [B] 2 & FediTr) DLz fd% X o

W AE Intel BAETTRT WS 2 9% 280 w1, A% fid 44EM & D9,DD,DB
% DICO, ‘BT T A E LY . FRATTIAE 05803C4500 /-iiff) DD X7 fld %
H. 05 BAFAWE? (MERETURIRD). 803C4500 /& A ff) 32 fisdl.

Let us convert the function into a pure BASM function now that we have finished
analyzing it.

FATELLTER T 70T, DHERS R 4l BASM 1

function SecondOrderPolynomial3(X : Double) : Double;
const
A Double = 1;
B : Double = 2;
C : Double = 3;
asm
push ebp
mov  ebp,esp
add  esp,-$08
/IResult := A*X*X + B*X + C;
fld  qword ptr [A]
fmul gword ptr [ebp+$08]
fmul gword ptr [ebp+$08]
fld  qword ptr [B]
fmul gword ptr [ebp+$08]
faddp //st(1)
fadd qword ptr [C]
fstp qword ptr [ebp-$08]

wait
fld  qword ptr [ebp-$08]
pop  ecx
pop  ecx
pop ebp
end;

Now come a few surprises. First the function will not compile. faddp st(1) is not
recognized as a valid combination of opcode and operands. By again consulting the
Intel manual we learn that faddp comes in one version only. It operates on st(0),
st(1) and it is not necessary to write faddp st(0),st(1) and the short form faddp

is the only valid one. We comment out st(1) and it compiles now.

RAE IR T — 28 i i

o, HRECRReN TR, faddp st(l) AREEGVEMBERAELFRERAS . RS % Intel T,
faddp HA7—/MEA, EHAE st(0), st(l) HHATEEXFES faddp st(0), st(1).

i faddp JEME—AVER—A. TATERER st(1), BAfEgm it T .

-13-
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Second surprise.

Calling the function with X = 2 yields the calculation Y = 2/2+2*2+3 = 11.
SecondOrderPolynomial3 returns 3!

We must open the FPU view as well as the CPU view and trace through the code and
watch what is happening.lt is seen that A=1 is correctly loaded into st(0) by

the 4 line,but the 5 line that should multiplicate A by X, 1 by 2, is resulting

in st(0) being a very small number,in effect 0.This tells us that X is near zero

instead of 2.Two things can be wrong. The calling code is transferring a wrong

value of X or we are addressing X incorrectly.By comparing the calling code when
calling function SecondOrderPolynomial3 and SecondOrderPolynomiall we see that
it is the same and this is not the bug.It would also be quite surprising if

Delphi were suddenly getting this wrong! Try to step through the calling code

while watching the memory pane in the CPU view.

The little green arrow is the position of the stack pointer.

FH—A M EIE A RBUAENIES X =2, NiFE Y =2/2+2%2+3 =11, A
SecondOrderPolynomial3 455854k & 3.

WAL FPU % FHGER AR —FEMEE R AL T A4

WAVER], HVUATH A=1 2N st(0) ZIEMIM, (HZ2% 5 172 A*X | 1*2,
BINEERAE st(0) tPAE 7 — MR /NS, i 00 XEFERA] X T EimAL 2.
PRI AT RE A . AR N T — MR X e AT X AR

JEIL % SecondOrderPolynomial3 5 SecondOrderPolynomiall (113 A, FATHE 3
EATZAE N, AR R Delphi P2 IXAME R, B4 AHIT.
FHAETE CPU view HRERACHY, MEENAFIR . AN S (0 5 S AR T A7

The calling code looks like this

U AR B AR AL XA

push dword ptr [ebp-$0c]
push dword ptr [ebp-$10]

call SecondOrderPolynomiall two pointers are pushed onto the stack. One of them
is a pointer to X.I do not what the other one is.

By watching the memory pane we see that the first one is the pointer to X and

the second one is a nil pointer.When we trace into the function we see that the

first two lines are repeated.The compiler automatically inserted the push ebp and
mov ebp, esp lines. Because push decrements the stack pointer by 4,the reference
to X went wrong. These two first lines are removed and everything is ok again.
Now we have finished analyzing the code and know what it does, we can begin
optimizing it.Let us first change the two fstp/fld lines that we already have

seen is redundant.

A SecondOrderPolynomiall ¥ AN FRELFi 1) 1) PN 284 R N HEAR o

-14 -
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EATH A AR Xo RARIE S — A4

ISR N AL DIRATRIEE — A 24810 X a5, BB ASE—A nil 75

MBAT IR R R BN FRATVE BIRTPAT R E R M. GiEAs B4R push ebp F1 mov ebp,
esp.

K20 push fEARTIk 4, FUESIH X WA TR BIBRXPRAS, sRECTAEIER 7.
WAE, FATEAHT TAS, JFBAnE e 74, BIOTFHiie.

BAVEE LA RIFTCRR fstp 5 fld X7,

function SecondOrderPolynomial4(X : Double) : Double;
const
A Double =1;
B : Double = 2;
C : Double = 3;
asm
/lpush  ebp
/Imov  ebp,esp
add  esp,-$08
/IResult := A*X*X + B*X + C;
fld  qword ptr [A]
fmul gword ptr [ebp+$08]
fmul gword ptr [ebp+$08]
fld  qword ptr [B]
fmul gword ptr [ebp+$08]
faddp //st(1)
fadd qword ptr [C]
/lfstp qword ptr [ebp-$08]

wait

/Ifld  qword ptr [ebp-$08]

pop  ecx

pop  ecx

pop ebp
end;
This was the only reference to the stack frame, which is not needed now.
L HEMAT R (0 AN 2

function SecondOrderPolynomial5(X : Double) : Double;
const

A Double =1,

B : Double = 2;

C : Double = 3;
asm

/lpush  ebp

/Imov  ebp,esp

/ladd  esp,-$08

-15-



Dennis Christensen, BASM for Beginners (BASM #J2%# A1)

/IResult ;= A*X*X + B*X + C;
fld  qword ptr [A]

fmul qword ptr [ebp+$08]
fmul qword ptr [ebp+$08]
fld  qword ptr [B]

fmul gword ptr [ebp+$08]
faddp //st(1)

fadd qword ptr [C]

wait

/lpop  ecx

/lpop  ecx

/lpop  ebp
end;

That removed another 6 lines and reduces the function to this.

MERIX 6 47, ACHIE A -

function SecondOrderPolynomial6(X : Double) : Double;
const
A Double = 1;
B : Double = 2;
C : Double = 3;
asm
/IResult ;== A*X*X + B*X + C;
fld  qword ptr [A]
fmul gword ptr [ebp+$08]
fmul gword ptr [ebp+$08]
fld  qword ptr [B]
fmul  qword ptr [ebp+$08]
faddp
fadd qword ptr [C]
wait
end;
X is loaded from memory into the FPU 3 times. It would be more effective to
load it once and then reuse it.
X MANAERN FPU 3 IR HLSCRAN—IKTEA R, Bon b

function SecondOrderPolynomial7(X : Double) : Double;
const

A Double =1,

B : Double = 2;

C : Double = 3;
asm
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/IResult := A*X*X + B*X + C;

fld  qword ptr [ebp+$08]

fld  qword ptr [A]

fmul  st(0), st(1)

fmul  st(0), st(1)

fld  qword ptr [B]

fmul  st(0), st(2)

ffree st(2)

faddp

fadd qword ptr [C]

wait
end;
I magically came up with this code. The first line loads X. The second line
loads A.The third line multiplies A with X.
The 4. line multiplies a*X know in st(0) with X.
Then we have calculated the first term. Loading B and multiplication it with X
does calculating the second term.
This was the last time we needed X in we free the register, st(2), holding it.
Now adding term 1 and 2 and popping term 2 of the stack. The only thing left to
do is adding C.
The result is now in st(0) and the other registers are empty.
Then we check for exceptions with wait and are done.
It is seen that no redundant work is done and this implementation is near optimal.

RIS AL T IXHeRAD . 25— AT X, HBATHN A, FATHIT A* X,
B4 4TH ARX IS st(0) Ll X

TAIEL S B BA B JFHIRLL B it B
XRBAVRSG A X, IR A2 st(2).

PAEREEE 1 BORIEE 2 Botn, #Hs 2 B B FEESEM C.

SERIAEAE st(0) , FHAth B A7 48 #5221 6

RIGEATH wait # A =4,

AR EEREAILR T, RN EIBT R

There exits seven instructions for loading often used constants into the FPU.

One of these constants is 1, which can be loaded with the instruction fld1.

Using it saves one load from memory, which can be costly in terms of clock cycles
if data are not properly aligned.

1 7 FARLAW N TR RS FPU, XU EZ 2 1, EhEkdES fldl R
R ENTE TR K WEREHEANE S 055, JORITE 2 S AR A DI Bl
LI

function SecondOrderPolynomial8(X : Double) : Double;
const
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/IA : Double = 1;
B : Double = 2;
C : Double = 3;
asm
/IResult := A*X*X + B*X + C;
fld  qword ptr [ebp+$08]
/Ifld  qword ptr [A]
fld1
fmul  st(0), st(1)
fmul  st(0), st(1)
fld  qword ptr [B]
fmul  st(0), st(2)
ffree st(2)
faddp
fadd qword ptr [C]
wait
end;
This ended the second lesson. Stay tuned for more.

BURETR T o MIMIRE T, BN RIEAT
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Lesson 3 % 3 i (64 {7185, MMX, SSE2 #§4)

In this third lesson topic such as MMX and SSE2 will be introduced together with Int64
arithmetic’s.
This is the first time we will see processor dependent optimisations.

B3 WM EEEAY Inted FIEAREHE, FHESAY MMX,SSE2 154 .
AT 28— B B A AL BE 2 IIALAL -

The example looks like this
Bl
function Addint64_1(A, B : Int64) : Int64;
begin
Result := A+ B;
end;

Let us jump straight into the asm code.
BATH BB AN
function AddInt64 2(A, B : Int64) : Int64;
begin

{

push ebp

mov ebp,esp

add esp,-$08 // 4TI i 1]

}

Result := A+ B;

{

mov eax,[ebp+$10]

mov edx,[ebp+$14]

add eax,[ebp+$08] // ik 32 ArAHN

adc edx,[ebp+$0c] // FrHEALE 32 ALAH N

mov [ebp-$08],eax // 1% 32 fif

mov [ebp-$04],edx // 5 32 L

mov eax,[ebp-$08]

mov edx,[ebp-$04]

}

{

pop ecx

pop ecx

pop ebp

Iret

}
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end;

The first three lines of code are recognized as setting up a stack frame like in the previous lessons.
This time we know that the compiler might add the first two for us.

The last three lines are also a well-known pattern. Again the compiler might add pop ebp for us.
This brings us into the meat, which are these 8 lines Result := A + B;

AR AT ATV i A FH R BB HEAR, UG i T DR I —FF
FATVTE G PEAS A FAT TG0 T HTPIAT
I Ja AT R RATAR R MeAh, mikas AN T pop ebp.
A1k Result := A+ B P=AEREX 8 7L 4mAtH:

{

mov eax,[ebp+$10]

mov edx,[ebp+$14]

add eax,[ebp+$08]

adc edx,[ebp+$0c]

mov [ebp-$08],eax

mov [ebp-$04],edx

mov eax,[ebp-$08]

mov edx,[ebp-$04]

}

They can be analysed in pairs because they work together in tandem doing 64-bit math by splitting
the problem up into 32 bit pieces. The first two lines load A into the register pair eax:edx.

They are loading a contiguous 64-bit block of data from the previous stack frame,

showing us that A was transferred on the stack.

FATTR BT 7 BrIC g A0S, 4 64 fris SOt 4> 64 A& Afik 32 frAleE 32 £
KiZH. HIHATHIES A fENTAEAA eax: edx. ‘EAT TR Z AUHERR LM 64 A0 Hidhi e
A B A R Motk

The two load pointers are separated by 4 bytes.

One of them is pointing to the beginning of A and the other one is pointing into the middle of A.
Then comes two add instructions. The first is a normal add and the second one is add with carry.
The pointers in these two lines are pointing to B in the same fashion as the two previous were
pointing at A.

The first add adds the lower 32 bits of B to the lower 32 bits of A.

This might lead to a carry if the sum is too big to fit into 32 bits.

This carry is included in the addition of the higher 32 bits.

AR 20, A 4 DTG,

Hrp—AMam A TG, 75— ME1E A I E

I, RPIINESES, SR, SR AR RELLAT N,

XTI SR TR AT IS 1) A FEE SR B RIRE 5 2

A add f54 2% B UMK 32 A7ty A BT 32 ALAHNN.

WRERWFHR KA TH 32 AT e, wr-d A,
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AL E AR 32 ALIA .

To make things totally clear lets do a simple example on decimal numbers.

We have the addition 1+2 = 3.

Our imaginary data types for this in our brain CPU as two digits wide.

This means that the addition is actually looking like this 01+02=03.

There is no carry from the addition of the lower digits into the higher ones, which are zero.

KT T R, AR 10 SEHA e -7k i i
F—AMl e 1+2=3 o BAMEERAAKN CPU & 2 MNECEHIMTER .
X R RS XA A 01+ 02 =03 XMIEL, B ARA A I BE6L, HEA 2.

Decimal example two. 13+38="?. First we add 3+8=11.
This results in a carry and a 1 in the lower half of the result.
Then we add Carry+1+3=1+1+3=5.

The result is 51.

BT R 13+38=2 o EHAERNIIAE 3+8=11, ;AT A
WRIG, BATEE #467 +1+3=1+1+3=5, 42 51,

In the third example we provoke an overflow. 50+51=101.

101 is too big to fit in two digits and our brain CPU cannot perform the calculation.

There was a carry on the addition of the two higher digits. Back to code.

Two things can happen now.

If we have compiled without range check the result wraps around. With range check an exception
will be thrown.

We see that there is now range check code in our listing and wraparound will occur.

A, FRATHIIE — AN . 50 + 51 =101,

101 KK, H 2 AT, I HIATRR CPU AREHATIHHE T o BIAMIAS A7 AH
= A T — AN

MBS, TR P AR

1. G VAT A Y el A 45 R R 5t

2. FATHVEHR AR IO — RS BATSF BTG A AU 7R 3eR, RN =4
TN

The next two lines save the result into the current stack frame.

The last two lines load the result from the stack frame into eax and edx where it already was.
These 4 lines are redundant. They can be removed and this also removes the need for a stack
frame.

it so easy to be an optimizer ;-)

PRI AR E R EAX, EBX fRAFSIHER
RJE AT FRR A R HERGIE I 2 EAXEDX H
WA, X A ATRRZARM . AT LABINER, R O B R HE AT DR A
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function AddInt64_6(A, B : Int64) : Int64;
asm

mov eax,[ebp+$10]

mov edx,[ebp+$14]

add eax,[ebp+$08]

adc edx,[ebp+$0c]
end;

This is a nice small function.

The compiler generated code consisted of 16 lines and we came down to 4 with only little effort.
Today Delphi was really sleepy.

Now we think like this: If we had 64 bit registers the addition could be done with two lines of
code.

But the MMX registers are 64 bits wide and this might be worth taking advantage of.

T N T v ) PR K

G AL TAMEAE T 16 17, AR — S5 AR AR R 4 47
Delphi FLAZAT s Bt o

BUEBATAE, WERBA T 64 ALfhwrf7ds, A 64 LA AR mt g Bl
sz, MMX ZA7as it 64 o5, Al e A A,

In the Intel SW Developers Manual instructions are not marked as belonging to 1A32, MMX, SSE
or SSE2.

This information would be nice to have, but we have to look elsewhere for it.

I normally use three small programs from Intel. The so called computer based tutorials on MMX,
SSE & SSE2.

I do not know where to find them on the Intel website now, but mail me if you want them.

They are simple and nice - very illustrative.

In these | find that a mov for 64 bits from memory into an MMX register is movqg.

Q stands for quad word. The mmx registers are named mmO, mm1....mm7.

They are not arranged as a stack, as the FP registers are, and we can pick which one we like.

76 Intel AT RFM, WA EERRIA 1A32, MMX, SSE 5 SSE2 %54
R T A IR L F R TR UF T, AERIRATAS A B oAb 7 T 4R IX 245 4

WA T Intel $24E1 3 NPNEEE, ENIHFA KT MMX, SSE & SSE2 THEHLIIIEA
o

WAFIIEIAE WA Intel PEHRENEAT, WRARFZEINT LIS Email.

EATERIRI, R0, B AU

EXLE TR, ORI T A 64 ALIFEBhIES mova, R EERE N NAERE B4 MMX
AL,

Q FRDUfEF. mmx AAFasdldim 48 mmo0, mml...mm7.

EAIAREE FP 2 -2 R A MEARAE F, FRATTmT DABE A AT — A
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Lets pick mmO. The first instruction looks like this

movq mmaO, [ebp+$10]

There is to ways two go now. We can load B into a register too.

This makes it easy to see what is going on by using the FPU window.

The MMX registers are aliased onto the FP registers and the FPU view can show both sets.

Switch between FP and MMX view by select "Display as words/Display as extendeds" in the
shortcut menu.

The second way to go is to use the pattern from the 1A32 implementation and perform the addition
with

the memory location of B as source.

L mmO A, 515 N B

movg mmo0, [ebp+$10]

BUAEAT WIS Bl
AR RRIT L B BB A7 8

LRy RS FPU %7 B B

MMX & {F2{F0 FP AF(7BR0HI%, FPU 3 F1 T BLALR A 5 44K

Bl FP AT MMX ST DL RS R0 S 3 e

B RO SR 1A32 SATHE, A B 1 R

The two solutions is expected to perform identically because the CPU needs to load B into
registers

before doing the addition and whether it is done explicitly with mov or explicitly with the add
instruction,

the number of micro instructions will be the same. We use the more illustrative first way.

PR AT R AT R - O CPU AEPATINTEAR & 210, T2 B e fr s
ANEEREYFHEN mov $5483 add fi54, P RdES N EOEH R .
FATTRT LU BE 2 1 i & KU

The next line is then a movq again
i JE—/> movg R4
movq mm1, [ebp+3$08]

Then we have to go look for an add instruction which would be something like this- paddg.
P for MMX, add for addition and g for quad word.

Now we get disappointed because there is no such MMX instruction. What about SSE.
One more disappointment.

WRIG AT EF A INiEIR4S, B paddg JEA.
P X78 MMX, add &bk, q R0
TR, AR, FONEAA XN MMX 54
SSE Wg? A NKHE,
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Finally SSE2 got it and we are happy or are we? If we use it the code will be targeting P4 and not
run P3 or Athlon.

Like the P4 lovers we are we proceed anyway.

paddg mmO, mml

This line is very intuitive. Adding mm1 to mmaO.

Only thing left is to copy the result from mmaO into eax:edx.

To do this we need a double word mov instruction that can take 32 bits from a MMX register as
source and

an 1A32 register as destination.

movd eax, mmO

This MMX instruction does the job. It copies the lower 32 bits of mmoO to eax.
BORIAIE SSE2 R T e, FATHEAZ A Z e ?

WMRBAMER &, a5 H G P4 b, AReizir{E P3 & Athlon F.
P4 ZUfHATAT AGREEE &

paddg mmoO, mml

KA BN, 2R M mml ] mmo.

BRI G 2K L5 R mm0o & HIE] eax:edx.

H TSI, BATHE AT mov $54, BT LLAEMIEEIER MMX S5 as &
il 32 A,

FENAED BFRERIERN IA32 FFArds.

movd eax, mmO

MMX $i54 T ASE BN TAE, movd &l mmO (1K 32 73] EAX .

Then we need to copy the upper 32 bits of the result to edx. I could not find an instruction for that
and insteadl shift the upper 32 bits down into the lower 32 bit using a 64-bit MMX right shift
instruction.

e, B EEH mmo M 32 A7) eax o FBATRKILSEIXATHREMIIR 2
—MNERTEEMEH— 64 71 MMX A4, 5 32 M EME 32 fif.

psrlg  mmoO, 32

Then we copy

AR A T A

movd edx, mmO

Then we are done? Unfortunately we have to issue the emms instruction because we have used
MMX instructions.

ARSI T2 ARASE, BUOGIAMER T MMX fi5445, BT 25 emms §54.
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It cleans up the FP stack and leaves in a well-defined empty state. Emms bums 23 cycles on a P4.
Together with the shift which is also ineffective (2 cycles throughput and latency) on P4 our
solution is not

especially fast and it will only run on P4 and this AMD thing nobody has yet:-(

ENEE PP MRk, RIE A HERR .

Emms 7 P4 LFEEE 23 AN E .

I ERAT A AN AR A 0K (2 cycles throughput and latency 994 I 4 R 391 7 4 ik B R AR
1), BULIRAT P4 R T AR BIIPR,

I HE AT P4 I, AMD 3B %A N\ Seiid:~(

This ended the 3. lesson. We left the ball hanging in the air. Can we come up with a more efficient
solution?

Moving data between MMX register and 1A32 registers is expensive. The calling convention is no
good, because data

were transferred on the stack and not in registers. eax->mmo0 is 2 cycles.

The other way is 5 cycles. emms is 23 cycles. Addition is only 2 cycles. Overhead is plenty.

903 BRMEE .

BATRA B, AR — A A RCR IR R T 50 2

£ MMX ZFAEasfl 1A32 T A AR A AR R 1o IR Z e A RARGEE, A EARAE
ikl EARST A AL A7 A2 2% Th AR

eax -> mmo0 & 2 MW, HAk7U& 5 ANEW,  emms & 23 AN, mvEE 2 A
AR, AN I ) (P RE 2 AR K
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Lesson 4 5 4 iR (4r3ZiEA)if-else)

In this lesson we will learn about branching, illustrated by an if-else construct.
Conditional floating point move will also be introduced.
The example function of this lesson is the Min function from the Delphi Math unit.

FERX— VR, FRA PR 27 20 70 3R], Tl —A if-else S5 FSRASI Ui .
[ N 407 B e
XU R OE Delphi Math 5761 Min B4

function Minl(const A, B: Single) : Single;
begin
if A< B then
Result := A
else
Result := B;
end;
The compiler generated asm for this function looks like this
GRS T
function Min2(const A, B: Single) : Single;
begin
{
00452458 55 push ebp
00452459 8BEC mov ebp,esp
0045245B 51 push ecx

}
if A< B then

{
0045245C D9450C
0045245F D85D08

fld dword ptr [ebp+$0c]
fcomp dword ptr [ebp+$08]

00452462 DFEO fstsw ax
00452464 9E sahf
00452465 7308 jnb +$08
}
Result := A
{
00452467 8B450C mov eax,[ebp+$0c]
0045246A 8945FC mov [ebp-$04],eax
0045246D EBO6 jmp +$06
}
else
Result := B;
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{
0045246F 8B4508 mov eax,[ebp+$08]
00452472 8945FC mov [ebp-$04],eax
}
{
00452475 D945FC fld dword ptr [ebp-$04]
00452478 59 pop ecx
00452479 5D pop ebp
}
end;

This time | included the address and opcode columns, because we need them later.
Lets analyze it line by line, like we always do.
X — R IR T M AL, DA fE T s L #
BT, FATR—ATIT 7.
function Min3(const A, B: Single) : Single;

begin
{
push ebp
mov ebp,esp
hkeEt
push ecx

}
if A< B then

{
fld dword ptr [ebp+$0c]
fcomp dword ptr [ebp+$08]
¥ A M FP i
fstsw ax
sahf
jnb +$08
8
}
Result := A
{
mov eax,[ebp+3$0c]
mov [ebp-$04],eax
jmp +$06
}
else
Result := B;
{
mov eax,[ebp+$08]
mov [ebp-$04],eax

/I Save ebp on stack  f#1% ebp
/I New basepointer is the old stackpointer HEFkg41 IR 25 3

/l subtract 4 fromesp esp ik 4

Il Load Aon FP stack A FII7F fi 5 %5 7 s HE bk
/I FP compare A to B and pop A from stack A 5 B L2 )5,

I Store FP statusword in ax ¥ FP PRAFELEN ax
/I Store ah into EFlags register f7-fif ah Zbr&E A7 4%
/I 1f not below jump 8 bytes forward 40 5 A/NT-, U jia i ik

// Copy Aintoeax A FI eax
Il Copy A into stackframe A |4k
/1 Imp 6 bytes forward [JRTEE 6 41T

// Copy B into eax B %I eax
I/ Copy B into stackframe B itk
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}

{
fld dword ptr [ebp-$04] /Il Load A or B from stackframe onto FP stack 2% A = B %

FP Mk

pop ecx /IAdd 4toesp esp Ml 4
pop ebp /I Restore ebp k%5 ebp
}

end;

This time | commented every line of BASM. Read the details there.

The first new instruction introduced by this example is fcomp. F says floating-point instruction as
always.Com says compare and p says pop FP stack. Fcom compares two floating-point values and
sets the condition code flags of the floating-point unit, named CO, C1, C2 and C3.

XK IRIERE T84T BASM. WX A LAE B PEG0 Y -
AT 3 — AN A HT TR 42 feomp.

F RRIZENEHRS, Com FIRLLEL, p KNI B AR A AR I

FCom FLEPIANT fi%, I H B4 b CO, C1, C2, C3 [T B eI S FAU bR i

These flags are the equivalents of the EFlags register of the CPU.

The flags are checked by conditional jump instructions, which jump or not depending on the type
of jump and the status of the flags.

KEEPRESEN T CPU MAR & A7

FAFBEEAR SR B IR BEhR AR, BB, MO T Bk () S AR Be R A IR A

Conditional jJump instructions check the CPU flags and not the FPU flags and therefore it is
necessary to copy the flags from the FPU to the CPU.

BRI CPU AR S TIAE FPU (b, BT B R ks &N FPU #% 01 5
CPU.

This is done by the next two instructions.

fstsw stores the FP flags into the ax register and sahf copy the 8 bits from ah to the EFlags register.
This is a long way for the flags to travel before they can be used by the jnb instruction.

Jnb is short for jump not below. In the Intel SW Developers Manual Vol 2 at page 394 there is a
table with all the different jump instructions and a description of the flags they test.

T RATHRA SEHLIX AN ThfE .

fstsw f75 FP Fri&3] ax 27f77%, sahf M ah Eifl 8 frFPRASkRE S 1rEe.

FEEAIHE jnb FeAMTHZHT, & T — MK b &,

nb AN, WAL T B . 76 Intel AT RTNEE 2 055 394 TP —uk
KR T

FIT A B2 i 2 (AN 5] LA B & AT T BT RS (0 A 76 25 A7 2% o

Here it is seen that jnb jumps if CF=1 and ZF=1.
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Try tracing through the code with the FPU view and the CPU view open.

Watch how the FPU flags are set, their values are copied into ah and then copied to the CPU
EFlags register.

If the jnb jump is not taken execution continues in the line after it.

This is the if part of the if-else construct.

If the jump is taken execution is continued at the line 8 bytes ahead.

This is at the start of the else part. The if and the else part is very much the same.

XJLERSRWIE CF=1 JFH ZF=1 i jnb Bk¥.

Wil FPU % IR CPU % 1 PREZACHY

MEE FPU RSEFEHRE, AT ILF] ah, JFH 4 IE] CPU HPRESFT 4.
WR jnb BREEAPAT, WABKSPITEZENTRS. X2 ifelse L1 if #45).
WR jnb BREEHAT T, A NIX—ATRIHEI 8 N AbHIT.

XA else #AFMITFFLE. if FN oelse F4:TEH AL,

As seen in the Pascal code A or B is copied to the Result variable depending on the if condition.
Instead of copying A or B directly on the top of the FP stack, which is the place of a FP Result
from a function due to the register calling convention, the Delphi compiler chose to use the stack
as a temporary location.

The fld dword ptr [ebp-$04] instruction copies the result in the right place.

M Pascal fLHESHTTLAE S|, A oi#H B #i#% VI BI4E RAF BT if 5&At.

AJEMM FP HERRI T H i B A A 80 B, HAHTAA B %5 A7 2% 1 Foe r= £ i a5 1,
Delphi & i 126 BEAE FHHER AR Ay i I A b AR 1

fld dword ptr [ebp-$04] 258 $5 4 A4 45 3 .

Observe that an unconditional jump is needed at the end of the if block such that execution does
not continue in the else block.

This way there is a jump no matter with branch is taken. A short word on branch prediction.
Branch prediction comes in two flavours, static and dynamic. The first time a branch is executed
the CPU can have no knowledge about the probability it will be taken or not. In this situation it
uses the static predictor, which says that forward jumps are not taken and backward branches are
taken.

VAR, WERAAT else Be, WIFE if BRAGLRHTE DA BE TR

A RATREN IS SCHAT Bk o 220 SCTN (R R 7o

Oy SCHNAT PR 5 S TN S AR T .

I¥3C—TFIRHAT, CPU ANHIE ) SR BB AT

XREOL T, e AT SRS TN, KOs A AT AR AT, 15 B 20 SCHERAT o

Our example jump no 1 is a forward branch and it will be predicted not taken the first time
through.

If we have knowledge about the values A and B, we can use it to code the if-else such that

the if part is the most often executed and static prediction is optimized.
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An unconditional jump needs no prediction - it is always taken ;-)

A backward jump is often part of a loop and most loops will run more than once (why else have a
loop?).

This way it makes sense to statically predict backward jumps taken.

Dynamic branch prediction tries to accumulate knowledge about the probability that a certain
jump is taken or not and then predict it correctly as often as possible.

Bl rBkE: 1 R RETYSE S IRASHENE .

UERIRATAE A K1 B R, FATATEUZAEAEH] if-else Zifid, if F o J8CE 2 W AT 1
S, FABRAL T .

NS AT EEI - 2 SORRT )

A I e AR R AE I B, KRR S AT Z IO T4 else M
e

A5 2O T A T 17 i ke LA 3R S

ZNAR G SN RV SRR A A AT, SRR RS AT RE A IEA e .

Now it is time to transform the function into a pure asm one.
SEAE R Bk gl asm ARSI % T .
function Min4(const A, B: Single) : Single;
asm
/lpush ebp
/Imov  ebp,esp
push ecx
/lif A< B then
fld  dword ptr [ebp+$0c]
fcomp dword ptr [ebp+$08]

fstsw ax

sahf

jnb  @ElseBegin
/IResult := A

mov  eax,[ebp+3$0c]
mov  [ebp-$04],eax
jmp  @ElseEnd

[lelse
/IResult := B;
@ElseBegin :

mov  eax,[ebp+$08]
mov  [ebp-$04],eax
@ElseEnd :
fld  dword ptr [ebp-$04]
pop  ecx
/lpop  ebp
end;
The new thing this time is that we need some labels.
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Our analyse of the function made it clear where we jumped to when,| hope.

In general when placing labels it is a good thing to use the knowledge we have about the structure
of the code.You can open the FPU view and just trace through the code and see where you go
when jumps are taken.If you want to place labels without having to think, then use some math.
Example follows We have this jump

X IRBATH N b 2ehRaE

Ay B OGS BT T IXA B2 I (i b 4 206 AL

HH, TBCEARZERIN AR, AT FATE R A S5 iy A% 2 A I
RATLLFTIF FPU B 11, JRERERACHY, S F B AT R .

U RARAECE A AR AT i SIRRAE, 7T LA B 1 7 i

EE G T PR B A 181 1«

00452465 7308 jnb +$08

This is the line after it JX—1T2 )5

00452467 8B450C mov eax,[ebp+$0c]

This is the line 8 byte after that line JIW{T 2 J5 1 8 N 15kb

0045246F 8B4508 mov eax,[ebp+$08]

Take the address of the line after the jump and add the jump offset to it and you have the jump
target address.

BRHAT 2 J A i N L ke ) i A2 B S5 1 ZEE AL 2 H bs bk

This is the math: 00452467 + 8 = 0045246F.

A0l 00452467 + 8 = 0045246F.

Why do we add the jump offset to the address of the line after the jump and not to the address of
the line with the jump?

A2 BAVHBFE 154 2 )5 BN A 5, AN Bk 51X A7 i L bkl 2

It's time to optimise. IL7ETFEAHAL:
function Min5(const A, B: Single) : Single;
asm

push ecx

/lif A< B then

fld  dword ptr [ebp+$0c]

fcomp dword ptr [ebp+$08]

fstsw ax

sahf

jnb  @ElseBegin
/IResult := A

mov  eax,[ebp+$0c]
mov  [ebp-$04],eax
jmp  @ElseEnd
/lelse

/IResult := B;
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@ElseBegin :
mov  eax,[ebp+$08]
mov  [ebp-$04],eax

@ElseEnd :

fld  dword ptr [ebp-$04]
pop  ecx

end;

This is just a cleaned up version of the function. Lets change the push ecx,
pop ecx instructions with instructions that manipulate the esp register directly and do not move
data between ecx and the stack.

XU 7 JE AR

EFRATIRALIL 35 push ecx, pop ecx IXEEE{HHAEAE esp FAEARIIFRS, ecx FIMEMZ B
385 -

function Min6(const A, B: Single) : Single;

asm
/lpush  ecx
sub esp, 4

[lif A< B then
fld  dword ptr [ebp+$0c]
fcomp dword ptr [ebp+$08]

fstsw ax

sahf

jnb  @ElseBegin
/IResult := A

mov  eax,[ebp+$0c]
mov  [ebp-$04],eax
jmp  @ElseEnd

/lelse
/IResult := B;
@ElseBegin :

mov  eax,[ebp+$08]
mov  [ebp-$04],eax
@ElseEnd :
fld  dword ptr [ebp-$04]
/lpop  ecx
add esp, 4
end;
When the code was analyzed we saw that the flags were traveling a long way and 2 instructions
were needed for this.
What about a floating point compare instruction that sets the EFlags directly?
This is the fcomi instruction, which was introduced in the P6 architecture.
Lets use it and abandon those CPUs older then the Pro. It would be fair to believe that these lines
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BIAT B AR ST 0, AR PR 2 RSB .
AN REOR S EREREIEWE CPU bR A A7 45 1e?
i feomi 54, EAE P6 ik HH R4,

fcomp dword ptr [ebp+$08]
fstsw ax
sahf

could be substituted by this 7] LA R 11 (14 G R4
fcomip dword ptr [ebp+$08]

The fcomi instruction does however not accept a memory reference as operand.
Therefore it is necessary to load data before issuing it.

feomi Fi5 ARG A AFRAE R . PRSP & 22 i A e A 2l -

fid dword ptr [ebp+$0c]
fcomip st(0), st(1)

Then because we loaded data we have to remove them again with the ffree instruction.
An fcomipp instruction would have been nice to have.

iy BPUONBEATERN T Eclls, L2l firee $590ER

fcomipp $i54- A g B & A H0X A

fid dword ptr [ebp+$0c]
fcomip st(0), st(1)
ffree st(0)

This is a hell of an optimization, substituting three lines with 3 other.
It is necessary to time the two versions to know whether it was an optimization.
Now the function looks like this.

XN BRI, A 3 AT RCRI 3 17,
T BRI A RRAS, B WA A2 LL A R 1
BRI T

function Min7(const A, B: Single) : Single;
asm

sub esp, 4

/lif A< B then

fid dword ptr [ebp+$08]

fid dword ptr [ebp+$0c]

fcomip st(0), st(1)

ffree st(0)

[Ifstsw ax
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/Isahf
jnb @ElseBegin
/IResult := A

mov eax,[ebp+$0c]

mov [ebp-$04],eax

jmp @ElseEnd

Ilelse

/IResult := B;
@ElseBegin :

mov eax,[ebp+$08]

mov [ebp-$04],eax

@ElseEnd :
fld dword ptr [ebp-$04]
add esp, 4
end;

Now we apply some logic thinking. Why copy the result around? Both A & B is on the stack for
use by the comparison by fcom and the result should be delivered on the stack. The only thing
needed is to delete either A or B and leave the smallest one of them on the stack

DUHEBRAT AT — L08R BT . At 2 SR 45 R ?
A Il B il HERAL AT feom LLAL, 45 RABAEHERR b AL .
A ZMER A B8 B, R/ B AEHERR o

function Min8(const A, B: Single) : Single;

asm
sub esp, 4
[lif A< B then
fld dword ptr [ebp+$08]
fld dword ptr [ebp+$0c]
[ffcomip  st(0), st(1)
fcomi  st(0), st(1)
[tfree  st(0)
jnb @ElseBegin
/IResult := A
//mov eax,[ebp+3$0c]
//Imov [ebp-$04],eax
ffree st(1)
jmp @ElseEnd
/lelse
//Result := B;

@ElseBegin :

//Imov eax,[ebp+$08]
//mov [ebp-$04],eax
fxch
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ffree st(1)
@ElseEnd :
//fld dword ptr [ebp-$04]
add esp, 4
end;
Fcomip is replaced with fcomi because we do not want to remove B from the stack at this point.
Ffree is deleted because it deleted A. Then all the lines that copied the result around are removed.
In the if block A is the result and B should be deleted. B is in st(1) and ffree st(1) does the job.
In the else block we want to delete A and leave B in st(0). Swapping A and B do this with the fxch
instruction and then delete A in st(1) with ffree. Fxch is nearly free (takes 0 cycles),
because if works by register renaming instead of actually copying data.

Fcomip # fcomi &A%, DUATRAIAAMNSERE ERER B. Ffree $EMIBR, BUMEREILT Ao
JIT A T S0 S T S A I B

7 if B, A REER, 4 B SHMER. B 27 st(1) Hh, ffree st(1) K HMIER.

7 else e, FRATAEMIER A, K B BI{E st(0) H. M fxch #5425 #H A 1 B [, &
Ji H firee MR st(1) i A

Fxch ZRTA ML 0 ANJEIW), PRy e it iy 4 25 A7 # A 2 S Hd .

function Min9(const A, B: Single) : Single;
asm
//sub esp, 4
/lif A< B then
fld dword ptr [ebp+$08]
fld dword ptr [ebp+$0c]
fcomi  st(0), st(1)
jnb @ElseBegin
//Result := A
ffree st(1)
jmp @ElseEnd
Ilelse
/IResult := B;
@ElseBegin :
fxch
ffree st(1)
@ElseEnd :
/fadd esp, 4
end;

Now the stack frame is not needed and we delete the code that set it up.

A SRR K4 QRS AN 2

function Min10(const A, B: Single) : Single;
asm
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/lif A< B then
fld dword ptr [ebp+$08]
fld dword ptr [ebp+$0c]
fcomi  st(0), st(1)
jnb @ElseBegin
//IResult := A
ffree st(1)
jmp @ElseEnd
Ilelse
/IResult := B;
@ElseBegin :
fxch
ffree st(1)
@ElseEnd :
end;
This is a pretty nice function, but somebody in the newsgroup has told us about conditional moves.
fcmovnb is such a thing - floating point conditional move not below. It copies data from st(1)-st(7)
to st(0) if the condition is fulfilled. The Eflags are tested for the condition. Fcmov was introduced
in the P6 architecture as well fcomi was.

IUAE R — R TS R T, (R R AL A NSRRI TR 84 .
femovnb MUXFE— 1 - AME T WF S E& 50 .

WIR AR, B st(1)-st(7) ¥ I F] st(0).

Eflags T4k, Femov 1 fcomi —FEAE P6 KR Z M/ 4H.

function Minll(const A, B: Single) : Single;
asm

fld dword ptr [ebp+$08]

fld dword ptr [ebp+$0c]

fcomi  st(0), st(1)

fcmovnb st(0), st(1)

ffree  st(1)
end;

Instead of all the jumping around we copy A to the top of the stack where B is,
but only if A is the smaller of the two.Delete B and done.

This is a nice clean function with only one piece of redundancy left.

The compiler still push/ pop ebp even though it is not modified in the function.

WA A ZWETRRAD, WATER B BRRIL MR B, k.
R AR R AT RO
I, g eeas iR 2 A push/ pop ebp, U BREP B HCE ebp A7 A 1 -
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Lesson 5 % 5 iR (fE¥FiEA])

Welcome to lesson number 5. Today topic is loops.

We will take a look on how the compiler implements for loops, and which optimizations it applies
on them. We will evaluate the efficiency of these optimizations.

WA EEE 5 e 4RI FRBZE.

A VRF — NS I HATORER, RN T e il .

FATRE PP IX LA I R

function ForLoop(Start, Stop : Integer) : Integer;
var
| : Integer;
begin
Result := 0;
for | := Start to Stop do
begin
Result := Result + 1;
end;
end;

This example function does nothing useful except giving us an example for loop to examine.
Lets see what the compiler translates the function into.
In this lesson we try something new and compile with optimizations off.

BABITIR T Bm MBI T2 SN 1 A AL . ol 1K T 0 6 A A R PR 1
o B TR AR P, G AR I T

function ForLoopNonOpt(Start, Stop : Integer) : Integer;
var
| : Integer;
begin
{
push ebp
mov ebp,esp
add esp,-$14
mov [ebp-$08],edx
mov [ebp-$04],eax

}
Result :=0;
{
XOr eax,eax

mov [ebp-$0c],eax
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}
for | := Start to Stop do

{
mov eax,[ebp-$04]
mov edx,[ebp-$08]
sub edx,eax
jl+$15
inc edx
mov [ebp-$14],edx
mov [ebp-$10],eax
}
begin
Result := Result + I;
{
mov eax,[ebp-$10]
add [ebp-$0c],eax
inc dword ptr [ebp-$10]
}
end;
{
dec dword ptr [ebp-$14]
jnz -$0e
mov eax,[ebp-$0c]
}
{
mov esp,ebp
pop ebp
ret

}

end;

It is seen that the compiler generates a lot of code when no or few optimizations are applied.

As usual the first 3 lines set up a stack frame. This time it is 20 byte big (16 hex).

The two next lines copy the Start and Stop variables unto the stack. Start is transferred in eax and
Stop is transferred in edx to the function due to the register calling convention.

The next two lines create a zero in eax and copy it to the stack frame at [ebp-$0c],

which is the place of the result variable.

FERAHATAKS, diasr=4: T V2400,

AT EHER . X —IRIFRET 20 ANF151 K /N (16 hex)

BRoRIMAT M Start A1 Stop AR BHEAR T . W FAAAR AL €, Start it eax f%
6, Stop @it edx fkib.

RGN PRAT ARG eax T BRI MBI MEAL [ebp-$0c] 1, FTArls KA & .
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Then we are ready to enter the for loop.

Before entering a for loop it is necessary to test whether the loop will iterate at all.
If Stop is bigger than Start this is the case.

Start and Stop is fetched from their stack locations into eax & edx.

We compute Stop-Start and if this is negative the loop should not be entered

and execution is transferred past the end of the loop by the jl (jump low) instruction.

SR G HEAS HEANTGER o

TEMEANEA Z AT TR ER W — M E R B FEIAN . WH Stop KT~ Start MFFZE.

Start F1 Stop [¥I{f /i THK%%&*@@E%@ew&Nx*%HO

1 Stop-Start, WIHLEFEL, WABEAIGES, JF Hidk jIRNBkEE) 452 ZAG AR R
WHATTR S -

The next line increments Stop and then it is copied to location [ebp-$14].

We have no name for the local variable at this location.

The purpose of it also needs some further explanations.

It is a variable introduced by the compiler as an optimization and this is weird because
we compiled with optimizations off.

NA7 Stop N 1, RERERGIREHALRE [ebp-$14].

FATAT WIS R AL

KA EMH 177 2RI RE

i Ea R e LA, B AW, UG TRATC 2% 1 9 L 100

There is only one more line accessing the NoName variable and this is the dec dword ptr [ebp-$14]
line.
dec dword ptr [ebp-$14] W15 1) T IX A iy 44 1) J=)355 45 & (NoName),

This line decrements NoName by one at the end of each loop iteration

and the loop closing test is a test that it has not reached zero.

TERF AT R R R & B A i 44 1) 722 7 (NoName) J 1, i it s g FEARHN WA 2 15
Gk

The dec instruction sets the flags and the jnz jumps back to the top of the loop if NoName <> 0.
We would expect that | was used as the loop counter and that it was running from Start to Stop.
It is in fact doing so, but it is not used for control of the loop.

This is the sole purpose of NoName.

dec LW EFRE, W NoName <>0, jnz KB4 [MIIEH K45 .
WAV B H TR T4, M Start to Stop.
b, CERSORIXFE, U E A TR PER]. X2 NoName ME—¥) H 1.

The advantage of this is that it saves an instruction for comparing | to Stop.
There is also a cost and this is the dec NoName instruction.
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On P4 the latency/throughput of cmp is  0.5/0.5 clock cycles and for dec they are 1/0.5.
Therefore we would expect this optimization to be a "deoptimization".

The latency and throughput numbers for P4 is found in the

"Intel Pentium 4 and Xeon Processor Optimization” manual from Intel.

R s, ETE T4 1 5 Stop IS .

7F P4 E, cmp MRS S 0.5/0.5 4R, dec f84 )¢ 1/0.5.

Rk, BATHUHMAAR B T —A “HEffie”

7E Intel [f] "Intel Pentium 4 F1 Xeon ACEEZRALAL T LA P4 Fa& MERITIAI AL &

Back to the mov [ebp-$10], eax line. It copies | to the stack.

The loop body consist of only one line of Pascal Result := Result + ;.

This is translated into 3 lines of ASM.

The first two lines are loading | into eax and then adding it to Result at the stack at [ebp-$0c].

The third line increments I.

This ended the explanation of the loop code and only two things are left.

The Result must be copied to eax, which is the register to use for returning the result from

a register calling convention function.

The last three lines remove the stack frame and return execution to the line after the line that
called the function.

A1 E] mov [ebp-$10], eax 1X—4T, ‘& &EHI | FIHEF.

MaIAR I 1—47 Pascal fRi% Result := Result + I,

EWMEFERT 3 4T ASM 5.

HIPATHE | 2N eax, RJaK e Bna4s FHErk [ebp-$0c].
WEATR LM L.

U 1T A o) A R S R A AR T

gL R B eax, eax AEMHRAZHORAIZE B,

i AT TR BRMERR,  JF HLR [ 3801 FH b e 2O AR () R —AT7

As an exercise let us change the ASM code such that it follows the Pascal code and our
understanding of a for loop.

We start by turning the function into a pure BASM one.

This is done by out commenting the Pascal code and "in commenting” the ASM code.

Defining the two labels LoopEnd and LoopStart is also necessary.

The two jumps are edited such that they jump to the labels.

VER—ANGR, BATE B CERE) pascal FEIARESHE N ASM AR5,

TR B U 4l BASM.

BB pascal AR, {FH ASM 1R,

T35 UHIA RS LoopEnd A1 LoopStart. 31X AN FR%5SE M4 AT i kA it SOk fin 44 1)

function ForLoopBASMZ1(Start, Stop : Integer) : Integer;
asm
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push ebp
mov ebp,esp
add esp,-$14
mov [ebp-$08],edx
mov [ebp-$04],eax
/IResult :=0;
XOr eax,eax
mov [ebp-$0c],eax
/[for | := Start to Stop do
mov eax,[ebp-$04]
mov edx,[ebp-$08]
sub edx,eax
jl @LoopEnd
inc edx
mov [ebp-$14],edx
mov [ebp-$10],eax
//begin
@LoopStart :
//Result := Result + [;
mov eax,[ebp-$10]
add [ebp-$0c],eax
inc dword ptr [ebp-$10]
/lend;
dec dword ptr [ebp-$14]
jnz @LoopStart
@LoopEnd :
mov eax,[ebp-$0c]
mov esp,ebp
pop ebp
[ret
end;

The first thing we do is removing the NoName variable.
HG, FAIEER NoName A2k

function ForLoopBASM2(Start, Stop : Integer) : Integer;
asm

push ebp

push ebx /INew 8

mov ebp,esp

add esp,-$14

mov [ebp-$08],edx

mov [ebp-$04],eax

/IResult := 0;

-41-



Dennis Christensen, BASM for Beginners (BASM #J2%# A1)

XOr eax,eax
mov [ebp-$0c],eax
[Ifor | := Start to Stop do
mov eax,[ebp-$04]
mov edx,[ebp-$08]
sub edx,eax
jl @LoopEnd
/linc edx //INoName intialize NoName #J#51k
//mov [ebp-$14],edx /INoName intialize NoName #J#51k,
mov [ebp-$10],eax
//begin
@LoopStart :
//Result := Result + [;
mov eax,[ebp-$10]
add [ebp-$0c],eax
inc dword ptr [ebp-$10]

/lend;
//dec dword ptr [ebp-$14] //NoName decrement NoName i—
mov ebx, [ebp-$10] /INew
mov ecX, [ebp-$08] //New
cmp ebx, ecx /INew
/ljnz @LoopStart
jbe @LoopStart /INew
@LoopEnd :
mov eax,[ebp-$0c]
mov esp,ebp
pop ebx /INew
pop ebp
[ret
end;

The lines marked "New" are introduced to make I the loop control variable.

The mov ebx, [ebp-$10] line copies | into ebx. The next line copies Stop into ecx.

Then the line cmp ebx, ecx compare them and jbe @LoopStart transfer execution to the start of
the loop if | is below Stop or equal to it. Because we use ebx and it is not free for use we
remember to push and pop it.

We expect a for loop to evaluate the loop condition at the top.

This test is split in two by the compiler implementation.

Before entering the loop it is tested that it will execute at least once and the actual loop closing test
is done at the bottom. This is an optimization technique called loop inversion. Now we change the
loop such that this optimization is removed. Then we see what was the benefit of the optimization.

Bebridh "New"  [RAT ARG | R HIAL &,
mov ebx, [ebp-$10] ¥t | K% ebx. F—17# Stop EHIE| ecx.
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cmp ebx, ecx FEATELEL, W% 1 /NTEET Stop , W) jbe @LoopStart $4AT RIEFFHI TG «
A FRAIEH T ebx, ‘EARER A B, FILRAIZWCA  push AT pop &
—AMIEI LT ARV B A1

AT LUK 2 B A PAT I R o A 2D

TEEATEIRZ AT, e D HAT — Ik, SRIGAE4: AW SR S5 . IXFMILLEIR
ML Al A5

IAEBAVTFUR B SOX A B AR, KB B RALLF 4

function ForLoopBASMA4(Start, Stop : Integer) : Integer;
asm
push ebp
push ebx
mov ebp,esp
add esp,-$14
mov [ebp-$08],edx
mov [ebp-$04],eax
/IResult :=0;
XOr eax,eax
mov [ebp-$0c],eax
[[for | := Start to Stop do
mov eax,[ebp-$04]
mov edx,[ebp-$08]
//sub edx,eax
/ljl @LoopEnd
mov [ebp-$10],eax
/Ibegin
@LoopStart :
mov ebx, [ebp-$10]
mov ecx, [ebp-$08]
cmp ebx, ecx
ja @LoopEnd
//Result := Result + I;
mov eax, [ebp-$10]
add [ebp-$0c],eax
inc dword ptr [ebp-$10]
/lend;
//mov ebx, [ebp-$10]
//mov ecx, [ebp-$08]
/lcmp ebx, ecx
/ljbe @LoopStart
jmp @LoopStart
@LoopEnd :
mov eax,[ebp-$0c]
mov esp,ebp

-43-



Dennis Christensen, BASM for Beginners (BASM #J2%# A1)

pop ebx

pop ebp
end;

The loop-closing test has been moved to the top and the test has been inverted.

At the place of the test there now is an unconditional jump to the top.

This jump is what the loop inversion optimization is all about.

In the unoptimized for loop there is two jumps and only one in the optimized one.

The test at the top that tested whether Start was above Stop is now redundant and is removed.
Before making any timing to evaluate the effect of the two optimisations it is a good idea to
optimise away some,

or all if possible, of the stack to register and register to stack moves.

TEIA SR AR BRI TT 4G, M T — DA
PRSI BT T AN JE Ak B3R T 4R

XA B T AEANMEAME B
FEBATIALRIIEIA AT Bk He , AR IR B AT — Nk

FETFL IR T2 M T & Start, Stop BLAEZICAR MR LR B o

FELEBOX ML IR Z T, Sl RES T REFI DAL it LU A 2195 A7 4, 27 A o B HERG )
Hurz g

This process is called register allocation and is one of the most important optimisations on all
architectures,

but it is even more important on the Intel architecture because of the low number of available
registers.

If there is not a register available to all variables it is crucial which variables get a register.

The mov instructions inside the loop body are the most important ones to get rid of.

They are executed as many times as the number of loop iterations.

The instructions outside the loop are only executed once.

The variables used inside the loop should be allocated to registers first. This is I, Stop and Result.
At this point we could be smart and take a look at the use of registers as temporaries.

If a variable were always copied into the same temp register it would be smart to allocate this
register for the variable.

Stop is in the edx register when we enter the function and this register is also used as temporary
register for it in all but two lines. This is the two lines of the loop test that we added.

AR BIN P AE 2RI, eI AR EE NI —.

DR 2 AE A SR AR /D, DIEAE Intel R RG5H e AR B E,

U7 A AR R T AT (AR, DRI AN AR 3R AS 2 A7 ds A M T2
TEPEAR NI mov F5 4 R E T —, WEH B A% r4.

UM FEAR IR IEAR T, ENTHEPATRZ R,

TEIRASR R A R AT — K.

FHAEAEER N0 (1) A 5 VA% B el 7 B 25 A4« XA 1, Stop F1 Result.
X —ri b, BAIT LSBT, WG 1 A A7 as A A i AR B A
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SR B T BB I I 5 7288 R A2
RN RS, Stop {5 edx th, AR BHB LA RIRI 512 BER, (AP
f7.

LR AT IR RS I P17

Let us change k3414
mov ecx, [ebp-$08]

cmp ebx, ecx

to B9
mov edx, [ebp-$08]

cmp ebx, edx

Eax is used by Start in the top of the function and by Result in the rest of the function.

If there is no overlap in usage we can allocate eax for Result as soon as Start has finished using it.
After Start is assigned to | (mov [ebp-$10], eax) it is not used any more and eax is free to use by
Result,

if it was not for those lines where eax is used as temp for I.

Eax 7ERRBITAAHME N Start , fE RS RAE NIR b 45 R .

—H Start 568 WRFRAES eax MEAET IBATTLLY eax fENRFIZRT .

fE Start #ZRAE A | (mov [ebp-$10], eax) 2 Ji, WIREA LK eax 1E4 | G AR &,
PRI LK eax VEARIFIZE R T .

mov eax,[ebp-$10]
add [ebp-$0c],eax
inc dword ptr [ebp-$10]

After ecx got out of use by the last change we can use that as temp for | instead of eax.

£ eex ARAEHIZ )5, FATar U e IGN AR | R eax o

mov ecx,[ebp-$10]
add [ebp-$0c],ecx
inc dword ptr [ebp-$10]

The summary of the first part of the register allocation is: Result in eax, | in ecx and Stop in edx.
Lets first change the lines with Stop. [ebp-$08] is replaced by edx everywhere.

WA TS I S AR eax 1, | £ ecx Y, Stop 7E edx .
B Stop #B4r, H o edx BTN [ebp-$08].

function ForLoopBASMG6(Start, Stop : Integer) : Integer;
asm

push ebp

push ebx

mov ebp,esp
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add esp,-$14
//mov [ebp-$08],edx
mov edx,edx
mov [ebp-$04],eax
/IResult :=0;
XOr eax,eax
mov [ebp-$0c],eax
[[for | := Start to Stop do
mov eax,[ebp-$04]
//mov edx,[ebp-$08]
mov edx,edx
mov [ebp-$10],eax
//begin
@LoopStart :
mov ebx, [ebp-$10]
//mov edx, [ebp-$08]
mov edx, edx
cmp ebx, edx
ja  @LoopEnd
//Result := Result + [;
mov ecx,[ebp-$10]
add [ebp-$0c],ecx
inc dword ptr [ebp-$10]
/lend;
jmp @LoopStart
@LoopEnd :
mov eax,[ebp-$0c]
mov esp,ebp
pop ebx
pop ebp
end;
Then allocate ecx for | by replacing [ebp-$10] by ecx.
i ecx 1E4 | K [ebp-$10]
function ForLoopBASM7(Start, Stop : Integer) : Integer;
asm
push ebp
push ebx
mov ebp,esp
add esp,-$14
mov edx,edx
mov [ebp-$04],eax
/IResult :=0;
XOr eax,eax
mov [ebp-$0c],eax
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[[for | := Start to Stop do
mov eax, [ebp-$04]
mov edx,edx
/Imov [ebp-$10],eax
MoV ecx,eax
/lbegin
@LoopStart :
//mov ebx, [ebp-$10]
mov ebx, ecx
mov edx, edx
cmp ebx, edx
ja @LoopEnd

/IResult := Result + I;

//mov ecx,[ebp-$10]
MoV ecX,ecx
add [ebp-$0c],ecx

/linc dword ptr [ebp-$10]

inc ecx

/lend;

jmp @LoopStart
@LoopEnd :

mov eax,[ebp-$0c]
mov esp,ebp
pop ebx
pop ebp

end;

)m, il eax fRIEEH.

D% eax £E I G I KALIE T 240 Start, DNIEH 2 S0t N %
R eax BATFRH AR H K, BA T BTN —AT MOk 45 R A2 eax.

function ForLoopBASM8(Start, Stop : Integer) : Integer;

asm

push ebp

push ebx

mov ebp,esp

add esp,-$14

mov edx,edx

mov [ebp-$04],eax
/IResult := 0;
XOr eax,eax
mov [ebp-$0c],eax
[ffor | := Start to Stop do
mov eax,[ebp-$04]
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mov edx,edx
MOV ecx,eax
mov eax, [ebp-$0c] /INew
//begin
@LoopStart :
mov ebx, ecx
mov edx, edx
cmp ebx, edx
ja  @LoopEnd
/IResult := Result + I;
MOV ecX,ecx
/ladd [ebp-$0c],ecx
add eax,ecx
inc ecx
/lend;
jmp @LoopStart
@LoopEnd :
//mov eax,[ebp-$0c]
movV eax,eax
mov esp,ebp
pop ebx
pop ebp
end;
Because we were pretty smart when we chose the registers there is a lot of lines like mov eax, eax.
It is easy to see how redundant they are ;-). Let us remove them.
AN 1% RIE LSS mov eax, eax IXFFE ) % A7 2 ERAEAT
IRA Ty KIMATT 2RI . B EAT:

function ForLoopBASM9(Start, Stop : Integer) : Integer;
asm
push ebp
push ebx
mov ebp,esp
add esp,-$14
/Imov edx,edx
mov [ebp-$04],eax
/IResult := 0;
XOr eax,eax
mov [ebp-$0c],eax
[ffor | := Start to Stop do
mov eax,[ebp-$04]
/Imov edx,edx
mov ecx,eax
mov eax, [ebp-$0c]
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//begin
@LoopStart :
mov ebx, ecx
//mov edx, edx
cmp ebx, edx
ja  @LoopEnd
/IResult := Result + I;
//mov ecx,ecx
add eax,ecx
inc ecx
/lend;
jmp @LoopStart
@LoopEnd :
//mov eax,eax
mov esp,ebp
pop ebx
pop ebp
end;
When optimizing ASM code there is generally two lines of thinking we can choose to follow.
We can think as the human beings we are and try to be smart, use whatever information we can get
from the code.
We did some of this when we selected the registers here.
Another line of thought is trying to do it systematically as an optimizer/compiler has to.
This way we develop algorithms that can be coded in a tool.
This tool can later take over the most boring of optimizations, these we do over and over again.
Removal of the most obviously redundant line of code of all, the mov eax, eax, was an example of
dead code removal,
which is basic to any optimiser.

MM ASM RS2 IE H AT LA RS

TRATTAT CURAEBATIBE W AR AT BE 1A O A A SR A A5 B sl A5 A ] LT Fir A 1 FH
[OREE Y OSL N

ARG TSI RGNS B 4 . TT R — A T B ke SRR .

AT H RS A EB i, e BT, i =X e N T .

— A T B BE AT e BRACAS T T W2 T4, mov eax, eax & AT SR
T BARS o

In the top of the function we still have some references to the stack.

To get rid of these we allocate registers for those variables too.

This time we just pick edi and esi, which are not used elsewhere.

Allocate esi for [ebp-$04] and edi for [ebp-$0c].

Because esi and edi must be preserved by the function we must push and pop them.

FEIXA BB T U B AT IR AT — 2O HER ) 51
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N T LB, Pl R I AR A O P A
XHHEBRATAT LAEF edi, esi » Al A 134 B4 265 (b 5 g H
3 [ebp-$04] 4rAC esi, A [ebp-$0c] 4rFL edis
K4 esi, edi & REITERTA 1, K420 push F1 pop ‘&1i1.

function ForLoopBASM10(Start, Stop : Integer) : Integer;
asm
push ebp
push ebx
push esi
push edi
mov ebp,esp
add esp,-$14
/Imov [ebp-$04],eax
mov esi,eax
/IResult :=0;
XOr eax,eax
//mov [ebp-$0c],eax
mov edi,eax
[[for | := Start to Stop do
//mov eax,[ebp-$04]
mov eax,esi
MoV ecx,eax
//mov eax, [ebp-$0c]
mov eax, edi
//begin
@LoopStart :
mov ebX, ecx
cmp ebx, edx
ja @LoopEnd
//Result := Result + I;
add eax,ecx
inc ecx
/lend,;
jmp @LoopStart
@LoopEnd :
mov esp,ebp
pop edi
pop esi
pop ebx
pop ebp
end;
The stack frame is not used anymore and there is no need to set it up.
This removes 4 instructions.
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Then we observe that the two lines
HWEARA T, AFREREE. MERX 4 7784
ROk, ATIEE N AT,

MoV eax,esi
MOV ecX,eax

Can be replaced by one.
L AT A

MoV ecx, esi

This is an example of a simple copy propagation followed by dead code removal.

Any other lines do not use the value in eax than the next line that copies it back to ecx.

It is in fact immediately overwritten by the line mov eax, edi.

Therefore we can replace the second line by mov ecx,esi and remove the first one, which becomes
dead.

XIS —AN ITRE BR e A 52 ) S0 491 1
BAAEA—ATAEH eax [PME, A5 A7 XA#E ULH] ecx.
Heg b, eax H Lpi#i moveax, edi FH,

Rk, FRATTHH mov ecx,esi F#5E — AT, MMFR G 17,

function ForLoopBASM11(Start, Stop : Integer) : Integer;
asm
/lpush ebp
push ebx
push esi
push edi
/Imov ebp,esp
//add esp,-$14
mov esi,eax
/IResult := 0;
XOr eax,eax
mov edi,eax
[ffor | := Start to Stop do
/Imov eax,esi
/Imov ecx,eax
mov ecx, esi
mov eax, edi
//begin
@LoopStart :
//mov ebx, ecx
/lcmp ebx, edx
cmp ecx, edx
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ja  @LoopEnd
/IResult := Result + I;
add eax,ecx
inc ecx
Ilend,;
jmp @LoopStart
@LoopEnd :
/Imov esp,ebp
pop edi
pop esi
pop ebx
/Ipop ebp
end;
The line xor eax, eax that initialises Result to zero can together with the line right
after it be moved some lines down closer to the place where eax is used for the first time.
It should not be moved into the loop that would change the logic of the function,
but just before the line before loopStart.
This removes the need for copying eax into edi and back into eax again in the line just before
the comment line //for | := Start to Stop do, and in the line before the out commented begin.

Xor eax, eax AT AL % . BB IRAEH] eax 1My
EARLZAR AT, P20 s 2 4, (UTI T loopStart Z 7.

TEBRIERAT fifor | = Startto Stop do 2 W95l eax 5| edi , A/FAFIHIF eax £
e

function ForLoopBASM12(Start, Stop : Integer) : Integer;
asm
push ebx
push esi
push edi
mov esi,eax
[ffor | := Start to Stop do
mov ecx, esi
/IResult :=0;
XOr eax,eax
/Imov edi,eax
/Imov eax, edi
/Ibegin
@LoopStart :
cmp ecx, edx
ja @LoopEnd
//Result := Result + I;
add eax,ecx
inc ecx
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/lend;
jmp @LoopStart
@LoopEnd :
pop edi
pop esi
pop ebx
end;
After having cleaned up we spot two lines of mov which together copy eax to ecx via esi.
This leaves a copy of eax in esi, which is not used. Therefore one that moves eax directly into ecx
can replace
these two lines. This is also copy propagation + dead code removal.
TR G BATILMAT mov $54, J2¥s eax iiL esi BZHHIF] ecx.
XHFEAE esi TRT T —A eax MEEUL, EBAHA .
Rk, FEBK eax B ecx K7 7EEHUXH1T .
EtE RIS + R REER .

function ForLoopBASM13(Start, Stop : Integer) : Integer;
asm
push ebx
/Ipush esi
push edi
//mov esi,eax
[[for | ;= Start to Stop do
/Imov ecx, esi
movV ecx, eax
//Result := 0;
XOr eax,eax
//begin
@LoopStart :
cmp ecx, edx
ja @LoopEnd
//Result := Result + I;
add eax,ecx
inc ecx
/lend,;
jmp @LoopStart
@LoopEnd :
pop edi
/Ipop esi
pop ebx
end;
After having removed the only use of esi there is no need to push and pop it.
Bbr2 G AT EAEH esi, ANTFE push Al pop B
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function ForLoopBASM14(Start, Stop : Integer) : Integer;
asm
/Ipush ebx
/Ipush edi
[[for | := Start to Stop do
mov ecx, eax
/IResult ;= 0;
XOr eax,eax
//begin
@LoopStart :
cmp ecx, edx
ja @LoopEnd
//Result := Result + [;
add eax,ecx
inc ecx
/lend;
jmp @LoopStart
@LoopEnd :
/Ipop edi
/lpop ebx
end;
We also, a little late perhaps, observe that ebx and edi is not used either. After having cleaned up
and relocated the comments a little, there is a nice clean function as a result.
AT —NATRE, Wi TATKIL ebx A1 edi HL A ATHATH
AR, JRATORERZE, AR R AT

function ForLoopBASM15(Start, Stop : Integer) : Integer;
asm
MoV ecx, eax
/IResult := 0;
XOr eax,eax
[ffor | := Start to Stop do
@LoopStart :
cmp ecx, edx
ja @LoopEnd
/IResult := Result + [;
add eax,ecx
inc ecx
jmp @LoopStart
@LoopEnd :
end;

It took a long time and a lot of optimisations to get here because we started with the non-optimised
output from
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the compiler. This long process illustrated the amount of work the compiler leaves to the
optimizer.

Sometimes we did not use the algorithmic approach to optimization,

but we could have achieved the same result by doing it.

Instead of taking the same long road again with the function with loop inversion present,

we can cheat and compile the Pascal function with optimizations on.

The compiler might do all the optimisation we did.

2 T AR TR K B LA A T 145 BN R B, 29RO AT THE TR B I 3
MEFEAA LI

XA RSB R T g e de b R i TAE R 45 T ks .

A, FATAEACET, HZIATAT LA S, W32 RS R .

FRA T LAFT T 9 1 s AL 12 TR A AR , 4 1 1A 308 mT e A ] T FAT T P RO B 51 e
TR AR DR

function ForLoopOpt(Start, Stop : Integer) : Integer;
var
| : Integer;

begin

{

}
Result := 0;
{

XOr ecx,ecx

}
for | ;= Start to Stop do

{
sub edx,eax
jl +$08
inc edx
xchg eax,edx
}
begin
Result := Result + I;
{
add ecx,edx
inc edx
}
end;
{
dec eax
jnz -$06
}
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MoV eax,ecx
}

end;

This time Delphi did a really nice job. Only two lines jump into our eyes as possibly redundant.
xchg eax, edx simply exchange the values in eax and edx and mov eax, ecx copy the Result into
gax.

Both lines are outside the loop and make little harm.

XK Delphi M ITSRAER LF. fEFRATER, HAPATIUR B A

xchg fAjBAfIAC e eax, edx MU{E, mov eax, ecx Fi4k R HIF] eax o

XPATLENRFA A, 21— AR LI

We now have two functions - one with no loop optimizations and one with two.

To make things complete we need two more functions, one with loop inversion only and one with
the NoName variable optimization only.

In the beginning of the lesson we saw how to remove the two optimisations and this is what

I have done to get to the last 2 functions.

In the Delphi optimized function above, | optimized away the xchg instruction by swapping the
use of

the two registers it exchanged.

Because we want to se the maximum effect of the loop optimizations | have removed the loop
body code doing

the operation Result := Result + I;

Here are the four final functions

AR, FRATEMA KL - BATEMLAA A, TE A PIAS

N T SEREATE YR, BATETTEHE AN R E . — A T HRAENE, — /N2 247 NoName 4%
L.

TEIX PRI R BA T O A VE T W @A T X P FMLAL, 5 T AR 2L

7t Delphi OUAL R HEAS I, Bad Al A T A7 as AT Aok i dst xehg 54

R A 1A E B A Result := Result + | [R5 R0

T PUAS B 24 1R BRI

function ForLoopNoLooplnverNoNoName(Start, Stop : Integer) : Integer;
asm
mov ecx, eax
/IResult := 0;
XOr eax,eax
[[for | := Start to Stop do
@LoopStart :
cmp ecx, edx
ja @LoopEnd
inc ecx
jmp @LoopStart
@LoopEnd :
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end;

R 4 NMEA 4 %. cmp, ja, inc F1 jmp.

16 P4 LIXSeFe A (i AR IR A I 5 2. cmp 0.5/0.5, ja X/0.5, inc 0.5/1 and jmp X/0.5 .
X LR "HIRIIA RN TIX 4 HR 2.

R R, BAEH]: 05+ X+05+X= 7 4P

function ForLoopLooplnverNoNoName(Start, Stop : Integer) : Integer;
asm
mov ecx, eax
/IResult :=0;
XOr eax,eax
[[for | := Start to Stop do
cmp ecx, edx
ja @LoopEnd
@LoopStart :
inc ecx
cmp ecx, edx
jbe @LoopStart
@LoopEnd :
end;
This loop consists of 3 instructions also with unknown sum of latency.

XA B =515 A WAFIETE RV AT .

function ForLoopNoLooplInverNoName(Start, Stop : Integer) : Integer;
asm

/IResult :=0;

XOr €CX,ecX

[[for | ;= Start to Stop do

sub edx,eax

cmp edx, 0

@LoopStart :

jz @LoopEnd

inc eax

dec edx

jmp @LoopStart

@LoopEnd :

mov eax,ecx
end;
This loop consists of 4 instructions also with unknown sum of latency.
We observe that the two inc/dec instructions are able to execute in parallel.
Because the dec NoName instruction is not followed by the conditional jmp it would look
like we throw away the benefit of not needing a cmp or test instruction to set the flags,
but the jmp instruction does not change the flags and they are valid when we reach the jz
instruction at the top of the loop.
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Only at the first iteration a cmp edx,0 instruction is needed.

XAMEI 4 FARS AR WA FERE AR A

FAVRIL incldec $5-4 M IFATHAT .

[A 7 dec NoName #54 J5IHA R — 4t jmp, RIEATE— cmp B¢ test 54Kk E
bk

M jmp FE A ARESCRRRE, B SBAIEIRKITL jz F82 0, e #OE Em.
HORAEIEARTT AR 52—~ cmp edx,0 $74

function ForLoopLooplnverNoName(Start, Stop : Integer) : Integer;
asm
/IResult :=0;
XOr eCX,ecx
[[for | := Start to Stop do
sub edx,eax
jl @LoopEnd
inc edx
@LoopStart :
inc eax
dec edx
jnz @LoopStart
@LoopEnd :
MoV eax,ecx
end;
EAMEE 3 IR AR, WA R .
XA — XL inc/dec.

This is the simple benchmark I have used to find the performance of the 4 functions

FA T 1 R AR ok 4 PR TERE .

const
LOOPSTART : Integer = 1;
LOOPEND : Integer = 2000000000;
LOOPEND? : Integer = 20;
CLOCK : Double = 1920ES6;

var
Starttime, Endtime, Runtime : TDateTime;
I, LoopResult : Integer;
RunTimeSec, NoOfLoopsPerSec, NoOfLoops, ClockCount, LoopEnd2Float, LoopEndFloat,
LoopStartFloat : Double;

begin

Starttime := Time;
for 1 := 1 to LOOPEND?Z2 do
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begin
LoopResult := ForLoopNoLooplnverNoName(LOOPSTART, LOOPEND);
end;
Endtime := Time;
Runtime := Endtime - Starttime;
CEdit.Text := IntToStr(LoopResult);
RuntimeEdit4.Text := TimeToStr(Runtime);
RunTimeSec := RunTime*24*60*60;
LoopEnd2Float := LOOPENDZ2;
LoopEndFloat := LOOPEND;
LoopStartFloat := LOOPSTART;
NoOfLoops := LoopEnd2Float * (LoopEndFloat - LoopStartFloat);
NoOfLoopsPerSec := NoOfLoops / RunTimeSec;
ClockCount := CLOCK / NoOfLoopsPerSec;
ClockCountEdit4.Text := FloatToStrf(ClockCount, ffFixed, 9, 1);
end;

Results on P4 1920 are 7f P4 1920 LfghR
No Loop Inversion and No NoName variable 00:00:55 (2.7 Clock cycles)
TAREE, ToARMmARRE

Loop Inversion but No NoName variable 00:00:39 (1.9 Clock cycles)
TEIEIE, TARmALE

No Loop Inversion but NoName variable 00:01:02 (3.0 Clock cycles)
TARENE, fAARMmAARRE

Loop Inversion + NoName 00:00:41 (2.0 Clock cycles)

TEAEIE, AR AL R

Results on P3 1400 are 7f P3 1400 4t
No Loop Inversion and No NoName variable 00:01:26 (3.0 Clock cycles)
TAREE, ToARmARRE

Loop Inversion but No NoName variable 00:01:26 (3.0 Clock cycles)
EINEE, TARMAALE

No Loop Inversion but NoName variable 00:01:55 (4.0 Clock cycles)
TARENVE, A Rar A E

Loop Inversion + NoName 00:01:26 (3.0 Clock cycles)

fEIAEE, fARmAARR

Of course the clock count numbers should be integers.

On P4 half cycles are possible due to the double-clocked ALU.

Our timings are not as good as we could wish, but for comparing the performance of the loops
they are OK.

Conclusion on P4. Apply loop inversion only or loop inversion with NoName variable
optimization.

Conclusion on P3. Do not apply the NoName variable optimization alone.
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Conclusion on both targets. Apply both optimizations as Delphi does.

Also observe how efficient P4 is on this code.

IR, IR EUE N % e 4R

AU B ALY, BIGAE P4 B Rl ey AN o R0

FATHIMAABAT FATVER I IAELF, 02 AR AT R L T .

12 P4 b, FUNH] T AEHMENE MM IR fir 4 (NoName) A2 8 PR B E LAk -

1 P3 L, AT BN R dr 44 A R

SR G E. Delphi i 73X piA Al . FHIX AU n] LW EEAE P4 EIBAT I3k
%,

Lesion 6 % 6 i (CharPos)

This is lesson number 6 and the topic is CharPos.
% 6 PRIWIEE CharPos.

This function search for the first occurrence of a character in a string,and returns the position of it
when found.

If nothing is found it returns zero. The Delphi library function does basically the same thing,

but with the difference that it search for a substring in a string.

Passing a character to Pos as the substring is possible and this way use Pos as a CharPos.

In this lesson we will develop a CharPos that is nearly 4 times faster than Delphi's Pos.

As usual we start with a Pascal implementation of the algorithm.

ARG R AL R PR, JF LRPFIRIGALE, R8T ZINR [F %
Delphi FEtLAT AN R, (HAZARFIK L, Delphi JE7E—ANE PR A1,
4y Pos AL M FAHER AR AT LM CharPos —FE{IEH] Pos.

X R RA T S S A CharPos, ‘&Lt Delphi [¥] Pos HUkiln 4 fi%.

WH, AT —A> pascal Hi%hE .

function CharPos2(Chr : Char; const Str : AnsiString) : Cardinal;
var
| : Integer;
begin
if (Str <>") then
begin
1:=0;
repeat
Inc(l);
until((Str[1] = Chr) or (Str[1] = #0));
if (Str[1] <> #0) then
Result := 1
else
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Result :=0;
end
else
Result := 0;
end;

Input to the function is a Char and a string. The string is passed as const. The functions Result are
a Cardinal.

First the function checks that the string is not empty and if is empty it returns zero.

If there is a string we iterate over it with a repeat until loop searching for a match to the input char.
If an occurrence of the char is not found before we reach the zero terminator this will also
terminate the loop.

Because the loop can terminate on either of the two conditions it is necessary to check

what terminated the search before we know what to return as result.

If the loop was ended by a successful search we return the value of the loop counter, and if the
search was unsuccessful the result is zero.lt is also possible to use the length of the string as a
condition for terminating the loop on an unsuccessful search.

Then the code looks like this.

PRI T N2 —> Char Al string, string 2%, HEGRFE—A> Cardinal.

oL, RERE TR RSN AT, RS, MR,

fFFH— repeat until fEIAAE AT A PR ICIC TN TAF, BERIEARL R

ERNEFL L TR AT, WREHE RIXA TR/, WAy gk,

DR Ay 10 A 0 DA PR S 25 A o AT A — /N 280k, BT DAAE IR [P 2 S 2 1 75 A A 2 2L T 9%
Ko

WER TSR B4, R BIEA T, s, Wk,

AT DU 545 3 R R AR — N R R B AT e, ARG
function CharPos1(Chr : Char; const Str : AnsiString) : Cardinal;

var
StrLenght, | : Integer;
begin
StrLenght := Length(Str);
if StrLenght > 0 then
begin
1:=0;
repeat
Inc(l);

until((Str[1] = Chr) or (I > StrLenght));
if | <= StrLenght then
Result :=1
else
Result :=0;
end
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else
Result :=0;

end;
Before we start jumping into ASM it is a good idea to see which of the Pascal implementations is
the fastest.
For doing this benchmark must be established.
EFAVFEHEN asm 2T, BlFeEEWAS pascal AURLHAT IR
ST PR

const
NOOFLOOPS : Cardinal = 200000;
SCALE : Cardinal = 1000;

procedure Benchmark;
var
IpPerformanceCount, StartCount, EndCount : TLargelnteger;
Succes : Boolean;
Str, Strl, FunctionName : AnsiString;
Chrl, Chr2 : Char;
I, CharPos, J, K, Bench, SumBench : Cardinal;
StringArray : array[1..255] of AnsiString;

begin
Series1.Clear;
Strl :="T";
for J:=1to 255 do
begin
StringArray[J] := Strl;
Strl :="A"+ Strl;

end;
SumBench = 0;
Chrl :='T"
Chr2 :="'X";
for K:=11to0 255 do
begin

Str := StringArray[K];
Succes := QueryPerformanceCounter(IpPerformanceCount);
if Succes then

StartCount := IpPerformanceCount
else

raise Exception.Create('QueryPerformanceCounter failed’);
for I := 1 to NOOFLOOPS do

begin

CharPos := CharPosFunction(Chrl, Str);
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end;
for 1 := 1 to NOOFLOOPS do

begin

CharPos := CharPosFunction(Chr2, Str);

end;
Succes := QueryPerformanceCounter(IpPerformanceCount);
if Succes then

EndCount := IpPerformanceCount
else

raise Exception.Create('QueryPerformanceCounter failed");
Bench := Round((EndCount - StartCount) / SCALE);
Seriesl. AddXY (K, Bench, ", cIBlue);
Bench := Round(Bench / K);
SumBench := SumBench + Bench;
Update;
end;
FunctionName := FunctionSelectRadioGroup.ltems[FunctionSelectRadioGroup.ltemindex];
ReportRichEdit.Lines.Add(FunctionName + #9 + IntToStr(SumBench));
end;

The benchmark builds an array of 255 AnsiStrings. The first string is 'T". 'T' is also the character
we use as the search character. String number 1 is therefore the shortest possible successful match.
The next strings are 'AT', 'AAT" and 'AAAT". | guess the pattern is clear. It is equally important to
measure the performance on unsuccessful search. For this purpose we pass 'X' as search character.
The benchmark does NOOFLOOPS searches on each string and measures the time used on each
string. Because we want results from each string length to contribute approximately the same to
the benchmark each timing is divided by the length of the string.

On this benchmark CharPos1 obtains the score 767 on a P4 1600A clocked at 1920 and CharPos2
obtains the score 791.For comparison Delphi Pos scores 2637.

Because CharPosl is slightly better than CharPos2 we select this as basis for optimisation.

This is the ASM code Delphi 6 compiled it into with optimizations turned on.

EAFEENRR G T ARk 255 (- eR 4 .

F—ARE T T RN EM R FRT 55— H D VT IR 55 R 6 R

BRI HE AT, AAT' Fil 'AAAT',

WA B R OGN

WAL R IR — A EE . I TIEANHE, FAMEN X, ER BRI,
SR R AR, ISR 3 AT )

(Q:) BRI R FRATVAE IR [H] A5 — AN 455 1 ()R B Z2 T AL IR 2 o FE A RS e -4 H R K BEAH B
7E P4 1600A FAiijE 1920 LRHfTHHENK, CharPosl 3kf4 T 767 4, CharPos2 3k#3
791 4y,

Delphi /) Pos J& 2637 43

[A% CharPosl Lt CharPos2 2 m2t, DKbFATTESE Charposl #EATHLAL

T Delphi6 MILALIET 1k, ASM ARSI T
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function CharPos14(Chr : Char; const Str : AnsiString) : Cardinal;
var
StrLenght, | : Integer;

begin

{

push ebx
push esi

mov  esi,edx
mov ebx,eax
}

StrLenght := Length(Str);
{

mov  eax,esi
call @LStrLen
mov  edx,eax

}
if StrLenght > 0 then

{
test edx,edx
jle  @ElselBegin
}
begin
1:=0;
{

XOr eax,eax

}
repeat
{
@RepeatBegin :
}
Inc(l);
{
inc eax
}
until((Str[1] = Chr) or (I > StrLenght));
{
cmp bl [esi+eax-$01]
jz @If2
cmp edx,eax
jnl @RepeatBegin :
}
if | <= StrLenght then
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{
@If2 :
cmp edx,eax
jnl @Exit
}
Result := 1
{
}

else
Result := 0;
{
XOr eax,eax
pop esi
pop ebx
ret
}
end
else
Result := 0;
{
@ElselBegin :
XOr eax,eax
}
{
@EXxit :
pop esi
pop ebx
}
end;
This time there is no stack frame. Ebx and esi is used and needs to be backed up and restored by
pushing and
popping them on the stack.
Because the function does not have its own stack frame they are simply pushed on the stack on the
top of the
calling functions frame.

X IREAT e HERR . Ebx Al esi i, 2@ push F1 pop RARAEFIKEZ EAT.
RIS BB 1 O HERS, AR B TTHR, e AT T4k 157 B i) TS N HEAR

The input parameters are received in eax an edx and they are as first thing copied

into esi and ebx. The function Length has a secret internal name, which is LStrLen. This function
is called on Str, which is passed in eax. We see that LStrLen is following the register calling
convention.
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BINSHAE eax FI edx H, BATTHEACHHIE] esi Al ebx.
Length pRECH ANFLEE N4 7 LStrLen. IXASREERME Str ISR, Wi eax fEif.
LStrLen 3EAEQIN 25 fras T FHE)E

Str was received in edx copied to esi and then to eax. LStrLen delivers its result, StrLenght, in
eax. This result is copied into edx and compared to 0. Test edx, edx is the same as cmp edx,0 and
it sets the flags. The jle instruction checks the flags and pass execution to the else part of the
if-else code if StrLenght is lower than or equal to zero.

Str @it edx USR] esi, ARG E] eax . LStrLen il EAX IR [FI'E 45 R
StrLenght.

R HF) edx 5 0 LU, Testedx, edx 5 cmpedx,0 HHF# 1 BEOIRA B A7 mebr i o
jle FribR&, W StrLenght /N T4 T2, MIFAT if-else 1) else 4>

In this else code we have one line of Pascal, which is Result := 0;.
Because our function must return its result in eax we create a zero here by x-oring eax by itself.
If the string is longer than zero execution is continued in the if code.

1E else fChS45—47 Pascal fti% Result:=0.
K BRATT I R B Z0AE eax HiR[EIgh R, Rk FRA @ Rl eax H kg —N2.
WMRPFRKERTE, W4T if A0,

The first line here initialises the loop counter | to zero.

Again a xor instruction is used for this.

The loop body has one line only and this is easy to understand Inc(l); = inc eax.
Pascal and ASM is nearly the same thing ;-)

The implementation of the loop-closing test is where the real meat of this function is.
It is made up of these four lines of ASM.

B ATHIRIE IR ECN | %, U T —A xor 54
WA A 4T, IREZHWIE Inc(l); = inc eax.

Pascal fl ASM ARA% & AH 2548,

TEIREE AR MR R HOE R E5 . e 4 4T ASM RIS 41K

cmp bl [esi+eax-$01]
iz @If2

cmp edx,eax

jnl @RepeatBegin :

We see that there is two jump instructions.

The last one jumps to the start of the loop and the first one jmps out of the loop.

There are two cmp instructions to set the flags. Number two is the easiest to understand.
It compares eax with edx. A fast look at the Pascal code tells us that

StrLenght and | must be in these two registers.
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In fact we have just seen that eax is | and we also saw in the top of the function that StrLenght was
in edx.

BATEBIH AP TE 2 .

i — N EREEIR TG, BB — MR R R

WA cmp R B &R,  PIANEUR S B

bR eax F1 edx. Pascal fAH52fFkA] StrLenght A1 | WAZ0{EIX /N ZF 748 o
F b, ANCAEER eax £ |, fEREIIITHIANIGEG 2] StrLenght 7 edx s

In line number 4 Chr was copied into ebx, but a char is only one byte.

Therefore the first cmp instruction compares something to bl, which is the lowest byte of the four
bytes in ebx.We expect that the search character - Chr - be compared to character number 1, 2, 3..
of the input string.

[esi+eax-$01] must therefore be a pointer into this string.

eax is the loop counter I, which is 1 at the first iteration. esi must be the address of the Str
parameter that was received in edx and immediately copied into esi.

-$01 is a constant offset, which is needed because the first character in an AnsiString is located at
position 0.

The position where Str points to.

R4 4 417 Char BSHIE] ebx, HE—NMERFHA AT,

B, 5 HBIRSS bl LR Bt ebx 4 AT R ERARM T,

iy A LB P AT S 1,23 L AT R Chr.

[esi+eax-$01] & Fi [ IX A7 A [ FEET

eax AMEM I |, RN EA 1o esi RZFM R SHIMAL, EREd edx BUE
NERPEHIR] T esio

-$01 & M EMAE, ERLWEN, B4 AnsiString (5N TATREAELE 0.

Str & [IX M E

Where has the or from the Pascal code gone?

To understand this we need to talk about the optimisation called incomplete Boolean evaluation.
This optimisation can be applied to the Boolean operator and, and to the Boolean operator or.
Let us take a look at the truth table for and first.

Pascal A4 21K HEL W 2

H T XA, TR e A R A .
EAMAL AT LR B H B R EVERE and B ors
He, BAPKE T and MEEE

false and false is false
false and true is false
true and false is false
true and true is true
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The and operator is only returning true if both operands are true.

This is taken advantage of by the incomplete Boolean evaluation optimisation.

If one operand is found false there is no need to check the second one, because the result of
and will be false no matter what it is.

AP ERAVERER I true, And BAERF A 2R [A] true.
ANGEAEAT IR E AR ST, WA — N EEECh false, NWIARTTZAIZE —4, RALIRE
AT AL S false.

The truth table for or is

or MEAHLMWT:

false or false is false

false or true is true

true or false is true

true or true is true

The result of an or is true if one or both of the operands are true.

If one is seen to be true there is no need to check the second operand.

WA — Ak E NI true, or ML EALZ true.
WHRA—AE true, ANTFERIEE ARV

Our loop-closing test takes advantage of this by jumping out of the loop if the first compare is
successful.

This is the case if we found a match for the search character in the string.

If it was a match it does not make sense to see if it was the zero terminator too!

The last compare is only executed on unsuccessful matches.

If we knew something about the strings and characters our function was called upon most often we
could take advantage

of it by changing the order of the tests such that the most often true one is located first.

FEAEIR 45 R BATTAT LA AN R, SR — AN L2 el 1), B4 sk i A 38
R AT B R B T VLA A IR Do

MR REFLILN, A KIEEEEA R .

i A P A AT R 3 DL A5 I AT

U SREFATT A I FH eR U 22 A N A R A, nT DA A I AR s o528 LA ()
WA H e true [ HLBUBAERTTH .

Try switching on the compiler switch "complete Boolean evaluation™, in project options,
and see what code is created then.

The rest of the code resample what we have seen in earlier lessons and

I will skip the explanation and go get a cup of coffee instead ;-)

Now it is time to do some optimizations. At first the function is made pure BASM.

The labels were introduced in the previous code listing.

Here it is seen that they follow the Pascal code in an intuitive way.
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TELRRIEARATIF e/ A g Ir e, EERME LA T 2%,

BRI BATT O AL FT T AR W T, IR TR e, RELREHEET ;)
EFRATR A — 2ok . TSR R B R 4l BASM .

TEHT I A 51 3R h DN 2%

BATHEMM 7 o8 LT IXEehR 2

function CharPos15(Chr : Char; const Str : AnsiString) : Cardinal,
[Ivar

/IStrLenght, | : Integer;
asm

push ebx

push esi

mov  esi,edx

mov  ebx,eax

/IStrLenght := Length(Str);

mov  eax,esi

call System.@LStrLen

mov  edx,eax

/[if StrLenght > 0 then

test edx,edx

jle  @ElselBegin

n:=o;

XOr eax,eax

/Irepeat

@RepeatBegin :

INnc(D);

inc eax

[until((Str[I] = Chr) or (I > StrLenght));

cmp bl [esi+eax-$01]

iz @If2

cmp edx,eax

jnl  @RepeatBegin

/1if | <= StrLenght then

@If2 :

cmp  edx,eax

jnl - @Exit

/IResult := |

/lelse

/IResult := 0;

XOr eax,eax

pop esi

pop ebx

ret
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/lelse
/IResult :=0;
@ElselBegin :
XOr eax,eax
@EXxit :
pop esi
pop ebx
end;
The call to LStrLen has been prefixed with System, otherwise the compiler will not recognize it.
LStrLen is implemented in the System unit.
The var section is removed because we do not reference any variables by name.

PREL LStrLen i T System Aj4E, 75 0N4mdas A IAE
LStrLen 7F System H.7GHSZH]
var XBEMIER T, A BRATEAT ST AR
function CharPos16(Chr : Char; const Str : AnsiString) : Cardinal,
asm

push ebx

push esi

mov  esi,edx

mov  ebx,eax

//StrLenght := Length(Str);

mov  eax,esi

/lcall System.@LStrLen

[[AFA KKk

test eax,eax

jz @LStrLenExit

mov eax,[eax-$04]

@LStrLenExit :

[k

mov edx,eax

/fif StrLenght > O then

test edx,edx

jle @ElselBegin

n:=o;

XOr eax,eax

[Irepeat

@RepeatBegin :

INnc(1);

inc eax

[luntil((Str[1] = Chr) or (I > StrLenght));
cmp  bl,[esi+eax-$01]

iz @If2

cmp  edx,eax
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jnl  @RepeatBegin
//if | <= StrLenght then
@If2 :
cmp  edx,eax
jnl  @EXxit
/IResult := |
/lelse
/IResult :=0;
XOr eax,eax
pop esi
pop ebx
ret
/lelse
/IResult :=0;
@ElselBegin :
XOr eax,eax
@EXit :
pop esi
pop ebx
end;
The first thing we do is to inline LStrLen. This is done by tracing into it and copying the body of
the function
from the cpu view. It is made up of these four lines.

FEHARA H IR AL LStrLen,
HAAE cpu B R ERIEE PR, RHIX A A EE S L. B B R DY AT A

test eax,eax

jz +$03

mov eax,[eax-$04]
ret

If a nil pointer is passed to LStrLen in eax nothing is done but returning. If the pointer is valid the
length of the string is found at the 4 bytes preceding the start of the string. These 4 bytes are
returned in eax. To inline it we replace the call with the 4 lines.

W4y LStrLen ) eax &N T —A nil $&5%t, B TIREIZ AN, A A,
WERFREN AL, ERNARFREGITTT 4 M E TP ARIAN AR R,
X 4 AT eax Rk, Al RAUEX 4 4740

Jz is transferring execution to the ret instruction.

Instead of this ret instruction we place a label called LStrLenExit.

The ret returned execution to the line after the call of the function.

This ret has to be removed, otherwise it would pass execution to the function that called CharPos,
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not exactly what we want.

Jz WE| ret 54 FATH 0 LStrLenExit FIARZEARAE ret.
ret 3 [B21) FH AS R 501D R R R —4T
ret WZIAEINRR, 75N ERAL R E CharPos iR [nl, IXAEIRATTAREE .

This is what the inlined LStrLen ended up looking like
WK LStrLen BESChWR:

test eax,eax

jz @LStrLenExit

mov eax,[eax-$04]

@LStrLenExit :

function CharPos17(Chr : Char; const Str : AnsiString) : Cardinal,
asm
push ebx
push esi
mov  esi,edx
mov  ebx,eax
//StrLenght := Length(Str);
mov  eax,esi
I iskeiiaiaisishiaiiaiaie
test eax,eax
/ljz  @LStrLenExit
jz @ElselBegin
mov eax,[eax-$04]
//@LStrLenExit :
I iskaieieiaisisiiaiiaiaie
mov edx,eax
/lif StrLenght > 0 then
/[test edx,edx
/ljle @ElselBegin
n:=o;
XOr eax,eax
[Irepeat
@RepeatBegin :
INinc(1);
inc eax
[luntil((Str[1] = Chr) or (I > StrLenght));
cmp b, [esi+eax-$01]
iz @If2
cmp  edx,eax
jnl - @RepeatBegin
/fif 1 <= StrLenght then
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@If2 :

cmp edx,eax
jnl  @EXxit
/IResult := |
/lelse
/IResult ;= 0;
XOr eax,eax
pop esi
pop ebx
ret

/lelse
/IResult :=0;
@ElselBegin :
XOr eax,eax
@EXit :

pop esi
pop ebx
end;

WAEIAKFE pascal A% if Strlenght>0, ‘SR LStrien 25 —4T R IIAH [F] 1K) 2R 74
DAZRRG I — ¥k Str &2 nil BHAL.

MIBREE 47, K581 60 M E] @ElselBegin, K& StrLen B3P Str 2 nil W)
B

LStrLenExit FR¥EATTET o

function CharPos18(Chr : Char; const Str : AnsiString) : Cardinal;
asm

push ebx

push esi

mov  esi,edx

mov  ebx,eax

[IStrLenght := Length(Str);

/Imov  eax,esi

/fif StrLenght > O then

/[test eax,eax

test esi,esi

jz @ElselBegin

//Imov eax,[eax-$04]

mov eax,[esi-$04]

mov edx,eax

n:=o;

XOr eax,eax

/Irepeat

@RepeatBegin :
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INnc(D);

inc eax

fluntil((Str[1] = Chr) or (I > StrLenght));

cmp  bl,[esi+eax-$01]

iz @If2

cmp  edx,eax

jnl  @RepeatBegin

//if | <= StrLenght then

@If2 :

cmp edx,eax

jnl  @EXxit

/IResult := |

/lelse

/IResult :=0;

XOr eax,eax

pop esi

pop ebx

ret

/lelse

/IResult :=0;

@ElselBegin :

XOr eax,eax

@EXxit :

pop esi

pop ebx
end;
We moved the test of StrLenght = 0 and the comment //if StrLenght > 0 then must be moved too.
After the inlining it becomes possible to copy propagate esi in these lines.
FMIs) T StrLenght =0 ML, 5K if StrLenght >0 i) .
EWNERZ G, NHXATAR R T B esi.

mov  eax,esi

/*************

test eax,eax

jz @ElselBegin

mov eax,[eax-$04]

The last of the lines overwrites eax and is the last use of the value in eax that was copied from esi.

RIS RJGES T eax, XM esi Bl GHa—XMEH eax 1A

mov  eax,esi
”*************

[ltest eax,eax
test esi,esi
jz @ElselBegin
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//mov eax,[eax-$04]
mov eax, [esi-$04]

Actually we must also follow the possible branch to Else1Begin and see whether the value in eax

is used here.
Sy b, BABUHEE > ElselBegin A& T eax [I{H.

We see that eax is zeroed out in the line immediately after the label and therefore is not used.
This way the first line is seen to be dead and can be removed.

BTAVER] eax fERXMRBZJEHIHE, BILBATHBH

AT, AT LAMIRR

/Imov  eax,esi

test esi,esi

jz @ElselBegin

mov eax,[esi-$04]

function CharPos19(Chr : Char; const Str : AnsiString) : Cardinal,
asm

push ebx

push esi

mov  esi,edx

mov  ebx,eax

/lif StrLenght > 0 then

test esi,esi

jz @ElselBegin

/IStrLenght := Length(Str);

//mov eax,[esi-$04]

mov edx,[esi-$04]

/Imov  edx,eax

n:=o;

XOr  eax,eax

/Irepeat

@RepeatBegin :

INnc(1);

inc eax

[luntil((Str[1] = Chr) or (I > StrLenght));

cmp  bl,[esi+eax-$01]

iz @If2

cmp  edx,eax

jnl - @RepeatBegin

/[if 1 <= StrLenght then

@If2 :

cmp edx,eax

jnl - @Exit
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/IResult := |

/lelse

/IResult ;= 0;

X0r eax,eax

pop esi

pop ebx

ret

/lelse

/IResult :=0;

@ElselBegin :

X0r eax,eax

@EXit :

pop esi

pop ebx
end;
Also as a result of inlining LStrLen we can remove one more mov.
LStrLen returned its result in eax and then it was copied into edx.
mov eax, [esi-$04] can then be changed to mov edx, [esi-$04] and the mov edx, eax can be
removed.After this we change focus to the loop. This is far more important because it is executed
many more times,depending on the length of the string or the position of a match.

WK T LStrLen Z5RATRT LAMBRE 211 mov 454
LStrLen F eax ix[H&455R, SRJE MpEEHIE] edx.
mov eax, [esi-$04] T LA# 5 mov edx, [esi-$04], mov edx, eax 1] LAREMHER T .

I A PR £ R TR o X TEE ), PO S PAT R Z I, SR T 74T R K
JEFAN VT L7 A5 R A7

function CharPos20(Chr : Char; const Str : AnsiString) : Cardinal;
asm

push ebx

push esi

mov  esi,edx

mov  ebx,eax

/fif StrLenght > O then

test esi,esi

jz @ElselBegin

/IStrLenght := Length(Str);

mov edx,[esi-$04]

N :=0;

XOr eax,eax

dec esi

@RepeatBegin :

INnc(1);
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inc eax

fluntil((Str[1] = Chr) or (I > StrLenght));

/lcmp  bl,[esi+eax-$01]

cmp bl,[esi+eax]

iz @If2

cmp  edx,eax

jnl  @RepeatBegin

//if | <= StrLenght then

@If2 :

cmp edx,eax

jnl  @EXxit

/IResult :=0;

XOr eax,eax

pop esi

pop ebx

ret

/IResult :=0;

@ElselBegin :

XOr eax,eax

@EXit :

pop esi

pop ebx
end;
When we analyzed the code we saw that there was an offset of -1 in the addressing into the string.
There is no need to subtract this offset at each iteration. It is a better idea to decrement the pointer
to Str in esi once before entering the loop. We could also have decremented the loop counter in
eax, but then we would have to add 1 again before returning the result.
At the very top of the function the two input parameters are copied to new registers.
This is redundant and we would like to copy propagate both, but eax is used as loop counter and
we must first find another register for this purpose.

FAV AR AIL, FER G FAF & ak h A -1 A2

BAT b BAERRUCGEAC AR XA i A

AN RS AEREANIEIRZ TR str BOFRENL 1.

FATH AT AAETEFA PR eax & 1, (ERAEIR PSS R B SAEAFIN 1.

PRI foe LT, PSS BRI BB (K %5 A7 4%

KIETCARI, AT EUERENA, (02 eax BAENIEIAHEL, AT LTS D
AT AT o

function CharPos22(Chr : Char; const Str : AnsiString) : Cardinal;
asm

push ebx

push esi

mov  esi,edx
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mov ebx,eax
//if StrLenght > 0 then
test esi,esi
jz @ElselBegin
//StrLenght := Length(Str);
mov edx,[esi-$04]
/N :=0;
[/Ixor eax,eax
XOr  ecx,ecx
dec esi
@RepeatBegin :
INnc(D);
/linc  eax
inc ecx
[luntil((Str[1] = Chr) or (I > StrLenght));
/lcmp bl [esi+eax]
cmp bl,[esi+ecx]
iz @If2
/lcmp  edx,eax
cmp edx,ecx
jnl  @RepeatBegin
/lif | <= StrLenght then
@If2:
/lcmp  edx,eax
cmp  edx,ecx
jnl - @Exit
/IResult := 0;
XOr  eax,eax
pop esi
pop ebx
ret
/IResult := 0;
@ElselBegin :
XOr eax,eax
pop esi /INew
pop ebx /[New
ret /[New
@EXxit :
mov  eax, ecx
pop esi
pop ebx

end;

All lines where eax is in use for I, eax is changed to ecx.
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Because |1 is the return value of the function on a match and the return value is in eax,
we have to copy ecx into eax just beneath the @EXxit label.

This introduces a little problem, because a jump to ElselBegin also brings us here,
and in this situation we copy a value from ecx into eax, which we have just cleared.
The fix is to add the lines marked new.

A eax #RENT 1, ¥ eax MU ecx.

A YA LR A, | 2R BIE, JF HH eax &l PIUCEAIFEA: @EXit bris
N EH ecx F| eax. WEHI—AN/NaEE, [k ElselBegin 4 FX B, X P il S KIKI
BHE S eax 2 eex TH. MINFATH new AxiR

Then we are ready to copy propagate eax.

Only one line uses ebx. This is cmp bl, [esi+ecx], which is changed to cmp al, [esi+ecx].
Then the copy mov ebx, eax becomes dead and is removed.

This was copy propagation followed by dead code removal once more and

we begin realising how important this optimization is.

R RBAVE SIS HIAE R eax.

A5 cmp bl, [esi+ecx] X471 ebx, K&tk cmp al, [esi+ecx].

mov ebx, eax X —AT%MH T, ATLUMIER.
SRR T RS RR S 2 TS, BEIRATH A Tk T 2 A B TIE,

function CharPos23(Chr : Char; const Str : AnsiString) : Cardinal;
asm

push ebx

push esi

mov  esi,edx

/Imov  ebx,eax

/lif StrLenght > 0 then

test esi,esi

jz @ElselBegin

[IStrLenght := Length(Str);

mov edx,[esi-$04]

n:=0;

XOr  eCX,ecx

dec esi

@RepeatBegin :

INinc(1);

inc ecx

[luntil((Str[1] = Chr) or (I > StrLenght));

/lcmp bl [esi+ecx]

cmp al,[esitecx]

jz @If2

cmp  edx,ecx
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jnl  @RepeatBegin
//if | <= StrLenght then
@If2 :
cmp  edx,ecx
jnl  @EXxit
/IResult :=0;
XOr eax,eax
pop esi
pop ebx
ret
/IResult :=0;
@ElselBegin :
XOr eax,eax
pop esi
pop ebx
ret
@EXit :
mov  eax, ecx
pop esi
pop ebx

end;

Before we can copy propagate edx (holding the pointer to Str), we must free edx from other uses.
It is used for StrLenght and we allocate ebx for this instead of edx.

TERATE GMERR edx (FRI str) AT, FRATLZCRE edx A AE €01 7 A8 >k o
EHHRAEC StrLenght, FRATTAE 2 HC ebx KALH edx.

function CharPos24(Chr : Char; const Str : AnsiString) : Cardinal;
asm

push ebx

push esi

mov  esi,edx

/fif StrLenght > O then

test esi,esi

jz @ElselBegin

//StrLenght := Length(Str);

/Imov edx,[esi-$04]

mov ebx,[esi-$04]

N :=0;

XOr  ecx,ecx

dec esi

@RepeatBegin :

INinc(1);

inc ecx
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[luntil((Str[1] = Chr) or (I > StrLenght));
cmp al,[esi+ecx]
iz @If2
/lcmp  edx,ecx
cmp ebx,ecx
jnl  @RepeatBegin
//if | <= StrLenght then
@If2 :
/lcmp  edx,ecx
cmp ebx,ecx
jnl  @EXxit
/IResult :=0;
XOr eax,eax
pop esi
pop ebx
ret
/IResult :=0;
@ElselBegin :
XOr eax,eax
pop esi
pop ebx
ret
@EXxit :
mov  eax, ecx
pop esi
pop ebx

end;

Then edx is copy propagated and the mov esi, edx becomes dead.

edx B HILRE, mov esi, edx LT .

function CharPos25(Chr : Char; const Str : AnsiString) : Cardinal;
asm
push ebx
push esi
/Imov  esi,edx
/fif StrLenght > O then
[ltest esi,esi
test edx,edx
jz @ElselBegin
/IStrLenght := Length(Str);
/Imov ebx,[esi-$04]
mov ebx,[edx-$04]
N :=0;
XOr  €ecx,ecx
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/ldec esi
dec edx
@RepeatBegin :
Hinc(1);
inc ecx
[luntil((Str[1] = Chr) or (I > StrLenght));
/lcmp  al,[esi+ecx]
cmp al,[edx+ecx]
iz @If2
cmp ebx,ecx
jnl  @RepeatBegin
//if | <= StrLenght then
@If2 :
cmp ebx,ecx
jnl - @EXxit
/IResult :=0;
XOr eax,eax
pop esi
pop ebx
ret
/IResult :=0;
@ElselBegin :
XOr eax,eax
pop esi
pop ebx
ret
@EXxit :
mov  eax, ecx
pop esi
pop ebx

end;

This removed the use of esi and it does not need to be saved and restored any more
removing the pop esi, we remember that there are 3 exit paths all with each own pop esi.
Wbk esi MM, EAHRERAMKE T .

MBAMIEER popesi W, EdHEA 3 AMNBHEEIEAZ HC popesi.

function CharPos26(Chr : Char; const Str : AnsiString) : Cardinal;
asm

push ebx

/Ipush esi

/lif StrLenght > O then

test edx,edx

jz @ElselBegin
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[IStrLenght := Length(Str);
mov ebx,[edx-$04]
n:=0;

XOr  ecx,ecx

dec edx

@RepeatBegin :

INnc(D);

inc ecx

fluntil((Str[1] = Chr) or (I > StrLenght));
cmp al,[edx+ecx]

iz @If2

cmp ebx,ecx

jnl  @RepeatBegin

//if | <= StrLenght then

@If2 :
cmp ebx,ecx
jnl @EXxit
/IResult :=0;
XOr eax,eax
/lpop esi
pop ebx
ret
/IResult := 0;
@ElselBegin :
XOr eax,eax
/lpop esi
pop ebx
ret
@EXxit :
mov  eax, ecx
/lpop esi
pop ebx

end;

In the line after the If2 label there is a line, which is identical to the second compare in the
loop-closing test. In Pascal it was necessary to have the line if | <= StrLenght after the loop
because we could not know which condition the loop terminated on. This line generated the extra
cmp ebx, ecx instruction, which looks a little redundant now. It is in fact not redundant because
two paths of execution lead to the 1f2 Label and only one of them has the test. If we split the two
exit paths such that only one of them goes to If2 we can remove the extra check. Instead of
jumping to If2 on a match we can jump directly to Exit.

TEARZE 12 2 5 AT A& e TR0 A 45 R PR 28— il
7 Pascal fLIBIIMEIAZ JGf if | <= Strienght, P FoAl 1A BT 2 AN 45 1 2% 1 E 1)
X AT A EANEE S cmp ebx, ecx, HEKA ST
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Sebr EEATUR, BRI SPATE] 112 1558, HEHR K1

WRFAT 3 O AN IR A2, HAk—AEIk 12, FA AT DI BRESMRAS 7 .
KU 2] 12 SOh HEGHE Exit.
function CharPos27(Chr : Char; const Str : AnsiString) : Cardinal,
asm

push ebx

/lif StrLenght > 0 then

test edx,edx

jz @ElselBegin

/IStrLenght := Length(Str);

mov ebx,[edx-$04]

/N :=0;

XOr  ecx,ecx

dec edx

@RepeatBegin :

INnc(D);

inc ecx

fluntil((Str[1] = Chr) or (I > StrLenght));

cmp al,[edx+ecx]

lliz @If2

jz @Exit

cmp  ebx,ecx

jnl - @RepeatBegin

/fif 1 <= StrLenght then

@12 :

/lcmp  ebx,ecx

/ljnl  @EXit

/IResult := 0;

XOr eax,eax

pop ebx

ret

/IResult := 0;

@ElselBegin :

XOr —eax,eax

pop ebx

ret

@EXxit :

mov  eax,ecx

pop ebx
end;
Then the If2 label goes out of use and when we reach the code at this position we know that the
zero terminator was reached and there is no need to test for it again.
There are two sections of identical code just before the ElselBegin label and just after it. The
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upper section can be deleted.

If2 PRV T, U RIEXALE, RATCLAED) T FL R, PRI Z MR
T f£ ElselBegin [{HI 5 A7 PHEAT R A, Lt f Bk n] LUIH R 5

function CharPos28(Chr : Char; const Str : AnsiString) : Cardinal,
asm

push ebx

/lif StrLenght > 0 then

test edx,edx

jz @ElselBegin

//StrLenght := Length(Str);

mov  ebx,[edx-$04]

/N :=0;

XOr  ecx,ecx

dec edx

@RepeatBegin :

INnc(D);

inc ecx

fluntil((Str[1] = Chr) or (I > StrLenght));

cmp al,[edx+ecx]

jz @Exit

cmp  ebx,ecx

jnl - @RepeatBegin

/IResult := 0;

/Ixor eax,eax

/lpop ebx

[lret

/IResult := 0;

@ElselBegin :

XOr eax,eax

pop ebx

ret

@ExXit :

mov  eax,ecx

pop ebx
end;
This ended our search for redundant code to remove. The cleaned up function looks like this.
RATRATMER T ALK TCRACHS, BERLG 4T e 4L
function CharPos29(Chr : Char; const Str : AnsiString) : Cardinal;
asm

push ebx

/fif StrLenght > O then

test edx,edx
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jz @ElselBegin
//StrLenght := Length(Str);
mov  ebx,[edx-$04]
/N :=0;
XOr  ecx,ecx
dec edx
@RepeatBegin :
INnc(D);
inc ecx
fluntil((Str[1] = Chr) or (I > StrLenght));
cmp al,[edx+ecx]
jz @Exit
cmp ebx,ecx
jnl  @RepeatBegin
@ElselBegin :
/IResult :=0;
XOr eax,eax
pop ebx
ret
@EXit :
mov  eax,ecx
pop ebx
end;
When the loop is iterating in search for a match or the end of the string, these lines of code are
executed over and over again
PR R VLI AT B B2 P47 8 SR, XA A IR S IR AT
inc ecx
cmp  al,[edx+ecx]
jz  @Exit
cmp ebx,ecx
jnl  @RepeatBegin

Let us make some variants of them and see how they perform. The most exiting line is

cmp al,[edx+ecx]
It generates two microinstructions.

AR BEAT LA, BHMAVER AT R E L M7
cmp al,[edx+ecx]

T IR

One for loading a byte from the address [edx+ecx] and one to compare it against al.
— AN ML [edx+ecx] FEAN AT, —ANEFER al L.

This line could also be coded as
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AT AT O S

mov ah, byte ptr [edx+ecx]
cmp al, ah

This variant also generates two microinstructions, but it needs one more register (ah).
A2 T AR S, (HEEHE A% fFd ah.

If we allocate an extra register it could also be coded as

WERBA T BRI 25 A74% AR AT LUK i b

movzx efx, byte ptr [edx+ecx]

cmp al, fh

movzx is mov with zero extension.

It loads one byte into the lowest of efx and fills the three remaining bytes with zeroes.

Of course there is no such thing as an efx register, but the two unused registers esi & edi cannot be
accessed byte wise. Therefore it is necessary to free eax, ebx, ecx or edx, by substituting it by edi
or esi and then use erg.

ebx instead of "efx".

This function demonstrates the first variant.

movzx /& mov 9 JERRAS

RN efx MEATET, HRERMN 3 M EHERER.

MR, A efx XFEMA(ERE, PA70s esi&edi BUARVEMAEH, (HIEANBEWAE N FHi Uil o
R, WL edi 2% esi RHUAL eax, ebx, ecx mf edx, ibEAITAH. AT ebx KEAL

"efx",

function CharPos30(Chr : Char; const Str : AnsiString) : Cardinal;
asm

push ebx

/lif StrLenght > 0 then

test edx,edx

jz @ElselBegin

/IStrLenght := Length(Str);

mov  ebx,[edx-$04]

/N :=0;

XOr  ecx,ecx

dec edx

@RepeatBegin :

INinc(1);

inc ecx

[luntil((Str[1] = Chr) or (I > StrLenght));

mov ah, [edx+ecx]

/lcmp  al,[edx+ecx]
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cmp al,ah

jz @Exit

cmp ebx,ecx

jnl  @RepeatBegin
@ElselBegin :

/IResult :=0;

XOr eax,eax

pop ebx

ret

@EXxit :

mov  eax,ecx

pop ebx
end;
This function demonstrates the second variant.
5 AN AL eR B R
function CharPos31(Chr : Char; const Str : AnsiString) : Cardinal,
asm

push ebx

push edi

/[if StrLenght > 0 then

test edx,edx

jz @ElselBegin
/IStrLenght := Length(Str);
mov edi,[edx-$04]
n:=o;

XOr  eCX,ecx

dec edx

@RepeatBegin :

INnc(D);

inc ecx

[luntil((Str[1] = Chr) or (I > StrLenght));
movzx ebx, byte ptr [edx+ecx]
/lcmp  al,[edx+ecx]

cmp al, bl

jz @Exit

cmp edi,ecx

jnl - @RepeatBegin
@ElselBegin :

/IResult := 0;

XOr eax,eax

pop edi

pop ebx

ret

@EXxit :
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mov  eax,ecx
pop edi
pop ebx

end;

Instead of adding edx and ecx in the address calculation at every iteration,

we could add them prior to entering the loop.

Then it is necessary to subtract them from each other again to extract the loop counter value for

the result. This is done with the sub instruction in line two after the Exit label.

h T HFAAEIET 2N edx A1 ecx THEMibE, FATRTLAEREAIEIA Z AT SR meq],
SN i B IR ARATIRAT BIHER I A vHE 4 2R
fE Exit B2 J5 A PIAT AU R SR NS 5

function CharPos32(Chr : Char; const Str : AnsiString) : Cardinal,
asm

push ebx

push edi

[[if StrLenght > 0 then

test edx,edx

jz @Elsel1Begin

//StrLenght := Length(Str);

mov  edi,[edx-$04]

/I :=0;
XOr  ecX,ecx
/ldec edx

add  ecx,edx

@RepeatBegin :

INnc(D);

[luntil((Str[1] = Chr) or (I > StrLenght));
movzx ebx, byte ptr [ecx]

inc  ecx
cmp al, bl

jz @EXxit

/lcmp  edi,ecx

test bl, bl

jnz  @RepeatBegin
@ElselBegin :
/IResult := 0;

Xor  eax,eax

pop  edi

pop  ebx

ret

@EXxit :

mov eax,ecx
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sub  eax,edx

pop edi
pop  ebx
end;

Then there are 4 functions to compare the performance of; CharPos29, CharPos30, CharPos31 and
CharPos32.

4 NEEETERE % CharPos29, CharPos30, CharPos31 and CharPos32
Results on P4 1920 are 7t P4 1920 -

CharPos29 716

CharPo0s30 973

CharPos31 710

CharPos32 702

Winner is CharPos32 CharPos32 jw T

Results on P3 1400 are 7 P4 1400 -

CharPos29 949

CharPos30 921

CharPos31 950

CharPos32 1403

Winner is CharPos30 CharPos30 fw |

Summed time S p1EE ]

CharPos29 716 + 949 = 1665

CharPos30 973 + 921 =1894

CharPos31 710 + 950 = 1660

CharPos32 702 + 1403 = 2105

Winner is CharPos31 CharPos31 i T

On P4 the winning loop is #£ P4 L JEFR|FIIEIA 2
@RepeatBegin :

movzx ebx, byte ptr [ecx]

inc  ecx
cmp al, bl
jz @EXxit
test bl, bl

jnz  @RepeatBegin

On P3 the winning loop is 7 P3 _EJEFIIAEIR &
@RepeatBegin :

inc ecx

mov ah, [edx+ecx]

cmp al,ah

jz  @Exit

cmp ebx,ecx

jnl - @RepeatBegin

on a blend of targets the winning loop is 7E7R & F 4 E R )&
@RepeatBegin :

inc  ecx
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movzx ebx, byte ptr [edx+ecX]
cmp al, bl

jz @EXxit

cmp  edi,ecx

jnl  @RepeatBegin

The P4 winner performs very bad on P3 and could not be used in a library targeting more
targets than P4,such as the Delphi RTL. The winner on P3 is performing quite bad on P4 and this
one should not be used in a blended target library either. The winner on a blend of the two targets
is CharPos31, which performs near to optimal on P4 and also performs optimal within a few
percent on P3.

7t P4 EIBAAE P3 ERAR, AeHAEHbRAZ P4 REFEESMEEY, Lhin Delphi RTL.
P3 LI P4 EPATRCRARR S, X MWARERERES TFEMER . EPAAFEE
b, GAMENIRSE R CharPos3l, 76 P4 iR EfE, £ P3 FzE£ /b,

This function would make a perfect choice for the Delphi RTL, where | have missed a CharPos
function. It is a relief to see that it is possible to optimise for both processors at the same time
without sacrificing more than a few percent of performance.

XA REE Delphi RTL SiFfiE$E, 78 RTL IR LKk T —4 CharPos %L,
BAVREAER], &nl AR BAE A BRSSO RRAS,  IF B LT3 st — g .

Comparing performance of P3 and P4 on a clock-by-clock basis is always a hit.

There is broad tendency to think at the P4 as having an inferior design,but this is not proved by
this code.Taking the blended winner's performance and scaling it to a 1400 MHz processor it is
950 on P3 and 710 * (1920/1400) = 973 on P4.

The processors are performing very much the same at the same clock.

76 P3 1 P4 ELUECH BRI PERE R 2 — T .

AR E P4 A —MEHEM BT, (AP ARIDUE R

EWME S VRG-S AR IYERE, E P3 1400HZ [fAbsge & 950, 78 P4 FJ& 710
* (1920/1400) = 973.

IXPRIAR LS JLT-AE 9 1 R IR I 34
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Lesson 7 58 7 R (HMAEFF S EEEH)

Welcome to lesson number 7. Today’s subject is floating point BASM.

This was also the subject of an earlier lesson, but this lesson will add new information.

We will look at how to code scalar SSE2 code and how instructions are scheduled in the fp
pipelines.

Today’s example function is evaluating a third order polynomial.

XGHRFN 7 PR SRIEGL BASM THITE R

XA TATZ AR R — D T8, (X — PR I — S A A
FAVREAEIR T B Shr e SS2 AUMANE fp AFIE L b W i X S8 45 4.
ARG FEVEIN— D =X 2 T

function ArcSinApproxla(X, A, B, C, D : Double) : Double;
begin

Result ;= A*X*X*X + B*X*X + C*X + D;
end;

Instead of just analyzing and optimizing this function we will see an actual use of it. A third order
polynomial can approximate the ArcSin function on its entire interval, [-1;1], with a maximal
absolute error of 0.086.

This is not impressive but what we develop in this lesson will extend to higher order polynomials
in a straightforward manner, yielding higher precision.

BAVEEECWSLEE, AR5 Eathrmiti.
AR B XA [-1, 1] AT RLEUS ArcSin p& B, EATT IR e R 48R TR 2
0.086. XA NENGIEZ], (HIEHA PRAEX — WA @0 2 5 s O 2 1050, 1 R .

The parameters A, B, C and D define the shape of the curve for the function and the values for a
fit to theArcSin approximation with minimal error must be found.

ZH A, B, C M D YE T REIZ AR . FEIE BN ArcSin H, fEf/MRZE SEVRIEH N,
HEAFAE IR LAY .

For this purpose we develop an optimizer, which is also used as the benchmark.

Because ArcSin(0) = 0 we immediately see that D=0 and D can be left out of optimization.
N T IEANHBEATT iy, e nT BUAE A FEREN K.

B2 ArcSin(0) =0 , F&AITAI LA ESniE D=0, il D nf AR itk s,

We also know that ArcSin is an odd function and therefore the second order term B*X*X is of no
use in the approximation.
TATEFIE ArcSin 22— NAFRREL I kI B*X*X fEIEH A H .
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This is because a second order term is even and has symmetry around the Y-axis.
Odd order functions have antisymmetry around the Y-axis with f(X) = -f(-X).

All this means that our function could be reduced to Result := A*X*X*X + C*X;
We do however not does that because it is more illustrative to use the full function.
ArcSin is a special case and we want to be as general as possible.

ORI kIR — MR, WY BN RR
TREBEAUHE Y RFREEE, £(X) = -f(-X).

FR PG S, pRAAT DL Result := A*X*X*X + C*X;
THIRATTEIASREIXFEARL, DRI A A XA S0 48 1) R 55 A Ul B 17
ArcSin & ANFEE, BRAVIATFELR e @

Function number 1a has 6 multiplications and 3 additions. Writing it on Horner form
B 6 NIRRT 3 M. e AR S TEA
Result := ((A*X + B)*X + C)*X + D;

reduces this to 3 multiplications and 3 additions.

A 3 AR 3 AN

Another form is 3 —F B &
Result := (A*X + B)*(X*X)+(C*X + D);

which has 4 multiplications and 3 additions.
XA 4 AR 3 M.

On modern processors it is as important how much parallelism can be extracted from the formula
as it is how many multiplications and additions it has.

Modern processors such as AMD Athlon, Intel P4 and P3 have pipelines.

Pipelines are a necessity on processors running at high frequencies, because the amount of work
for an addition, subtraction, multiplication or division cannot be done in a single clock cycle.

IR AL EES , —N AT T 2 DU REf 2003k, vk E .
IACAL 2% Amd Athlon, Intel P4 I P3 #4564k .

LA AL PR T, IBATHUORA M, RO KRR TAEZ A E . k. . B, &
ATHE BB Bl I LIS AT A5

On P4 there is a pipeline called FP_ADD that handles addition and subtraction.

This pipeline has 5 stages, which means that the process of performing an addition or subtraction
is broken down into 5 sub tasks.

Therefore addition and subtraction is done in 5 clock cycles.

£ P4 5 Afit FP_ADD MIEIEZ, A NEEE.
FIELA 5 &, BIUER - MNINESGRIE D 5 A TAESIAT .
BRI D A2 5 AN Il i 1R 56 Bl
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The advantage of having a pipeline is that even though it takes 5 cycles to complete an addition a
new one can be started in every clock cycle. This is because the first add in a series leaves the first
stage of the pipeline in the second clock cycle and then this stage can accept add humber 2.

If we have this series of adds the first one will leave the pipeline in cycle 5, number 2 will leave in
cycle 6 etc. Throughput is one add per cycle.

FIELI R, RS MINEAES: 5 AN, AR ARSI B I8 AT LOT 4R —A
Brite KPS —A add BEANEIELMIEE 0, RS AR I L 2 2 )
RIS 2 A adde WERIRATA X — RIUMIINE, 55— DINERAESS 5 ASIp T,
BAINERAES 6 NP BIEIT, KUCRHE. kR I

Parallelism is achieved by having up to 5 additions/subtractions in flight in the pipeline at the
same time. The drawback is that if a second of two following additions need the output from the
first addition it has to wait for the first one to complete. We say that there is a data dependency
between the two instructions and we see the full latency of the additions, which is 2 times 5
cycles.

R TES, R ATLLIFAT58 5 AN INEsR .

H—AE, BRI, 5 A INER EE — N 88, A e
ANEER A58

AT E AR S Z W B, BAVE BIX A IE RIS 5 ANt AT
2 fit.

Let’s use our function as an example to see how pipelines work.

HIBATH RO B F B Sl TAF

Result := A*X*X*X + B*X*X + C*X + D;

It is seen that the 4 terms can be evaluated in parallel and then be added as the final act Of course
term number 4 is not "evaluated”. A*X is the first operation ready to be scheduled to run in the
F_MUL pipeline. The latency for FMUL on P4 is 7 cycles and A*X will be ready in cycle 7.

X4 WRTDIOIFATIOVSL, SRRINEE RN, AR5 4 A A T
AXX ZHHERE F_MUL FIEL NS MR /2 P4 L FMUL (RIS 7 Ak
W, ARX SRR 7 A

FMUL has a throughput of 2 cycles. From this we see that FMUL is not fully pipelined.
The pipeline will accept a new instruction in cycle 3 and not in cycle 2.

B*X is the second instruction ready to execute and it will start in cycle 3.

In cycle 5 the pipeline is again ready to receive a new instruction and this is C*X.

In cycle 7 A*X is complete and (A*X)*X can start in cycle 8.

In cycle 10 B*X is finished and (B*X)*X will start.

FMUL 5 2 MNEMErE. Fik FMUL %A .
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EHESRAEN 3 AN — TR 2, MARAESE 2 M.
B*X ZEPATIH MRS, e 3 MRS

e 5 AN, ARG RN EIES, R CX

TEER 7 AN, ASX BT, (AX)*X 7628 8 ANEITIG.
e 10 AN B*X 588, I H (B*X)*X #IFUHIAT

In cycle 12 C*X is ready to go to the F_ADD pipeline to be added to D.

In cycle 15 is (A*X)*X finished and (A*X*X)*X can start.

In cycle 17 are (B*X)*X and (C*X) + D complete and they can start in the F_ADD pipeline.

This addition completes in cycle 21, where (A*X*X)*X is also ready Then the last addition can
start in cycle 22.

Now there is only one operation in flight and we must lean back and wait for the full latency of
FADD, which is 5 cycles. In clock 27 the last addition is finished and the job is done.

7E5 12 JRH) C*X WE&HEN F_ADD FiEZks5 D A,

5 15 JAH (A*X)*X 580 (AFX*X)*X TF4f.

1T AW (B*X)*X I (C*X)+D 5k, RJETFahiEN F_ADD ik,
EAINELESE 21 AWITER, & 22 AW (ARX*X)*X 3 &5 Nk,

WAE, R —MREIET, ATBAI5ER: FADD BI5Er, '©HT 5 AN,
5 27 NG IINEL N, A TAEL R T .

These tables give the details. The left column symbolizes the F_MUL pipeline with 7 stages and
the right column symbolizes the F_ADD pipeline with 5 stages.

IR ERASTEN R AR T IX Al

FEIWBIE R F_MUL L T 7 &, AU F_ADD H T 5 4.

F_MUL F_ADD
A*X

Cycle 1
F_MUL F_ADD
A*X
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Cycle 2
F MUL F_ ADD
B*X
A*X

Cycle 3
F_MUL F_ADD
B*X
A*X

Cycle 4
F MUL F_ADD
C*X
B*X
A*X

Cycle 5
F MUL F_ADD
C*X
B*X

A*X
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Cycle 6
F_MUL F_ADD
C*X
B*X
A*X
Cycle 7
F_ MUL F_ADD
(A*X)*X
C*X
B*X
Cycle 8
F MUL F_ADD
(A*X)*X
C*X
B*X
Cycle 9
F MUL F_ADD
(B*X)*X
(A*X)*X
C*X
Cycle 10

F MUL F_ADD
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(B*X)*X
(A*X)*X
C*X
Cycle 11
F MUL F_ADD
(C*X)+D
(B*X)*X
(A*X)*X
Cycle 12
F MUL F_ADD
(C*X)+D
(B*X)*X
(A*X)*X
Cycle 13
F MUL F_ADD
(C*X)+D
(B*X)*X
(A*X)*X
Cycle 14
F_ MUL F_ADD

(A*X*X)*X
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(C*X)+D
(B*X)*X
Cycle 15
F MUL F_ADD
(A*X*X)*X
(C*X)+D
(B*X)*X
Cycle 16
F MUL F_ADD
(B*X*X)+(C*X+D)
(A*X*X)*X
Cycle 17
F_ MUL F_ADD
(B*X*X)+(C*X+D)
(A*X*X)*X
Cycle 18
F MUL F_ADD

(B*X*X)+(C*X+D)
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| (AX*X)*X

Cycle 19

F_MUL

F_ADD

(B*X*X)+(C*X+D)

(A*X*X)*X

Cycle 20

F_MUL

F_ADD

(B*X*X)+(C*X+D)

(A*X*X)*X

Cycle 21

F_MUL

F_ADD

(A*X*X*X) +
(B*X*X+C*X+D)

Cycle 22

F_MUL

F_ADD

(A*X*X*X)+
(B*X*X+C*X+D)
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Cycle 23

F_MUL

F_ADD

(A*X*X*X)+
(B*X*X+C*X+D)

Cycle 24

F_MUL

F_ADD

(A*X*X*X)+
(B*X*X+C*X+D)

Cycle 25

F_MUL

F_ADD

(A*X*X*X)+
(B*X*X+C*X+D)

Cycle 26

F_MUL

F_ADD
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Finished

Cycle 27

An out of order core schedules instructions to run as soon as data and resources are ready.
Resources are registers and execution pipelines. 1 do not know for sure, but | think that
instructions are scheduled to run in program order except when an instruction stalls.

In this situation the next ready instruction in program order is scheduled.

The stalled instruction will be started as soon as the stall reason is removed.

It can stall because of missing resources or not ready data.

FRMGHRAT 1R A A A B4R 4 R B R B Y5 26 I iz A7

PRI W A7 A AT B B2

TARENE, (HRRAIR L AL BRI PHIUiE1r, BRAE MR

FERXFIGOLR, R MR . IXMEEE TR AR F R IR T 2 R &I ah AT .
A5 (R DR TR R DA AT U B A 1 26 Al

After having seen how instructions are scheduled to run in the pipelines of a P4 we establish the
benchmark.

The benchmark is an optimizer that search for the best possible fit of our polynomial to ArcSin. It
is based on the most simple of all optimization algorithms, which is the exhaustive search. We
simply try a lot of combinations of parameter values and remember the set of parameters, which
give the best fit.

Aand C are run in the intervals [AStart;AEnd] and [CStart; CEnd], with the step sizes AStepSize
and CStepsize.

This is done in two nested while loops.

T2 T PA P TE S AT B AR -8 AT I, N oRIRAT T AL — A BRI
BEE R — MRS, SRR T RERIER BN L ArcSin 192 .

BT RAE R EE, R TT R . AR RS HE N 2 M ALE, I Hadskd
Wi SAT S HH

A Fl C 7 AEH X 8] [AStart;AEnd] #1 [CStart; CEnd]H, £ K/NJ& AStepSize Al
CStepsize.

WA while #REAEIASZIL .

StartA =0;
StartC =-1;
EndA =1;
EndC =1;

AStepSize := 1E-2;
CStepSize := 1E-3;
OptA :=9999;
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OptC :=9999;
A = StartA;
while A <= EndA do
begin
C := StartC;
while C <= EndC do
begin
Inc(NoOflterations);
MaxAbsError := CalculateMaxAbsError(A,C, ArcSinArray);
if MaxAbsError <= MinMaxAbsError then
begin
MinMaxAbsError := MaxAbsError;
OptA = A;
OptC :=C;
end;
C := C + CStepSize;
end;
A= A+ AStepSize;
end;
The CalculateMaxAbsError function calculates a number of points on the X interval [-1;1], which
is the definition interval of the ArcSin function
CalculateMaxAbsError pRECTHAE. X FIFAX R [-1;1] %L IXANXEE ArcSin s X
[H] o

TMainForm.CalculateMaxAbsError(A, C : Double; ArcSinArray : TArcSinArray) : Double;
var
X, Y, D, B, Yref, Error, AbsError, MaxAbsError : Double;

begin

B:=0;

D:=0;

MaxAbsError := 0;

X:=-1;

repeat
Yref := ArcSin (X);
Y := ArcSinApproxFunction(X, A, B, C, D);
Error := Yref-Y;
AbsError := Abs(Error);
MaxAbsError := Max(MaxAbsError, AbsError);
X := X + XSTEPSIZE;

until(X > 1);
Result := MaxAbsError;
end;

At each point we calculate the error by subtracting the Y value from our approximation function
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from the reference
Y value obtained from a call to the Delphi RTL ArcSin function.

A A SRRl AreSin KR —A Y {E, 7] Delhi RTL "/ ArcSin pR%k—
Y BEM, RIEH Y Z2EME Y R EASAD A EiRE.

The error can be positive or negative, but we are interested in the absolute value.

We remember the biggest absolute error by taking the maximum of the two values MaxAbsError
and AbsError assigning it to MaxAbsError.

MaxAbsError is initialized to zero and in the first evaluation it will get the value of the first error
(if it is bigger than zero).

The MaxAbsError is returned as the result from the function after a full sweep has been
completed.

In the optimizer function the two values of A and C that gave the smallest maximum error are
remembered together with the actual MinMaxAbsError.

R ZE AT HESE IEBE L, (R FRATT PN 20RO R

FATE LK MaxAbsError F1 AbsError /MBI 5 KAEIRZT MaxAbsError >Kid sk fe K
LN R 2

MaxAbsError #ATEHE A%, FEVHEIS, ISR E —MREMWRREERTE).

EH e G MaxAbsError 4 A bR 55 3R [ .

TEPLACER R A, Kl sk N RO IR ZE N A, C .

All that matters in an optimizer of this kind is to be able to evaluate as many parameter
combinations as possible. For this purpose we must optimize the optimizer ;-) and the functions
we evaluate. In this lesson the purpose is slightly different because all we want is some valid
benchmarks for the functions we optimize.

RSB s R Rl TS 2 AL S B4
P, BT UAC XA AR A BAT T ATV 551 e 4
X PRI H AR R SN, AR BATTAR R 2 DA I L T Aff 10 R0 X e K

The means are however the same, the code of the optimizer must take as few cycles as possible
such that the cycles the functions use is the biggest part of the total number of cycles used. The
first optimizer optimization that is done is to realize that there is no need to evaluate the reference
function over and over again.

BB AL, PEAL AR AR A ZBUR RE AL AR /IS (R Il 5 300, A1 A o 300 o A 1) P T 9
TR HAMAIAESHIFATTE IR S5 R4

It returns, of course, the same values no matter which values A and C have.

Sweeping the reference function once and storing the Yref values in an array do this.
The next optimization is to compact the lines that evaluate the MaxAbsError Long version
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EEIRMME, MRAE AR C BEMFEEGRF. MRSHRE, NFTHH RO R
ANE . ok, ALt 5 MaxAbsError 1T KA

Yref := ArcSinArray[l];

Error := Yref-Y;

AbsError := Abs(Error);

Short version f A

AbsError := Abs(ArcSinArray[l]-Y);

This helps because Delphi creates a lot of redundant code, when compiling FP code.
The long version compiles into this

KRAMM, BAMYE FP AN, Delphi <5 A VF 2 TURAT,
RRAG H Bh R

Yref := ArcSinArray[l];

mov eax,[ebp-$14]

mov edx,[eax+ebx*8]

mov [ebp-$48],edx

mov edx,[eax+ebx*8+$04]
mov [ebp-$44],edx

Error := Yref-Y;

fld  qword ptr [ebp-$48]
fsub qword ptr [ebp-$30]
fstp qword ptr [ebp-$50]
wait

AbsError := Abs(Error);
fld gword ptr [ebp-$50]

fabs

fstp qword ptr [ebp-$10]

wait

There are a lot of redundancies in this code and we must conclude that Delphi is doing a bad job
on optimizing floating point code.

FEACHS AT R R TCAR, FRATATLAWTE Delphi #AT RS RIS BEAT AT 80K LA

Let us add some explanations to the code.

A RAARE— T AR,
The first line of Pascal is an assignment of one double variable to another.
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This is done by to pairs of mov, one for the lower 4 byte of the variables and one for the upper 4
byte.The first line of asm loads the address of the array into eax, which is used as base for
addressing into the array. Ebx is | and it is multiplied by 8 because each entry in the array is 8

byte.

4547 Pascal fXfid 24—~ Double A& &ML

E—ATH—X] mov S, —MNHTERERMK 4 AN, — M T 4 MEh.
F—4T asm AURY HEALHEERE N eax, EFR I ER AL HLAE

Ebx /& I, ‘&Ll 8 EIARAEAHIEZE 8 171,

The 4 byte offset in the last two lines (in the last line it is hidden!) is moving
the reference into the middle of element I.
A PATH (B E AT RE) 4 AN WA E, FHTIRMITE | hE.

Yref is located in the stack frame at [ebp-$48] and is loaded by the first line of FP code.
Y is located at [ebp-$30] and is subtracted from Yref by fsub.
The result is Error and this is stored at [ebp-$50].

Yref 7EMERE [ebp-$48] 1, HE—1T FP fALEEAN.
Y & [ebp-$30] ', fsub F Yref y2: Y.
iR 7S, frfE7E  [ebp-$50].

The last line of Pascal compiles into four lines of asm of which the first starts loading Error.
Saving and then loading Error is redundant and the optimizer should have removed it.

Fabs is the Abs function and is probably one of the shortest function implementations seen ;-)

The Delphi compiler does not have the inlining optimization, but it applies “compiler magic” to a
few functions,one of which is Abs. The last line stores AbsError on the stack.

The short version compiles into this

I Ja—AT Pascal #&dmiFERUAT asm, MBEANERZETFU.

TRAFER G FRREANETUAR I, LA A M B e

Fabs /& Abs e, BHRKARELEBRMPATEREL T .

Delphi g8 B WAL, (e nT DAL BN B “YnieasiEvk”, Abs 2
Ao I —ATF AbsError fEAMER .

{7 JELRBCAS 0 6 Jl o B

mov eax,[ebp-$14]

fld qword ptr [eax+ebx*8]
fsub qword ptr [ebp-$30]
fabs

fstp qword ptr [ebp-$10]
wait
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Here there is no redundancy and the compiler should have emitted this code as result of the long
Pascal version as well. All lines of code are present in the long version, but all redundant lines
have been removed. The first line loads the base address of the array into eax. The second line
loads element I, | is in ebx,

unto the fp stack. The third line subtracts Y from Yref. The fourth line is the Abs function.

The fifth line stores the result in the AbsError variable.

K BATUR, Iias G K AR Pascal ARSI E -
XEATHAFAE T KARA T, AHSE T ICRATERB MR T
W—ATR A RN eax. S ATRRATTE | B fp MER, | 75 ebx .
WATAN Yref W2 Y. SBPUATRE Abs EREL.

BIATH S RAEN AbsError A8 &,

There is a peculiarity with this benchmark that | have no explanation of. The benchmark values are
heavily influenced by the way it is activated. If the keyboard is used to hit the button we get a
different score from the one we get by clicking the button with the mouse!

The one who can explain this will probably get the Nobel Prize in Delphi;-)

XA FEAEMAAT A B BAT R R -

FEAE( A & 1S s 2™ BEIR S0

FTBE A8 5 T H A 2 B P BUR Rl F B A 2 AR R AN R P
WEREARRE €K K43 Delphi 1 IURAE ;-

Another irritating thing is that Delphi does not align double variables properly.

They shall be 8 byte aligned but Delphi only 4 byte aligns them.

The penalty we can get from this is a level 1 cache line split (and L2 cache line splits as well).
Loading a variable that splits over two cache lines takes the double time of loading one that does
not.

B NS 2 Delhpi AREXTFF double ZZH& .

EAINIZZE 8 F 5%, (Hi& Delphi Hi& 4 =451,
AT E— A YT, BIA—2¢ cache ¥ I EAI( =4 cache Koy A1)
FEAE Y A P S TR AR e B S G R A D OO I NI, RO ANRE - IREEAN .

Q)

Because double variables are 8 byte and the L1 cache line of P4 is 64 byte at most 1 of 8 variables
can have a split. On P3 that has 32 byte L1 cache lines it is 1 of 4.

K4 double ZZ & /& 8 N7, P4 ff) L1 cache /& 64 NFY, &% 8 MEEYH 1 4
WioyFF. #E P3 A7 32 AT, Llcache % 4 MEEPAT 1 M.

The ideal situation is that variables are aligned at 4 byte if they are 4 byte big, 8 if 8 byte etc. To
make things simple let us imagine that the first line in the level one cache is where our variables
are loaded. The first line starts at address 0, that is - memory from address 0 is loaded into it. Our
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first variable is aligned and occupies the first 8 bytes at line 1.

HARR G D02 /NS 4 DL 4 ANy, 2 8 MATINEE 8 AN E.
N TAE SR AL, BAMBRBCES AT AR B2 cache.
BATHIMEERLA T 0, Wi, AHUEERE 0 N

AR RN TR, AR 1 AT 8 AN

Variable number two occupies byte 9-16 ....Variable number 8 occupies byte 57-64 and does not
cross the line boundary.If variables are only 4 byte aligned the first one could start at byte 4 and
number 8 could start at byte 61.The first 4 byte of it will be in line 1 and the next 4 bytes will be in
line 2.The processor loads it by first loading the lower part and then loading the higher part instead
of loading it all in one go.

52 MG 9-16 . B 8 AMREN M 57-64 7. ARERZXATILA .

WERATRE I 4 AT, AT, 2R AR 4 AN FAITTG, 8 MR TR
TH 61 AN, BN 4 AT 14T, RETES 2 17

AR PRGBS RNARAL, SRS PR AL, AN E — IR TR

Because of this misalignment of double variables in Delphi our benchmark will not be as stable as
we could wish. Alignment can change when we recompile especially if code is changed. | have
chosen (a bad choice) to not include code to align variables in the benchmark,

but will give an example of it in a later lesson.

Let us dive into the first function optimization.

We start with the function that uses the naive formula in textbook format.

Pt Delphi 1 double A2 ANRE T 1055, IAILBATHOEEAE DA B BA TG 1 4
FeoE . LB, HORT %, AT LA
FAT—ANIEFE(CAINESE), AESEAHENRAT, JE A S AR AR
BRI — A KL

FATVEH AR A 10 222U SOR DI 2R — A R L

function ArcSinApproxla(X, A, B, C, D : Double) : Double;
begin

Result := A*X*X*X + B*X*X + C*X + D;
end;

This function implementation scores the benchmark 43243 on my P4 1600 MHz clocked at 1920
MHz Delphi compiled it like this

FEFRIY P4 1600 MHz I BPR & 1920 MHz [FIFLES b, sRAIHEEHENR /> 0 43243,
G o ARG AR R

function ArcSinApprox1b(X, A, B, C, D : Double) : Double;
begin

{
push ebp
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mov  ebp,esp

add  esp,-$08

}

Result := A*X*X*X + B*X*X + C*X + D;
{

fld  qword ptr [ebp+$20]

fmul  qword ptr [ebp+$28]

fmul qword ptr [ebp+$28]

fmul  qword ptr [ebp+$28]

fld  qword ptr [ebp+$18]

fmul gword ptr [ebp+$28]

fmul gword ptr [ebp+$28]

faddp st(1)

fld  qword ptr [ebp+$10]

fmul gword ptr [ebp+$28]

faddp st(1)

fadd qword ptr [ebp+$08]

fstp qword ptr [ebp-$08]

wait

fld  qword ptr [ebp-$08]

}

{

pop  ecx

pop  ecx

pop  ebp

}
end;
The code from the CPU view will not compile because of the instruction faddp st(1) and we
remove st(1). As default the faddp instruction operates on st(0), st(1) and there is no need to write
it out.
KH CPU & HH A A e S i, PR4R4 faddp st(1), FRATEER st(1).
faddp FRAERUGEEAE st(0), st(l), AFHFERHEAIE L.

function ArcSinApprox1c(X, A, B, C, D : Double) : Double;
asm
/lpush ebp //Added by compiler 2128750
/Imov  ebp,esp  //Added by compiler FH w125 N
add  esp,-$08
/IResult := A*X*X*X + B*X*X + C*X + D;
fld  qword ptr [ebp+$20]
fmul qword ptr [ebp+$28]
fmul qword ptr [ebp+$28]
fmul qword ptr [ebp+$28]
fld  qword ptr [ebp+$18]
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fmul qword ptr [ebp+$28]
fmul qword ptr [ebp+$28]
faddp //st(1)

fld  qword ptr [ebp+$10]
fmul qword ptr [ebp+$28]
faddp //st(1)

fadd qword ptr [ebp+$08]
fstp gqword ptr [ebp-$08]

wait

fld  qword ptr [ebp-$08]

pop  ecx

pop  ecx

/llpop  ebp //Added by compiler H1gm PR g8 N
end;

First we observe that there is no need to set up a stack frame. The stack is actually used for storing
the result temporarily and reloading it again in the lines

T IRAT G2 T B Mk .

HEMG SEB b RAF M I 25 R AT &, AT SR BB e N V7 s B3 A7 4

fstp qword ptr [ebp-$08]
wait
fld  qword ptr [ebp-$08]

but the base pointer and not the stack pointer are used for this.

The lines that use ebp plus a value are accessing the parameters, which are located above the base
pointer,which is in the calling functions stack frame. The stack pointer is not used at all in the
function and changing its value is meaningless. The mov ebp, esp instruction added by the
compiler together with the line add esp, -$08 creates an 8-byte stack frame.

Because these lines change the ebp register it is necessary to back it up by pushing it to the stack.
Unfortunately we can only remove the add esp, 8 line and the two pop ecx lines that has the
purpose of subtracting 8 bytes from the stack pointer, esp.

{RUEX RN AREr, HEARTREF AR AL, JEhE ebp I b—/ME AT LAV; 1) fr b FE 5
PS4 HERRFREM AR REX AT ], oo e (A T = L.

LS HIMN T mov ebp, esp 5%, A EHER AL 8 N1 add esp, -$08.

A IX AT AR T ebp A7y, PELTREE L I AMERSR &0 E .

BRI, BATVAGERR addesp, 8 , AT HAT pop ecx, ‘AR T WREL A TH L84 HE AR
REl esp ik 8 MHRAE.

function ArcSinApprox1d(X, A, B, C, D : Double) : Double;
asm

/ladd  esp,-$08

//Result := A*X*X*X + B*X*X + C*X + D;
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fld  qword ptr [ebp+$20]
fmul qword ptr [ebp+$28]
fmul qword ptr [ebp+$28]
fmul  qword ptr [ebp+$28]
fld  qword ptr [ebp+$18]
fmul  qword ptr [ebp+$28]
fmul  qword ptr [ebp+$28]
faddp

fld  qword ptr [ebp+$10]
fmul  qword ptr [ebp+$28]
faddp

fadd qword ptr [ebp+$08]
fstp qword ptr [ebp-$08]

wait
fld  qword ptr [ebp-$08]
/lpop  ecx
/lpop  ecx
end;

This function implementation scores the benchmark 42391 and performance actually dipped a
little.The compiler inserts the line mov ebp, esp and we can make it redundant by using esp
instead of ebp.

XA R FEHE MR 7 B0 42391, AR T — R,

Gk estE AT mov ebp, esp, FATATLUHEH] esp SRACE LA ebp.

function ArcSinApproxle(X, A, B, C, D : Double) : Double;
asm

/IResult := A*X*X*X + B*X*X + C*X + D;

/Ifld  qword ptr [ebp+$20]

fld  qword ptr [esp+$20]

/ffmul  qword ptr [ebp+$28]

fmul qword ptr [esp+$28]

/ffmul  qword ptr [ebp+$28]

fmul qword ptr [esp+$28]

/ffmul  qword ptr [ebp+$28]

fmul qword ptr [esp+$28]

/ifld  qword ptr [ebp+$18]

fld  gword ptr [esp+$18]

/ffmul  qword ptr [ebp+$28]

fmul qword ptr [esp+$28]

/fmul  qword ptr [ebp+$28]

fmul qword ptr [esp+$28]

faddp

/ifld  qword ptr [ebp+$10]

fld  qword ptr [esp+$10]
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/ffmul  qword ptr [ebp+$28]
fmul qword ptr [esp+$28]
faddp
/lfadd qword ptr [ebp+$08]
fadd qword ptr [esp+$08]
/lfstp qword ptr [ebp-$08]
fstp qword ptr [esp-$08]
wait
/Ifld  qword ptr [ebp-$08]
fld  qword ptr [esp-$08]
end;

Unfortunately the compiler still inserts the mov instruction and we performed a copy propagation
that gave no optimization because it is not followed by a dead code removal.

Therefore performance is almost the same — 43094. Without investigating whether the result
stored on the stack is used we can optimize the lines coping it there and reloading it. The result of

them is that there is a copy of Result left on the stack.

They redundantly pop the result of the FP stack and reload Result from the stack.

A, HEASTRSTIA mov $84 . BATHAT IR HILSR, B EAREN N
BB R . WERIRATBERS A e 47 R A AT AEHERE L, R LIPEAL SRS IX —2

Horp A EERE AR TR HER L
LR FP HERL pop H, FEMHERCRHGE LRI,

This single line has the same effect, but redundancy is removed.

fst gword ptr [ebp-$08]

This optimization is very often possible on Delphi generated code and is important to remember.

XATATAHIRI I RCR s AEGETUAR BB -

X fitesE Delphi AR R LA, MiZidE e,

function ArcSinApprox1f(X, A, B, C, D : Double) : Double;
asm

/IResult := A*X*X*X + B*X*X + C*X + D;

fld  qword ptr [esp+$20]

fmul qword ptr [esp+$28]

fmul qword ptr [esp+$28]

fmul qword ptr [esp+$28]

fld  gword ptr [esp+$18]

fmul qword ptr [esp+$28]

fmul qword ptr [esp+$28]

faddp

fld  gword ptr [esp+$10]

fmul qword ptr [esp+$28]
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faddp
fadd qword ptr [esp+$08]
Iffstp  qword ptr [esp-$08]
fst qword ptr [esp-$08]
wait
/Ifld  qword ptr [esp-$08]
end;
This function implementation scores the benchmark 47939 and the improvement is 11 %.
The next question to ask is: Is the copy of the Result on the stack ever used?
To answer it we must inspect the code at the location of the call to the function.

XA B FEAENR 2 47939, #EE T 11%.
e FORIM A U, AEHERE e &5 5 o) i FH e 2
KT I, AT A XA BB A A

Y := ArcSinApproxFunction(X, A, B, C, D);

call dword ptr [ArcSinApproxFunction]
fstp qword ptr [ebp-$30]
wait

The first line after the call stores the result in Y and pops the stack.

Seeing this we assume that the result on the stack is not used,but to be sure we must scan through
the rest of the code too. If the rule for the Register calling convention is that FP results are
transferred on the FP stack it is weird that a copy is also placed on the stack. We conclude that it is
redundant to copy the Result to the stack and remove the line doing it.

B ATRE RS RATN Y, HH SRR

FATMEBEAEHERE LS5 R AT AL, RIS o200 e ) T AR B AT A

Wik PP OISR FP MEMAR N, JF HARR 4RI BIHER, KRR 3 A7 s T 4 e 2
AT B

FATIW R 2 R R BIHERAE ORI, MERE .

function ArcSinApprox1g(X, A, B, C, D : Double) : Double;
asm

/IResult := A*X*X*X + B*X*X + C*X + D;

fld  qword ptr [esp+$20]

fmul qword ptr [esp+$28]

fmul qword ptr [esp+$28]

fmul qword ptr [esp+$28]

fld  qword ptr [esp+$18]

fmul qword ptr [esp+$28]

fmul qword ptr [esp+$28]

faddp
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fld  qword ptr [esp+$10]

fmul qword ptr [esp+$28]

faddp

fadd qword ptr [esp+$08]

/lfst  gword ptr [esp-$08]

wait
end;
This function implementation scores the benchmark 47405 Instead of writing all the qword ptr
[esp+$xx] lines we can write the names of the variables and let the compiler translate them into
addresses.
This actually makes the code more robust.If the location of the variables should change then the
code breaks if we use hard coded addressing. This will however only happen if the calling
convention is changed and this is not likely to happen very often.

XA BRI FHENR > BOE 47405, AT fir 44 (AR AR LS T ATIK) [esp+$xx] 1T, ikgwi¥
SR AATIR R A o

Sy b, RXATACHS SEARR: o A SR IRAT I AT AT ik, S 52 B A 1l AR H SR RS
I BB, QRN A€ s, AL e Em. R, XL AR L.

function ArcSinApprox1g_2(X, A, B, C, D : Double) : Double;
asm

/IResult := A*X*X*X + B*X*X + C*X + D;

/Ifld  qword ptr [esp+$20]

fid A

[fmul  qword ptr [esp+$28]
fmul X

/fmul  qword ptr [esp+$28]
fmul X

/fmul  qword ptr [esp+$28]
fmul X

/ifld  qword ptr [esp+$18]
fik B

/ffmul  qword ptr [esp+$28]
fmul X

/fmul  qword ptr [esp+$28]
fmul X

faddp

/ifld  qword ptr [esp+$10]
fld C

/fmul  qword ptr [esp+$28]
fmul X

faddp

/ifadd qword ptr [esp+$08]
fadd D
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wait
end;
Try having both types of lines enabled
A PR

fld  qword ptr [esp+$20]

fik A

and see in the CPU view how the compiler generated exactly the same code for both versions.
X is used in a lot of lines and it is referenced on the stack.

Therefore it is loaded from the stack into the internal FP registers every time.

It should be faster to load it once into the FP stack and let all uses reference the FP stack.

RS CPU B UKL, G 13 a X AN A ™ A T A R R4S

Hire L1 X B AT

FEXAE A MHER RN FP 2777 8%

R AN FP iR, T HI e S FP iR, X NAZE HUEURIN o

function ArcSinApprox1h(X, A, B, C, D : Double) : Double;
asm
/IResult := A*X*X*X + B*X*X + C*X + D;
fld  qword ptr [esp+$20]
fld  gword ptr [esp+$28] //New
fxch
/lfmul qword ptr [esp+$28]
fmul  st(0),st(1)
[lfmul qword ptr [esp+$28]
fmul  st(0),st(1)
[lfmul qword ptr [esp+$28]
fmul  st(0),st(1)
fld  qword ptr [esp+$18]
/ffmul gword ptr [esp+$28]
fmul  st(0),st(2)
[ffmul gword ptr [esp+$28]
fmul  st(0),st(2)
faddp
fld  qword ptr [esp+$10]
/ifmul gqword ptr [esp+$28]
fmul  st(0),st(2)
ffree st(2)
faddp
fadd qword ptr [esp+$08]
fst  qword ptr [esp-$08]
wait
end;
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The second line is one we added and it loads X once and for all.

Because it places X on the top of the stack in st(0) and this position is needed as temp for further
operations we exchange st(0) with st(1) with the fxch instruction.

We could of course have changed the position of line 1 and 2 and obtained the same effect.

All the lines multiplying

FATHG I —AT R — IR PEHN X

T X fEART st(0), XM E 7 BAE A ILAbERAE RN A7 &, Fr AT fxeh $54 40 #t
st(0), st(1).

BATLR AT DUERL SRS 1, 2 AT B R 3RAS R IR 8R

JITAT () 2128

st(0) with X st(0) 7 X

fmul qword ptr [esp+$28]

are changed to {4

fmul  st(0),st(1)

after the FP copy of X has been used for the last time we remove it with the instruction ffree.

This function implementation scores the benchmark 46882 and performance is decreased by 1 %.-
This was a surprise. Fxch is claimed by Intel to be nearly free, because it works by renaming the
internal registers.

Let us check that by removing it

fEf i — I SE X AE FP L2 )m, H free fRMHIERE .
XA R B HEHENNA > o2 46882, TEREDT 1 ADMHIF A

A NBF . Fxch Z4E Intel EJLPAFEIRIN ], DB E IR b 4 W2 A7 a o

o

function ArcSinApproxl1i(X, A, B, C, D : Double) : Double;
asm

/IResult := A*X*X*X + B*X*X + C*X + D;

fld  qword ptr [esp+$28]

fld  qword ptr [esp+$20]

/ifld  qword ptr [esp+$28]

[Ifxch

fmul  st(0),st(1)

fmul  st(0),st(1)

fmul  st(0),st(1)

fld  gword ptr [esp+$18]

fmul  st(0),st(2)

fmul  st(0),st(2)

faddp

fld  qword ptr [esp+$10]

fmul  st(0),st(2)

ffree st(2)

faddp

fadd qword ptr [esp+$08]
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wait
end;

This function implementation scores the benchmark 45393 and performance is decreased by 3 %.
Fxch is surely not to blame because performance once more went down. What is going on?
The wait instruction was discussed in an earlier lesson and this time we just remove it.

XA R S HE A Sy H0& 45393, PEAEIRAD T 3 ANE AL
FLINARE D% Fxch, PERETT —IRAE FB%.

ERRTA A

Wait 5 & AERTTI AR T T, X —IREATRE R

function ArcSinApprox1j(X, A, B, C, D : Double) : Double;
asm
//Result ;= A*X*X*X + B*X*X + C*X + D;
fld  qword ptr [esp+$28]
fld  qword ptr [esp+$20]
fmul  st(0),st(1)
fmul  st(0),st(1)
fmul  st(0),st(1)
fld  qword ptr [esp+$18]
fmul  st(0),st(2)
fmul  st(0),st(2)
faddp
fld  qword ptr [esp+$10]
fmul  st(0),st(2)
ffree st(2)
faddp
fadd gword ptr [esp+$08]
[Iwait
end;
Performance went down to 44140.
Let us crosscheck these surprising results by running the functions on a P3.
PERE R 3] 44140,
BATE—A P3 L M e 4 N A I 45 51 .

ArcSinApproxla 63613
ArcSinApproxlb 64412
ArcSinApproxlc 64433
ArcSinApproxld 65062
ArcSinApproxle 64830
ArcSinApprox1f 62598
ArcSinApproxlg 79586
ArcSinApproxlh 85361
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ArcSinApproxli 80515

ArcSinApprox1lj 80192

First of all we see that ArcSinApprox1h is the fastest function on P3.

Thereby it is seen that loading data from the level 1 data cache is more expensive on P3 than on
P4,because changing the code such that X is loaded only once improved performance on P3 and
not on P4.

On the other hand we could also say that it must always be slower to get data from the cache than
from internal registers if the architecture is sound and this is only true for the P6 architecture here.
P4 has a fast L1 data cache, which can be read in only 2 clock cycles, but an internal register

read should have a latency of only one cycle. It however looks like reads from registers are 2
clock cycles.

Then we see that a P3 at 1400 nearly 80 % faster than a P4 at 1920 on this code. We know that
latencies on P3 are shorter, but this is not enough to explain the huge difference.

HSEIMIE B P I ArcSinApproxlh & & bRIK .

Flek, M—ZHdn cache el P3 Lk P4 B2 5t, I HIEAN X —RIMRASTE P3
bErreisEntERE, £ P4 EANHES

F—J71, FATATLLEZIM cache haRA U L NN FF FE e i ig, ik R 2 5¢
By, XA P6 LA

P4 A — /NP — i E0 i cache, T2 G 2 ANIBHEIH, (HE2pN 3R E A8 WA — AN
WP AR AR T, E BRI AFAT R T 2 ANEeh s ATE B AMRES, 76 P3 1400
Ik P41920 LR T L 80%.

BAVENESE P3P AR A1), AR REMERE A AT A S IX A K20

The latencies and throughput of the used instructions are on P3
XLEIRSAE P3 LRI AR IR A A

Fadd latency is 3 clock cycles and throughput is 1

Fmul latency is 5 clock cycles and throughput is 1

Fadd &R 3 ANEHEPEIY, Frrbiai 1

Fmul RS 5 AR, frrksEie 1

OnP4 7t P4 I+

Fadd RIS 5 ANEPRH, &2 1

Fmul #ARBE 7 ANETEPEE, HrksE2 2

I could not find numbers for fld The explanation for the very bad performance of P4 on this code
must be the 2-cycle throughput on fmul together with the slow FP register access.

The fmul pipeline only accepts a new instruction on every second cycle where the P3 pipeline
accepts one every cycle.

BEA R fid FEdE, XAMUESE P4 LHEREIR EMMR S, TeykRfigH FP 294725
W2 2 ANE AT,
fmul EELAE P4 RN IR AN RS, 7E P3 EIEL LA I 1.

Scaling the results by clock frequency
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P SEER T
47939 /1920 = 25
85361 / 1400 = 61

reveals that clock by clock on the fastest function version for each processor P3 is nearly 2.5 times
faster than P4.This is truly astonishing. If P4 should have a slight chance against a P3 we must
remove some of those multiplications.

This leads us to the Horner version of our function.

XU T, fE P3 ACBRSS FECIRICRREURALL P4 P 2.5 fiF.
XEREAS ANEF . WRAE P4 LM — S Ay, AT RS B AR syl A o
AE, BENIRANIKHES A

function ArcSinApprox3a(X, A, B, C, D : Double) : Double;
begin
Result := ((A*X + B)*X + C)*X + D;
end;
Which is compiled into  # 4 1 %,
function ArcSinApprox3b(X, A, B, C, D : Double) : Double;
begin
{
push ebp
mov ebp,esp
add esp,-$08
}
Result := ((A*X + B)*X + C)*X + D;
{
fld qword ptr [ebp+$20]
fmul qword ptr [ebp+$28]
fadd qword ptr [ebp+$18]
fmul qword ptr [ebp+$28]
fadd qword ptr [ebp+$10]
fmul qword ptr [ebp+$28]
fadd qword ptr [ebp+$08]
fstp qword ptr [ebp-$08]
wait
fld qword ptr [ebp-$08]
}
{
pop ecx
pop ecx
pop ebp

end;
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The first three versions of this function are identical and they surprisingly score the same
benchmark.Our benchmark is not perfect but it was precise this time ;-)

BT AN RO () B B BRI A R, 34 AT o

FA T FEAENRA TS, (H LAt ] LURS A I T7) -

ArcSinApprox3a 45076
ArcSinApprox3b 45076
ArcSinApprox3c 45076

Optimization follows the same pattern as on the first function.
Here is the first BASM version with no optimizations.
The out commented the compiler supplies code.

B — e B FEAL L E
KEBAMARE D BASM JRAS, TR 1 e /L AR

function ArcSinApprox3c(X, A, B, C, D : Double) : Double;
asm

/Ipush ebp

/Imov ebp,esp

add esp,-$08

/IResult := (A*X + B)*X + C)*X + D;

fld gword ptr [ebp+$20]

fmul qword ptr [ebp+$28]

fadd qword ptr [ebp+$18]

fmul qword ptr [ebp+$28]

fadd qword ptr [ebp+$10]

fmul qword ptr [ebp+$28]

fadd qword ptr [ebp+$08]

fstp qword ptr [ebp-$08]

wait

fld qword ptr [ebp-$08]

pop ecx

pop ecx

/Ipop ebp
end;
First thing is to remove the add esp, -$08 line and the two pop ecx.
They are setting up a stack frame and do nothing but manipulate the stack pointer, which is not
used at all.

T 5EFR add esp, -$08 FIFAT pop ecx.
AT E AN HERR, B T A E AR SR A A AT, B AR A A

-120 -



Dennis Christensen, BASM for Beginners (BASM #J2%# A1)

function ArcSinApprox3d(X, A, B, C, D : Double) : Double;
asm

/ladd  esp,-$08

/IResult := ((A*X + B)*X + C)*X + D;

fld qgword ptr [ebp+$20]

fmul qword ptr [ebp+$28]

fadd qword ptr [ebp+$18]

fmul qword ptr [ebp+$28]

fadd qword ptr [ebp+$10]

fmul qword ptr [ebp+$28]

fadd qword ptr [ebp+$08]

fstp qword ptr [ebp-$08]

wait

fld qgword ptr [ebp-$08]

/lpop ecx

/lpop ecx
end;
This function implementation scores the benchmark 43535.
Both of the redundant lines copying the result to stack and back are removed at the same time.

XA R S HE A7 B2 43535.
OB 52 2SS, P MHE R S A ) 0 A A X

function ArcSinApprox3e(X, A, B, C, D : Double) : Double;
asm

/[Result := ((A*X + B)*X + C)*X + D;

fld gword ptr [ebp+$20]

fmul qword ptr [ebp+$28]

fadd qword ptr [ebp+$18]

fmul qword ptr [ebp+$28]

fadd qword ptr [ebp+$10]

fmul qword ptr [ebp+$28]

fadd qword ptr [ebp+$08]

Ilfstp qword ptr [ebp-$08]

wait

/ifld  qword ptr [ebp-$08]
end;
This function implementation scores the benchmark 47237 and the improvement is 8.5 %
Then we change the code such that X is loaded only once.

XA PR B FEMEMAPERE & 47237, 75T 8.5%.
RIG, BRAME SR A B — )k X A,

function ArcSinApprox3f(X, A, B, C, D : Double) : Double;
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asm

/IResult := ((A*X + B)*X + C)*X + D;

fld  qword ptr [ebp+$20]

fld  qword ptr [ebp+$28]

fxch

/lfmul qword ptr [ebp+$28]

fmul  st(0),st(1)

fadd qword ptr [ebp+$18]

[lfmul qword ptr [ebp+$28]

fmul  st(0),st(1)

fadd qword ptr [ebp+$10]

/lfmul qword ptr [ebp+$28]

fmul  st(0),st(1)

ffree st(1)

fadd qword ptr [ebp+$08]

wait
end;
This function implementation scores the benchmark 47226 and performance is unchanged.
The ffree instruction can be removed by using fmulp instead of fmul, but to do this we must
interchange the two registers used. Only these two registers are in use and A*B = B*A so there is
no problem doing that.
We are not removing any redundancy by this and the two ways of coding the same thing should
perform identically.

XA R EUSEAHENA > Bt 47226, PEREBAT AL

HY fmulp $5ACF fmul )5, firee nTLAMIER, AEH]"E 2 Ja A Z007E P SEAZ e H 2K P A 25
1785 XPAZFAER HHRIAT A*B = B*A,  [RILASH.2 Jio b) 45 BB AT AT 500

REEXF LA RER BRALATICAY, X PR G 7 10T AR R 38

function ArcSinApprox3g(X, A, B, C, D : Double) : Double;
asm

/IResult := (A*X + B)*X + C)*X + D;

fld  qword ptr [ebp+$20]

fld  qword ptr [ebp+$28]

fxch  st(1)

fmul  st(0),st(1)

fadd qword ptr [ebp+$18]

fmul  st(0),st(1)

fadd qword ptr [ebp+$10]

[ffmul  st(0),st(1)

fmulp st(1),st(0)

[[ffree st(1)

fadd qword ptr [ebp+$08]

wait
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end;
This function implementation scores the benchmark 47416.
Then we remove the wait instruction.

XA PR B SEMENNR 2> 20E 47416,
FATEEE wait 154 .

function ArcSinApprox3h(X, A, B, C, D : Double) : Double;
asm

/IResult := ((A*X + B)*X + C)*X + D;

fld  qword ptr [ebp+$20]

fld  qword ptr [ebp+$28]

fxch st(1)

fmul  st(0),st(1)

fadd qword ptr [ebp+$18]

fmul  st(0),st(1)

fadd qword ptr [ebp+$10]

fmulp st(1),st(0)

fadd qword ptr [ebp+$08]

Iwait
end;
This function implementation scores the benchmark 47059.
The last thing to do is interchanging the lines that load X and A, and remove the fxch instruction.
A R H EEHEN > B 47059,
BeJa— A load X A1 A, fHER fxch $54.

function ArcSinApprox3i(X, A, B, C, D : Double) : Double;
asm
/[Result := ((A*X + B)*X + C)*X + D;
fld  qword ptr [ebp+$28]
fld  qword ptr [ebp+$20]
/ffld  qword ptr [ebp+$28]
/lfxch  st(1)
fmul  st(0),st(1)
fadd qword ptr [ebp+$18]
fmul  st(0),st(1)
fadd qword ptr [ebp+$10]
fmulp st(1),st(0)
fadd qword ptr [ebp+$08]
end;
This function implementation scores the benchmark 46544 and performance went down!
Let us compare the performance of the Horner style function with the naive one by picking the
fastest implementations of both on P4.
XA IR UEN A HOL 46544, PERETEE T .
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FAE P4 L HUBHE 5 27 1 ek BRI AT S R ) BRI 2
ArcSinApproxlg 47939
ArcSinApprox3g 47416

OnP3 7t P3 kL

ArcSinApproxlh 85361

ArcSinApprox3h 87604

There difference is not big, but the naive approach is a little faster on P4 and slower on P3.

The naive approach has more calculations, but parallelism makes up for it. The Horner way has
very little parallelism and latencies are fully exposed.

This is especially bad on P4.

Having this in mind we continue to the third possible approach, which looks like this.

PRI, ERE A HAE P4 LR, fE P3 L1&.
Jsn Bt 52, (HRROIHT AT

WS R EBULFAFATIAT, B RIIER P .

£ P4 ERFRIIZ

FAVEF AT =P BEMI B 1S, BIXHE

function ArcSinApprox4b(X, A, B, C, D : Double) : Double;
begin
{
push ebp
mov  ebp,esp
add  esp,-$08
}
Result ;= (A*X + B)*(X*X)+(C*X + D);
{
fid qword ptr [ebp+$20]
fmul qword ptr [ebp+$28]
fadd qword ptr [ebp+$18]
fid qword ptr [ebp+$28]
fmul qword ptr [ebp+$28]
fmulp st(1)
fid gword ptr [ebp+$10]
fmul qword ptr [ebp+$28]
fadd  qword ptr [ebp+$08]

faddp st(1)
fstp  qword ptr [ebp-$08]
wait
fld  gword ptr [ebp-$08]
}

{

pop ecx
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pop ecx

pop ebp

}

end;

Experienced as we are now optimizing this function is going to be easy and fast ;-)
This version is as Delphi made it

AR BA TR R R £

iZIEé Delphi E@ﬁ}izlg

function ArcSinApprox4c(X, A, B, C, D : Double) : Double;
asm

/Ipush ebp

/Imov ebp,esp

add  esp,-$08

/IResult := (A*X + B)*(X*X)+(C*X + D);

fid gword ptr [ebp+$20]

fmul gword ptr [ebp+$28]

fadd qword ptr [ebp+$18]

fid qword ptr [ebp+$28]

fmul gword ptr [ebp+$28]

fmulp //st(1)

fid gword ptr [ebp+$10]

fmul gword ptr [ebp+$28]

fadd qword ptr [ebp+$08]

faddp //st(1)
fstp  qword ptr [ebp-$08]
wait
fld  qword ptr [ebp-$08]
pop  ecx
pop  ecx

/lpop ebp

end;

Removing the stack frame and the two lines that store the result in the stack frame

IR 5 E RS AT G ¥4 G

function ArcSinApprox4d(X, A, B, C, D : Double) : Double;
asm

/ladd esp,-$08

JIResult := (A*X + B)*(X*X)+(C*X + D);

fld qword ptr [ebp+$20]

fmul gqword ptr [ebp+$28]

fadd qword ptr [ebp+$18]

fld qword ptr [ebp+$28]

fmul gword ptr [ebp+$28]
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fmulp //st(1)
fld qword ptr [ebp+$10]
fmul gword ptr [ebp+$28]
fadd qword ptr [ebp+$08]
faddp //st(1)
[fstp qword ptr [ebp-$08]
wait
/Ifld  gqword ptr [ebp-$08]
/lpop ecx
/lpop ecx

end;

Load X once

AR X

function ArcSinApprox4e(X, A, B, C, D : Double) : Double;

asm
/IResult := (A*X + B)*(X*X)+(C*X + D);
fld  qword ptr [ebp+$20]
fld  qword ptr [ebp+$28]
/lfmul qword ptr [ebp+$28]
fxch
fmul  st(0),st(1)
fadd qword ptr [ebp+$18]
/Ifld  qword ptr [ebp+$28]
fid  st(1)
/lfmul  qword ptr [ebp+$28]
fmul  st(0),st(2)
fmulp
fld  qword ptr [ebp+$10]
/ffmul  qword ptr [ebp+$28]
fmul  st(0),st(2)
fadd qword ptr [ebp+$08]
faddp
ffree st(1)
wait

end;

Remove fxch and wait.

BB fxch Al wait

function ArcSinApprox4f(X, A, B, C, D : Double) : Double;
asm

/IResult := (A*X + B)*(X*X)+(C*X + D);

fld  qword ptr [ebp+$28]

fld  qword ptr [ebp+$20]

- 126 -



Dennis Christensen, BASM for Beginners (BASM #J2%# A1)

/fxch
fmul  st(0),st(1)
fadd qword ptr [ebp+$18]
fid  st(1)
fmul  st(0),st(2)
fmulp
fld  qword ptr [ebp+$10]
fmul  st(0),st(2)
fadd qword ptr [ebp+$08]
faddp
ffree st(1)
Iwait
end;
Reschedule ffree st(1)
FiF 4 ffree string(1)

function ArcSinApprox4g(X, A, B, C, D : Double) : Double;
asm
/IResult := (A*X + B)*(X*X)+(C*X + D);
fld  qword ptr [ebp+$28]
fld  qword ptr [ebp+$20]
fmul  st(0),st(1)
fadd qword ptr [ebp+$18]
fid  st(1)
fmul  st(0),st(2)
fmulp
fld  qword ptr [ebp+$10]
fmul  st(0),st(2)
ffree st(2)
fadd qword ptr [ebp+$08]
faddp
[Iffree st(1)
end;
Replace fmul/ffree by fmulp
H fmulp A% fmul/ffree
function ArcSinApprox4h(X, A, B, C, D : Double) : Double;
asm
/IResult := (A*X + B)*(X*X)+(C*X + D);
fld  qword ptr [ebp+$28]
fld  qword ptr [ebp+$20]
fmul  st(0),st(1)
fadd qword ptr [ebp+$18]
fld  st(1)
fmul  st(0),st(2)
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fmulp

fld  qword ptr [ebp+$10]

/ffmul  st(0),st(2)

fmulp st(2),st(0)

[[ffree st(2)

fadd qword ptr [ebp+$08]

faddp
end;
Cleaning up and observing that the compiler still backs up ebp and modifies esp redundantly.
I HiE BB v sk 2 RI&4r ebp B esp.

function ArcSinApprox4i(X, A, B, C, D : Double) : Double;
asm
/IResult := (A*X + B)*(X*X)+(C*X + D);
fld  qword ptr [ebp+$28]
fld  qword ptr [ebp+$20]
fmul  st(0),st(1)
fadd qword ptr [ebp+$18]
fld  st(1)
fmul  st(0),st(2)
fmulp
fld  qword ptr [ebp+$10]
fmulp st(2),st(0)
fadd qword ptr [ebp+$08]
faddp
end;
The big question is now how well this function version performs.

PUAE B R TR I SR 2 A T I 28 bR

ArcSinApproxd4a 45228
ArcSinApprox4b 45239
ArcSinApprox4c 45228
ArcSinApprox4d 51813
ArcSinApproxde 49044
ArcSinApprox4f 48674
ArcSinApprox4g 48852
ArcSinApprox4dh 44914
ArcSinApprox4i 44914
We see that “optimizations” from function d to i are “deoptimizations” on P4 except for g.

WATERN d 20, BrT g ZAME P4 B2 “HRL” 1.
OnP3 7t P3 L

ArcSinApproxd4a 68871
ArcSinApprox4db 68871
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ArcSinApprox4c 68634

ArcSinApprox4d 86806

ArcSinApproxde 85727

ArcSinApprox4f 83542

ArcSinApprox4g 80548

ArcSinApprox4h 88378

ArcSinApprox4i 85324

We see that optimizations d and h are very good and optimizations e, f g and | are bad.

It is quite possible that the optimal function implementation is none of the ones we have made.
We could pick version h and remove the bad optimizations or simply make some more variants
and this way get a faster implementation.

FATVERWALR d A h SZARRRILE, AR efig AT 1 BORIRZE .

IRA AT REFAT C AT 1) R B B et ) R

BATSAL—FheA h, MERZRDAG, e A fs, 2338 AR AT .

Which function approach is the winner? To find out we pick the fastest implementation of each
approach On P4

WA R HA A S ) g 2

WAV MAE P4 EPAT S BRI R £

ArcSinApprox1f 47939

ArcSinApprox3g 47416

ArcSinApprox4d 51813

The last version is the fastest.

Parallelisation is very important on a modern processor and version 4 beats the others by 9 %.

I Ji IR RRCA Bt o
AT PAE B LSS EARS 2, FROA 4 LEIABRRCA R 9%.

OnP3 7t P3 L

ArcSinApproxlh 85361

ArcSinApprox3h 87604

ArcSinApprox4h 88378

The function version 4 is a winner on P3 as well, but with a less margin.

The P4 has an SSE2 instruction set, which contains instructions for double precision floating-point
calculations.

The main idea with this instruction set is SIMD calculations.

A 4 45 P8 EABRER, H2 A It.
P4 47 SSE2 &R, CAE IR AR LI
KR T BT SIMD iF 5.

SIMD is an acronym for Single Instruction Multiple Data.
SIMD g4 2 %dE (Single Instruction Multiple Data) 455 .
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Multiple data is here two FP double precision variables (64 bit) and two sets of these data can be
added, subtracted, multiplied or divided with one instruction.

SSE2 also have some instructions for scalar calculations, which are calculations on

one pair of data just like ordinary FP math in the FPU.

ZHARATX ER TR FP T RO A (64 £7), WA IXRE R ECE T DU — 45 48 2ok
rns s s Bi. SSE2 tATHREMBCR A, ENTRATLEAE FPU kAT Hl A
BAT A, T .

The biggest difference between ordinary FP math and SSE2 scalar math is that FP math is
performed on extended precision and results are rounded to double precision when copied to
double precision variables in RAM/cache.

SSE2 math is double precision calculation and double precision registers.

WIE FP HARF SSE2 P HARMHE KA, FP HAMHY IR EHAT, 4H
RAM/cache & iIZIX0RS ARSI, 25 R ALp
PR RURSE . SSE2 B A & XK FE 550 R0 XUKS i 27 A7 %

The code examples of this lesson have relatively few calculations and precision on the FPU will
be double. If we load data, perform all calculations and store the result, the result will only bee a
little less than extended precision when still on the FPU stack, and will be rounded to exact double
precision when copied to a memory location.

XA 1, AR FPU SRR EEATOS, AT LA R T XURE
U AR , AT TS, AEfifai R, WZE R e FPU HERR EId RS 22— s
R BIBIAI AT, R Rl IR XS JE

SSE2 calculations on the other hand are a little less than double precision and the result

in a register is a little less than double precision too. If there is only one calculation the result will
be in double precision, but when performing additional calculations the error from each will sum
up. Because the FPU does all calculations in extended precision and can hold temporary results in
registers,there can be done many calculations before precision declines below double.

We have seen that the drawback of SSE2 is that precision is double or less versus the double
precision of IA32 FP.

SSE2 THHEAE T — TR LU RURT FE 22, Sl 76 23 A7 a4 b 45 SR AR LU XORS R 22 .

W R A — AN S RN HSORE B, AR UPAT BB, K= 2R R

K2 FPU H4 RE MRS BEEAT B A BB, o] LRI IRE 45 RAE N B A7, 7E00RE FETHER DAY
LCCIIDN A =

FAEF 2] SSE2 ik RN EEZXUE ), /T 1A32 FP [RXURS L .

What is the advantage? There are two advantages. Registers are not ordered as a stack, which
makes it easier to arrange code and secondly calculations

-130 -



Dennis Christensen, BASM for Beginners (BASM #J2%# A1)

in double precision are faster than calculations in extended precision.

SSE2 MR si2ATAame? EAH AL AL

P AF AR B MR, AT LA 7 R 22 HEACRS, 58—, HIXORS FE R v S BT R RS 2
{07 2R RN

We must expect scalar SSE2 instructions to have shorter latencies than their I1A32 FP counterparts.
FAIWAE K SSE2 FRA K IRIIMLLL 1A32 FP LS FIFi3- AT 4.

Fadd latency is 5
Fsub latency is 5
Fmul latency is 7
Fdiv latency is 38

Addsd latency is 4
Subsd latency is 4

Mulsd Divsd latency is 35

Fadd [ fkIE 5
Fsub ¥ RIME 5
Fmul R 7
Fdiv (13RI 2& 38

Addsd RIS 4
Subsd ¥R 4

Mulsd Divsd [F¥#EAR B 35.

The P4 optimizations reference manual has no latency and throughput information for the Mulsd
instruction!
We see that latencies are one cycle less for scalar SSE2 in general, but 3 cycles less for division.

1 P4 IS5 T BcAT Mulsd 54 FOWE AR ANt 45 5L

Throughput is itk & &
Fadd throughput is 1
Fsub throughput is 1
Fmul throughput is 2
Fdiv throughput is 38

Addsd throughput is 2
Subsd throughput is 2
Mulsd

Divsd latency is 35
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Fadd H#mt i 1
Fsub [FJ4Fmt & 1
Fmul et &2 2
Fdiv [f#nt &2 38

Addsd [FI#FEE R 2
Subsd [T EZE 2

Mulsd Divsd #5552 35,

We see that throughput for addsd and subsd surprisingly are the double of fadd and fsub.

All that think SSE2 has dedicated hardware and that SIMD is calculation on two sets of data in
parallel raise your hands!

BAIRANES] addsd A1 subsd &L fadd FI fsub [HIPIfES

From the manual “Optimizations for Intel P4 and Intel Xeon” latency and throughput tables at
page C-1 it is seen that all SSE2 FP instructions are executed in the same pipelines as old time FP
instructions.

This eans that an SIMD addition as example is generating two microinstructions that execute in
the F_ADD pipeline. At clock cycle one the first one enters the pipeline, at the second cycle
number 2 enters the pipeline.

7t "Intel P4 F1 Intel Xeon A" T C-1 TURWEARIIFIA S, wT LR 2IFTT 1
SSE2 FP {54 #lE AT AEAH A1)

BB, SUBRLITK FP 4RS—FF.

Xs SIMD IEMUEY] 7K #E4E F_ADD L4 T AR 2.

B MNEAEE AP RN T IS, B MR A AN B

Because latency is 4 cycles the first one leaves the pipeline at clock cycle 3 and the second one
leaves at cycle four. This leads us to expect that a scalar SSE2 add should generate one
microinstruction of the same type and have a latency of 3 cycles and a throughput of 1.

DU RIS 4 AN, 20— MRS AR BRI 3 BT L 28 e 2 SITEIE
2o XA FATB IR r g SSE2 WA ™ A — MRS R IR 2 A 3 A v R IGIAN
1 MR,

From the tables it is seen that the SIMD version of add, addpd, has the same latency and
throughput as the scalar version, addsd. Either there is an error in the tables or the scalar
instruction also generates two microinstructions of which one is “blind”, that is have no effect.

ML HTLLFE S| SIMD [RAT add, addpd 13 2% hAS O RRCASAT AH 7] (075 AR SUT R e ek 6
HREAER TR IR BE PR TR EE & R AN R BRI

-132 -



Dennis Christensen, BASM for Beginners (BASM #J2%# A1)

Come on Intel!
To verify the numbers from the table we create some dedicated code and time the instructions.

Intel v o
K TR R R EE, FRATEN e T AR D S HE A I TR

procedure TMainForm.BenchmarkADDSDLatency;
var
RunNo, ClockFrequency : Cardinal,
StartTime, EndTime, RunTime : TDateTime;
NoOfClocksPerRun, RunTimeSec : Double;
const
ONE : Double = 1;
NOOFINSTRUCTIONS : Cardinal = 895;

begin
ADDSDThroughputEdit. Text := 'Running’;
ADDSDThroughputEdit.Color := cIBlue;
Update;
StartTime := Time;
for RunNo := 1 to MAXNOOFRUNS do
begin
asm
movsd xmm0, ONE
movsd xmm1, xmmQO
movsd xmm2, xmmQO
movsd xmm3, xmmQO
movsd xmm4, xmmO
movsd xmm5, xmmQO
movsd xmme6, xmmQO
movsd xmm?7, xmmQO

addsd xmmQ, xmm1
addsd xmmQ, xmm1
addsd xmmO, xmm1
addsd xmmO, xmm1
addsd xmmO, xmm1
addsd xmmO, xmm1
addsd xmmO, xmm1

//Repeat the addsd block of code such that there are 128 blocks

Il E5 addsd ARALER, GUXFESA 128 /I8 A
end;
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end;

EndTime := Time;

RunTime := EndTime - StartTime;

RunTimeSec := (24 * 60 *60 * RunTime);

ClockFrequency := StrTolnt(ClockFrequencyEdit. Text);

NoOfClocksPerRun := (RunTimeSec / MaxNoOfRuns) * ClockFrequency * 1000000 /
NOOFINSTRUCTIONS;

ADDSDThroughputEdit. Text := FloatToStrF(NoOfClocksPerRun, ffFixed, 9, 1);

ADDSDThroughputEdit.Color := clLime;

Update;
end;
The addsd instructions all operate on the same two registers and therefore they cannot execute in
parallel. The second instruction has to wait for the first to finish and the full latency of the
instruction is exposed.

addsd $52#AEPIDHIFEKI ST/ as, DUEAREIFTIRS .
B ANTROAIAER MR IVETHR, R IR IHORE B 55

For measuring throughput insert this block 128 times
H TR, A 12 AR E T

addsd xmm1, xmmO

addsd xmm2, xmmO

addsd xmm3, xmmO

addsd xmm4, xmmO0

addsd xmm5, xmmO

addsd xmm6, xmmO

addsd xmm7, xmmO

Here there are no data decencies between instructions and they can execute in parallel.
XmmoO is used as source in every line but this does not create a data dependency.
Results from run of the code show us that latency is 4 cycles and throughput is 2 cycles.
This is in consistency with the table numbers.

Let us code the three functions in scalar SSE2 and perform some benchmarks.

KPR L BATEEMEE, R EA T DO

XmmO FERE— AT AR IRAE L, (R B 7 R A R

FRRS e T AR S URBATT, R RIS 4 M, Ankid 2 AN
KGR AU

FATH 28 SSE2 459 K HIX =A%, AT [ R B HE DKo

The 8 SSE2 registers are called xmm0-xmm7 and Delphi has no register view for them.

So we must create our own, by creating a global (or local) variable for each register,
put a watch on them and add code in the function to copy register contents to variables.
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SSE2 [ 8 NEFf7esse xmmO-xmm7, Delphi & A7 KM LA,
R FRATT 20 A B A R (B Jai) AR sk WA — A7 as, K A7 2 N AFAENAR

=)

Ho

It is somewhat cumbersome to do all this and | am looking forward to Borland creating an xmm
register view.

This code shows how | do it.

XM — sk, FeIVIFF Borland AEE—AS xmm 5788 % M.

var
XMMOreg, XMM1reg, XMM2reg, XMM3reg, XMMd4reg : Double;

function ArcSinApprox3i(X, A, B, C, D : Double) : Double;
asm
/IResult := ((A*X + B)*X + C)*X + D;

fld  qword ptr [ebp+$20]
movsd xmmO0,qword ptr [ebp+$20]

movsd XMM0Oreg,xmmO
movsd XMMZ1reg,xmm1
movsd XMM2reg,xmm2
movsd XMM3reg,xmm3

fid gword ptr [ebp+$28]
movsd xmm1,qword ptr [ebp+$28]

movsd XMM0Oreg,xmmO
movsd XMMZ1reg,xmm1l
movsd XMM2reg,xmm2
movsd XMM3reg,xmm3

fxch st(1)
fmul st(0),st(1)
mulsd xmmO0,xmm1

movsd XMM0Oreg,xmmO
movsd XMM1reg,xmm1l
movsd XMM2reg,xmm2
movsd XMM3reg,xmm3

fadd  qword ptr [ebp+$18]
addsd xmmO,qword ptr [ebp+$18]
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movsd XMMOreg,xmmO
movsd XMMZ1reg,xmm1l
movsd XMM2reg,xmm2
movsd XMM3reg,xmm3

fmul st(0),st(1)
mulsd xmmO,xmm1

movsd XMM0Oreg,xmmO
movsd XMMZ1reg,xmm1
movsd XMM2reg,xmm2
movsd XMM3reg,xmm3

fadd gword ptr [ebp+3$10]
addsd xmmO,qword ptr [ebp+$10]

movsd XMM0Oreg,xmmO
movsd XMMZ1reg,xmm1
movsd XMM2reg,xmm2
movsd XMM3reg,xmm3

fmulp st(1),st(0)
mulsd xmmO0,xmm1

movsd XMM0Oreg,xmmO
movsd XMMZ1reg,xmm1l
movsd XMM2reg,xmm2
movsd XMM3reg,xmm3

fadd qword ptr [ebp+$08]
addsd xmmO,qword ptr [ebp+$08]

movsd XMM0Oreg,xmmO
movsd XMM1reg,xmm1
movsd XMM2reg,xmm2
movsd XMM3reg,xmm3

movsd [esp-8],xmm0

fld gword ptr [esp-8]

movsd XMM0Oreg,xmmO
movsd XMMZ1reg,xmm1l
movsd XMM2reg,xmm2
movsd XMM3reg,xmm3
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wait

end;
The code is not using xmm4-xmm7 and there was no need to create a register view for them.
There is added xmm view code after each line of SSE2 code. All lines but the last two are the FP
code with the SSE2 code added such that every operation is done in FP as well as in SSE2. This
way it is possible to trace through the code and control that the SSE2 version is doing the same as
the classic version.

RGAEAEH] xmma-xmm7, Pl ANT 20 S AT B 25 17 a8 B .

B—47 SSE2 ARSI #A —A xmm AR~

B T EJa AT FP AUHLLSE, LA AT IK) SSE2 AUHGAE FP AN —HF.
AN V] DLERERAR IS A5 SSE2 MIRAC AR — N L1 SSE 2 Ak

Open the FPU view and see how the FP stack is updated and control that xmm registers are
updated in the same way. | developed the SSE2 code simply by adding an SSE2 instruction after
each line of FP code.

{177 FPU %1, & FP HERRINATER, JHRIRERIVELES] xmm 254745 10 55T
FERE—AT FP A2 )5, FATRESN 74 SSE2 154

fid qword ptr [ebp+$20]
movsd xmmO,qword ptr [ebp+$20]

movsd copy one double precision variable from the memory location at [ebp+$20] into an xmm
register. “qword ptr” is not needed but | kept it to emphasise the pattern between SSE2 code and
FP code. A big difference between FP code and scalar SSE2 code is that the FP registers are
organized as a stack and SSE2 registers are not.

movsd MHATE [ebp+20] Ab&Hil—NXUKS B4R & 2] —A xmm A 4785
“qword ptr* AT, [HR IR TN T SSE2 A FP AU AR,
FP QAT SSE2 Ui KANIA I FP 2R - st 4l 2y — N HERL, SSE2 ZF /7 as AN .

At first while coding the SSE2 code 1 just ignored this and then after having made all the SSE2
lines | went back and traced through the lines one by one and corrected them to work on the
correct variable/register.

Mg SSE2 AN B 5 M IXAY AR5 25 D BRER, Al eI IER I TARAE AR Rl
A

Activate the function with some variable values that are easy to follow in the two views

(e.g. X=2, A=3, B=4, C=5, D=6), and see that first “2” is loaded, then “3”, then 2 is multiplied by
“3” and “2” is overwritten by “6” etc.

BRI — oA S AR Ty PRI 7 OS2 (B n: X=2, A=3, C=5, D=6), 5t 2 BN, K5 2
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B 3 3k, JFH 2 # 6 S, 44,
The scalar SSE2 counterpart for fmul is mulsd. The sd prefix means Scalar — Double.
34% SSE2 1 fmul FIASE mulsd. sd RIZRERNTH - M.

fxch st(1)
fmul  st(0),st(1)
mulsd xmmO,xmm1

The SSE2 counterpart for fadd is addsd. SSE ) fadd A& addsd.

fadd qword ptr [ebp+$18]
addsd xmmO,qword ptr [ebp+$18]

Continue this way line by line. 4k%:—474T M 52

The FP code leaves the result in st(0), but the SSE2 code leaves the result in an xmm register.
Then the result has to be copied from xmm to st(0) via a memory location on the stack.

FP ARG L5 LB AE st(0), 1H/E SSE2 #RA45ULF/E—A xmm FFA735.
WG, ARG AAEHERCK G- xmm 425 st(0)

movsd [esp-8],xmm0
fld  qword ptr [esp-8]

These two lines do this.
X AT A S B AR

At esp-8, 8 bytes above the top of the stack, there is some place we can use as the temporary
location for the result. The first line copies xmmO to temp and then the last line loads temp on the
FP stack. These two lines are overhead that will make small SSE2 functions less effective than
their FP cousins.

1F esp-8 Ab, AT 8 AN, & FA A R I A7 &

XWAT 7 SSE2 RURELAKI) FP ik

After having double-checked the SSE2 code we can remove the instrumentation code as well as
the old FP code,leaving a nice scalar SSE2 function with only a little extra overhead.

EAFats ey SSE2 M Jm, FRATFMIER FP 4SS, ) it & — T g0 SSE2 iR
B, A RN

function ArcSinApprox3j(X, A, B, C, D : Double) : Double;
asm

/IResult := ((A*X + B)*X + C)*X + D;

movsd xmmO,qword ptr [ebp+$20]

movsd xmm1,qword ptr [ebp+$28]
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mulsd xmmO0,xmm1
addsd xmmO,qword ptr [ebp+$18]
mulsd xmmO0,xmm1
addsd xmmO,qword ptr [ebp+$10]
mulsd xmmO,xmm1
addsd xmmO,qword ptr [ebp+$08]
movsd [esp-8],xmm0
fld  qword ptr [esp-8]

end;

It can be even nicer if we remove the not needed “qword ptr” text.
R AT 2L "gqword ptr* ST, BRECKE BE R

function ArcSinApprox3j(X, A, B, C, D : Double) : Double;
asm
/IResult := ((A*X + B)*X + C)*X + D;
movsd xmmO, [ebp+$20]
movsd xmm1, [ebp+$28]
mulsd xmmO0,xmm1
addsd xmmaO, [ebp+$18]
mulsd xmmO0,xmm1
addsd xmmaO, [ebp+$10]
mulsd xmmO,xmm1
addsd xmmaO, [ebp+$08]
movsd [esp-8],xmmO
fld  qword ptr [esp-8]
end;

Change the pointers with the parameter names

MZH 45 Hrkt

function ArcSinApprox3j(X, A, B, C, D : Double) : Double;
asm

/IResult := (A*X + B)*X + C)*X + D;

movsd xmmO0, A

movsd xmm1, X

mulsd xmmO0,xmm1

addsd xmma0O, B

mulsd xmmO,xmm1

addsd xmma0, C

mulsd xmmO0,xmm1

addsd xmmO, D

movsd [esp-8],xmm0

fld  qword ptr [esp-8]
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end;

Well how does this version perform?

The benchmark is 45882,

This version is somewhat slower than the FP version, which scored 48292.
We need to investigate what is the reason for this.

XA AR T BRAT R ey 2

FEUEDA > #t 45822

XA R ARG o FOE 48292 1) FP KA .
BAITF B FCEARI B A

Is it the overhead of the last two lines or is it due to the 2-cycle throughput of addsd and mulsd?
The overhead can be removed by transferring the result as an out parameter or we can inline the
function. It would be interesting for us to see how big an advantage it is to inline this relatively
small function. After all there is a good deal of overhead of copying 5 double precision parameters
each 8 byte big. Let us see how much code is actually needed for this.

R Ja AT 2 Ir) A & 1 T+ addsd AT mulsd 2 2 AN AR
I a2 A B A B ARAT TR DARS B overhead .

Fe R BN B R 2 A AR R I R AL

NI IR R 8 AT 5 XU LS HL.
BAVE B X 22 D

push dword ptr [ebp+$14]
push dword ptr [ebp+$10]
push dword ptr [ebp+$34]
push dword ptr [ebp+$30]
push dword ptr [ebp+$2c]
push dword ptr [ebp+$28]
push dword ptr [ebp+$24]
push dword ptr [ebp+$20]
push dword ptr [ebp+$1c]
push dword ptr [ebp+$18]
call dword ptr [ArcSinApproxFunction]
fstp qword ptr [ebp+$08]

No less than 10 push instructions each pushing a 4 byte half of each parameter onto the stack.
Imagine that the register calling convention took its name seriously and transferred the parameters
on the FP stack instead. Then we would have 5 fld, which would also remove the need to load
parameters from the stack in the function. That is — 5 fld in the function would be replaced by 5
fld at the call place of the function and 10 push instructions would go away. This would lead to a
dramatic increase in performance.

AbF 10 4> push 454, RERIEARENSEN 4 DRI, BORUHTXREI 3 A7 4 1
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e RACEE L FP MRS E SR EATEA 5 A fid, SKREER R NHEARREAN S
B rix 5 A fld JHAERERN 5 434, 10 4 push 54 AT LUK T .
XK S B e L R K .

Inlining the function would also remove the overhead of the call/ret pair

which is a lot less than the overhead of the mega push, and this would give as

a clue about the performance of the updated register2 calling convention ;-).

WIKERE A FE B call/ret TRAHINT, [RINFES T FRATT S8 25 A7 2% 1 FH 29 58 PR RE IR JE 7

Inlined ArcSinApprox3i 156006
Inlined ArcSinApprox3j 160000
The improvement is an astonishing 400 %.

WL ArcSinApprox3i 156006
WIER ArcSinApprox3j 160000
The improvement is an astonishing 400 %.

2 NI T 400%.

I truly wish Borland introduced a true register calling convention for floating point parameters in
the near future.The SSE2 version is only 3 % faster than the IA32 version. This could be more on
a decent SSE2 implementation.

FIELIA7EE Borland 7EK K0T LR S B EG |\ —Fh B4 4723 18 F AL ).
SSE2 A L 1A32 Pt 3%, XM HIFI7E SSE2 FHAT.

Lesson 7 has hereby come to an end.
You now know nearly all about floating point programming ;-)

BT XA T
PRELAEJLF-5H00E T kT BT I s Z ) G R o
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7\

B3k /4 Dennis Christensen [r] s ;

T =R E S, BT TSR N

BHIRAESCAl B AN AR, ACEABRE, AT W SGE & Email, 55
W CORRIZE A S 5RO

JEF www.cnpack.com T A A

PEF B KI3k: Dennis Kjaer Christensen ™8 41 57 fR94 27 A A A ;
JTAE# Dennis Christensen 1) JL/> % $%::

http://www.fastcode.dk/

http://www.fastcodeproject.org

http://dennishomepage.qugs-cats.dk/index.htm
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