ABBYY

ABBYY FineReader Engine 10

USER’S GUIDE

ABBYY FineReader Engine 10 User's Guide

Contents
Introducing ABBYY FineReader ENGine 10.........coeverirverirnerisnenssnesssnesssnessssessssessssessssesssness 4
Basic Usage Scenarios Overview 5
Key Features
Document SCanming And IMAZGE IMPOTEooeeveevrieieriririieeisritee sttt ettt 9
IINAGE PIOPTOCESSING. ..ottt 10
DOCUIMEIE ATIALYSIS ..ottt sttt 12
OCR and Other ReCOZNILION TOCHIIOIOZIEScvveeureeeirieisieisitsie sttt sttt 13
PDF COMUESION.......ovvvoeevereseses i essss s 16
Advanced DeveloPmMENt TOOISoc.cveuriisiisitsitset sttt 18
Receiving and EXPOTTING RECOGNIZOA TOXT.........cvvueureueurieeiriieirieisie sttt sttt 19
Multi-CPU ReCOGNIHION ATCDIIECTUTE ...ttt 20
Benefits 20
Short Specifications 20
Getting Started 21
GUIAEA TOUL.c.uciiuiiiriiiriiiiiieiniiniinientistesteste s sssesssessaessaessbessbesbesbessbesasesssesssessssssnees 22
Basic Usage Scenarios Implementation 22
DOCUMEIE COMVCTSION ...ttt ettt 22
DOCUIMEIE ATCDIVING ...ttt 27
BOOR AVCHIVING ..ottt 32
TOXE EXITACTION ...ttt sttt 37
Fiela-LOVCL ROCOGNIHON. ..ottt 41
BATCOAC RECOGNIIION. ...ttt 45
TINAGE PIODTOCESSITG. ...ttt ettt ten 49
SCOMIUNG ..ottt ettt 53
Advanced Techniques 57
PrOGIAMINING ASPECES ...ttt 58
E1POT HANGIRG ..ottt 59
WOVRING WD PrODCYTIS ...ttt ettt sttt 59
Working with CONNECIADIC ODJECESc.coveverveirieisiisiesceeet sttt 02
Working with COM Interfaces from a SCripting LANGUAZ............c.cvvereereenieniieireeineeneieneieineieneieneacisseisnnes 03
Using ABBYY FineReader ENGINe i1 DOIDD.............ocvevrinieieisiriiieesinieiessisteie sttt 04
WOTRING WD PEOMIIS. ... 05
Tuning Analysis, Recognition, and SYNIDESIS PAYGINEIETS.............c.cvverreuvirerireisirisreisiseisineieissisiseieieisseieseienne 660
TUNING EXDOTE PATATNCIETS ...ttt sttt 08
WOTRING WD TGOS ...ttt 70
WOTRING WD LANGUAZES ...ttt 71
WOorking with LAYOUE GIIA BIOCRSc.c.cvvieeeiiriniieisisiieesstees sttt 73
WOTRING WD TOXT ...ttt 75
Working with the Logical StrucCtiure Of @ DOCUMEIIEc.coveeneecrierieinieineieneeneieineensieneieinsie s 76
USITG VOHNIG APl sttt 79
USIng Text TYPE AULOGCIECHONc..vvvureeseiseeireiseististicie ettt ettt 82
RECOGNIZING CHOCRINATRS ...ttt ettt 82
Recognizing HAnAPYINIEA TOXIScvvuerieerieiriesies ettt sttt sttt 85
Recognizing HierOQIYPHIC LANGUAGES.............couiviviniiiiiiiisisiisisissie et 87

ABBYY FineReader Engine 10 User's Guide

ReCOGNIZING WD THAINING......c.covveevrieeirieisieisteees st 88
THAINING USET PAIICHNIS. ...ttt 90
Pattern Training DIGIOG BOXc.cvvvieieninisesisiestststis sttt sttt sttt 91
WOFRING With DICTIONATIES ...ttt 93
Working with ABBYY FineReader Engine ROGUIAT EXDYESSIONS.........ccvrvevuriverieirieiriieisieissieseieissieisseissasinsseisnnes 96
Recognizing WOrdS With SPACES...............cccviiiiiniiciisiiiiiiicisis it 97
SeIting UD SCANTUNG OPHONS.......ovcvvvriiieieiriririereiritee sttt 99
Best Practices 100
TIPS JOr DOCUTIERE SCATIUIG ...ttt 101

TIPS JOT TARING PDOTOS......ccoeeseeeisieisitis sttt 102
Improving RECOGNIHION QUAEY.........c.covveeieieinieirieineeneente ettt 104
Description of the ABBYY FineReader Engine Samples 105
APT REfCICIICE ..uvruerirrrrerreisesrsstssessestsesssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssssssssns 106
Alphabetical List of the ABBYY FineReader Engine 10 Objects and Interfaces 106
ABBYY FineReader Engine 10 Object Diagram 111
GetEngineObject Function 112
DeinitializeEngine function 113
Engine Object (IEngine Interface) 115
Image-Related Objects 164
Layout-Related Objects 210
Language-Related Objects 244
Text-Related Objects 279
Document-Related Objects 318
Document Organization Objects 320
Document Synthesis Objects 355
Document Supplementary Objects 433
Mechanism Objects 436
Parameter Objects 467
License-Related Objects 512
Supplementary Objects 517
Enumerations 544
Standard Return Codes 013
LICEISING 1eevveereererrerrenssensenssessenseessessasssessasssessessssssessasssessasssessesssessesssessessesssessesssessassassns 614
About ABBYY FineReader Engine 10 Activation 014
LICENSE MANAZEY ULIILY.....vvovvoviosvissiever e 016
LICONSE PAFAMCICES..........oveiiiciiiciiiciicis s 017
Working with the LicensingSettings.xml File 619
Installing the Hardware Key Drivers 620
ABBYY FineReader Engine 10 Modules 0622
Copyright and Trademark Notices 0625
The minimum terms of End User License Agreement (EULA) 027
Distribution of Applications Which Use the ABBYY FineReader Engine Library............ 630
Installing the ABBYY FineReader Engine Library 630
Installing the ABBYY FineReader Engine Library in Automatic Mode 031
Installing the ABBYY FineReader Engine Library in Manual Mode 032
Activating the ABBYY FineReader Engine Library with the Runtime License 033

ABBYY FineReader Engine 10 User's Guide

Installing the License Service 033
ABBYY FineReader Engine Distribution Kit 034
ABBYY FineReader Engine Distribution Kit: PDF 048
SPECATICALIONS 1..vverrerrreerrerrrernreenreeeeeseeseeseeseessessesssesssesssesssessesssesssesssssssesssesssessnsssnes 654
Supported Image Formats 054
Predefined Languages in ABBYY FineReader Engine 055
Text Types 060
Barcode Types 061
Export Formats 062
What's New in ABBYY FineReader Engine 10 0603
ABBYY FineReader Engine 10 and 9.0 compatibility 065
Version History 0681
System Requirements 083
Frequently ASKed QUESTIONSc.eevverrerreerrerreesrenseessessesssessesseessesseessessesssessesssessessasssessassns 685
CONLACE ABBYY ...uvivirinrinninnnnnnsnnnsnssnsssosssssssssssasssssossossassassossoss 688
How to Buy ABBYY FineReader Engine 10 0688
Technical Support 088

ABBYY FineReader Engine 10 Introduction

Introducing ABBYY FineReader Engine 10

Welcome to ABBYY FineReader Engine 10!

Accuracy and speed, power and simplicity — are you expecting all these qualities from OCR SDK; but they seem to be contradictive? No
more!

With new ABBYY FineReader Engine 10 you receive outstanding level of OCR quality and usability:

e Optimally balanced profiles with fine-tuned parameters for your particular tasks

e Worldwide recognized accuracy of technologies

e Amazingly improved speed

e Absolute world record — 198 recognition languages, including Chinese, Japanese, Korean and Arabic

e SDK Developer's Guide (Help), currently recognized for its unbeatable comprehensibility and usefulness, now becomes even
better with its improved appearance and revised content

ABBYY FineReader Engine 10 — powerful and convenient OCR technology. Just try and appreciate!

Key Features

e Extreme Recognition Speed

e Improved Recognition Accuracy

e Powerful and Simple API

e Unique Layout Reconstruction Abilities

e Improved PDF Export

e Unrivaled Document Image and Photo Processing

e TFlexible and Strong Protection System

Basic Usage Scenarios

Rich experience in use of ABBYY SDK in hundreds of products all over the world allows us to extract the most widespread scenarios of
OCR SDK usage:

Document Conversion Scenarios Scenarios for Data Capture General Scenarios
e Document Conversion for o TextE . ‘
Content Reuse ext bxtraction e Image Preprocessing
- o Field-Level Recognition ;
e Document Archiving eld-Level Recognitio e Scanning

e Book Archiving e Barcode Recognition

How to Use this Help
In this Developer's Help you can find all the necessary information about ABBYY FineReader Engine 10.

Guided Tour
See the Guided Tour section to learn about how to use ABBYY FineReader Engine:

e Basic Usage Scenarios Implementation
You can find here the way to use ABBYY FineReader Engine for your task.

e Advanced Techniques
The information for advanced users.

ABBYY FineReader Engine 10 Introduction

e Best Practices
Offers you some advice on how to prepare images for recognition.

e Samples
Short description of available samples. The detailed description of the samples you can find in the Code Samples Library
provided with this distribution pack.

API Reference
The complete reference of the FineReader Engine APL

Licensing
Important information about ABBYY FineReader Engine licenses and activation.

Distribution
Information about distribution of applications which use the ABBYY FineReader Engine library.

Specifications
The list of supported image formats, predefined languages, text types, barcode types, export formats, system requirements, and:

e What's New in ABBYY FineReader Engine 10
e Compatibility with ABBYY FineReader Engine 9.0
Frequently Asked Questions

The extracts of the most important information.

Contact ABBYY
You can find here the contacts of ABBYY offices and Technical support service.

You can visit our website at www.abbyy.com for the most up-to-date information about ABBYY FineReader Engine.

Basic Usage Scenarios Overview

This section describes the most common scenarios in which ABBYY FineReader Engine may be used. We recommend to start your
work with ABBYY FineReader Engine with selecting the appropriate scenario. After you found the appropriate scenario, you can find a
detailed description of the scenario, implementation advice, and suggestions on optimizing the code for specific tasks in the Guided
Tour section.

Document Conversion

DOCUMENT CONVERSION The result of this scenario is an editable version of a document.

In this scenario, document images are recognized, retaining all the
original formatting intact and the data are saved to an editable file
format. As a result, you get editable versions of your documents,
which can be easily checked for errors and modified.

See for details Document Conversion.

DOCUMENT ARCHIVING Under this processing scenario, paper documents are converted
into not editable electronic copies containing all document
e . information in searchable format. As a result of such processing,
Test *‘ & | | theresulting copies may be easily found in the electronic archive
- using full-text search, document text segments may be copied and
Images * the document may be sent by email or printed out.
= / Tables * See for details Document Archiving.

ABBYY FineReader Engine 10 Introduction

BOOK ARCHIVING

This scenario is used for processing books, magazines, newspapers
to create an electronic library; for instance, when digitizing
paper book collections for purposes of facilitating and expanding
access to them and for their preservation.

Under this scenario, books, magazines, newspapers are converted
into not editable electronic copies containing all information from
the source in searchable format.

See for details Book Archiving,

Data Capture

This scenario is used to recognize the entire document text in
order to prepare the document for search and extraction of useful
data.

Such a scenario may serve as a basis for implementing more
complex scenarios to extract vital data from documents, especially
for automated input of paper document data into information
systems and databases as well as for automated classification and
indexation of documents in document management systems (€.g.,
inputting invoices into accounting software, inputting
questionnaires into the CRM system).

This scenario enables extraction of the main text of the document,
which contains all necessary information about the document.
When using this scenario, all text data including texts on logos,
seals and elements other than the main text, are extracted from
the text.

See for details Text Extraction.

FIELD LEVEL RECOGNITION

In the case of field-level recognition, short text fragments are
recognized in order to capture data from certain fields.
Recognition quality is crucial in this scenario.

This scenario may also be used as part of more complex scenarios
where meaningful data are to be extracted from documents (for
example, to capture data from paper documents into information
systems and databases or to automatically classify and index
documents in Document Management Systems).

In this scenario, the system recognizes either several lines of text in
only some of the fields or the entire text on a small image. The
system computes a certainty rating for each recognized character.
The certainty ratings can then be used when checking the
recognition results. Additionally, the system may store multiple
recognition variants for words and characters in the text, which
may then be used in voting algorithms to improve the quality of
recognition.

See for details Field-Level Recognition.

BARCODE RECOGNITION

[

AR P sTsa0s2Ae2025

CORPEI W

T

alezacra"Foead

In this scenario, ABBYY FineReader Engine is used to read
barcodes. Barcodes may need to be read, for example, for purposes
of automatic document separation, for processing documents by a
Document Management System, or for indexing and classifying
documents.

This scenario may be used as part of other scenarios. For example,
documents scanned with high-speed production scanners may be
separated by means of barcodes, or documents prepared for long-
term storage may be placed into archiving Document Management
Systems based on the values of their barcodes.

When extracting barcodes from texts, the system may detect all
barcodes or only barcodes of a certain type with a certain value.
The system may get the value of a barcode and calculate its check

ABBYY FineReader Engine 10 Introduction

sum.

Recognized barcode values can be saved into formats most
convenient for further processing, for example into TXT.

See for details Barcode Recognition.

General

SCANNING

In this scenario, ABBYY FineReader Engine is used on a "scanning
computer," which scans images and saves them as files.

This scenario may be used as part of other scenarios in the
preliminary stage of document processing, i.e. for obtaining
electronic versions of documents for further processing. Usage
examples include scanning documents for archiving purposes,
getting editable versions of documents, and extracting meaningful
data from documents.

Paper documents are scanned and the images are saved in an
electronic format, producing high-quality electronic versions of
your printed documents.

See for details Scanning.

IMAGE PREPROCESSING

This scenario can be used to prepare images for further processing
or to improve their visual quality (e.g. after scanning or prior to
recognition).

This scenario may be used as part of other scenarios in the first
stage of document processing, i.. to prepare documents for
recognition. Usage examples include creating uneditable
document copies for archiving, getting editable versions of
documents, and extracting meaningful data from documents.

See for details Image Preprocessing.

See also

Basic Usage Scenarios

Key Features

Extreme Recognition Speed

Tuned Fast Mode Perfectly adjusted Fast mode provides absolutely amazing results — about 90-110% speed increasing”

with more than 98,5% accuracy for most of European languages

* comparing to Fast mode of ABBYY FineReader Engine 9.0 (First release, 21 October 2008)

[#Note: ABBYY unrivaled multicore support architecture ensures close to linear performance growth with increasing number of cores
for multipage documents. For 2 CPU cores it works almost 2 times faster, for 4 cores — almost 4 times!

Improved Recognition Accuracy

Accuracy tuning for
European languages

ABBYY OCR technologies are worldwide famed for the recognition accuracy but now they show the
really outstanding results! The accuracy increased 50%™ on average for European languages and
valued more than 99.3% of correctly recognized characters.

Improved classifier for CJK | The recognition accuracy for Chinese, Japanese and Korean languages went up 30-60% due to

improved Asian characters classifier. Now ABBYY OCR SDK provides the top level of accuracy
among international multilanguage OCR technologies.

New mode for low The special new recognition mode for low quality documents — old faxes, low resolution scans
resolution scans provides 20% higher accuracy for such documents than standard Normal mode.

= comparing to Normal mode of ABBYY FineReader Engine 9.0 (First release, 21 October 2008)

ABBYY FineReader Engine 10 Introduction

Powerful and Simple API

Special profiles for popular
usage scenarios

A lot of developers mentioned that ABBYY FineReader Engine API is the most powerful and full-
functional among OCR SDKs. Now it becomes simpler with new profiles for the most popular
recognition tasks. They are predefined with optimal parameters for easy start and guaranteed OCR
quality without long-time manual tuning.

Manual parameters setting is also available for any custom solutions.

Document structure API

ABBYY FineReader Engine 10 provides unique feature-set for access to document structure elements
like headings, chapters, page numbers, footnotes, headers, footers and so on.

Unique Layout Reconstruction Abilities

ABBYY FineReader Engine 10 automatically detects headings in recognized document, determines

Docun.lent structure their level in document structure, defines their text styles and reconstructs the whole structure as
detection .
Document Map of resulting document.
In final document the Table of Contents appears as a set of links to the headings. After document
TOC reconstruction editing TOC could be updated automatically as a single object to add new headings and revise page
numbers.
Charts and diagrams Automatic charts and diagrams detection feature was improved in 10th version of ABBYY OCR SDK.
detection Now it is possible to choose if recognize text on chart or stay it in origin image form.

Picture and table captions
processing

ABBYY FineReader Engine 10 automatically detects picture’s and table’s captions and exports them
to final document as a single frame including the picture and its title.

Document styles defining

ABBYY FineReader Engine 10 analyzes text font type, size, and its placement and defects the
corresponding font style for every type of text. So for the headings of each level there are special
styles, for ordinary text, for TOC and for picture captions there are also special styles.

“Glossy magazine” New ABBYY SDK can reconstruct complicated layouts consisted of many pictures and text blocks
processing model on a page or including very large pictures for the whole page.
Improved PDF Export

Superior quality-size ratio
for PDF files

New PDF export together with improved MRC (Mixed Raster Content) compression technology
allows achieving higher quality and less size of PDF documents.

PDF export profiles

There are more than 40 parameters for PDF export tuning. ABBYY FineReader Engine 10 provides
predefined profiles with optimal values for popular export variants:

e MaxQuality

e Balanced
e MinSize
e MaxSpeed

Unrivaled Document Image and Photo Processing

New features of Camera

Camera OCR technology — the set of document photo adjustment features for better recognition
results was improved with new unique features:

e Automatic correction of 3D perspective distortions

OCR™ . .
e Blurred image correction
e IS0 noise reduction
Previous OCR SDK version provided very high quality of binarization, but in some the most difficult
New binarization cases it could commit errors and losses of information. New binarization technology ensures the

whole text retention and prevents information losses even in difficult cases.

Flexible and Strong Protection System

Improved protection

Protection system of ABBYY FineReader Engine 10 provides:

ABBYY FineReader Engine 10 Introduction

e Delegate and control SDK usage rights in local network

e Count and control the numbers of recognized characters, pages, usage time and
computing power

e Track and control SDK usage on terminal servers and virtual machines

Full functionality

e Document Scanning and Image Import

e Image Preprocessing

e Document Analysis

e OCR and Other Recognition Technologies
e PDF Conversion

e Advanced Development Tools

e Receiving and Exporting Recognized Text

Multi-CPU Recognition Architecture

Document Scanning and Image Import

ABBYY FineReader Engine can receive images from three types of sources: document scanning, opening from files, or directly from
memory.

Document Scanning APIs

e TWAIN interface (including ADF support and manual input feeding)
e TFineReader document scanning UI

With its powerful document scanning software tools, ABBYY FineReader Engine 10 enables flexible management of scanning
parameters, such as: brightness, colority, resolution, image size, duplex scanning, pause between pages setup and more. For OCR
purposes, the best resolutions lie in the range of 200-400 dpi. The choice of resolution depends on the quality of the paper original, the
size of the font and other factors. For more details, please see the description of the Scanning scenario.

Image file formats

The OCR SDK supports the majority of image formats, including multi-page TIFF and JPEG 2000 (part1), and works with black-and-
white, grayscale and color images. It also opens PDF files by converting them into images with Adobe® PDF Library Technology.

e BMP e JBIG2 e PNG

e DCX e JPEG e PDF

e DjVu e JPEG 2000 e TIFF and multi-page TIFF
e GIF e PCX e WDP

See more in Supported Image Formats.

Memory image formats

e Raw
e Bitmap (HBITMAP)

e DIB

ABBYY FineReader Engine 10 Introduction

Additional features for PDF files

e [Extracting text layer from PDF
e Image only PDF input

e Vectorized PDF

e Password protected PDF

See also

Key Features
Image Preprocessing
Basic Usage Scenarios Implementation: Scanning

Image Preprocessing

Why improve images?
The task of improving image quality is two-fold.

On the one hand, we need to improve the quality of the images to make them more suitable for OCR.

On the other hand, we need to improve the appearance of the images, which is necessary, for example, when we store document
images in archives.

As ABBYY technologies are focused on document analysis and recognition, the system includes a set of powerful image preprocessing
technologies: adaptive binarization, correction of distortions, straightening text lines, splitting facing pages, and others.

No third-party tools are needed to get accurate OCR results. ABBYY offers a complete set of preprocessing technologies geared
towards OCR.

Image Preprocessing

Upon receiving images, ABBYY FineReader Engine performs a range of image preprocessing functions to improve the quality of
document images for further recognition or archiving:

Image preprocessing (straightening + filters)

Auto-detection | This document imaging feature is very important for bulk input of images, when the direction in which

of page document pages are scanned is unknown and can be different. The system automatically detects the orientation
orientation (90, | of each page and corrects it if needed.

180, and 270

degrees)

Splitting facing | It is used for scanning books as broadsides — for both left and right pages. The recognition quality is higher if the
pages and dual page is split into two, with each page corresponding to a single book page. Recognition and layout analysis are

pages then performed separately for each page, along with the de-skewing if required.

Automated It is an essential document imaging function which is applied to scanned documents requiring the compensation
image de- for image skew. It does not require leading edge borders or lines. New ABBYY FineReader Engine 10 provides
skewing several methods for de-skewing images: with pairs of black squares, lines or lines of text.

Lines When capturing text from scanned or photographed books, the text lines may be uneven and difficult to OCR.

10

ABBYY FineReader Engine 10 Introduction

straightening ABBYY technologies offer special algorithms that correct skew and straighten text lines for accurate text
recognition.

Image When scanning poor to medium quality documents, you may get very noisy images with lots of dots or speckles

despeckling (or | on them. These speckles, when they appear close to the letters or numbers, may affect the quality of OCR. This

image clean-up)

feature removes such noise. The size of the speckles to be removed may be specified by the user. Can be applied
to an image as well as to any individual block (or zone) of the image.

Adaptive This technology automatically identifies digital photos and corrects distortions typically introduced by digital

processing of cameras. The system is aware of the typical defects commonly found in digital images, such as distorted text lines,

digital photos and trapezoid 3D distortions, poor focus, smudge, darkened areas on facing pages in thick books, glare, ISO
noise, etc. These defects are corrected by the system automatically, so that the user does not need any third-party
applications to correct the photos.

o O
O

Texture Texture filtering technology helps to filter out background "noise" such as color and texture, increasing accuracy

filtering for difficult-to-read documents such as newsprint, color documents, faxes, and copies.

Binarization

Adaptive This is the process of converting images to black-and-white, removing noise, removing the background,

binarization removing the textures, and obtaining sharp text. The process ensures the best OCR quality. The required
parameters are identified for each fragment separately. In the case of thin newspaper, the text printed on the
reverse side may be visible on the scans. Adaptive binarization removes this text.
Innovative Adaptive Binarization technology dynamically adjusts threshold of brightness for each image
fragment during the recognition. By applying individual recognition parameters, it produces accurate recognition
results for documents with gray or color-variable contrast background and textures.

Dithering This is binarization of grayscale images using very small dots. It improves the appearance of the document, as the
document appears to have more shades.

Filters for binary images

Image Scaling For documents scanned at lower resolutions (less than 120 dpi) and documents with small fonts (less than 10
pt), the images may be digitally enlarged to achieve better OCR quality.

See also

Usage Scenarios Implementation: Image Preprocessing

Key Features

11

ABBYY FineReader Engine 10 Introduction

Document Analysis

Basic document analysis features

Document Analysis is a set of functions for automatic detection of the following objects on a page:
e Text blocks
e Pictures
e Tables and table cells
e Barcodes
e Separators
Additionally document analysis provides some special features to prepare image for OCR:
e process detection of page orientation — 90, 180, and 270 degrees
e split double pages
e process vertical text detection in table cells
e detect and mark the blocks of garbage on page

This preparation is significantly important to specify which fields on page should be recognized and what should be kept in initial
form.

And also there is an ability to designate the field for recognition manually. In this case you have to set field’s coordinates and type of
data inside. It is used in Field-Level Recognition scenario mostly for data capture.

ABBYY FineReader Engine 10 provides 3 automatic and 1 manual types of document analysis:
e General document analysis
e Document analysis for invoices
e Document analysis for full-text indexing

e Manual blocks specification for field-level recognition

General document analysis

This is default document analysis type which searches all objects: text blocks, pictures, tables, barcodes and separators.
The results of this analysis are used for document structure and layout retrieval in content reuse scenario. All pictures and
diagrams are preserved in original form without recognizing text on them.

Document analysis for invoices

This is a preprocessing engine for converting semi-structured documents, such as invoices, payment drafts, bills, waybills,
business cards, agreements, health claim forms, resumes, etc. It has been designed to accurately locate all the text on these
documents, including characters and numbers — even if this information is located within stamps, pictures, logos or
small-text areas.

Unlike the standard full-page document analysis, this one assumes that all printed information on documents is text. It
also ensures that important text information is not identified as graphic elements and words or numerical values are not
separated into multiple characters. As a result, maximum information about the text, including its coordinates, is available
for analysis, field-by-field processing and parsing at subsequent processing stages by other systems.

Document analysis for full-text indexing

Automatically detects and recognizes all text on documents including text embedded in pictures, charts, and diagrams.
Developers may choose to use this mode of document analysis to extract exhaustive full-text information on documents
needed for document index building (as in DMS, CMS, Archiving systems).

12

ABBYY FineReader Engine 10 Introduction

Manual blocks specification for field-level recognition

This case does not need any analysis because the recognition field is directly defined by user or application. Recognizer
receives the coordinates of field and type of text and process OCR in specified zone.

See also

Key Features

OCR and Other Recognition Technologies

Optical Character Recognition (OCR)

e OCR technology — printed text recognition is available for 198 languages, including;:

(0]

(0]

European languages (Latin, Cyrillic, Armenian, Greek alphabets)
Chinese (Simplified and Traditional), Japanese, and Korean (CJK)
Thai, Vietnamese and Hebrew

Arabic — technical preview version

FineReader XIX — an OCR module designed specifically for digitizing and archiving old documents, books and
newspapers published in the XVII-XX centuries, many of which are rare and unique. Stored in the historical
archives of libraries and government organizations, they are national heritage that must be preserved. FineReader
XIX provides a unique capability to recognize texts published in the period from 1600 till 1937 in English, French,
German, Italian and Spanish. It supports recognition of old fonts such as Fraktur, Schwabacher and the majority of
Gothic fonts.

]

{ ber Bendiaer e |
| — L] -
| e, {
Ly
| T o P P
\ Devedt Diakovuss, ‘
| arvan
o o o o Tt J
|l g o e
g anders it el {
=T et - e
| s - : - j_‘ e '|r
L ey
gt et
e
§
| Py |
e e e e)
SETeeiERe
] e P e 1 e S i

e 47 languages have dictionary/morphology support that is significantly improves OCR accuracy.

e Multilingual documents recognition feature provides recognition of several languages e.g. German and Chinese; English,
Russian and Korean at the same document.

e Dot-matrix documents recognition — ABBYY FineReader Engine recognizes printed dot matrix texts of many types. It
has been trained using several thousand samples produced by a variety of printers including dot matrix, daisy wheel, chain
and band printers, as well as using draft and Near Letter Quality (NLQ) printing modes.

13

ABBYY FineReader Engine 10 Introduction

e Typewritten documents recognition.

e Recognition of OCR-A, OCR-B, MICR (E13B) and CMC7 fonts.

See the full list of supported languages and text types.

Intelligent Character Recognition (ICR)

e ICR technology — hand-printing characters recognition for more than 110 languages.

e About 30 languages (with Latin, Greek and Cyrillic alphabets) with morphology/dictionary support and 85 languages
with Latin characters without dictionaries.

e ICR for Indian digits used in Arab states.

e 22 regional styles of hand-printing used in different countries and regions of the world (for supported ICR languages).
e Recognition of hand-printed characters in fields and frames — underlined fields, boxes, comb-style fields, etc.

e Multilingual ICR. One of the main advantages of ABBYY ICR technology is that it delivers almost the same high accuracy

on digits and digits combined with letters of one or several languages, even if the fields contain both upper and lower case
letters.

Optical Mark Recognition (OMR)

The ABBYY’s OMR technology recognizes simple checkmarks, grouped checkmarks, model checkmarks and checkmarks with
“corrections” made by hand in different variations:

e char box series

e comb in frame

e gray boxes

e partitioned frame
e simple comb

e textin frame

underlined text

OMR delivers accuracy rate of 99.995 %

Optical Barcode Recognition (OBR)

e 1D and 2D barcode types. ABBYY OCR SDK supports recognition of popular types of 1D and 2D barcodes. See the list of
supported types of barcodes.

e Fast barcode extraction. This feature enables automated detection and recognition of barcodes at any angle on a
document. It works both for 1D and 2D barcodes

Recognition modes

With the Engine's pre-defined processing modes, developers have the ability to quickly set up and tune the processing speed and
accuracy in a way which is the most appropriate for their needs. In addition to the default processing mode, both OCR and ICR
recognition can be performed in normal, fast and balanced recognition modes:

e Normal recognition mode
It is the most accurate mode for achieving the highest quality of recognition. This mode is highly recommended if you are
planning to reuse recognized content and in other tasks when the accuracy is the critically important issue.

e Fast recognition mode
It is designed for high-volume document processing and for the cases when speed is of primary importance. This mode
increases processing speed by 200-250% making the technology ideal for using in content management (CMS), document
management (DMS) and archiving systems.

14

ABBYY FineReader Engine 10 Introduction

e Balanced recognition mode
It sets the intermediate values of recognition accuracy and speed between Normal and Fast modes. Generally it provides
higher speed for almost the same accuracy level as Normal mode.

Full Text and Field-Level Recognition

There are two types of recognition which could be separated: full text and field-level recognition. The main difference is that full text
recognition usually includes OCR technology and used for document conversion. Field-level recognition includes OCR, ICR and other
technologies that are used in local area for recognizing and extraction particular data.

The following table shows specifications of these recognition types:

Specification Full text recognition Field-level recognition
Where is used Document conversion, books archiving Data capture
Document analysis General document analysis, document analysis for Manual blocks specification for field-level recognition
invoices, document analysis for full-text indexing
Recognition OCR with general accuracy about 96-99% OCR, ICR, OMR, Barcodes recognition with predefined
data types and values range. Accuracy is about 100%
Verification Recommended for content reuse Obligatory in most cases
Synthesis Used for document retrieval Not used
Export of Document files (RTF, DOC, PDF, etc.) Export to XML file or database

recognition results

Full text recognition
Full text recognition is a basic recognition type for different tasks, like:

e Documents and books conversion for archiving
e Document conversion for content reuse

e Ground text extraction for fields detection and documents classification

All of them require the recognition (OCR) of whole text on document (page). Before recognition the document analysis usually
processes for splitting and correct orientation of pages, detection of text blocks, pictures and other objects.

Then after OCR document synthesis rebuilds the structure and layout of document (for content reuse task) or just retrieves the correct
text order for complex documents with several text columns and pictures (for archive scenario). Resulted text is exported depending
on task as pure text or as a document of supported format.

The text could be manually verified for increasing its accuracy, especially for future reuse.
Field-level recognition

ABBYY FineReader Engine 10 delivers complete field-level recognition capabilities to support key business processes such as forms
processing, keyword classification, and keyword indexing. Powerful image processing functions increase its ability to intelligently
detect small zone areas of any quality, with any type of graphic specifics which may affect the recognition accuracy (i.e. underlined
text, after-scanning garbage, spaces in the text, etc.)

Key functionality for field-level or zonal recognition includes multilingual OCR and ICR, OMR, barcode recognition and a range of
specific functions, such as:

e Data extraction from fields with various borders and frames, including combo-box, underlined fields, boxes, and even fields
where the data does not fit within the field border

e Definition of field content by setting alphabets, dictionaries, regular expressions, types of segmentations, handwriting styles,
etc.

e Detection of in-field spacing, accurately recognizing fields where the spaces are allowed. ABBYY FineReader Engine 10 also
allows use of dictionaries which contain word combinations with spaces

e Intelligent processing of blocks with intersecting parts and lines, provides recognition of text (words and symbols) located
entirely within the block borders, saving time spent on non-relevant text block recognition

e Text block despeckle, with the ability to specify the size of white or black "garbage"

Field-level recognition is supported by the Engine’s special tools for developers such as Voting API and "On-the-Fly" Recognition
Tuning. For details, please see Advanced Development Tools.

15

ABBYY FineReader Engine 10 Introduction

User Languages

ABBYY FineReader Engine provides an API for creating and editing recognition languages, creating copies of predefined recognition
languages and adjusting them, and adding new words to user languages.

Below are two examples illustrating how user languages can help you to improve recognition quality:
e Indocuments filled out by hand, the values in the form fields usually belong to a specific set such as city names, countries,

zip codes, product codes, sums, etc. To improve the quality of ICR recognition, you can use user languages to describe the
information which may be entered in each field.

e Ifadocument contains "structures" such as product codes, telephone numbers, passport numbers etc., recognition errors
may occur. This happens because the program reads such structures letter by letter. To improve the recognition of product
codes and the like, you can create a new recognition language which will help the program to read specific types of data
correctly.

Pattern Training

In the vast majority of cases ABBYY FineReader Engine can successfully read texts without prior training. However, in such cases as
recognition of decorative or outlined fonts or bulk input of low print quality documents, preliminary pattern training will prove useful.

The OCR SDK allows you to create and exploit user patterns directly via API or import them from the ABBYY FineReader desktop
application (Professional or Corporate Edition). Since ABBYY FineReader Engine 10" version you can “teach patterns” by loading
pictures and matching corresponding characters.

See also

Key Features
Advanced Development Tools

PDF Conversion

The PDF format is often used in electronic archives for data storage purposes. It is the format of choice because of its versatility and
possibility to keep both images and text.

Technologies developed by ABBYY allow recognized texts to be saved in PDF and PDF/A formats. One of the main goals of archiving is
to achieve the smallest file size possible without losing in data quality.

A special compression technology called MRC (Mixed Raster Content) is used to minimize the size of PDF and PDF/A files.

PDF Input

Intelligent PDF ABBYY FineReader Engine analyses internal information within the source PDF files such as:

processing .
e annotations,

e metadata,
e text objects,
e font dictionaries
e content stream
SDK enhances PDF conversion performance and speed by efficient and accurate text selection. If text is

embedded into the PDF file, the OCR engine examines the integrity of the text layer, and makes a decision as
to whether or not to extract the text or apply OCR on a block by block basis.

Capture of internal | It extracts internal PDF links, hyperlinks and document properties such as: subject, author, title, and
PDF information keywords.

PDF Output

PDF security ABBYY FineReader Engine 10 supports a variety of PDF security settings, increasing its applicability for
and encryption | government agencies and other organizations demanding high security.

support

e '"Open File" password settings designed to prevent unauthorized access to a document.

e Restriction of certain operations, such as printing, editing or extracting file content, by assigning
permission passwords.

16

ABBYY FineReader Engine 10 Introduction

e Support for the latest encryption standards.
Restrict POF Editing & Printing | %
i Permssions Paspwond T restrict operations on the FOF dooment,
Py Fageid: aEREERREERRRRE
Bty puriimeird: R
Prarverd Lhae ollowairs) oper atainel o the P0F doosmant
(] Bt i vy e fe ey
F'P!_midmr-ﬁ wderg
e g g
Output in Tagged PDF can be "reflowed" to fit different page or screen widths. Ideal for use with handheld devices (PDAs)
Tagged PDF or screen readers typically used by visually impaired users.
format
Page size Ability to set the size for all pages of an output file during PDF conversion.
Metadata export | ABBYY FineReader Engine 10 enables metadata exporting (bookmarks, hyperlinks, cross-references, etc.).
Conversion to Conversion to PDF/A format which is recommended as a standard for long-term preservation of page-oriented
PDF/A format documents.
ABBYY'’s technologies allow saving documents to PDF/A formats of different compliance levels: PDF/A-1a,
PDF/A-1b.
The PDF/A-1a format has the following features: best retention of document formatting, logical structure, and
ordinary appearance as well as the possibility of retaining the document appearance when using displays of
different sizes (the document content is organized in a specific way to achieve this).
The PDF/A-1b format is used to reproduce the document appearance only. When processing by ABBYY
technologies, documents are saved in PDF/A-1b format by default.
CJK to PDF Enables conversion of documents in Chinese (both simplified and traditional), Japanese and Korean into PDF
export format.

PDF (PDF/A) MRC compression

A special compression

2R
-

Image Document

technology called MRC (Mixed Raster Content) is used to minimize the size of PDF and PDF/A files.

%\%

1 T

» > =
3~"" e RS

1. Foreground Layer Compressed Layers MRC PDF Document
Calar of text and graphic elements

2. Binary Mask Layer

Text and graphic elements

3. Background Layer
Images and background

Document image files are usually very large due to the background, which is often makes up to 90% of the file size. The background
may, however, be unnecessary in the resulting document. It is the text and pictures that are important.

The MRC compression technology allows locating the color background and deleting it or compressing to a high degree. This leaves
text and pictures against a white background contributing to smaller file size.

Picture objects (diagrams, graphs, 1ogos, photos, drawings, stamps, signatures, etc.) are also slightly compressed, but only to an extent

that doesn’t lower the

quality.

17

ABBYY FineReader Engine 10 Introduction

The MRC technology analyzes the outlines of similar characters in the document, creates an average character template and uses it
instead of a character itself. This leads to better readability, because some of the text defects are corrected, and the character outlines
become more precise.

As a result, you get a smaller image which looks even better than before. The resulting document will have an unobtrusive bland
background with fine text and pictures.

This “reconstruction” of the document can be useful when you have to deal with low quality images due to: bad lighting, out-of-focus
photo, incorrect scanning/photo parameters, dark uncoated paper, or document dilapidation.

All this results in the image having a dark background with additional textures. The text appears blurred and difficult to read.
The MRC technology allows for better document appearance and up to 8-10 smaller file size than JPEG.

Clear and simple PDF Conversion

ABBYY FineReader Engine provides developers with special tools to achieve the optimal PDF conversion mode appropriate for their
particular needs.

PDF Export Description

Scenario

MaxQuality Optimize the PDF (PDF/A) export in order to receive the best quality of the resulting file.

Balanced The PDF (PDF/A) export will be balanced between the quality of the resulting file, its size and the time of
processing.

MinSize Optimize the PDF (PDF/A) export in order to receive the minimum size of the resulting file.

MaxSpeed Optimize the PDF (PDF/A) export in order to receive the highest speed of processing.

See also

Key Features

Advanced Development Tools

Useful tools that enhance the developer's ability to interact with ABBYY FineReader Engine and manipulate the recognition process on
the core level:

Working with Profiles

ABBYY FineReader Engine 10 provides a set of predefined profiles which are already fine-tuned for the basic usage scenarios. The
settings specified in these profiles provide the best results in the corresponding situations. Besides, most of the profiles come in two
forms: with the settings optimized for the best quality of the resulting document or with the settings optimized for the highest speed of
processing. Below is a list of available predefined profiles:

Scenario Profile Name

Document archiving e DocumentArchiving Accuracy

e DocumentArchiving Speed

Book archiving e BookArchiving Accuracy

e BookArchiving Speed

Document conversion for content reuse e DocumentConversion_Accuracy

e DocumentConversion Speed

e TextExtraction Accuracy

Text extraction for fields detection and documents classification e TextExtraction Speed

Field-level recognition e TieldLevelRecognition

18

ABBYY FineReader Engine 10 Introduction

Barcode recognition e BarcodeRecognition

[ENote: You can view the list of settings provided by these profiles in the description of corresponding scenarios.

The settings provided with these profiles can be loaded using the LoadPredefinedProfile method of the Engine object. After the
profile is loaded, newly created objects will have the new default values specified in the profile.

Voting API support

When ABBYY FineReader Engine is used as one of the participating recognition engines in a third-party application, it supplies
recognition alternatives (or hypotheses) with a relevant confidence level for characters, words and intercharacter separation. This
information helps developers design an efficient and accurate voting algorithm for applications that require multiple recognition
technologies. For example, when recognizing an "O", ABBYY FineReader Engine may return 3 hypotheses: "0" (zero), with 60%
confidence; capital "O", with 80% confidence; and capital "C", with 10% confidence. Another example for intercharacter separation: the

possible hypotheses for an "m" would be "m", "rn", and "in". See more in Using Voting APL

"On-the-fly" tuning of core recognition

ABBYY FineReader provides developers with the access and ability to manipulate the recognition engine during the OCR process on a
core level. The FineReader recognition engine generates hypotheses (or recognition alternatives) and allows developers to influence or
fine-tune the procedure of setting the confidence level for each hypothesis (or selecting the best hypothesis) using their own specific
ranking criteria.

Sample Codes for common conversion tasks

The SDK is supplied with the set of Source Code Samples showing how to use the Engine in different scenarios. The Code Samples are
provided for Visual Basic, Visual Basic .Net, Delphi, raw C++, C++ with the Native COM Support, C#, and script languages.

See also

Key Features

Receiving and Exporting Recognized Text

The FineReader Engine OCR API provides a wide range of options for export of recognition results on different levels of document
reconstruction:

e Various levels of text format retention when exporting to external formats (from simple text without formatting to
complete page layout retention, including columns, tables, frames, fonts, font size, paragraph styles, borders, etc.)

e Access to detailed information about each recognized character
e Aset of functions for post-editing and post-formatting of the recognized text before prior to export

e Export of recognized text to various formats:

o RIF

0 DOC/DOCX
0 XLS/XLSX
0o PPIX

o PDF

0 PDF/A

0 HIML

0 TXT/CSV

0 XML

See Export Formats.

e Replacing uncertain characters with the corresponding images when saving to PDF

e Retaining text color and pictures of original image into all export formats

19

ABBYY FineReader Engine 10 Introduction

See also

Key Features
Tuning Export Parameters

Multi-CPU Recognition Architecture

ABBYY FineReader Engine automatically combines and executes steps of distributing pages, and coordinating recognition and
synthesis. That provides easy scalability and utilization of multi Core/CPU hardware and brings up to 90% of speed increase for each
additional core comparing to one-core systems.

4,07

o @ 2 cores

H 4 cores

e [=

[

S e s 6 7 8 9101112 131415 16 17 18 13 20
Pages in a document

[%Note: This graphic does not take into account document export step because it could vary from scenario to scenario and can’t be
paralleled. Speed increase rate can also be different depending on a document complexity. For documents with complex layout it is
higher, for simple — lower. The more time spent for analysis and recognition — the higher benefit from multi-processing. The graphic
also shows that the more pages are in a document the more effective load balancing and performance rate.

Numbers quoted are based on internal ABBYY testing,.

See also

Key Features

Benefits

e Choose ABBYY FineReader Engine 10 and get award-winning OCR SDK providing unrivaled accuracy, high recognition
speed, outstanding functionality and 198 supported languages.

e Enjoy working with comprehensive, easily-integrated API supplied with clear documentation.

e Appreciate unique set of breakthrough technologies including improved ADRT™, Camera OCR™, new binarization and
others,

e Expand your markets with ABBYY SDK’s multiple OS support: Windows, Linux, Mac OS and variety of embedded platforms.

e Trust in ABBYY’s proven partnerships with industry leaders worldwide who have been choosing ABBYY’s technologies for
decades.

See also

Key Features

Short Specifications
e OCR for 198 languages including:

O European (Armenian, Cyrillic, Greek, Latin alphabets)

O Asian (Chinese, Japan, Korean, Taiwanese, Vietnamese, Thai)
O Arabic

O Hebrew

0 Old fonts (English, French, German, Italian, Spanish)

20

ABBYY FineReader Engine 10 Introduction

ICR for 110 languages (Cyrillic, Greek, Latin alphabets)

e OMR

e Barcodes 1D (15 types) and 2D (PDF417, Aztec, DataMatrix, QR Code)

e Recognition modes (Normal, Balanced, Fast)

e Text font types (Matrix, MICR E13B, MICR CMC7, Normal, OCR-A, OCR-B, Gothic, Typewriter)

e Import formats
0 Scanning (APL, TWAIN UI, FineReader Ul)
0 Image files (BMP, DCX, DjVu, GIF, JBIG2, JPEG, JPEG 2000, PCX, PNG, TIFF)
0 Memory Image Formats (Raw, Bitmap [HBITMAP], DIB)

O PDF formats (Extracting text layer, Image only, Vectorized, Password protected)

e Export formats
O HTML, RTF/DOC/DOCX, XLS/XLSX, PPTX, TXT/CSV, ABBYY XML

O PDF formats (Image Only/Image on Text/Text and Images/Text on Image/Font embedding, PDF MRC), PDF/A-1a,
PDF/A-1b

0 ODF (Open Office document format), EPUB, FB2, ALTO - available in Maintenance release
O Image formats (BMP, DCX, JBIG2, JPEG, JPEG 2000, PCX, PNG, TIFF)
See also

Supported Image Formats

List of the Predefined Languages
Text Types

Barcode Types

Export Formats

Specifications

Getting Started

We recommend starting your work with ABBYY FineReader Engine with selecting the appropriate scenario. After you found the
appropriate scenario, you can find a detailed description of the scenario, implementation advice, and suggestions on optimizing the
code for specific tasks in the Basic Usage Scenarios section.

If your task is not compatible with any of the basic scenarios, you may find useful advices in the Advanced Techniques section. We
recommend you to refer to the Programming Aspects section, where you can find useful information on using ABBYY FineReader
Engine in different programming languages. Either you can view Sample codes provided with the ABBYY FineReader Engine developer
package for quick start.

To start your work with FineReader Engine APL you should create the Engine object with the GetEngineObject function. The
detailed API Reference you can also find in this Developer's Help.

21

ABBYY FineReader Engine 10 Guided Tour

Guided Tour

This section contains information which will help you in your work with ABBYY FineReader Engine 10:

Basic Usage Scenarios Implementation
Describes the main scenarios in which ABBYY FineReader Engine can be used. We recommend that you begin work with
ABBYY FineReader Engine by selecting the scenario most suitable for your task.

Advanced Techniques

Provides advanced information about working with the ABBYY FineReader Engine API, including information on tuning the
parameters of document processing, working with images, languages, recognized texts, special recognition cases such as
recognition of hieroglyphic languages, checkmarks, handprinted texts, and recognition with training.

Best Practices
Offers you some advice on how to prepare images for recognition.

Samples
Provides a short description of the samples. A detailed description of the samples is available in the Code Samples Library
provided with this distribution pack.

Basic Usage Scenarios Implementation

This section describes the most common scenarios in which ABBYY FineReader Engine may be used. Each article contains a detailed
description of the scenario, implementation advice, and suggestions on optimizing the code for specific tasks.

Select the scenario appropriate for your task:

Document Conversion
Suitable for converting documents into an editable format.

Document Archiving
Suitable for processing paper documents for electronic archives.

Book Archiving
Suitable for processing books, magazines, and newspapers for electronic libraries.

Text Extraction
Suitable for extracting entire text from documents to make them searchable and to extract useful data.

Field-Level Recognition
Suitable for recognition of small text fragments to capture data from document fields.

Barcode Recognition
Suitable for reading barcodes.

Image Preprocessing
Suitable for preparing images for further processing or for improving their visual quality.

Scanning
Suitable for getting images from a scanner and their subsequent processing.

Document Conversion

The result of this scenario is an editable version of a2 document.

In this scenario, document images are recognized, retaining all the original formatting intact, and the data are saved to an editable file
format. As a result, you get editable versions of your documents, which can be easily checked for errors and modified. You will also be
able to copy all or some of the text for re-use.

A document goes through several processing steps, which are in some ways slightly different from the other common scenarios:

1.

Image preprocessing
Images you get by means of a scanner or a digital camera may need some tweaking before they can be optically recognized.

22

ABBYY FineReader Engine 10 Guided Tour

For example, noisy images or images with distorted text lines will need some correction for optical recognition to be
successful.

2. Recognition

When recognizing a document, various layout elements (text, tables, images, separators, etc.) of the document are identified.

In the course of the document synthesis, the logical structure of the document is restored, while the page synthesis enables

one to fully restore the document formatting (fonts, styles, etc.)

3. Export
The recognized document is saved to an editable format, such as RTF, DOC, DOCX.

Scenario implementation

Below is the detailed description of a recommended method of using ABBYY FineReader Engine 10 for the implementation of the
above scenario. The proposed method employs the processing settings that are most suitable for the above scenario.

Step 1. Loading ABBYY FineReader Engine

To start your work with ABBYY FineReader Engine you need to create the Engine object. The Engine object is the top object in the

hierarchy of the ABBYY FineReader Engine objects and is the only ABBYY FineReader Engine externally creatable object.
To create the Engine object use the GetEngineObject exported function.
Sample code for the procedure of ABBYY FineReader Engine loading and initialization in C++ and Visual Basic:

Visual C++ (COM) code

// HANDLE to FREngine.dll

static HMODULE libraryHandle = O;
// Global FineReader Engine object.
FREngine: :1EnginePtr Engine;

void LoadFREngine()
{
if(Engine 1= 0) {
// Already loaded
return;
}
// First step: load FREngine.dll
if(libraryHandle == 0) {
libraryHandle = LoadlLibraryEx(::GetFreDlIPathu(), O,
LOAD_WITH_ALTERED_SEARCH_PATH);

if(libraryHandle == 0) {
throw L"Error while loading ABBYY FineReader Engine™;
}
}

// Second step: obtain the Engine object
typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine::1Engine**);
GetEngineObjectFunc pGetEngineObject =
(GetEngineObjectFunc)GetProcAddress(libraryHandle, "GetEngineObject"

iT(pGetEngineObject == 0 || pGetEngineObject(::GetFreDeveloperSN(), 0, O,
&Engine) '= S 0K) {
UnloadFREngine();
throw L"Error while loading ABBYY FineReader Engine';

}

Visual Basic code
Public Engine As FREngine.Engine

23

ABBYY FineReader Engine 10 Guided Tour

Private Declare Function GetEngineObject Lib "FREngine.dil"™ (_
ByVal DeveloperSN As String, _
ByVal Reservedl As String, _
ByVal Reserved2 As String, _
EngineObj As FREngine.Engine) As Long

Sub Engine_Load(ByVal DeveloperSN As String)
" Visual Basic may load libraries from the current path only
ChDir "Path to the folder with FREngine.dll"

" this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

Dim DeveloperSN_WideChar As String
DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)

IT GetEngineObject(DeveloperSN_WideChar, "™, "™, Engine) <> 0 Then
MsgBox "Error loading ABBYY FineReader Engine'
End If
End Sub

Step 2. Loading setting for the above scenario

ABBYY FineReader Engine enables loading of all processing settings that are most suitable for this scenario using the
LoadPredefinedProfile method of the Engine object. This method uses the name of a used settings profile as an input parameter.
Please see Working with Profiles for more information.

ABBYY FineReader Engine supports 2 options of settings for this scenario. Both these profiles enable font style detection and full
document synthesis:

e DocumentiConversion_Accuracy
This profile optimizes the document conversion process in order to ensure that the resulting document is of the highest
quality possible.

e DocumentConversion_Speed
This profile optimizes the processing speed of the document conversion process: the processes of document analysis and
recognition are sped up.
fImportant! This profile requires the Fast Mode module available in the license.

Sample code for the procedure of profile loading in C++ and Visual Basic:

Visual C++ (COM) code
// Load a predefined profile
Engine->LoadPredefinedProfile(L"DocumentConversion_Speed");

Visual Basic code
" Load a predefined profile
Engine.LoadPredefinedProfile "DocumentConversion_Speed"

If you wish to change processing settings, use appropriate parameter objects. Please see Additional optimization for specific tasks
below for further information.

Step 3. Loading and preprocessing of images

ABBYY FineReader Engine provides the FRDocument object which allows processing multi-page documents. Use of this object allows
you to preserve the logical organization of the document, retaining the original text and columns, fonts, styles, etc.

To load images of a single document and preprocess them, you should create the FRDocument object and add images into it. You
may do one of the following:

e (Create the FRDocument object using the CreateFRDocumentFromImage method of the Engine object. This method
creates the FRDocument object and loads images from the specified file.

e (Create the FRDocument object with the help of the CreateFRDocument method of the Engine object, then add images to
the created FRDocument object from file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method of the FRDocument object).

24

ABBYY FineReader Engine 10 Guided Tour

Sample code for the procedure of image loading and preprocessing in C++ and Visual Basic:

Visual C++ (COM) code

// Open image file and create the FRDocument object
FREngine: : IFRDocumentPtr frDocument = Engine->CreateFRDocumentFromlmage(
L"C:\\MyImage.tif", 0);

Visual Basic code

" Open image file and create the FRDocument object

Dim frDocument As FREngine.FRDocument

Set frDocument = Engine.CreateFRDocumentFromImage("'C:\Mylmage.tif'")

[#'Note: Image preprocessing with the loaded DocumentConversion_Accuracy or DocumentConversion_Speed profile does not include
the orientation detection. If you want orientation to be automatically detected, you will need to tune additional parameters and pass
corresponding object to the preprocessing function. Please refer Additional optimization for specific tasks below for further
information.

Step 4. Document recognition

To recognize a document, we suggest that the analysis and recognition methods of the FRDocument object be used. This object
provides a whole array of methods for document analysis, recognition and synthesis. The most convenient method allowing document
analysis, recognition and synthesis using just one method is the Process method. It also uses simultaneous processing features of
multiprocessor and multicore systems in the most efficient manner. However, you may also carry out consecutive analysis, recognition
and synthesis using Analyze, Recognize (or AnalyzeAndRecognize) and Synthesize methods.

Sample code for the procedure of document recognition in C++ and Visual Basic:

Visual C++ (COM) code
// Analyze, recognize, and synthesize the document.

// While the profile is loaded, you do not need to pass any additional parameters to
the processing method.

pFRDocument->Process(0, 0, 0);

Visual Basic code
" Analyze, recognize, and synthesize the document.

* While the profile is loaded, you do not need to pass any additional parameters to the
processing method.

frDocument.Process

Step 5. Document export

To save a recognized document, you may use the Export method of the FRDocument object by assigning the
FileExportFormatEnum constant as one of the parameters. You may change the default parameters of export using the
corresponding export object. Please see Additional optimization for specific tasks below for further information.

After you have finished your work with the FRDocument object, release all the resources that were used by this object. Use the
IFRDocument::Close method.

Sample code for the procedure of document export to RTF in C++ and Visual Basic:

Visual C++ (COM) code

// Save a recognized document to an editable format (e.g. RTF)
frDocument->Export(L"C:\\MyText.rtf", FREngine::FEF RTF, 0);
// Release the FRDocument object

frDocument->Close();

Visual Basic code

" Save a recognized document to an editable format (e.g. RTF)
frDocument.Export "C:\MyText.rtf", FEF_RTF, Nothing

" Release the FRDocument object

frDocument.Close

Step 6. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine you need to unload the Engine object. To do this use the
DeinitializeEngine exported function.

Sample code for the procedure of ABBYY FineReader Engine unloading and deinitialization in C++ and Visual Basic:
Visual C++ (COM) code

25

ABBYY FineReader Engine 10 Guided Tour

void UnloadFREngine()

{
if(libraryHandle == 0) {
return;
}
// Release Engine object
Engine = 0O;

// Deinitialize FineReader Engine
typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();
DeinitializeEngineFunc pDeinitializeEngine =
(DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine™);
if(pDeinitializeEngine == 0 || pDeinitializeEngine() = S_OK) {
throw L"Error while unloading ABBYY FineReader Engine";
}
// Now it"s safe to free the FREngine.dll library
FreeLibrary(libraryHandle);
libraryHandle = 0O;
}

Visual Basic code
Public Engine As FREngine.Engine
Private Declare Function DeinitializeEngine Lib "FREngine.dll" () As Long
Sub Engine_Unload()
Set Engine = Nothing
ChDir "Path to the folder with FREngine.dll"
DeinitializeEngine
End Sub

Additional optimization for specific tasks

Below is the overview of the Help topics containing additional information regarding customization of settings at different stages of
the document conversion to an editable format:

e Scanning

O Scanning
Description of the ABBYY FineReader Engine scenario for document scanning,

e Opening and preprocessing
O Image Preprocessing

Description of the ABBYY FineReader Engine scenario for preliminary preparation of images or enhancement of
their visual quality.

e Recognition

0 Tuning Analysis, Recognition, and Synthesis Parameters
Customization of document processing using objects of analysis, recognition and synthesis parameters.

0 PageProcessingParams Object
This object enables customization of analysis and recognition parameters. Using this object, you can indicate
which image and text characteristics must be detected (inverted image, orientation, barcodes, recognition
language, recognition error margin).

0 SynthesisParamsForPage Object
This object includes parameters responsible for restoration of a page formatting during synthesis.

0 SynthesisParamsForDocument Object
This object enables customization of the document synthesis: restoration of its structure and formatting,

26

ABBYY FineReader Engine 10 Guided Tour

O MultiProcessingParams Object
Simultaneous processing of documents may be useful when processing a large number of documents. In this case
the document load will be spread over the processor cores during the analysis and recognition, which makes it
possible to speed up processing. Reading modes (simultaneous or consecutive) are set using the
MultiProcessingMode property. The RecognitionProcessesCount property controls the number of processes,
which may be started.

e Export

0 Tuning Export Parameters
Customization of the document export using objects of export parameters.

O RTFExportParams Object
This object enables customization of the RTF/DOC/DOCX saving format parameters.

O HTIMLExportParams Object
This object allows customization of export to the HTML format.

0 PPTExportParams Object
Object for customization of the PPTX saving format parameters.

See also

Basic Usage Scenarios Implementation

Document Archiving

This scenario is used for processing paper documents to save them to an electronic archive, especially when creating an archive of
agreements, project documentation, invoices, certificates, etc.

Under this processing scenario, paper documents are converted into uneditable electronic copies containing all document information
in searchable format. As a result of such processing, the resulting copies may be easily found in the electronic archive using full-text
search, document text segments may be copied and the document may be sent by email or printed out.

To create an electronic copy, the document first needs to go through several processing stages, each of which has its own peculiarities
in this scenario:

1. Scanning
Scanning may be done manually for each separate document as well as automatically by scanning a whole batch of
documents. In the latter case, a batch of images may have to be separated additionally into documents after scanning.

2. Image preprocessing
Scanned images may require some preprocessing prior to recognition, for example, if scanned documents contain
background noise, skewed text, inverted colors, black margins, wrong orientation or resolution.

3. Recognition
To extract text data from a document, the document recognition is required. When processing a large volume of documents,
simultaneous document processing may be come in useful. In this case, in the course of analysis and recognition the
document load will be spread over the processor cores, which makes it possible to speed up processing.

4. Export
The recognized document is saved to a suitable storage format. The most convenient formats for storing documents are PDF,
PDF/A, PDF and PDF/A with MRC. When saving to these formats, one may use a mode, under which the text is placed
underneath the document image — this enables full preservation of the document formatting and provides a full-text search.
The MRC settings allow significant reduction of a file size without loss of visual quality. Also when saving to the PDF format,
one may customize security settings of the document protecting it from unauthorized viewing and printing,

Scenario implementation

Below is the detailed description of the recommended method of using ABBYY FineReader Engine 10 for implementation of the above
scenario. The proposed method uses processing settings that are most suitable for this scenario. Under the proposed implementation
of the scenario, the document scanning phase is omitted. Please see Additional optimization for specific tasks below for the tips on
scanning implementation.

Step 1. Loading ABBYY FineReader Engine

To start your work with ABBYY FineReader Engine you need to create the Engine object. The Engine object is the top object in the
hierarchy of the ABBYY FineReader Engine objects and is the only ABBYY FineReader Engine externally creatable object.

27

ABBYY FineReader Engine 10 Guided Tour

To create the Engine object use the GetEngineObject exported function.
Sample code for the procedure of ABBYY FineReader Engine loading and initialization in C++ and Visual Basic:

Visual C++ (COM) code

// HANDLE to FREngine.dll

static HMODULE libraryHandle = O;
// Global FineReader Engine object.
FREngine: : IEnginePtr Engine;

void LoadFREngine()
{
if(Engine '=0) {
// Already loaded
return;
¥
// First step: load FREngine.dll
if(libraryHandle == 0) {

libraryHandle = LoadLibraryEx(::GetFreDIlIPathu(), O,
LOAD_WITH_ALTERED_SEARCH_PATH);

if(libraryHandle == 0) {
throw L"Error while loading ABBYY FineReader Engine™;
}
¥

// Second step: obtain the Engine object

typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine: : IEngine**);

GetEngineObjectFunc pGetEngineObject =
(GetEngineObjectFunc)GetProcAddress(libraryHandle, "‘GetEngineObject™

iT(pGetEngineObject == 0 || pGetEngineObject(::GetFreDeveloperSN(), 0, O,
&Engine) 1= S 0K) {

UnloadFREngine();
throw L"Error while loading ABBYY FineReader Engine™;

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function GetEngineObject Lib "FREngine.dll™ (_
ByVal DeveloperSN As String, _
ByVal Reservedl As String, _
ByVal Reserved2 As String, _
EngineObj As FREngine.Engine) As Long

Sub Engine_Load(ByVal DeveloperSN As String)
" Visual Basic may load libraries from the current path only
ChDir *"Path to the folder with FREngine.dll*

" this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

Dim DeveloperSN_WideChar As String
DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)

IT GetEngineObject(DeveloperSN_WideChar, ", "', Engine) <> 0 Then

28

ABBYY FineReader Engine 10 Guided Tour

MsgBox "Error loading ABBYY FineReader Engine'
End IFf
End Sub

Step 2. Loading settings for the above scenario

ABBYY FineReader Engine enables loading of all processing settings that are most suitable for this scenario using the
LoadPredefinedProfile method of the Engine object. This method uses the name of a used settings profile as an input parameter.
Please see Working with Profiles for more information.

ABBYY FineReader Engine supports 2 options of settings for this scenario. Both these profiles enable detection of all text on an image,
including text embedded into the image, while skew correction is not performed, fonts and styles are not detected, and full document
synthesis is not performed:

e DocumentArchiving Accuracy
This profile optimizes the document archiving process in order to ensure that the resulting document is of the highest
quality possible.

e DocumentArchiving Speed
This profile optimizes the processing speed of the document archiving process: the processes of document analysis and
recognition are sped up.

&Important! These profiles require the DA for Full-Text Indexing module available in the license. The DocumentArchiving Speed
profile requires additionally the Fast Mode module.

[#Note: The settings provided by these predefined profiles are not intended for converting a document into an editable format. Use
the document conversion profiles for such purpose.

Sample code for the procedure of profile loading in C++ and Visual Basic:

Visual C++ (COM) code
// Load a predefined profile
Engine->LoadPredefinedProfile(L"DocumentArchiving_Accuracy");

Visual Basic code
" Load a predefined profile
Engine.LoadPredefinedProfile "DocumentArchiving_Accuracy"

If you wish to change processing settings, use appropriate parameter objects. Please see Additional optimization for specific tasks for
further information.

Step 3. Loading and preprocessing of images

ABBYY FineReader Engine provides the FRDocument object which allows processing multi-page documents. Use of this object allows
you to preserve the logical organization of the document.

To load images of a single document and preprocess them, you should create the FRDocument object and add images into it. You
may do one of the following:

e Create the FRDocument object using the CreateFRDocumentFromImage method of the Engine object. This method
creates the FRDocument object and loads images from the specified file.

e (Create the FRDocument object with the help of the CreateFRDocument method of the Engine object, then add images to
the created FRDocument object from file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method of the FRDocument object).

Sample code for the procedure of image loading and preprocessing in C++ and Visual Basic:

Visual C++ (COM) code

// Open image Ffile and create the FRDocument object
FREngine: : IFRDocumentPtr frDocument = Engine->CreateFRDocumentFromlmage(
L"C:\\MylImage.tif", 0);

Visual Basic code

" Open image file and create the FRDocument object

Dim frDocument As FREngine.FRDocument

Set frDocument = Engine.CreateFRDocumentFromImage("'C:\Mylmage.tif'")

Step 4. Document recognition

29

ABBYY FineReader Engine 10 Guided Tour

To recognize a document, we suggest that the methods of the FRDocument object analysis and recognition be used. This object
provides a whole array of methods for document analysis, recognition and synthesis. The most convenient method allowing document
analysis, recognition and synthesis using just one method is the Process method. It also uses simultaneous processing features of
multiprocessor and multicore systems in the most efficient manner. However, you may also carry out consecutive analysis, recognition
and synthesis using the Analyze, Recognize (or AnalyzeAndRecognize) and Synthesize methods.

Sample code for the procedure of document recognition in C++ and Visual Basic:

Visual C++ (COM) code
// Analyze, recognize, and synthesize the document.

// While the profile is loaded, you do not need to pass any additional parameters to
the processing method.

pFRDocument->Process(0, 0, 0);

Visual Basic code
" Analyze, recognize, and synthesize the document.

" While the profile is loaded, you do not need to pass any additional parameters to the
processing method.

frDocument.Process

Step 5. Document export

To save a recognized document, you may use the Export method of the FRDocument object by assigning the
FileExportFormatEnum constant as one of the parameters. In this scenario you can save the document, for example, to the PDF
format using MRC in the export mode PEM_ImageOnText (property TextExportMode of the PDFExportParams object). You may
change the default parameters of export using the corresponding export object. Please see Additional optimization for specific tasks
below for further information.

After you have finished your work with the FRDocument object, release all the resources that were used by this object. Use the
IFRDocument::Close method.

Sample code for the procedure of document export to PDF in C++ and Visual Basic:

Visual C++ (COM) code
// Save a recognized document to an archive format (e.g. PDF)

// Create a PDFExportParams object

FREngine: : IPDFExportParamsPtr params = Engine->CreatePDFExportParams();
// Set necessary parameters

params->MRCMode = FREngine::MRC_Auto;

params->TextExportMode = FREngine: :PEM_ImageOnText;

// Use the parameters during export
frDocument->Export(L"C:\\MyText.pdf*", FREngine::FEF_PDF, params);

// Release the FRDocument object

frDocument->Close();

Visual Basic code

" Save a recognized document to an archive format (e.g. PDF)

" Create a PDFExportParams object

Dim params As FREngine.PDFExportParams
Set params = Engine.CreatePDFExportParams
" Set necessary parameters

params.MRCMode = MRC_Auto
params.TextExportMode = PEM_ImageOnText

" Use the parameters during export
frDocument.Export "C:\MyText.pdf', FEF_PDF, params
" Release the FRDocument object

frDocument.Close

Step 6. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine you need to unload the Engine object. To do this use the
DeinitializeEngine exported function.

30

ABBYY FineReader Engine 10 Guided Tour

Sample code for the procedure of ABBYY FineReader Engine unloading and deinitialization in C++ and Visual Basic:

Visual C++ (COM) code
void UnloadFREngine()
{
if(libraryHandle == 0) {
return;
s
// Release Engine object
Engine = O;

// Deinitialize FineReader Engine
typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();
DeinitializeEngineFunc pDeinitializeEngine =

(DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine™);

if(pDeinitializeEngine == 0 || pDeinitializeEngine() = S_OK) {
throw L"Error while unloading ABBYY FineReader Engine";
}
// Now it"s safe to free the FREngine.dll library
FreeLibrary(libraryHandle);
libraryHandle = 0;
¥

Visual Basic code
Public Engine As FREngine.Engine
Private Declare Function DeinitializeEngine Lib "FREngine.dll" () As Long
Sub Engine_Unload()
Set Engine = Nothing
ChDir "Path to the folder with FREngine.dll"
DeinitializeEngine
End Sub

Additional optimization for specific tasks

Below is the overview of the Help topics containing additional information regarding customization of settings at different stages of
document processing:

e Scanning

O Scanning
Description of the ABBYY FineReader Engine scenario for document scanning,

O Tips for Document Scanning
Getting quality images from scanning paper documents.

O Setting up Scanning Options
Implementing scanning using ABBYY FineReader Engine scanning interfaces.

e Opening and preprocessing
O Image Preprocessing
Description of the ABBYY FineReader Engine scenario for preliminary preparation of images and enhancement of
their visual quality.

e Recognition

0 Tuning Analysis, Recognition, and Synthesis Parameters
Customization of document processing using objects of analysis, recognition and synthesis parameters.

O PageProcessingParams Object
This object enables customization of analysis and recognition parameters. Using this object, you can indicate
which image and text characteristics must be detected (inverted image, orientation, bar codes, recognition
language, recognition error margin).

31

ABBYY FineReader Engine 10 Guided Tour

0 SynthesisParamsForPage Object
This object includes parameters responsible for restoration of a page formatting during synthesis.

0 SynthesisParamsForDocument Object
This object enables customization of the document synthesis: restoration of its structure and formatting.

O MultiProcessingParams Object
Simultaneous processing of documents may be useful when processing a large number of documents. In this case
the document load will be spread over the processor cores during the analysis and recognition, which makes it
possible to speed up processing. Reading modes (simultaneous or consecutive) are set using the
MultiProcessingMode property, the RecognitionProcessesCount property controls the number of processes,
which may be started.

e Export

O Tuning Export Parameters
Customization of document export using objects of export parameters.

O PDFExportParams Object
This object allows you to tune PDF (PDF/A) export with only several parameters.

0 To customize the PDF (PDF/A) format export mode, use the TextExportMode property of the
PDFExportParams object, and to customize MRC settings, use the MRCMode property.

0 Inaddition, you can customize image export settings to ensure faster processing, additional reduction of a file size,
etc. For example, you can save a colored image as a grayscale or black and white image, if this fits your scenario
(use the Colority property of the PDFExportParams object).

O You can change the image resolution in such a way that the resulting electronic copy may subsequently be printed
out on a printer, viewed on a computer screen ot you can select low resolution allowing only for reading of text
and providing very poor quality of graphics (use the Resolution and ResolutionType property of the
PDFExportParams object).

e Separation into documents

O Under this scenario, the batch of images may have to be separated into documents. ABBYY FineReader Engine 10
does not support automatic document separation. However, you can use ABBYY FlexiCapture Engine to
implement automatic separation. The documents may be separated, for instance, based on the number of pages in
a document or based on pages having separating barcodes. When implementing barcode separation, you can use
the scenario for extraction of barcode values only from the document.

See also

Basic Usage Scenarios Implementation

Book Archiving

This scenario is used for processing books, magazines, newspapers to create an electronic library; for instance, when digitizing paper
book collections for purposes of facilitating and expanding access to them and for their preservation.

Under this scenario, books, magazines, newspapers are converted into uneditable electronic copies containing all information from the
source in searchable format. As a result of such processing, the resulting copies may be easily found in the electronic library using full-
text search. During processing a special emphasis is placed on preserving the quality of the recognized text and restoring the structural
elements of the document, especially the content.

To create an electronic copy, image files obtained by scanning or saved in electronic format first need to go through several processing
stages, each of which has its own peculiarities for this scenario:

1. Image preprocessing
Images obtained by scanning may require some preprocessing prior to recognition. For instance, the image of a scanned
book may require straightening out of the lines skewed near the fold line, removal of the fold line darks, splitting of the
image of a double-page spread into two separate pages.

2. Recognition
To extract text data from a document, the document needs to be recognized. When recognizing books and newspapers,
restoring logical structure of a document is of special importance. When processing a large volume of documents,
simultaneous document processing may come in useful. In this case, during analysis and recognition the document load will
be spread over processor cores, which makes it possible to speed up processing.

32

ABBYY FineReader Engine 10 Guided Tour

3. Export
The recognized document is saved to a format used for storing data. The most convenient formats for storing documents in
an electronic library are PDF, PDF/A, PDF and PDF/A with MRC. When saving to these formats, one may use a mode, under
which the text is placed underneath a document image — this enables one to fully preserve the document formatting and
provides a full-text search. The MRC settings allow significant reduction of a file size without loss of visual quality. Also when
saving to the PDF format, one may customize security settings of the document protecting it from unauthorized viewing and
printing.

Scenario implementation

Below is the detailed description of a recommended method of using ABBYY FineReader Engine 10 for the implementation of the
above scenario. The proposed method employs the processing settings that are most suitable for the above scenario.

Step 1. Loading ABBYY FineReader Engine

To start your work with ABBYY FineReader Engine you need to create the Engine object. The Engine object is the top object in the
hierarchy of the ABBYY FineReader Engine objects and is the only ABBYY FineReader Engine externally creatable object.

To create the Engine object use the GetEngineObject exported function.
Sample code for the procedure of ABBYY FineReader Engine loading and initialization in C++ and Visual Basic:

Visual C++ (COM) code

// HANDLE to FREngine.dll

static HMODULE libraryHandle = O;
// Global FineReader Engine object.
FREngine: :1EnginePtr Engine;

void LoadFREngine()
{
if(C Engine = 0) {
// Already loaded
return;
¥
// First step: load FREngine.dll
if(libraryHandle == 0) {

libraryHandle = LoadLibraryEx(::GetFreDllIPathu(), O,
LOAD_WITH_ALTERED_SEARCH_PATH);

if(libraryHandle == 0) {
throw L"Error while loading ABBYY FineReader Engine™;
}
¥

// Second step: obtain the Engine object

typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine: :1Engine**);
GetEngineObjectFunc pGetEngineObject =

(GetEngineObjectFunc)GetProcAddress(libraryHandle, "GetEngineObject"
):

iT(pGetEngineObject == 0 || pGetEngineObject(::GetFreDeveloperSN(), 0, O,
&Engine) 1= S 0K) {
UnloadFREngine();
throw L"Error while loading ABBYY FineReader Engine™;

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function GetEngineObject Lib "FREngine.dll™ (_
ByVal DeveloperSN As String, _

33

ABBYY FineReader Engine 10 Guided Tour

ByVal Reservedl As String, _
ByVal Reserved2 As String, _
EngineObj As FREngine.Engine) As Long

Sub Engine_Load(ByVal DeveloperSN As String)
" Visual Basic may load libraries from the current path only
ChDir "Path to the folder with FREngine.dll"

" this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

Dim DeveloperSN_WideChar As String
DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)

IT GetEngineObject(DeveloperSN_WideChar, "™, "', Engine) <> 0 Then
MsgBox "Error loading ABBYY FineReader Engine'
End If
End Sub

Step 2. Loading settings for the above scenario

ABBYY FineReader Engine enables one to load all processing settings that are most suitable for this scenario using the
LoadPredefinedProfile method of the Engine object. This method uses the name of a used settings profile as an input parameter.
Please see Working with Profiles for more information.

ABBYY FineReader Engine supports 2 options of settings for this scenario. Both these profiles enable font style detection and full
document synthesis:

e BookArchiving Accuracy
This profile optimizes document processing in order to ensure that the resulting document is of the highest quality possible.

e BookArchiving Speed
This profile optimizes the processing speed of the document creation process.
#Important! This profile requires the Fast Mode module available in the license.

Sample code for the procedure of profile loading in C++ and Visual Basic:

Visual C++ (COM) code
// Load a predefined profile
Engine->LoadPredefinedProfile(L"BookArchiving_Speed");

Visual Basic code
" Load a predefined profile
Engine.LoadPredefinedProfile "BookArchiving_Speed"

If you wish to change processing settings, use appropriate parameter objects. Please see Additional optimization for specific tasks
below for further information.

Step 3. Loading and preprocessing of images

ABBYY FineReader Engine provides the FRDocument object which allows processing multi-page documents. Use of this object allows
you to preserve the logical organization of the document, retaining the original text and columns, fonts, styles, etc.

To load images of a single document and preprocess them, you should create the FRDocument object and add images into it. You
may do one of the following;:

e Create the FRDocument object using the CreateFRDocumentFromImage method of the Engine object. This method
creates the FRDocument object and loads images from the specified file.

e Create the FRDocument object with the help of the CreateFRDocument method of the Engine object, then add images to
the created FRDocument object from file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method of the FRDocument object).

Sample code for the procedure of image loading and preprocessing in C++ and Visual Basic:

Visual C++ (COM) code
// Open image file and create the FRDocument object

34

ABBYY FineReader Engine 10 Guided Tour

FREngine: : IFRDocumentPtr frDocument = Engine->CreateFRDocumentFromlmage(
L"C:\\MylImage.tif"", 0);

Visual Basic code

" Open image file and create the FRDocument object

Dim frDocument As FREngine.FRDocument

Set frDocument = Engine.CreateFRDocumentFromimage(*'C:\Mylmage.tif")

Step 4. Document recognition

To recognize a document, we suggest that the methods of the FRDocument object analysis and recognition be used. This object
provides a whole array of methods for document analysis, recognition and synthesis. The most convenient method allowing document
analysis, recognition and synthesis using just one method is the Process method. It also takes advantage simultaneous processing
features of multiprocessor and multicore systems in the most efficient manner. However, you may also perform consecutive analysis,
recognition and synthesis using Analyze, Recognize (or AnalyzeAndRecognize) and Synthesize methods.

Sample code for the procedure of document recognition in C++ and Visual Basic:

Visual C++ (COM) code
// Analyze, recognize, and synthesize the document

// While the profile is loaded, you do not need to pass any additional parameters to
the processing method.

pFRDocument->Process(0, 0, 0);

Visual Basic code
" Analyze, recognize, and synthesize the document

* While the profile is loaded, you do not need to pass any additional parameters to the
processing method.

frDocument.Process

Step 5. Document export

To save a recognized document, you may use the Export method of the FRDocument object by assigning the
FileExportFormatEnum constant as one of the parameters. In this scenario you can save the document, for example, to the PDF/A
format with MRC in the PEM_ImageOnText export mode (the TextExportMode property of the PDFExportParams object). You
may change the default parameters of export using the corresponding export object. Please see Additional optimization for specific
tasks below for further information.

After you have finished your work with the FRDocument object, release all the resources that were used by this object. Use the
IFRDocument::Close method.

Sample code for the procedure of document export to PDF/A in C++ and Visual Basic:

Visual C++ (COM) code
// Save a recognized document to an archive format (e.g. PDF/A)

// Create a PDFExportParams object

FREngine: : IPDFExportParamsPtr params = Engine->CreatePDFExportParams();
// Set necessary parameters

params->PDFACompl ianceMode = FREngine::PCM_Pdfa_1la;

params->MRCMode = FREngine: :MRC_Always;

params->TextExportMode = FREngine: :PEM_ImageOnText;

// Use the parameters during export
frDocument->Export(L"C:\\MyText.pdf", FREngine::FEF_PDFA, params);

// Release the FRDocument object
frDocument->Close();

Visual Basic code
" Save a recognized document to an archive format (e.g. PDF/A)

* Create a PDFExportParams object

Dim params As FREngine.PDFExportParams
Set params = Engine.CreatePDFExportParams
" Set necessary parameters
params.PDFAComplianceMode = PCM_Pdfa_1la
params.MRCMode = MRC_Always
params.TextExportMode = PEM_ImageOnText

35

ABBYY FineReader Engine 10 Guided Tour

" Use the parameters during export
frDocument.Export "C:\MyText.pdf", FEF_PDFA, params

" Release the FRDocument object
frDocument.Close

Step 6. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine you need to unload the Engine object. To do this use the
DeinitializeEngine exported function.

Sample code for the procedure of ABBYY FineReader Engine unloading and deinitialization in C++ and Visual Basic:

Visual C++ (COM) code
void UnloadFREngine()
{
if(libraryHandle == 0) {
return;
}
// Release Engine object
Engine = 0;

// Deinitialize FineReader Engine
typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();
DeinitializeEngineFunc pDeinitializeEngine =
(DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine”);
iT(pDeinitializeEngine == 0 || pDeinitializeEngine() = S 0K) {
throw L"Error while unloading ABBYY FineReader Engine’;
¥
// Now it"s safe to free the FREngine.dll library
FreeLibrary(libraryHandle);
libraryHandle = 0;
}

Visual Basic code
Public Engine As FREngine.Engine
Private Declare Function DeinitializeEngine Lib "FREngine.dll"™ () As Long
Sub Engine_Unload()
Set Engine = Nothing
ChDir "Path to the folder with FREngine.dll"
DeinitializeEngine
End Sub

Additional optimization for specific tasks

Below is the overview of the Help topics containing additional information regarding customization of settings at different stages of
document processing:

e Scanning

O Scanning
Description of the ABBYY FineReader Engine scenario for document scanning.

e Opening and preprocessing
O Image Preprocessing
Description of the ABBYY FineReader Engine scenario for preliminary preparation of images or enhancement of
their visual quality.

e Recognition

O Tuning Analysis, Recognition, and Synthesis Parameters
Customization of document processing using objects of analysis, recognition and synthesis parameters.

36

ABBYY FineReader Engine 10 Guided Tour

0 PageProcessingParams Object
This object enables customization of analysis and recognition parameters. Using this object, you can indicate
which image and text characteristics must be detected (inverted image, orientation, barcodes, recognition
language, recognition error margin).

0 SynthesisParamsForPage Object
This object includes parameters responsible for restoration of a page formatting during synthesis.

0 SynthesisParamsForDocument Object
This object enables customization of document synthesis: restoration of its structure and formatting.

O MultiProcessingParams Object
Simultaneous processing of documents may be useful when processing a large number of documents. In this case
the document load will be spread over the processor cores during the analysis and recognition, which makes it
possible to speed up processing. Reading modes (simultaneous or consecutive) are set using the
MultiProcessingMode property. The RecognitionProcessesCount property controls the number of
processes, which may be started.

e Export

O Tuning Export Parameters
Customization of the document export using objects of export parameters.

O PDFExportParams Object
This object enables customization of the PDF saving format parameters.

0 To customize the PDF (PDF/A) format export mode, use the TextExportMode property of the
PDFExportParams object, and to customize MRC settings, use the MRCMode property.

See also

Basic Usage Scenarios Implementation

Text Extraction
This scenario is used to recognize the entire document text in order to prepare the document for search and extraction of useful data.

Such a scenario may serve as a basis for implementing more complex scenarios to extract vital data from documents, especially for
automated input of paper document data into information systems and databases as well as for automated classification and
indexation of documents in document management systems (e.g., inputting invoices into accounting software, inputting
questionnaires into the CRM system).

This scenario enables extraction of the main text of the document, which contains all necessary information about the document.
When using this scenario, main text data including texts on logos, seals and elements other than the main text, are extracted from the
text.

To extract the main text of the document, image files obtained by scanning or saved in electronic format typically go through several
processing stages, each of which has its own peculiarities in the content of this scenario:

1. Image preprocessing
Scanned images may require some preprocessing prior to recognition, for example, if scanned documents contain
background noise, skewed text, inverted colors, black margins, wrong orientation or resolution.

2. Recognition
Recognition of images is performed using settings, which ensure that the maximum amount of text is extracted from a
document image.

The text obtained as a result of processing may be used for searching vital data (however, information regarding the search for vital
data lies outside the scope of this scenario). A certain algorithm is used to look up key words, e.g. names of form margins, tables, lines
and table columns, signature and stamp fields, etc. Field containing important data are highlighted based on key words. These fields
may be re-read using special recognition parameters depending on the type of data. The data found may be checked for consistency
with the type and restrictions specified.

The data found may be saved to a database and an electronic uneditable copy of the paper document may be placed in the archive.

Scenario implementation

Below is the detailed description of the recommended method of using ABBYY FineReader Engine 10 for implementation of the above
scenario. The proposed method uses processing settings that are most suitable for this scenario.

37

ABBYY FineReader Engine 10 Guided Tour

Step 1. Loading ABBYY FineReader Engine

To start your work with ABBYY FineReader Engine you need to create the Engine object. The Engine object is the top object in the
hierarchy of the ABBYY FineReader Engine objects and is the only ABBYY FineReader Engine externally creatable object.

To create the Engine object use the GetEngineObject exported function.
Sample code for the procedure of ABBYY FineReader Engine loading and initialization in C++ and Visual Basic:

Visual C++ (COM) code
// HANDLE to FREngine.dll
static HMODULE libraryHandle = O;
// Global FineReader Engine object.
FREngine: :1EnginePtr Engine;
void LoadFREngine()
{
if(Engine =0) {
// Already loaded
return;
}
// First step: load FREngine.dll
if(libraryHandle == 0) {
libraryHandle = LoadLibraryEx(::GetFreDllIPathu(), O,
LOAD_WITH_ALTERED_SEARCH_PATH);

if(libraryHandle == 0) {
throw L"Error while loading ABBYY FineReader Engine™;
}

}
// Second step: obtain the Engine object
typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine: :1Engine**);
GetEngineObjectFunc pGetEngineObject =
(GetEngineObjectFunc)GetProcAddress(libraryHandle, "GetEngineObject"
)
iT(pGetEngineObject == 0 || pGetEngineObject(::GetFreDeveloperSN(), 0, O,
&Engine) =S 0K) {
UnloadFREngine();
throw L"Error while loading ABBYY FineReader Engine';

}

Visual Basic code
Public Engine As FREngine.Engine
Private Declare Function GetEngineObject Lib "FREngine.dil™ (_
ByVal DeveloperSN As String, _
ByVal Reservedl As String, _
ByVal Reserved2 As String, _
EngineObj As FREngine.Engine) As Long
Sub Engine_Load(ByVal DeveloperSN As String)
® Visual Basic may load libraries from the current path only
ChDir "Path to the folder with FREngine.dll™

" this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

Dim DeveloperSN_WideChar As String
DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)
IT GetEngineObject(DeveloperSN_WideChar, ', ", Engine) <> 0 Then
MsgBox "Error loading ABBYY FineReader Engine"
End If
End Sub

38

ABBYY FineReader Engine 10 Guided Tour

Step 2. Loading settings for the above scenario

The most suitable settings for this scenario may be selected in ABBYY FineReader Engine using the LoadPredefinedProfile method
of the Engine object. This method uses the name of a used settings profile as an input parameter. Please see Working with Profiles for
more information.

ABBYY FineReader Engine supports 2 options of settings for this scenario. Both these profiles enable detection of all text on an image,
including small text areas of low quality (pictures and tables are not detected), while fonts and styles are not detected, and full
document synthesis is not performed:

o TextExtraction Accuracy
This profile optimizes the text extraction process in order to ensure that the resulting document is of the highest quality
possible.

o TextExtraction Speed
This profile optimizes the processing speed of the text extraction process: the processes of document analysis and
recognition are sped up.

fHImportant! These profiles require the DA for Invoices module available in the license. The TextExtraction Speed profile requires
additionally the Fast Mode module.

Sample code for the procedure of profile loading in C++ and Visual Basic:

Visual C++ (COM) code
// Load a predefined profile
Engine->LoadPredefinedProfile(L"TextExtraction_Accuracy”);

Visual Basic code
" Load a predefined profile
Engine.LoadPredefinedProfile "TextExtraction_Accuracy"

If you wish to change processing settings, use appropriate parameter objects. Please see Additional optimization for specific tasks
below for further information.

Step 3. Loading and preprocessing of images

ABBYY FineReader Engine provides the FRDocument object which allows processing multi-page documents.

To load images of a single document and preprocess them, you should create the FRDocument object and add images into it. You
may do one of the following:

e Create the FRDocument object using the CreateFRDocumentFromImage method of the Engine object. This method
creates the FRDocument object and loads images from the specified file.

e (Create the FRDocument object with the help of the CreateFRDocument method of the Engine object, then add images to
the created FRDocument object from file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method of the FRDocument object).

Sample code for the procedure of image loading and preprocessing in C++ and Visual Basic:

Visual C++ (COM) code

// Open image file and create the FRDocument object
FREngine: : IFRDocumentPtr frDocument = Engine->CreateFRDocumentFromlmage (
L"C:\\MylImage.tif", 0);

Visual Basic code

" Open image file and create the FRDocument object

Dim frDocument As FREngine.FRDocument

Set frDocument = Engine.CreateFRDocumentFromlimage(''C:\Mylmage.tif")

Step 4. Document recognition

To recognize the document you should use analysis and recognition methods of the FRDocument object. This object provides a
whole array of methods for document analysis and recognition. The most convenient method allowing document analysis, recognition
and synthesis using just one method is the Process method. It also uses simultaneous processing features of multiprocessor and
multicore systems in the most efficient manner. However, you may also carry out consecutive analysis, recognition and synthesis using
Analyze, Recognize (or AnalyzeAndRecognize) methods.

Sample code for the procedure of document recognition in C++ and Visual Basic:

39

ABBYY FineReader Engine 10 Guided Tour

Visual C++ (COM) code
// Analyze, recognize, and synthesize the document.

// While the profile is loaded, you do not need to pass any additional parameters to
the processing method.

pFRDocument->Process(0, 0, 0);
Visual Basic code

" Analyze, recognize, and synthesize the document.

" While the profile is loaded, you do not need to pass any additional parameters to the
processing method.

frDocument.Process
Step 5. Searching for vital information

During analysis ABBYY FineReader Engine selects image blocks containing text, tables, pictures, etc. In the course of recognition the
blocks containing text data get filled with the recognized text.

In ABBYY FineReader Engine the Layout object serves as a storage for blocks and recognized text. The main scenario of document
processing works with layout within the FRDocument object which represents processing document. To access a layout of a
document page, use the IFRPage::Layout property.

To search for key words, you may view the recognized text using the Text object, which is accessible via the properties of the text,
table or barcode blocks.

The vital data you have found may be saved or processed as required. Please see Additional optimization for specific tasks below for
more detailed information.

After you have finished your work with the FRDocument object, release all the resources that were used by this object. Use the
IFRDocument::Close method.

Step 6. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine you need to unload the Engine object. To do this use the
DeinitializeEngine exported function.

Sample code for the procedure of ABBYY FineReader Engine unloading and deinitialization in C++ and Visual Basic:

Visual C++ (COM) code
void UnloadFREngine()
{
if(libraryHandle == 0) {
return;
}
// Release Engine object
Engine = 0;

// Deinitialize FineReader Engine
typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();
DeinitializeEngineFunc pDeinitializeEngine =
(DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine”);
iT(pDeinitializeEngine == 0 || pDeinitializeEngine() = S_OK) {
throw L"Error while unloading ABBYY FineReader Engine™;
}
// Now it"s safe to free the FREngine.dll library
FreeLibrary(libraryHandle);
libraryHandle = O;
}

Visual Basic code
Public Engine As FREngine.Engine
Private Declare Function DeinitializeEngine Lib "FREngine.dll'™ () As Long
Sub Engine_Unload()
Set Engine = Nothing
ChDir "Path to the folder with FREngine.dll"
DeinitializeEngine

40

ABBYY FineReader Engine 10 Guided Tour

End Sub

Additional optimization for specific tasks

e Scanning

O Scanning
Description of the ABBYY FineReader Engine scenario for document scanning,

e Opening and preprocessing

O Image Preprocessing
Description of the ABBYY FineReader Engine scenario for preliminary preparation of images.

e Recognition

0 Tuning Analysis, Recognition, and Synthesis Parameters
Customization of document processing using objects of analysis, recognition and synthesis parameters.

0 PageProcessingParams Object
This object enables customization of analysis and recognition parameters. Using this object, you can indicate
which image and text characteristics must be detected (inverted image, orientation, barcodes, recognition
language, recognition error margin).

O SynthesisParamsForPage Object
This object includes parameters responsible for restoration of a page formatting during synthesis.

0 SynthesisParamsForDocument Object
This object enables customization of document synthesis: restoration of its structure and formatting.

O MultiProcessingParams Object
Reading modes (simultaneous or consecutive) are set using the MultiProcessingMode property. The
RecognitionProcessesCount property controls the number of processes, which may be started.

e Searching for vital information

O Working with Layout and Blocks
About page layout, block types, and working with them.

O Layout Object
This object's parameters provide access to the page layout and the recognized text after document recognition.

0 Working with Text
Working with recognized text, paragraphs, words and symbols.

¢ Re-reading of document using special parameters for specified data type

0 Field-Level Recognition
Description of scenario for recognizing short text segments.

e Saving data

0 To save recognized data, you may use the Export or ExportPages methods of the FRDocument object by
assigning the FileExportFormatEnum constant as one of the parameters.

0 Document Archiving
Description of the scenario for saving an electronic copy of document.
See also

Basic Usage Scenarios Implementation

Field-Level Recognition

In the case of field-level recognition, short text fragments are recognized in order to capture data from certain fields. Recognition
quality is crucial in this scenario.

41

ABBYY FineReader Engine 10 Guided Tour

This scenario may also be used as part of more complex scenarios where meaningful data are to be extracted from documents (for
example, to capture data from paper documents into information systems and databases or to automatically classify and index
documents in Document Management Systems).

In this scenario, the system recognizes either several lines of text in only some of the fields or the entire text on a small image. The
system computes a certainty rating for each recognized character. The certainty ratings can then be used when checking the
recognition results. Additionally, the system may store multiple recognition variants for words and characters in the text, which may
then be used in voting algorithms to improve the quality of recognition.

The processing of small text fragments in this scenario is in some ways different from the same steps in other scenarios:

1. Image preprocessing
The images to be recognized may include markup and background noise, both of which may hamper recognition. For this
reason, any unwanted markup and background noise are removed at this stage.

2. Recognition

When recognizing small text fragments, the type of the data to be recognized is known in advance. Therefore, the quality of

recognition may be improved through the use of external dictionaries, regular expressions, custom recognition languages
and alphabets, and by imposing restrictions on the number of characters in a string. Text fields may contain both printed
and handprinted text.

3. Working with the recognized data
This scenario requires maximum recognition accuracy in order to keep data verification work to a minimum. The system
may compute a certainty rating for each recognized word or character and provide multiple recognition variants from
which several Engines may then choose the best candidate by applying voting algorithms.

Implementing the scenario

Below follows a detailed description of the recommended method of using of ABBYY FineReader Engine 10 in this scenario. The
suggested method uses processing settings deemed most appropriate for this scenario.

Step 1. Loading ABBYY FineReader Engine

To start working with ABBYY FineReader Engine, you need to create the Engine object. The Engine object is the top object in the
hierarchy of the ABBYY FineReader Engine objects and is the only externally creatable object in ABBYY FineReader Engine.

To create the Engine object, use the GetEngineObject exported function. Sample C++ and Visual Basic code for loading and
initializing ABBYY FineReader Engine:
Visual C++ (COM) code
// HANDLE to FREngine.dll
static HMODULE libraryHandle = O;
// Global FineReader Engine object.
FREngine: :1EnginePtr Engine;
void LoadFREngine()
{
if(C Engine = 0) {
// Already loaded
return;
}
// First step: load FREngine.dll
if(libraryHandle == 0) {
libraryHandle = LoadLibraryEx(::GetFreDIIPathu(), O,
LOAD_WITH_ALTERED_SEARCH_PATH);

if(libraryHandle == 0) {
throw L"Error while loading ABBYY FineReader Engine™;
}

}
// Second step: obtain the Engine object
typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine::1Engine**);
GetEngineObjectFunc pGetEngineObject =
(GetEngineObjectFunc)GetProcAddress(libraryHandle, "GetEngineObject"

42

ABBYY FineReader Engine 10 Guided Tour

iT(pGetEngineObject == 0 || pGetEngineObject(::GetFreDeveloperSN(), 0, O,
&Engine) 1= S 0K) {
UnloadFREngine();
throw L"Error while loading ABBYY FineReader Engine™;

}

Visual Basic code
Public Engine As FREngine.Engine
Private Declare Function GetEngineObject Lib "FREngine.dil™ (_
ByVal DeveloperSN As String, _
ByVal Reservedl As String, _
ByVal Reserved2 As String, _
EngineObj As FREngine.Engine) As Long
Sub Engine_Load(ByVal DeveloperSN As String)
" Visual Basic may load libraries from the current path only
ChDir "Path to the folder with FREngine.dll"

" this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

Dim DeveloperSN_WideChar As String
DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)
IT GetEngineObject(DeveloperSN_WideChar, ™, ™', Engine) <> 0 Then
MsgBox "Error loading ABBYY FineReader Engine"
End If
End Sub

Step 2. Loading settings for the scenario

The most suitable settings can be selected by using the LoadPredefinedProfile method of the Engine object. This method accepts
the name of the settings profile being used as an input parameter. The most suitable settings can be loaded by using the pre-defined
profile named FieldLevelRecognition. For more about profiles, see Working with Profiles.

Sample code for the procedure of profile loading in C++ and Visual Basic:

Visual C++ (COM) code

// Load a predefined profile
Engine->LoadPredefinedProfile(L"FieldLevelRecognition™);
Visual Basic code

" Load a predefined profile

Engine.LoadPredefinedProfile "FieldLevelRecognition"

If you wish to change the settings used for processing, use the corresponding parameter objects. See the Additional optimization
section below for more information.

Step 3. Loading and preprocessing images

ABBYY FineReader Engine provides a FRDocument object for processing multi-page documents. To load the images of a document
and preprocess them, you should create the FRDocument object and add images into it. You can do one of the following:

e Create an FRDocument object using the CreateFRDocumentFromImage method of the Engine object. This method
creates an FRDocument object and loads images from a specified file.

e Create an FRDocument object with the help of the CreateFRDocument method of the Engine object, then add the images
into the created FRDocument object from a file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method of the FRDocument object).

Sample code for the procedure of image loading and preprocessing in C++ and Visual Basic:

Visual C++ (COM) code
// Open image file and create the FRDocument object

FREngine: : IFRDocumentPtr frDocument = Engine->CreateFRDocumentFromlmage(
L"C:\\MylImage.tif", 0);

Visual Basic code

43

ABBYY FineReader Engine 10 Guided Tour

" Open image file and create the FRDocument object
Dim frDocument As FREngine.FRDocument
Set frDocument = Engine.CreateFRDocumentFromImage("'C:\MylImage.tif'")

Step 4. Recognition

In this scenario, methods which include synthesis have to be used for recognition. Only this approach will make the character
attributes available for further operations after recognition. The most convenient method allowing document analysis, recognition and
synthesis using just one method is the Process method. However, you may also perform consecutive analysis, recognition and
synthesis using Analyze, Recognize (or AnalyzeAndRecognize) and Synthesize methods.

Also you may use user dictionaries and special languages during recognition. See the Additional optimization section below for more
information.

Sample code for the procedure of document recognition in C++ and Visual Basic:

Visual C++ (COM) code
// Analyze, recognize, and synthesize the document

// While the profile is loaded, you do not need to pass any additional parameters to
the processing method.

pFRDocument->Process(0, 0, 0);

Visual Basic code
" Analyze, recognize, and synthesize the document

" While the profile is loaded, you do not need to pass any additional parameters to the
processing method.

frDocument.Process

Step 5. Working with the recognized data

Use the Text object to access the recognized text fragment (you can get this object for a text block via the ITextBlock::Text
property). Use the Paragraphs property to get the collection of paragraphs in the fragment and the IParagraphs::Item method to
access the individual paragraphs. The IParagraph::Text property provides access to the recognized text of a paragraph.

You can use the IParagraph::Words to get the collection of words in a paragraph. Use the IWords::Item method to access
individual words in the collection. The IWord::Text property returns the line that contains the recognized word. Use the
GetRecognitionVariants method of the Word object or the GetWordRecognitionVariants method of the Paragraph object to
get the recognition variants for a word.

The attributes of individual characters can be accessed via the GetCharParams method of the Paragraphs object. This method
provides access to the CharParams object, which contains the parameters of the recognized character. The recognition variants for a
character are accessible via the ICharParams::CharacterRecognitionVariants property.

For detailed information on working with text, see Working with Text. For information on using the Engine in voting algorithms, see
Using Voting APL

After you have finished your work with the FRDocument object, release all the resources that were used by this object. Use the
IFRDocument::Close method.

Step 6. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine, you need to unload the Engine object. To do this, use the
DeinitializeEngine exported function.

Sample C++ and Visual Basic code for unloading and deinitializing ABBYY FineReader Engine:

Visual C++ (COM) code
void UnloadFREngine()
{
if(libraryHandle == 0) {
return;
}
// Release Engine object
Engine = 0;

// Deinitialize FineReader Engine
typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();
DeinitializeEngineFunc pDeinitializeEngine =

(DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine”);

44

ABBYY FineReader Engine 10 Guided Tour

iT(pDeinitializeEngine == 0 || pDeinitializeEngine() = S_OK) {
throw L"Error while unloading ABBYY FineReader Engine';
}
// Now it"s safe to free the FREngine.dll library
FreeLibrary(libraryHandle);
libraryHandle = O;
}

Visual Basic code
Public Engine As FREngine.Engine
Private Declare Function DeinitializeEngine Lib "FREngine.dll"™ () As Long
Sub Engine_Unload()
Set Engine = Nothing
ChDir "Path to the folder with FREngine.dll"
DeinitializeEngine
End Sub

Additional optimization

These are the sections of the help file where you can find additional information about setting up the parameters for the various
processing stages:

e Opening and preprocessing images

O Image Preprocessing
Describes a scenario of using ABBYY FineReader Engine to preprocess images.

e Recognition

O Working with Languages
Using built-in and custom recognition languages.

O Working with Dictionaries
Using dictionaries to improve recognition quality.

O Recognizing Words with Spaces
Using dictionaries to recognize words with spaces (such as New York, etc.)

0 Recognizing Handprinted Texts
Using ICR (Intelligent Character Recognition).

O Recognizing Checkmarks
Setting up recognition of checkmarks and groups of checkmarks.

e Working with the recognized data

0 Working with Text
Working with the recognized text, paragraphs, words, and characters.

0 Using Voting API
Working with words and character recognition alternatives.
See also

Basic Usage Scenarios Implementation

Barcode Recognition

In this scenario, ABBYY FineReader Engine is used to read barcodes. Barcodes may need to be read, for example, for purposes of
automatic document separation, for processing documents by a Document Management System, or for indexing and classifying
documents.

This scenario may be used as part of other scenarios. For example, documents scanned with high-speed production scanners may be
separated by means of barcodes, or documents prepared for long-term storage may be placed into archiving Document Management
Systems based on the values of their barcodes.

45

ABBYY FineReader Engine 10 Guided Tour

When extracting barcodes from texts, the system may detect all barcodes or only barcodes of a certain type with a certain value. The
system may get the value of a barcode and calculate its check sum.

Recognized barcode values can be saved into formats most convenient for further processing, for example into TXT.

Implementing the scenario

Below follows a detailed description of the recommended method of using of ABBYY FineReader Engine 10 in this scenario. The
suggested method uses processing settings deemed most appropriate for this scenario.

Step 1. Loading ABBYY FineReader Engine

To start working with ABBYY FineReader Engine, you need to create the Engine object. The Engine object is the top object in the
hierarchy of the ABBYY FineReader Engine objects and is the only externally creatable object in ABBYY FineReader Engine.

To create the Engine object, use the GetEngineObject exported function. Sample C++ and Visual Basic code for loading and
initializing ABBYY FineReader Engine:

Visual C++ (COM) code
// HANDLE to FREngine.dll
static HMODULE libraryHandle = O;
// Global FineReader Engine object.
FREngine: : IEnginePtr Engine;
void LoadFREngine()
{
if(Engine =0) {
// Already loaded
return;
}
// First step: load FREngine.dll
if(libraryHandle == 0) {

libraryHandle = LoadLibraryEx(::GetFreDllIPathu(), O,
LOAD_WITH_ALTERED_SEARCH_PATH);

if(libraryHandle == 0) {
throw L"Error while loading ABBYY FineReader Engine™;
}

}
// Second step: obtain the Engine object
typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine: : IEngine**);
GetEngineObjectFunc pGetEngineObject =
(GetEngineObjectFunc)GetProcAddress(libraryHandle, "GetEngineObject"
)
if(pGetEngineObject == 0 || pGetEngineObject(::GetFreDevelopersN(), 0, O,
&Engine) =S 0K) {
UnloadFREngine();
throw L"Error while loading ABBYY FineReader Engine™;

}

Visual Basic code
Public Engine As FREngine.Engine
Private Declare Function GetEngineObject Lib "FREngine.dil"™ (_
ByVal DeveloperSN As String, _
ByVal Reservedl As String, _
ByVal Reserved2 As String, _
EngineObj As FREngine.Engine) As Long
Sub Engine_Load(ByVal DeveloperSN As String)
" Visual Basic may load libraries from the current path only
ChDir "Path to the folder with FREngine.dll"

® this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

46

ABBYY FineReader Engine 10 Guided Tour

Dim DeveloperSN_WideChar As String
DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)
IT GetEngineObject(DeveloperSN_WideChar, ", ", Engine) <> 0 Then
MsgBox *"Error loading ABBYY FineReader Engine™
End IFf
End Sub

Step 2. Loading settings for the scenario

The most suitable settings can be selected by using the LoadPredefinedProfile method of the Engine object. This method accepts
the name of the settings profile being used as an input parameter. For more about profiles, see Working with Profiles.

The most suitable settings for the scenario can be loaded by using the predefined profile named BarcodeRecognition. This profile
enables extracting only barcodes (texts, pictures, or tables are not detected).

S Important! This profile requires the Barcode Autolocation module available in the license.
Sample code for the procedure of profile loading in C++ and Visual Basic:

Visual C++ (COM) code
// Load a predefined profile
Engine->LoadPredefinedProfile(L"BarcodeRecognition®);

Visual Basic code
" Load a predefined profile
Engine.LoadPredefinedProfile "BarcodeRecognition™

If you wish to change the settings used for processing, use the corresponding parameter objects. See the Additional optimization
section below for more information.

Step 3. Loading and preprocessing images

ABBYY FineReader Engine provides a FRDocument object for processing multi-page documents. To load the images of a document
and preprocess them, you should create the FRDocument object and add images into it. You can do one of the following:

e Create an FRDocument object using the CreateFRDocumentFromImage method of the Engine object. This method
creates an FRDocument object and loads images from a specified file.

e Create an FRDocument object with the help of the CreateFRDocument method of the Engine object, then add the images
into the created FRDocument object from a file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method of the FRDocument object).

Sample code for the procedure of image loading and preprocessing in C++ and Visual Basic:

Visual C++ (COM) code

// Open image file and create the FRDocument object
FREngine: : IFRDocumentPtr frDocument = Engine->CreateFRDocumentFromlmage(
L"C:\\MylImage.tif", 0);

Visual Basic code

" Open image file and create the FRDocument object

Dim frDocument As FREngine.FRDocument

Set frDocument = Engine.CreateFRDocumentFromimage(*'C:\Mylmage.tif")

Step 4. Extracting barcodes

If the BarcodeRecognition profile is loaded, you may use the Process method of the FRDocument object to extract only barcodes. In
this case ABBYY FineReader Engine detects only blocks with barcodes. No other blocks are detected. The recognized barcode blocks
can be accessed via the Layout object obtained by the above methods.

To read barcodes of a specific type, specify the appropriate parameters of the BarcodeParams object and pass the BarcodeParams
object as a parameter of one of the above functions.

Sample code for the procedure of extracting barcodes in C++ and Visual Basic:

Visual C++ (COM) code
// Extract barcodes

// While the BarcodeRecognition profile is loaded, you do not need to pass any
additional parameters to the processing method.

pFRDocument->Process(0, 0, 0);

47

ABBYY FineReader Engine 10 Guided Tour

Visual Basic code
" Extract barcodes

" While the BarcodeRecognition profile is loaded, you do not need to pass any
additional parameters to the processing method.

frDocument.Process

Step 5. Exporting the recognized data

To save the values of the recognized barcodes to a file, you may use the Export method of the FRDocument object by assigning the
FileExportFormatEnum constant as one of the parameters. This scenario can export, for example, to TXT. You may change the
default parameters of export using the corresponding export object. Please see Additional optimization for specific tasks below for
further information.

After you have finished your work with the FRDocument object, release all the resources that were used by this object. Use the
IFRDocument::Close method.

Sample code for the procedure of document export to text format in C++ and Visual Basic:

Visual C++ (COM) code

// Save recognized barcodes to some format (e.g- TXT)
frDocument->Export(L"C:\\sample.txt", FREngine::FEF_TXT, O);
// Release the FRDocument object

frDocument->Close();

Visual Basic code

" Save recognized barcodes to some format (e.g- TXT)
frDocument.Export "C:\sample.txt", FEF_TXT, Nothing

" Release the FRDocument object

frDocument.Close

Step 6. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine, you need to unload the Engine object. To do this, use the
DeinitializeEngine exported function.

Sample C++ and Visual Basic code for unloading and deinitializing ABBYY FineReader Engine:

Visual C++ (COM) code
void UnloadFREngine()
{
if(libraryHandle == 0) {
return;
s
// Release Engine object
Engine = 0;

// Deinitialize FineReader Engine
typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();
DeinitializeEngineFunc pDeinitializeEngine =
(DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine”);
iT(pDeinitializeEngine == 0 || pDeinitializeEngine() = S_OK) {
throw L"Error while unloading ABBYY FineReader Engine™;
}
// Now it"s safe to free the FREngine.dll library
FreeLibrary(libraryHandle);
libraryHandle = 0O;
}

Visual Basic code
Public Engine As FREngine.Engine
Private Declare Function DeinitializeEngine Lib "FREngine.dll"™ () As Long
Sub Engine_Unload()
Set Engine = Nothing
ChDir "Path to the folder with FREngine.dll"

48

ABBYY FineReader Engine 10 Guided Tour

DeinitializeEngine

End Sub

Additional optimization

These are the sections of the help file where you can find additional information about setting up the parameters for the various

processing stages:

e Opening and preprocessing images

(0]

Image Preprocessing
Describes a scenario of using ABBYY FineReader Engine to preprocess images.

e Extracting and reading barcodes

(0]

BarcodeParams Object
This object allows you to set up the barcode analysis and reading parameters.

Barcode Types
The list of barcodes supported in ABBYY FineReader Engine 10 and their brief descriptions.

FRDocument Object
Apart from barcode values, you may need to extract other information contained in document. In this case you
may wish to use the methods of the FRDocument object.

PageProcessingParams Object

This object allows you to set up analysis and recognition parameters for the entire document. Using this object,
you may specify whether barcode values should be recognized. To detect barcodes, set the value of the
DetectBarcodes property to TRUE. Otherwise, barcodes will be identified as pictures. The barcode reading
parameters are accessible via the BarcodeParams property.

Working with Layout and Blocks
You can also mark barcode blocks manually and specify their analysis and reading parameters. This section
provides detailed information on working with blocks.

e Working with the recognized barcode values

(0]

e Export

See also

BarcodeBlock Object

The Text and BarcodeText properties of this object contain the value of the barcode obtained through
recognition. The other properties of this object can be used to get the type of the barcode, its orientation, and
other parameters.

Tuning Export Parameters
Setting up export with the objects of export parameters.

TextExportParams Object
This object allows you to set up the saving of recognition results to TXT.

Basic Usage Scenarios Implementation

Image Preprocessing

This scenario can be used to prepare images for further processing or to improve their visual quality (e.g. after scanning or prior to

recognition).

This scenario may be used as part of other scenarios in the first stage of document processing, i.e. to prepare documents for
recognition. Usage examples include creating uneditable document copies for archiving, getting editable versions of documents, and
extracting meaningful data from documents.

In this scenario, image files are subjected to additional processing, such as:

e Auto-detection of page orientation

Is very important for bulk input of images, when the direction in which document pages are scanned is unknown and can

be different.

49

ABBYY FineReader Engine 10 Guided Tour

e Automated image de-skewing
It is applied to scanned documents requiring the compensation for image skew. ABBYY FineReader Engine provides several
methods for de-skewing images: with pairs of black squares, lines or lines of text.

e Image despeckling
When scanning poor to medium quality documents, you may get very noisy images with lots of dots or speckles on them.
These speckles, when they appear close to the letters or numbers, may affect the quality of OCR. The size of the speckles to
be removed may be specified by the user. Despeckling can be applied to an image as well as to any individual zone of the
image.

o Splitting facing pages of scanned books into two separate images
It is used for scanning books as broadsides — for both left and right pages. The recognition quality is higher if the page is split
into two, with each page corresponding to a single book page.

e Lines straightening
When capturing text from scanned or photographed books, the text lines may be uneven and difficult to OCR. For accurate
text recognition skew correction and straightening text lines should be performed.

e Texture filtering
Texture filtering technology helps to filter out background "noise" such as color and texture, increasing accuracy for
difficult-to-read documents such as newsprint, color documents, faxes, and copies.

e Removing motion blur and ISO noise from digital photos
The system automatically identifies the typical defects commonly found in digital images, such as glare, ISO noise.

e Clipping page margins
When need to improve the appearance of the images, you may want to clip some image areas, e.g. excess margins on digital
photos.

Once preprocessed, the images are saved in user-defined formats or forwarded to further processing.

Implementing the scenario
Below follows a detailed description of the recommended method of using of ABBYY FineReader Engine 10 in this scenario.

Step 1. Loading ABBYY FineReader Engine

To start working with ABBYY FineReader Engine, you need to create the Engine object. The Engine object is the top object in the
hierarchy of the ABBYY FineReader Engine objects and is the only externally creatable object in ABBYY FineReader Engine.

To create the Engine object, use the GetEngineObject exported function. Sample C++ and Visual Basic code for loading and
initializing ABBYY FineReader Engine:

Visual C++ (COM) code
// HANDLE to FREngine.dll
static HMODULE libraryHandle = 0;
// Global FineReader Engine object.
FREngine: : IEnginePtr Engine;
void LoadFREngine()
{
if(Engine '=0) {
// Already loaded
return;
}
// First step: load FREngine.dll
if(libraryHandle == 0) {
libraryHandle = LoadLibraryEx(::GetFreDIlIPathu(), O,
LOAD_WITH_ALTERED_SEARCH_PATH);

if(libraryHandle == 0) {
throw L"Error while loading ABBYY FineReader Engine™;
}

¥
// Second step: obtain the Engine object

50

ABBYY FineReader Engine 10 Guided Tour

typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine: :1Engine**);
GetEngineObjectFunc pGetEngineObject =
(GetEngineObjectFunc)GetProcAddress(libraryHandle, "GetEngineObject"
)
iT(pGetEngineObject == 0 || pGetEngineObject(::GetFreDeveloperSN(), 0, O,
&Engine) 1= S 0K) {
UnloadFREngine();
throw L"Error while loading ABBYY FineReader Engine';

}

Visual Basic code
Public Engine As FREngine.Engine
Private Declare Function GetEngineObject Lib "FREngine.dil™ (_
ByVal DeveloperSN As String, _
ByVal Reservedl As String, _
ByVal Reserved2 As String, _
EngineObj As FREngine.Engine) As Long
Sub Engine_Load(ByVal DeveloperSN As String)
® Visual Basic may load libraries from the current path only
ChDir "Path to the folder with FREngine.dll™

" this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

Dim DeveloperSN_WideChar As String
DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)
IT GetEngineObject(DeveloperSN_WideChar, ', "', Engine) <> 0 Then
MsgBox *"Error loading ABBYY FineReader Engine"
End If
End Sub

Step 2. Image preprocessing
The basic scenarios of image processing work with images within the FRDocument object which represents processing document.

To load images to the document, you may do one of the following:

e When creating the FRDocument object, use the CreateFRDocumentFromImage method of the Engine object.

e Add images to the created FRDocument object from file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method).

All these methods use as a parameter PrepareImageMode object which allows you to specify different parameters of image
preprocessing. Create this object by calling the IEngine::CreatePrepareImageMode function, then change its properties as
necessary and then pass it to a function that requires it.

Also you can modify loaded images. See the Additional optimization section below for more information.
See sample C++ and Visual Basic code for preprocessing images:

Visual C++ (COM) code

// Preprocess image

// Create a PreparelmageMode object

FREngine: : IPreparelmageModePtr preParams = Engine->CreatePreparelmageMode();

// Set necessary parameters, e.g. CorrectSkewMode property
preParams->CorrectSkewMode = FREngine: :CSM_CorrectSkewByBlackSquaresHorizontally;

// Open image Ffile, preprocess it with the specified parameters, and create the
FRDocument object

FREngine: : IFRDocumentPtr frDocument = Engine->CreateFRDocumentFromlmage(
L"C:\\MylImage.tif", preParams);

Visual Basic code

" Preprocess image

51

ABBYY FineReader Engine 10 Guided Tour

" Create a PreparelmageMode object

Dim preParams As FREngine.PreparelmageMode

Set preParams = Engine.CreatePreparelmageMode

" Set necessary parameters, e.g. CorrectSkewMode property
params.CorrectSkewMode = CSM_CorrectSkewByBlackSquaresHorizontally

" Open image file, preprocess it with the specified parameters, and create the
FRDocument object

Dim frDocument As FREngine.FRDocument
Set frDocument = Engine.CreateFRDocumentFromlmage(*'C:\Mylmage.tif", preParams)

Step 3. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine, you need to unload the Engine object. To do this, use the
DeinitializeEngine exported function.

Sample C++ and Visual Basic code for unloading and deinitializing ABBYY FineReader Engine:

Visual C++ (COM) code
void UnloadFREngine()
{
if(libraryHandle == 0) {
return;
}
// Release Engine object
Engine = 0;

// Deinitialize FineReader Engine
typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();
DeinitializeEngineFunc pDeinitializeEngine =
(DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine”);
ifT(pDeinitializeEngine == 0 || pDeinitializeEngine() = S 0K) {
throw L"Error while unloading ABBYY FineReader Engine’;
¥
// Now it"s safe to free the FREngine.dll library
FreeLibrary(libraryHandle);
libraryHandle = 0;
}

Visual Basic code
Public Engine As FREngine.Engine
Private Declare Function DeinitializeEngine Lib "FREngine.dll"™ () As Long
Sub Engine_Unload()
Set Engine = Nothing
ChDir "Path to the folder with FREngine.dll"
DeinitializeEngine
End Sub

Additional optimization

These are the sections of the help file where you can find additional information about setting up the parameters for the various
processing stages:

e Image preprocessing

O Working with Images

Working with images in ABBYY FineReader Engine and setting up image opening and preprocessing parameters.

0 ImageDocument Object
The main object which provides access to images.

0 PrepareImageMode Object
The parameters of this object affect image opening and preprocessing: skew correction, image inversion,
mirroring, prepared image compression, resolution, rotation.

52

ABBYY FineReader Engine 10 Guided Tour

0 ImageModification Object
Use this object for additional processing of source images (cropping, despeckling).

0 DetectOrientation Method of the FRPage Object
This method detects text orientation on the image.

0 CorrectSkew Method of the ImageDocument Object
Use this method to correct skew of the already opened image.

0 RemoveGarbage Method of the ImageDocument Object
This method removes garbage (excess dots that are smaller than a certain size) from the image.

0 FindPageSplitPosition Method of the FRPage Object
This method detects the direction of text on the image and finds the position where it can be split.

0 To straighten out distorted lines on an image, use the IFRPage::RemoveGeometricalDistortions or
IDocumentAnalyzer::RemoveGeometricalDistortions method.

0 SmoothImage Method of the ImageDocument Object
Allows you to smooth the image.

0 RemoveColorObjects Method of the ImageDocument Object
With this method you can remove color objects from the whole image, or only from some parts of the image:
specified region, its background, or only stamps and signatures in this region.

0 SubtractColor Method of the ImageDocument Object
Removes the color with the specified hue and saturation from the image. The method is primary designed for
filtering color on images of passports and certificates.

0 To preprocess digital photos, you may use the IlmageDocument::RemoveCameraBlur and
IImageDocument::RemoveCameraNoise methods.

e Saving images

O WriteToFile Method of the Image Object
Use this method to save images to a file in a format of your choice.

See also

Basic Usage Scenarios Implementation

Scanning
In this scenario, ABBYY FineReader Engine is used on a "scanning computer," which scans images and saves them as files.

This scenario may be used as part of other scenarios in the preliminary stage of document processing, i.¢. for obtaining electronic
versions of documents for further processing. Usage examples include scanning documents for archiving purposes, getting editable
versions of documents, and extracting meaningful data from documents.

Paper documents are scanned and the images are saved in an electronic format, producing high-quality electronic versions of your
printed documents.

Documents may go through the following processing stages:

1. Scanning
Documents may be scanned via one of the two available scanning interfaces provided by scanners (TWAIN or WIA), by using
ABBYY's own scanning interface, or without a scanning interface.

2. Image preprocessing
Once scanned, the images may be preprocessed. Preprocessing includes despeckling, correction of distorted text lines, color
inversion, removal of black margins, and correction of image orientation or resolution. Facing pages may be split into two
separate images. Processed images may be saved in various image formats such as JPEG, TIFF, BMP.

Implementing the scenario

Below follows a detailed description of the recommended method of using of ABBYY FineReader Engine 10 in this scenario. Under the
proposed implementation of the scenario, the image preparation phase is omitted. Please see Additional optimization for specific tasks
below for the tips on image preparation implementation.

53

ABBYY FineReader Engine 10 Guided Tour

Step 1. Loading ABBYY FineReader Engine

To start working with ABBYY FineReader Engine, you need to create the Engine object. The Engine object is the top object in the
hierarchy of the ABBYY FineReader Engine objects and is the only externally creatable object in ABBYY FineReader Engine.

To create the Engine object, use the GetEngineObject exported function. Sample C++ and Visual Basic code for loading and
initializing ABBYY FineReader Engine:
Visual C++ (COM) code
// HANDLE to FREngine.dll
static HMODULE libraryHandle = O;
// Global FineReader Engine object.
FREngine: :1EnginePtr Engine;
void LoadFREngine()
{
if(C Engine =0) {
// Already loaded
return;
}
// First step: load FREngine.dll
if(libraryHandle == 0) {
libraryHandle = LoadLibraryEx(::GetFreDllIPathu(), O,
LOAD_WITH_ALTERED_SEARCH_PATH);

if(libraryHandle == 0) {
throw L"Error while loading ABBYY FineReader Engine™;
}

}
// Second step: obtain the Engine object
typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine: :1Engine**);
GetEngineObjectFunc pGetEngineObject =
(GetEngineObjectFunc)GetProcAddress(libraryHandle, "GetEngineObject"
)
iT(pGetEngineObject == 0 || pGetEngineObject(::GetFreDeveloperSN(), 0, O,
&Engine) =S 0K) {
UnloadFREngine();
throw L"Error while loading ABBYY FineReader Engine';

}

Visual Basic code
Public Engine As FREngine.Engine
Private Declare Function GetEngineObject Lib "FREngine.dil™ (_
ByVal DeveloperSN As String, _
ByVal Reservedl As String, _
ByVal Reserved2 As String, _
EngineObj As FREngine.Engine) As Long
Sub Engine_Load(ByVal DeveloperSN As String)
® Visual Basic may load libraries from the current path only
ChDir "Path to the folder with FREngine.dll™

" this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

Dim DeveloperSN_WideChar As String
DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)
IT GetEngineObject(DeveloperSN_WideChar, ', ", Engine) <> 0 Then
MsgBox "Error loading ABBYY FineReader Engine"
End If
End Sub

Step 2. Scanning

ABBYY FineReader Engine 10 Guided Tour

ABBYY FineReader Engine offers a ScanManager object for scanning. Scanning and saving to file may be implemented with the Scan

method of the ScanManager object.
See sample C++ and Visual Basic code for scanning;

Visual C++ (COM) code
// Create ScanManager object

FREngine: : IScanManagerPtr scanManager = Engine->CreateScanManager();

// Specify the scan source
FREngine: :I1StringsCollectionPtr sources = scanManager->ScanSources;
_bstr_t scanner = sources->Item(0);

// Create the ScanSourceSettings object
FREngine: : IScanSourceSettingsPtr scanSettings = scanManager-
>GetScanSourceSettings(scanner);

// Set an interface type
scanManager->ScanOptionsinterfaceType = FREngine: :SOIT_None;

// Tune the scanning options
scanSettings->Resolution = 300;
scanSettings->PictureMode = FREngine::SPM_Grayscale;

// Set up the scanning options
scanManager->PutScanSourceSettings(scanner, scanSettings);

// The name of the folder in which scanned pages will be stored
char scanFolder[MAX_PATH + 1];

// Scan and save images into scanFolder folder

FREngine: :1StringsCollectionPtr scannedlmages =
scanManager->Scan(scanner, scanFolder, VARIANT_FALSE);

Visual Basic code

" Create the ScanManager object
Dim ScanManager As FREngine.ScanManager
Set ScanManager = Engine.CreateScanManager

" Specify the scan source
Dim Scanner As String
Scanner = ScanManager .ScanSources(0)

" Create the ScanSourceSettings object
Dim ScanSettings As FREngine.ScanSourceSettings
Set ScanSettings = ScanManager .ScanSourceSettings(Scanner)

" Set an interface type
ScanManager .ScanOptionsinterfaceType = SOIT_None

® Tune the scanning options
ScanSettings.-Resolution = 300
ScanSettings.-PictureMode = SPM_Grayscale

® Set up the scanning options
ScanManager .ScanSourceSettings(Scanner) = ScanSettings

" The name of the folder in which scanned pages will be stored
Dim ScanFolder As String

" Scan and save images into scanFolder folder
Dim Scannedlmages As FREngine.StringsCollection
Set Scannedlmages = ScanManager.Scan(Scanner, ScanFolder, False)

Step 3. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine, you need to unload the Engine object. To do this, use the

DeinitializeEngine exported function.

55

ABBYY FineReader Engine 10 Guided Tour

Sample C++ and Visual Basic code for unloading and deinitializing ABBYY FineReader Engine:

Visual C++ (COM) code
void UnloadFREngine()
{
if(libraryHandle == 0) {
return;
s
// Release Engine object
Engine = O;

// Deinitialize FineReader Engine
typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();
DeinitializeEngineFunc pDeinitializeEngine =
(DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine™);
if(pDeinitializeEngine == 0 || pDeinitializeEngine() = S_OK) {
throw L"Error while unloading ABBYY FineReader Engine";
}
// Now it"s safe to free the FREngine.dll library
FreeLibrary(libraryHandle);
libraryHandle = 0;
}

Visual Basic code
Public Engine As FREngine.Engine
Private Declare Function DeinitializeEngine Lib "FREngine.dll" () As Long
Sub Engine_Unload()
Set Engine = Nothing
ChDir "Path to the folder with FREngine.dll"
DeinitializeEngine
End Sub

Additional optimization

These are the sections of the help file where you can find additional information about setting up the parameters for the various
processing stages:

e Scanning

O Tips for Document Scanning
Some tips on how to get good-quality scans of printed documents.

O Setting up Scanning Options
Using the ABBYY FineReader Engine scanning interfaces for scanning.

O ScanSourceSettings Object
Use this object to set up the scanning parameters.

e Image preprocessing

O Image Preprocessing

Describes a scenario of using ABBYY FineReader Engine to preprocess images or to improve their visual quality.

e Document separation

O In this scenario, you may need to separate images into documents. ABBYY FineReader Engine 10 provides no

means for automatic document separation. However, you can use ABBYY FlexiCapture Engine for the purpose.
Documents may be separated based on the number of pages in each document or by using separator pages with

barcodes. To implement barcode document separation, you can use the barcode recognition scenario.

See also

Basic Usage Scenarios Implementation

56

ABBYY FineReader Engine 10 Guided Tour

Advanced Techniques

The main programming aspects are presented in the following sections:

e Programming Aspects
0 Error Handling
0 Working with Properties
0 Working with Connectable Objects
0 Working with COM Interfaces from a Script Language
O Using ABBYY FineReader Engine in Delphi

For tuning document processing parameters, see the following sections:

e Working with Profiles
e Tuning Analysis, Recognition, and Synthesis Parameters
e Tuning Export Parameters

For information on working with images, languages, layout, and recognized texts, see:

e Working with Images

e Working with Languages

e Working with Layout and Blocks

e Working with Text

e Working with Logical Structure of a Document

e Using Voting API

Using Text Type Autodetection

For details on special cases, such as recognition of hieroglyphic languages, checkmarks, handprinted texts, and recognition with
training, see the following sections:

e Recognizing Checkmarks
e Recognizing Handprinted Texts

e Recognizing Hieroglyphic Languages

Recognizing with Training
e Training User Patterns

Information on working with dictionaries can be found here:

e Working with Dictionaries
e Working with Regular Expressions
e Recognizing Words with Spaces

Finally, scanning with ABBYY FineReader Engine is described in:

e Setting up Scanning Options

ABBYY FineReader Engine 10 Guided Tour

Programming Aspects

The ABBYY FineReader Engine application programming interface conforms to the COM standard and can be easily used in C/C++,
Visual Basic, .Net, Delphi, or any other development tools supporting COM components. The Engine can be adapted for use in
scripting languages like VBS, S, Perl.

This section describes the main aspects of using ABBYY FineReader Engine in applications written in different programming languages
and provides references to articles which discuss related topics.

Loading, initialization, and deinitialization

The Engine object is a singleton, so only one object of this type may be created in a single instance of the application that uses ABBYY
FineReader Engine. Repeated attempts to create the Engine object will return the same object.

It is prohibited to initialize and deinitialize ABBYY FineReader Engine at the entry points of other DLLs, and also in constructors and
destructors of static and global objects implemented in DLLs, because they are called at the DLL entry points. This restriction is due to
the fact that the Win32 LoadLibrary and FreeLibrary functions are not re-entrant. A user should initialize and deinitialize ABBYY
FineReader Engine elsewhere, for example, in WinMain function of an EXE module.

During initialization, ABBYY FineReader Engine will reset the LC_CTYPE setting of msvcrt.dll to the operating system defaults. This fact
should be taken into account if your application depends upon the msvcrt.dll locale-dependent services.

For details see the description of the GetEngineObject function.

[#Note: .NET developers must make sure to specify [STAThread] (single-thread apartment model) as an attribute on the application
main function, otherwise an error may occur:

[STAThread]
public static void Main(Q)

{

}

The "Engine deinitialization failed" exception can be thrown during the deinitialization of the Engine object if not all of the objects
which were created and used by the application have been deleted before the Engine object deinitialization. If you work with
programming languages which do not have garbage collections (for example, C++), you must either use smart pointer classes (see the
samples in C++ (COM)) or release objects that were created by creation methods when they are no longer needed. If all the objects
have been deleted, the exception may be caused by the scavenger operation. If the application is developed in Visual Basic .Net, all
objects with the Nothing value are not deleted, they are only marked for deletion. The exact moment when the garbage collector
deletes the object is not known. Therefore, you should call the following methods before the deinitialization of the Engine object so
that the garbage collector deletes the object:

GC.Collect(

GC.WaitForPendingFinalizers()

You can use the StartLogging method of the Engine object to get the list of objects that have not been deleted.

Also in this section

e Error Handling
Information about error handling.

e Working with Properties
The interfaces of ABBYY FineReader Engine objects have various properties and methods. The way the properties are
handled in different languages is discussed in this article.

e Working with Connectable Objects
Some of the objects in ABBYY FineReader Engine are so-called "connectable objects." Here you can find useful
recommendations on working with such objects.

e Working with COM Interfaces from a Scripting Language
The detailed description of how to use FineReader Engine in a scripting language.

e Using ABBYY FineReader Engine in Delphi
The description of the initialization and deinitialization procedure in Delphi.

58

ABBYY FineReader Engine 10 Guided Tour

Error Handling

All ABBYY FineReader Engine interface methods and properties return a value of the HRESULT type. The HRESULT (for result handle)
is a way of returning success, warning, and error values. HRESULTS are really not handles to anything; they are only 32-bit values with
several fields encoded in the value. A zero result indicates success and a non-zero result indicates failure.

[#Note: Please do not handle exceptions that may be thrown during the work of the ABBYY FineReader Engine interface methods,
because these exceptions are handled within ABBYY FineReader Engine.

If a method or property call was not successful, this method or property returns an HRESULT code that indicates the failure. Besides, it
initializes the IErrorInfo object with a more detailed description of the error. Visual Basic users may access the HRESULT code
through the Number property of the Err object. Other attributes of the Err object are initialized with the information from the
IErrorInfo. Please refer to the documentation on COM for detailed description of error handling. The most general tips for it are as
follows:

e Visual Basic. Error handling here is performed with the use of the On Error statement. If you do not use the On Error
Resume Next statement anywhere in your code, any run-time error that occurs can cause an error message from the
IErrorInfo object to be displayed and code execution stopped.

e Raw C++ ABBYY FineReader Engine interface methods and properties cannot throw exceptions but return HRESULTSs. The
most important means for handling these return codes are the SUCCEEDED and FAILED macros. They test the HRESULT
value and deduce from it what was the result of the operation — success or failure. To get a pointer to the IErrorInfo
object's interface, use the GetErrorInfo API function.

e C++with the Native COM support. The Native COM support technology translates the HRESULT codes of interface
functions into exceptions of a special type (_com_error) and automatically uses information from the IErrorInfo object.
Thus, a sequence of ABBYY FineReader Engine methods may be enclosed by the statements:

try {

} catch (_com_error e) {

}

If any method or property that was called from inside the try-catch block returns an error code, this leads to throwing an exception,
the code after the erroneous statement is not executed, and control is transferred to the code after the catch statement. Generally,
error handling with the Native COM support may be performed in a way standard for any C++ code using functions that may throw
exceptions.

See also

Standard Return Codes

Working with Properties

The interfaces of ABBYY FineReader Engine objects have various properties and methods. As Visual Basic users are familiar with the
notion of property, we will discuss the way the properties are handled in C++.

For a C++ user, a property is a couple of methods (get and put for read-write properties) or a single get method (for read-only
properties). However, the "Native COM support" featured by Microsoft Visual C++ makes the way the properties are handled more like
the one used in Visual Basic. This is the way implied by the sense on the noun "property."

The ABBYY FineReader Engine properties may be of the following types:

Visual Basic type C++ type
Boolean (with two values, True and False) VARIANT BOOL (with two values VARIANT TRUE and VARIANT FALSE)
Long long
Double double
String BSTR, a pointer to Unicode string. Zero value specifies an empty stting.
Object [Unknown-derived interface

Enumeration

See the details of working with different types of properties below:

59

ABBYY FineReader Engine 10 Guided Tour

Working with simple properties
We will use the Boolean property to describe how simple properties are used. This property is described in the type library as follows:

interface IMyObject : 1Unknown {
[propget]
HRESULT MyProperty([out, retval]VARIANT_BOOL* pVal);

[propput]
HRESULT MyProperty(Lin]VARIANT BOOL newVal);

}:
A Visual Basic user handles this property as follows:
IT MyObject_MyProperty <> True Then
MyObject.MyProperty = True
End If
A C++ user, on the other hand, uses two methods to work with this property. These methods have get and put_ prefixes. The
respective C++ code should look as follows:
IMyObject* pMyObject;

VARIANT_BOOL res;

pMyObject->get_MyProperty(&res);

if(res = VARIANT TRUE)
pMyObject->put_MyProperty(VARIANT_TRUE);

However, the Native COM support makes the procedure simpler, and the respective code should look as follows:
IMyObjectPtr pMyObject;

if(pMyObject->MyProperty !'= VARIANT_TRUE)
pMyObject->MyProperty = VARIANT_TRUE

If the type library only defines the "get" method for a property, this property is called read-only. Its value cannot be changed by the
user, it may only be accessed for "reading."

Working with string properties

Working with string properties is very similar to working with simple properties, but has its own specifics. A C++ user working with
string properties must free the strings that are passed to set-methods, and also those that are returned by get-methods. However, this is
done automatically in Visual Basic and in C++ with the Native COM support. Suppose MyObject also supports a string property called
Name. This property is described in the type library as follows:

interface IMyObject : IUnknown {
[propget]
HRESULT Name([out, retval]lBSTR* pVal);

[propput]
HRESULT Name([in]BSTR newVal);

}:
A C++ user works with this property like this:
IMyObject* pMyObject;

// "get" method
BSTR res;
pMyObject->get Name(&res);

// Now free the string allocated in ABBYY FineReader Engine
1 :SysFreeString(res);

// "put” method

BSTR str = ::SysAllocString(L"New Name™);

60

ABBYY FineReader Engine 10 Guided Tour

pMyObject->put_Name(str);
// Now free the string that we allocated
::SysFreeString(str);

For Visual Basic this may be rewritten as follows:
Dim obj As MyObject

Dim res As String

res = obj._Name

Dim str As String

str = "New Name"

obj_Name = str

Working with object properties

A C++ user will say that the parameters of "get" methods of "Object" properties are pointers to an object's interface pointer. As the
interfaces of the objects are derived from IUnknown, they may be passed as IUnknown pointers to the properties or methods, which
use objects of several types as input or output parameters (you may, however, get the interface you need by calling the Querylnterface
method).

There are two different types of "put" methods for object properties — clear put, described by the propput keyword in the type library
(the object is copied in this case); and put by reference, described by the propputref keyword in the type library (only a pointer to an
existing object's interface is stored in the property in this case). A property may support only one of these put methods; most of ABBYY
FineReader Engine object properties support clear put, while the IRecognizerParams::TextLanguage property supports put by
reference. In Visual Basic, put by reference is performed using the Set statement, while clear put is performed without this keyword.
Suppose again the MyObject object supports MyObjectProperty property that refers to an object of MyChildObject type.
interface IMyObject : lUnknown {

[propget]

HRESULT MyObjectProperty([out, retval]lMyChildObject** pVval);

[propputref]
HRESULT MyObjectProperty([in]IMyChildObject* newVal);

}:

The same property is accessed as follows in Visual Basic:
Dim ChildObj As MyChildObject

Set ChildObj=MyObject._MyObjectProperty
* Do something with the object

" Clear put (IT it were put by reference, we would write
" Set MyObject.MyObjectProperty=ChildObj)
MyObject.MyObjectProperty=ChildObj

A C++ user will writes this code as follows:

IMyObject* pMyObject;

IMyChildObject* pChildObj=0;

// get_ method may return O In certain cases
pMyObject->get_MyObjectProperty(&pChildObj);
// Do something with the object

pMyObject->put_MyObjectProperty(pChildObj);

pChildObj->Release();

Note that in C++ you should call the Release method for an object got via a property. The Native COM support calls AddRef and
Release methods automatically using auto pointers.

M Important! If an object property refers to a child object of the object that exposes this property, a pointer to the child object's
interface is valid until its parent object exists. An attempt to access a child object after its parent object is destroyed may result in an
€rrofr.

61

ABBYY FineReader Engine 10 Guided Tour

Working with read-only object properties in raw C++

Certain ABBYY FineReader Engine objects (for example, ILayout::Blocks) have read-only object properties. Such properties cannot
be changed directly in raw C++. If you want to change such a property, you need to pass a reference to the property object to a new
variable, and then use this variable to change it. Below you can see a C++ sample for the ILayout::Blocks property which is
represented by a read-only collection:

ILayout* pLayout = O;

ILayoutBlocks* pLayoutBlocks = 0;

long blocklIndex;

// The plLayoutBlocks variable receives a reference to the blocks collection from Layout
pLayout->get Blocks(&pLayoutBlocks);

// Remove an element from the blocks collection

pLayoutBlocks->Remove(blocklIndex);

Working with Connectable Objects

Some of the objects in ABBYY FineReader Engine are so-called "connectable objects". This means that they implement the
IConnectionPointContainer interface. Connectable objects support communication between ABBYY FineReader Engine and its
clients. Connectable objects in ABBYY FineReader Engine are:

e DocumentAnalyzer
e Exporter

e ImageDocument

e ScanManager

e FRDocument

e FRPages

e FRPage

Each of the ABBYY FineReader Engine connectable objects provides connection points of two types — one that uses a dispatch
interface and one that uses the interface derived from [Unknown. The dispatch interface is designed for automatic use in Visual Basic
and similar environments, while the vtbl-based interface is suitable for use in C++.

An ABBYY FineReader Engine client application that wants to receive notifications of certain events in ABBYY FineReader Engine
should implement interfaces of a specific type and "advise" the objects implementing these interfaces to the corresponding
connectable objects.

In Visual Basic, this is done by simply declaring the object WithEvents and implementing the corresponding methods of the callback
interface. The procedure for Visual Basic is described in detail in the "ABBYY FineReader Engine API Reference" section for each
connectable object.

Here is how you can connect an object on the client side to a notification source. We will use DocumentAnalyzer as an example.
class CDocumentAnalyzerEventsListener : public IDocumentAnalyzerEvents {
public:
// Provide lUnknown methods simple implementation. They may also be
// implemented by inheritance from some standard class with COM support
ULONG AddRef();
ULONG Release();
HRESULT Querylnterface(REFIID iid, void** ppvObject)
{
if(ppvObject == 0)
return E_INVALIDARG;
if(C riid == __uuidof(IDocumentAnalyzerEvents)) {
ppvObject = static_cast<lDocumentAnalyzerEvents>(this);
} else if(riid == 11D_IUnknown) {
ppvObject = static_cast<lUnknown>(this);

62

ABBYY FineReader Engine 10 Guided Tour

} else {
*ppvObject = 0O;
return E_NOINTERFACE;
}
AddRef();
return S_OK;
}
// Provide IDocumentAnalyzerEvents methods implementation
HRESULT OnRegionProcessed(long, IRegion*, VARIANT_BOOL%*);
HRESULT OnProgress(long, VARIANT_BOOL*);
}:
Thus we have the CDocumentAnalyzerEventListener class which may be used to receive notifications from the
DocumentAnalyzer object. The following section of code advises this object to the notification source (error handling is omitted):
// Suppose that we have already created the DocumentAnalyzer object
IDocumentAnalyzer* da;
IConnectionPointContainer* pContainer=0;
da->Querylnterface(11D_IConnectionPointContainer, (void**)&pContainer);
IConnectionPoint* pPoint=0;
pContainer->FindConnectionPoint(__uuidof(IDocumentAnalyzerEvents),
&pPoint);
CDocumentAnalyzerEventsListener listener;
1Unknown* listenerUnknown=0;
listener.QuerylInterface(l1D_lUnknown, (void**)&listenerUnknown);
// A variable to store the cookie returned from the IConnectionPoint::Advise method
DWORD cookie;
pPoint->Advise(listenerUnknown, &cookie);

// After notification, the listener is no longer needed and should be unadvised
pPoint->Unadvise(cookie);

Refer to the documentation on COM for 2 more detailed description of connectable objects.

See also

See sample: EventsHandling

Working with COM Interfaces from a Scripting Language
ABBYY FineReader Engine 10 supports dynamic binding in COM interfaces:

e Almost all ABBYY FineReader Engine 10 interfaces are derived from IDispatch (the exceptions are some of the callback
interfaces implemented on the client side).

e Scripting languages (for example, VBScript and JScript) support only dynamic binding. Therefore, due to inheriting such
interfaces from IDispatch the use of ABBYY FineReader Engine API from these languages requires minimal additional effort:
only the Engine object cannot be created by using the COM method CoCreateObject. So you will have to create an
additional object for creating the Engine object. See the method for creating this additional object in the FRECOMWrapper
sample.

e The other objects created by the methods of the Engine object named "Create.." or "Load.." can now be created and used
directly from the scripting language.

The FRECOMWrapper sample code produces FREngineWrap.dll that can be used for getting the ABBYY FineReader Engine object
from a scripting language such as VBScript or JavaScript. The FREngineWrap.dll library has the FRELoader class with the Load
method which loads the ABBYY FineReader Engine library and with the EngineObject property containing a pointer to the Engine
object.

Note: In order to create the FREngineWrap.dll library, compile the FRECOMWrapper sample located in \Samples\Visual C++
(COM)\FRECOMWTrapper.

03

ABBYY FineReader Engine 10 Guided Tour

For example, you can create the Engine object by using the JavaScript ActiveXObject function.
// create the FRELoader object
FRELoader = new ActiveXObject("FREngineWrap.FRELoader');

// load the library

FRELoader .Load();

// get the Engine object

var Engine = FRELoader.EngineObject;

In VBScript, use the CreateObject method:

" create FRELoader object

Set FRELoader = CreateObject("FREngineWrap.FRELoader™)
" load the library

FRELoader . Load

" get the Engine object

Set Engine = FRELoader.EngineObject

In Perl, use the CreateObject method:
create the FRELoader object
$FRELoader = $WScript->CreateObject("FREngineWrap.FRELoader™);

load the library
$FRELoader->Load();

get the Engine object
my $Engine = $FRELoader->{EngineObject};

An example illustrating the use of the FREngineWrap.dll library can be found in \Samples\Visual C++
(COM)\FRECOMWrapper\TestScripts.

See also

Description of ABBYY FineReader Engine Samples

Using ABBYY FineReader Engine in Delphi
This section deals with certain peculiarities of using ABBYY FineReader Engine 10 in Delphi.

Creating the Object Pascal Wrapper Unit

In order to use ABBYY FineReader Engine 10 in Delphi, it is necessary to create the Object Pascal wrapper unit for the type library (the
FREngine TLB.pas file). Do the following:

1. Run command prompt (cmd.exe) and go to the folder where the ABBYY FineReader Engine 10 type library (FREngine.tlb) is
located.

2. Run the tlibimp utility with the following parameters:
Delphi 5.0:
tlibimp -O- -E- -C- -P+ -T+ FREngine.tlb

Delphi 6.0 and 7.0:
tlibimp -O- -Cd- -C- -P+ -Pt+ FREngine.tlb

Delphi 2010:
tlibimp -O- -Cd- -C- -P+ -Pt+ FREngine.tlb

This will generate the FREngine TLB.pas file.

3. Add FREngine TLB.pas to your project.

04

ABBYY FineReader Engine 10 Guided Tour

You need to re-generate FREngine TLB.pas each time you receive an updated version of ABBYY FineReader Engine 10.

Deinitialization of the Engine Object

If not all the objects which were created and used by the application have been deleted before the deinitialization of the Engine
object, the "Engine deinitialization failed" exception is thrown. If all the objects have been deleted, the exception may be caused by the
scavenger operation. In Delphi all objects with the 7l value are deleted only after exiting the procedure in which the objects were
declared. Therefore, the entire ABBYY FineReader Engine code must be inserted into a separate procedure, and this procedure must be
called before the deinitialization of the Engine object.

[#Note: You can use the StartLogging method of the Engine object to get the list of objects that have not been deleted.

Working with Profiles

ABBYY FineReader Engine supports numerous parameters which allow the user to fine-tune the Engine. The user can specify
parameters for image preprocessing, analysis, recognition, synthesis, and export to receive the optimal speed and quality of processing.
For example, if the application will export recognition results to TXT, then page layout is not relevant and many layout-related
properties can be disabled.

When new objects are created, either directly with the help of the creation methods of the Engine object or indirectly, the properties
of newly created objects are usually set to reasonable defaults (for more information about the default value of a property, see the
description of the corresponding property). But default values are not always optimal for all usage scenarios. You may need to change
these properties in some cases. This can be done either via the API or with the help of a profile. A profile contains a list of new default
values for object properties.

Predefined profiles

ABBYY FineReader Engine provides a set of predefined profiles which are designed for the main usage scenarios. The settings provided
in these profiles are most suitable in the corresponding situations. Besides, most of the profiles come in two forms: with the settings
optimized for the best quality of the resulting document or with the settings optimized for the highest speed of processing. Below is a
list of available predefined profiles:

e DocumentConversion_Accuracy — for converting documents into editable formats, optimized for accuracy
e DocumentConversion_Speed — for converting documents into editable formats, optimized for speed

e DocumentArchiving Accuracy — for creating an electronic archive, optimized for accuracy

e DocumentArchiving Speed — for creating an electronic archive, optimized for speed

e BookArchiving Accuracy — for creating an electronic library, optimized for accuracy

e BookArchiving Speed — for creating an electronic library, optimized for speed

o TextExtraction Accuracy — for extracting text from documents, optimized for accuracy

e TextExtraction Speed — for extracting text from documents, optimized for speed

e FieldLevelRecognition — for recognizing short text fragments

e BarcodeRecognition — for extracting barcodes

o Version9Compatibility — provided for compatibility, sets the processing parameters to the default values of ABBYY
FineReader Engine 9.0.

[#Note: You can view the list of settings provided by these profiles in the descriptions of the corresponding scenarios.

MImportant! The profiles may require additional modules available in the license. See details in the descriptions of corresponding
scenarios.

The settings provided with these profiles can be loaded using the LoadPredefinedProfile method of the Engine object. After the
profile is loaded, newly created objects will have the new default values specified in the profile.

User profiles

You can also create your own profile file. The syntax of a profile file is similar to that of *ini files. The sections contain the names of the
objects whose properties are to be re-specified, and the keys contain the properties with their new values. The special section called

05

ABBYY FineReader Engine 10 Guided Tour

UserData can contain any user-defined keys. The values of Boolean properties are represented by the strings "true" or "false," while
enumeration properties are represented by corresponding constants, for example:

[PreparelmageMode]
DiscardColorlmage = true
[PDFExportParams]

TextExportMode = PEM_ImageOnText
[RecognizerParams]

TextLanguage = English,Russian

The LoadProfile method of the Engine object allows you to load a user profile file. After this file is loaded, newly created objects will
have the new default values specified in the file. Loading parameters from a profile is similar to specifying the corresponding properties
in the program code, but it simplifies the logic and data in the application.

A profile file can be used to re-specify all the properties of the following objects:

e PreparelmageMode e RTFExportParams

e ImageProcessingParams e HTMLExportParams

e PageProcessingParams e XLExportParams

e PageAnalysisParams e TextExportParams

e TableAnalysisParams e PPTExportParams

e BarcodeParams e XMLExportParams

e ObjectsExtractionParams e PDFExportParams

e OrientationDetectionParams e PDFExportParamsOld, except the

EncryptionInfo property
e RecognizerParams, except the PossibleTextTypes
property e PDFAExportParamsOld

o SynthesisParamsForPage e PDFMRCParams
e SynthesisParamsForDocument

e DocumentStructureDetectionParams

e FontFormattingDetectionParams

If an empty string is passed to IEngine::LoadProfile, the standard default values will be used.

The correctness of the new values of the properties and their conformity to the license are checked when a corresponding object is
created.

See also

Tuning Analysis, Recognition, and Synthesis Parameters
Tuning Export Parameters

Tuning Analysis, Recognition, and Synthesis Parameters

Document processing in ABBYY FineReader Engine consists of several steps: analysis, recognition, synthesis, and export. This section
concerns with the parameters of analysis, recognition, and synthesis. For details about export parameters, see Tuning Export
Parameters.

During analysis ABBYY FineReader Engine finds certain areas on the document pages. These areas are called "blocks.” Each block has
its type. Then the parts of the image that lie inside the blocks are recognized in the way defined by the block type. Finally, the text and
background colors, fonts and other formatting elements are detected (this process is called "synthesis").

Before processing, you can set the parameters of analysis, recognition, and synthesis with the help of the parameters objects. Pointers
to these objects can be passed to the processing methods as input parameters, and thus affect the results of processing. The following
ABBYY FineReader Engine objects provide analysis, recognition, and synthesis methods: FRDocument, FRPage, Engine,
DocumentAnalyzer.

06

ABBYY FineReader Engine 10 Guided Tour

The processes of analysis, recognition, and synthesis can also be tuned using profiles. See Working with Profiles for details.

Parameters of analysis and recognition

To set the parameters of analysis and recognition, you need to tune the properties of the PageProcessingParams object. The
PageProcessingParams object is the parent for a group of ABBYY FineReader Engine objects which set up the page processing
parameters. For analysis and recognition, the following child objects of the PageProcessingParams object are used:

e PageAnalysisParams — affects the page layout analysis
e RecognizerParams — contains the general page recognition parameters
e BarcodeParams — contains a set of properties specific to barcode recognition

e ObjectsExtractionParams — contains the parameters used for detecting additional objects (e.g. garbage, texture, small
text areas of low quality, etc.) on an image before recognition

e OrientationDetectionParams — affects the page orientation detection

Parameters of synthesis

The process of synthesis may be divided into two stages: page synthesis and document synthesis. During page synthesis, only hyperlinks
and text and background colors are detected. Font styles and formatting is detected during document synthesis. A set of Engine API
objects become meaningful only after document synthesis — these are so-called document synthesis objects, which provide access to
the logical structure of the document and formatting attributes, including headers, footers, page numbers, fonts, styles, and more.

The parameters of synthesis can be set with the help of the following objects:

e SynthesisParamsForPage. This object is used for setting up the parameters of page synthesis.

e SynthesisParamsForDocument. This object is used for setting up the parameters of document synthesis.

Tuning document processing
A step-by-step procedure that uses the parameter objects mentioned above should look like this:

1. Create a PageProcessingParams object with the help of the CreatePageProcessingParams method of the Engine
object.

2. Set up the necessary properties of the sub-objects of the PageProcessingParams object. You do not need to set up all the
properties of all the sub-objects, as on creation they are initialized with reasonable defaults. You only have to tune up those
of the properties that you want to have values other than default ones.

When you are setting up the parameters to be used by the layout analysis functions, do not forget to set the correct values of
the properties of the sub-objects of the PageProcessingParams that affect recognition. This is recommended, because all
these parameters are copied into the blocks that are created during the layout analysis and are then used for recognition,
and also because analysis of certain parts of the image may involve recognition.

3. Create SynthesisParamsForPage and/or SynthesisParamsForDocument objects.

4. Set up the necessary properties of these objects. You do not need to set up all the properties of all the objects and sub-
objects, as on creation they are initialized with reasonable defaults. You only have to tune up those of the properties that you
want to have values other than the default ones.

5. You can pass these parameters to one of the processing methods of the FRDocument, FRPage, Engine, and
DocumentAnalyzer objects.
To recognize a document, we suggest that the processing methods of the FRDocument object be used. This object provides
a whole array of methods for document analysis, recognition, and synthesis. The most convenient method allowing
document analysis, recognition, and synthesis using just one method is the Process method. It also uses simultaneous
processing features of multiprocessor and multicore systems in the most efficient manner. However, you can also carry out
consecutive analysis, recognition, and synthesis using Analyze, Recognize (or AnalyzeAndRecognize), and Synthesize
methods.

Sample code for setting the parameters of analysis, recognition, and synthesis.

Visual C++ (COM) code

FREngine: :1EnginePtr Engine;

FREngine: : IFRDocumentPtr frDocument;

// Create a PageProcessingParams object

67

ABBYY FineReader Engine 10 Guided Tour

FREngine: : IPageProcessingParamsPtr processingParams = Engine-
>CreatePageProcessingParams();

// Set necessary parameters (do not forget to set the right recognition language)
processingParams->RecognizerParams->SetPredefinedTextLanguage(L"Russian,English™);
processingParams->DetectOrientation = VARIANT_TRUE;

// Create a SynthesisParamsForDocument object

FREngine: : 1SynthesisParamsForDocumentPtr synthesisParams = Engine-
>CreateSynthesisParamsForDocument() ;

// Set necessary parameters
synthesisParams->SaveRecognitioninfo = VARIANT_FALSE;

// Recognize document with the specified parameters
frDocument->Process(processingParams, 0, synthesisParams);

Visual Basic code

Dim Engine As FREngine.Engine

Dim frDocument As FREngine.frDocument

" Create a PageProcessingParams object

Dim processingParams As FREngine.PageProcessingParams

Set processingParams = Engine.CreatePageProcessingParams

" Set necessary parameters (do not forget to set the right recognition language)
processingParams.RecognizerParams.SetPredefinedTextLanguage('Russian,English™)
processingParams.DetectOrientation = True

" Create a SynthesisParamsForDocument object

Dim synthesisParams As FREngine.SynthesisParamsForDocument

Set synthesisParams = Engine.CreateSynthesisParamsForDocument

" Set necessary parameters

synthesisParams.SaveRecognitionlnfo = False

" Recognize document with the specified parameters

frDocument.Process processingParams, Nothing, synthesisParams

See also

Working with Profiles
Tuning Export Parameters

Tuning Export Parameters

During export, recognized documents are saved in files in suitable formats. ABBYY FineReader Engine has a group of objects which

provide tools for tuning different export parameters. Pointers to these objects can be passed to the export methods as input
parameters, and thus affect the results of export. The following ABBYY FineReader Engine objects provide export methods:
FRDocument, FRPage, Engine, Exporter.

For each supported external format, there is a corresponding export parameter object. These are:

e RTFExportParams for RTF, DOC, and DOCX formats
e TextExportParams for TXT and CSV formats

e XLExportParams for XLS and XLSX formats

e HTMLExportParams for HTML format

e PDFExportParams for PDF and PDF/A format

e XMLExportParams for XML format

e PPTExportParams for PPTX format

Export processes can also be tuned using profiles. See Working with Profiles for details.

The export procedure

A step-by-step procedure that uses objects of this group should look like this:

08

ABBYY FineReader Engine 10 Guided Tour

1. Create an export parameter object that corresponds to the external format in which you are going to save your text. Use the
corresponding creation method of the Engine object.

2. Set up the necessary properties of the object you created. You do not need to set up all the properties of the export
parameter object, as on creation they are initialized with reasonable defaults. You only have to tune up those of the
properties that you want to have values other than default ones.

3. Pass it to one of the export methods of the FRDocument, FRPage, Engine, Exporter objects.

Sample code that uses the RTFExportParams object in C++ and Visual Basic:

Visual C++ (COM) code

FREngine: : IEnginePtr Engine;

FREngine: : IFRDocumentPtr frDocument;

// Create export parameter object

FREngine: : IRTFExportParamsPtr params = Engine->CreateRTFExportParams();
// Tune export parameters

params->KeepLines = VARIANT_TRUE;

// Now export text into a file

frDocument->Export(L"C:\\myFile.rtf", FREngine::FEF_RTF, params);

Visual Basic code

Dim Engine As FREngine.Engine

Dim FRDocument As FREngine.FRDocument

" Create export parameter object

Dim Params As FREngine.RTFExportParams

Set Params = Engine.CreateRTFExportParams

" Tune export parameters

Params.KeepLines = True

" Now export text into a file

FRDocument.Export "C:\myFile.rtf", FEF_RTF, Params

Export to PDF and PDF/A formats

ABBYY FineReader Engine allows you to tune export to PDF and PDF/A formats in an even more convenient way. It provides the
PDFExportParams object, which allows you to tune export with only a few parameters. You do not need to set all the parameters of
the obsolete PDFExportParamsOld or PDFAExportParamsOld objects, but simply set the parameters of the PDFExportParams
object for your task. For example, using only one IPDFExportParams::Scenario property you can optimize your PDF for quality and
size.

The procedure which uses the PDFExportParams object is as follows:
1. Create a PDFExportParams object using the CreatePDFExportParams method of the Engine object.
2. Set the necessary parameters of the PDFExportParams object:

0 the scenario of export, which optimizes export for some parameters: quality, size of the file, or/and speed of
export (the Scenario property)

0 the format of export: PDF, PDF/A-1a, or PDF/A-1b (the PDFAComplianceMode property)

0 the mode of recognized text export: text and pictures only, text over the page image, text under the page image,
page image only (the TextExportMode property)

O set other parameters, if necessary

3. Pass the object of export parameters to one of the export methods of the FRDocument, FRPage, Engine, Exporter
objects.

Sample code in C++ and Visual Basic:

Visual C++ (COM) code
FREngine: :1EnginePtr Engine;
FREngine: : IFRDocumentPtr frDocument;

// Create a PDFExportParams object

FREngine: : IPDFExportParamsPtr params = Engine->CreatePDFExportParams();
// Set necessary parameters

69

ABBYY FineReader Engine 10 Guided Tour

params->Scenario = FREngine: :PES MaxSpeed;
params->TextExportMode = FREngine: :PEM_ImageOnText;

// Use the parameters during export
frDocument->Export(L"C:\\MyText.pdf"”, FREngine::FEF_PDF, params);

Visual Basic code

Dim Engine As FREngine.Engine
Dim FRDocument As FREngine.FRDocument

" Create a PDFExportParams object

Dim params As FREngine.PDFExportParams
Set params = Engine.CreatePDFExportParams
" Set necessary parameters
params.Scenario = PES_MaxSpeed
params.TextExportMode = PEM_ImageOnText

" Use the parameters during export
frDocument.Export "C:\MyText.pdf'", FEF_PDF, params

See also

Export Formats
Working with Profiles
Tuning Analysis, Recognition, and Synthesis Parameters

Working with Images

The basic scenarios of image processing work with images within the FRDocument object, which represents the document being
processed.

Image opening
To load images into the document, do one of the following:

e When creating the FRDocument object, use the CreateFRDocumentFromImage method of the Engine object.

e Add images to the created FRDocument object from a file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method).

All these methods use the PrepareImageMode object as a parameter, which allows you to specify different parameters of image
preprocessing. Create this object by calling the IEngine::CreatePrepareImageMode function, then change its properties as
necessary, and then pass it to a function that requires it.

ImageDocument structure

Pages of the document provide access to the images via the IFRPage::ImageDocument property. Each open image in ABBYY
FineReader Engine, each image in the so-called "internal format," is represented by the ImageDocument object, which includes three
image planes. One image plane corresponds to one Image object:

e Black-and-white plane. It is the black-and-white copy of the source image. The copy is deskewed or non-deskewed,
depending on the internal file preparation mode (see the description of the IPrepareImageMode::CorrectSkewMode

property).

e Color plane. This is the color or gray copy of the source image. The copy is deskewed or non-deskewed, depending on the
internal file preparation mode (see the description of the IPrepareImageMode:: CorrectSkewMode object). If the source
image was black-and-white, this page is the same as the "black-and-white" plane.

e Preview. A small color image used for displaying a preview image in the user interface. It may be or may not be available in
the file in the internal format. The availability of this preview image depends on the internal file preparation mode (see the
description of the IPrepareImageMode::CreatePreview property).

Each image plane of the above-mentioned set is characterized by its own size and resolution. The size and resolution of black-and-
white and color images are the same. Since image documents may consist of deskewed images, the ImageDocument object has a set
of coordinate conversion functions. Use the IlmageDocument::ConvertCoordinates function to convert pixel coordinates from
one image plane to another. The coordinates of pixels on the black-and-white image plane and the color image plane are the same.
Remember that the recognition functions use the page received after image preparation (therefore, the page may be deskewed). So, it
is this page size and resolution that should be used when you create your Layout objects, otherwise the ABBYY FineReader Engine
export functions may not work correctly.

70

ABBYY FineReader Engine 10 Guided Tour

You can add an already created ImageDocument object to a document using the AddImage method of the FRDocument object.

Image modification

ABBYY FineReader Engine provides functionality for image editing (inversion, stretch, etc.) via the ImageModification object. To
perform modification, do the following:

1. Create an ImageModification object with the help of the CreateImageModification method of the Engine object.
2. Specify the necessary parameters.

3. Call the IImageDocument::Modify method that takes the ImageModification object as an input parameter. The actual
change takes place only when you call this method.

4. Save the changes using the IlImageDocument::SaveModified method.
SImportant! Modifications to the image are not saved until the IlmageDocument::SaveModified method is called. If
the ImageDocument object is released before a call to this method, the modifications are not saved.

Image saving
You can save the current image plane into an image file in a specified format using the WriteToFile method of the Image object.

Note that though the ImageDocument object provides a set of saving methods (SaveTo, SaveToFile, SaveToMemory), these
methods cannot be used for saving an image in an external format. These methods save the contents of the ImageDocument object
in the ABBYY FineReader Engine internal format, which cannot be viewed in any external program.

ABBYY FineReader Engine also provides functionality for saving several images into a single image file. To save multi-page image file,
use the MultipageImageWriter object:

1. Create a MultipageImageWriter object using the CreateMultipageImageWriter method of the Engine object.

2. Add images to the end of the multi-page image file using the AddPage method of the MultipageImageWriter object. Each
image is added as a single page.

3. Before the newly created image file can be used, all the references to the MultipageImageWriter object must be released.

See also

Supported Image Formats
Tips for Document Scanning
Tips for Taking Photos

Working with Languages

One of the main recognition parameters is the language which is used during recognition. It is important to set the right language
before analysis and recognition. Recognition language can be easily specified with the help of the
IRecognizerParams::SetPredefinedTextLanguage method. This method effects the IRecognizerParams::TextLanguage
property. By default, this parameter is initialized with the English recognition language.

Below you can find useful information about the languages supported in ABBYY FineReader Engine by default and objects that provide
advanced functionality for working with recognition languages.

Predefined languages

ABBYY FineReader Engine provides a set of languages supported by default. These languages are called "predefined languages." The
collection of available predefined languages represented by the PredefinedLanguages object is accessible via the
PredefinedLanguages property of the Engine object. It is a collection of PredefinedLanguage objects.

The predefined languages are identified by their internal names. You may directly specify a recognition language by the name of the
corresponding predefined language via the IRecognizerParams::SetPredefinedTextLanguage method. For the list of the internal
names of the predefined languages see Predefined Languages in ABBYY FineReader Engine.

Recognition language for a text

The language which is used during recognition is represented by the TextLanguage object. The RecognizerParams object that
specifies the recognition parameters stores a reference to the TextLanguage object. The recognition functions take this object either
as a sub-object of the PageProcessingParams object passed to them as an input parameter, or from a block in a Layout object.

The TextLanguage object exposes the following main properties:

71

ABBYY FineReader Engine 10 Guided Tour

Internal name. We recommend selecting a unique name for the internal language; it is already unique for the languages
supplied in the ABBYY FineReader Engine distribution pack. Be sure to make the names of new languages unique.

Letter sets. The TextLanguage object contains the following letter sets: punctuation marks that may be encountered
between words, prohibited characters, and additional punctuation marks that go immediately before and after words.

Prohibiting dictionaries. You can create a collection of prohibiting dictionaries using the ProhibitingDictionaries
property of the TextLanguage object. The words from these dictionaries cannot be used as variants of a recognized word.
But if no variants are left and using a prohibited word is the only option, words from these dictionaries may still appear in
the recognized text. See Working with Dictionaries.

Recognition language for characters

During the recognition, the text is separated into words, with one or several recognition languages corresponding to each word. One
recognition language is assigned to each character in 2 word. This recognition language is represented by the BaseLanguage object
and is accessible via the ITextLanguage::BaseLanguages property.

The BaseLanguage object has the following properties:

Internal name. We recommend selecting a unique name for the internal language; it is already unique for the languages
supplied with the ABBYY FineReader Engine distribution pack. Be sure to make the names of new languages unique.

If one base recognition language corresponds to one recognized word, the ICharParams::LanguageName property for
each character in this word is set to the internal name of the base language after recognition. If several base recognition
languages correspond to one word (e.g. for bilingual compound words), the ICharParams::LanguageName property for
the characters in this word is empty. The ICharParams::Languageld property contains the identifier of the base language
no matter what the recognized word.

Letter sets. A letter set comprises letters that form the alphabet of the language, letters that form its extended alphabet
(used in loan words), punctuation marks that go immediately before and after words, characters that are allowed inside
words but are ignored by the internal spelling check system, and symbols allowed in subscript and in superscript.

Dictionary. A recognition language for a word may have a dictionary attached to it. See Working with Dictionaries.

Creating a compound recognition language

ABBYY FineReader Engine provides an easy way to create compound recognition languages made up of several predefined recognition

languages.

This is done via the LanguageDatabase object. For example, you may create a recognition language that includes both

English and German words:

1.

2.

3.

Create 2 LanguageDatabase object by calling the IEngine::CreateLanguageDatabase method.

Call the ILanguageDatabase::CreateTextLanguage or ILanguageDatabase::CreateCompoundTextLanguage
method with the parameters "English" and "German."

Use the received TextLanguage object for text recognition.

The LanguageDatabase object also allows you to import custom user-defined languages created in ABBYY FineReader. ABBYY
FineReader's Graphical User Interface provides a means for creating custom recognition languages with letter sets, dictionaries, and
other parameters specified by the user. See the ABBYY FineReader User's Guide for details. The recognition languages created in this
way are stored in a set of files and may be accessed by using the LanguageDatabase object. If you wish to use the languages created in
ABBYY FineReader, do the following:

1.
2.
3.
4.

See also

Create a LanguageDatabase object by calling the IEngine:: CreateLanguageDatabase method.
Load the languages into the LanguageDatabase object using the ILanguageDatabase::LoadFrom method.
Get the required language by its name as a TextLanguage object from the LanguageDatabase object.

Use the received TextLanguage object for text recognition.

Working with Dictionaries
Recognizing Words with Spaces
Recognizing Hieroglyphic Languages

72

ABBYY FineReader Engine 10 Guided Tour

Working with Layout and Blocks

When processing a document, ABBYY FineReader Engine first analyzes its layout and detects certain areas on the document pages.
These areas are called "blocks." Blocks determine how and in what order the image areas should be recognized.

In ABBYY FineReader Engine, the Layout object serves as a storage for blocks and recognized text. The basic document processing
scenarios work with the layout within the FRDocument object, which represents the document being processed. To access the layout
of a document page, use the IFRPage::Layout property.

Geometrical characteristics of page layout

The Layout object has the following geometrical parameters: width and height. A user should not care about assigning values to

them — this is done automatically when the Layout object is being used. An analysis or recognition method initializes the geometrical
properties of the Layout object with the values of the corresponding properties of the black-and-white image page of the
ImageDocument object. It is the black-and-white image page that is used for text recognition, which is why the geometrical
characteristics of the black-and-white image page are copied into the Layout object.

Layout blocks

The Layout object provides access to the layout structure via the Blocks and BlackSeparators properties. Both these properties
provide access to the LayoutBlocks sub-objects, which represent collections of blocks. The first one refers to the main set of layout
blocks, which contains texts, tables, pictures, barcodes, and checkmarks. The second one refers to the collection of blocks for
separators. Separators are black lines that are detected during the page layout analysis. They are used for more precise page layout
reconstruction during export.

Each block has its region, which is a set of rectangles positioned one under another. A region is represented by the Region object.

Depending on the type of data contained in the block, blocks may be of different types, each having its own specific properties. These
properties are accessible via the corresponding block type objects which can be received using the methods of the Block object. The

corresponding block type interfaces are derived from the IBlock interface and inherit all its properties. The following block types are
available:

Text block

These blocks correspond to an image zone recognized as formatted text. Properties of this block type are accessible via the TextBlock
object. The recognized text from the part of the image enclosed by this block is also accessible via this object.

Table block

The region of blocks of this type may consist of one rectangle only. The properties of this block type are accessible via the TableBlock
object. The structure of the table is described by two collections of table separators, horizontal and vertical (the TableSeparators
objects), and by a collection of table cells (the TableCells object). Each table cell is treated as a block of some type. A cell has four
coordinates — the indexes of the left, right, top, and bottom separators that enclose it. The recognized text is a property of a single cell,
not of the entire table. If a cell is a picture, the image enclosed in the cell bounds is not recognized and is displayed as a picture in the
recognized text. Table separators are may be of different types. A separator type is in fact a property of the corresponding separator's
portion which lies between its nearest intersections with other separators, and not of the entire separator. Separators may be of the
following types:

e Absent. This type is assigned to table separators that go through merged cells.
e Unknown. This type is assigned by default to every newly added table separator.

e Invisible. This type is assigned to an "imaginary" table separator created as a result of table structure analysis in a place
where the source table did not have one but where it should logically be.

e Explicit. Table separators of this type appear where the black lines of the source table are located.

e Multiple. This type of separator may appear as a result of table editing.

73

ABBYY FineReader Engine 10 Guided Tour

A t separator Imvisible separator
0 1 2 3 4 g
\\ Explicit separator

1 \" |

| — |

]
2
3

Base coordinates in a table and
types of table separators

Raster picture block

This one represents an image zone treated as a raster picture. The part of the image that this block encloses is not recognized, and the
block is exported "as is." The properties of this block type are represented by the RasterPictureBlock object.

Vector picture block

This one represents an image zone treated as a vector picture. Blocks of this type may appear in the layout only if a page has been
analyzed with the IPageAnalysisParams::DetectVectorGraphics property set to TRUE. Usually, background pictures are
recognized as blocks of this type. The properties of this block type are represented by the VectorPictureBlock object.

Barcode block

A part of image enclosed by a block of this type is treated as a barcode. ABBYY FineReader Engine may recognize barcodes of several
types, it may also detect barcode types automatically. The information read from a recognized barcode is accessible via the barcode
block specific properties represented by the BarcodeBlock object.

Checkmark block

A part of image enclosed by a block of this type is treated as a checkmark. It corresponds to an image area recognized as a checkmark.
The information read from a recognized checkmark is accessible via the checkmark block specific properties represented by the
CheckmarkBlock object.

Checkmarks group block

A part of image enclosed by a block of this type is treated as a checkmarks group. It corresponds to an image area recognized as
checkmarks group. The information read from a recognized checkmarks group is accessible via the checkmarks group block specific
properties represented by the CheckmarkGroup object.

Separator block

A part of image enclosed by a block of this type is treated as a separator. Separators are lines that are detected during the page layout
analysis. They may be parts of a table, lines that separate different text elements, etc. The coordinates and type of a separator are
accessible via the SeparatorBlock object.

Separators group block

A part of image enclosed by a block of this type is treated as a separators group. It corresponds to an image zone recognized as a group
of separators. A group of separators usually includes four separators, which form a rectangle. For example, four lines of a table border
are recognized as a separator group. Each separator group contains a collection of separator blocks. The specific properties of a
separators group block are represented by the SeparatorGroup object.

Adding blocks manually

Blocks are found on a page automatically during layout analysis. But you may want to create a Layout object and add blocks manually.
In this case:

1. Create a Layout object with the help of the CreateLayout method of the Engine object.

2. Create a Region object for the block using the IEngine::CreateRegion method and add rectangles to it using the
IRegion::AddRect method.

3. Create a block of required type and add it into the collection using the AddBlock method of the Layout object.

4. Set the required parameters of the block (use the block properties object corresponding to the type of block).

74

ABBYY FineReader Engine 10 Guided Tour

Changing block type
A block type can only be changed using the following procedure:

1. Delete this block from the layout by calling the ILayoutBlocks::Remove method.

2. Create a Region object for the block using the IEngine::CreateRegion method and add rectangles to it using the
IRegion::AddRect method.

3. Create a block of required type and add it into the collection using the AddBlock or InsertBlock method of the Layout
object.
See also

Recognizing Checkmarks
Working with Text

Working with Text

The text that ABBYY FineReader Engine works with is plain text, i.e. it does not contain frames, tables, and so on. All characters are
Unicode. Plain text may contain the following special characters:

e 0x2028 — Line break symbol.

e OxFFFC — Object replacement character. Denotes an embedded picture inside the text.
e (0x0009 — Tabulation.

e 0x005E — Circumflex accent.

The attributes and formatting of a text is available via the corresponding objects and properties.

You can work with the recognized text of a document either via its page layout (IFRPage::Layout property) or via the logical
structure of the document (IFRPage::PageStructure and IFRDocument::DocumentStructure properties). The recognized text in
the layout becomes available after recognition, though some of its attributes are unavailable until page and document synthesis are
performed. To access the recognized text in the logical structure of the document, you must first perform full document synthesis. This
provides access to the full set of text attributes, including its role in the document and formatting attributes.

This section describes working with text via the page layout. For more information about working with text via the logical structure of
a document, please see the Working with the Logical Structure of a Document section.

Recognized text in the layout

Only text, table, and barcode blocks contain text after recognition. Other blocks have no text. The Text object provides access to the
recognized text of text and table blocks, while the BarcodeText object provides access to the text of a barcode block.

To access the recognized text of a block, do the following:

e For text blocks
Use the ITextBlock::Text propetty.

e For table blocks
1. Receive the collection of table cells using the ITableBlock::Cells property.
2. Select the desired cell. Use the methods of the TableCells object.
3. Receive the block object of the cell (the ITableCell::Block property).

4. Check that the block is of type BT Text (the IBlock::Type property) and receive the TextBlock object using the
IBlock::GetAsTextBlock method.

5. Use the ITextBlock::Text property.
e For barcode blocks

Receive the barcode text using the IBarcodeBlock::BarcodeText or IBarcodeBlock::Text property. The first one returns
the BarcodeText object, which is a collection of characters of the recognized barcode (the BarcodeSymbol objects). The

75

ABBYY FineReader Engine 10 Guided Tour

second one returns the text of the barcode as a single string. The BarcodeText allows you to edit the text of the barcode.
The IBarcodeBlock::Text property is read-only.

Text and paragraphs

The Text object contains a collection of paragraphs. This collection is a Paragraphs object accessible via the Paragraphs property of
the Text object. The Paragraphs object is a collection of Paragraph objects. The recognized text is accessible via the
IParagraph::Text property. The text in the property is a Unicode string.

There also exists 2 ParagraphParams object that contains attributes specific to the whole paragraph, such as information on its
alignment and indent. This object is accessible via the IParagraph::ExtendedParams property.

The IParagraph::Lines property provides access to a collection of paragraph lines represented by the ParagraphLines object,
which, in turn, is a collection of ParagraphLine objects. The latter provides information on the geometrical position of a single
paragraph line and so represents the division of the text into lines.

The IParagraph::Words property provides access to a collection of paragraph words represented by the Words object, which is a
collection of Word objects. The Word object provides access to a single word of the paragraph.

Character attributes

Each character of the text has its own parameters. They are accessible via the CharParams object. The CharParams object has a
large set of character attributes such as its geometrical parameters, its font, and language. The CharParams object contains the
character itself in the SelectedCharacterRecognitionVariant propetty.

The position of a character in the text is defined by the index of its paragraph and its own index in this paragraph. There also exists a
so-called "special position” in the text: the index of the paragraph is the total number of paragraphs and the index of the character is 0.
This is the insertion point at the end of the text. Some methods of the Text object perform operations with the special position, i.c.
insert another text fragment or picture in it.

The SelectedCharacterRecognitionVariant property of the CharParams object provides access to an extended set of attributes
specific to a single character, represented by the CharacterRecognitionVariant object. These attributes are set during the
recognition and provide some internal recognition information specific to the character. In particular, this object provides more
precise information on character recognition certainty, the probability that the character is in a serif font, etc.

Text editing

You may try changing the attributes of the Text object, but you should do it very carefully if the text is to be exported into an external
format. The ABBYY FineReader Engine export methods assume that the recognized text is the result of recognition, and that the user
only corrected the recognition errors and made no other changes. The objects of the Text group have a lot of interdependent
properties, and often changing one of these properties requires changing others as well. For this reason changes in the recognized
text's attributes may sometimes result in unpredictable export results.

See also

Working with Layout and Blocks

Working with Languages

Using Voting Algorithms

Working with the Logical Structure of a Document

Working with the Logical Structure of a Document

The logical structure of a document is recreated during document synthesis, which is performed after recognition. During document
synthesis, formatting attributes, including headers, footers, page numbers, fonts, styles etc., are also detected. ABBYY FineReader Engine
provides the DocumentStructure and PageStructure objects and a set of their subobjects to access the results of document and
page synthesis. You can access these objects via the IFRDocument::DocumentStructure and IFRPage::PageStructure properties.

AImportant! Pointers to a child object's interfaces are valid until the parent object exists. An attempt to access a child object after its
parent object has been destroyed may result in an error. Therefore, you must keep the reference to the FRDocument object (which is
the root for the document synthesis objects) while you work with the elements of the document structure. Please see Working with
Properties for details.

Recognized text in the logical structure of a document

AImportant! To access the recognized text in the logical structure of a document, you must first perform full document synthesis.
The document synthesis objects become valuable only after synthesis.

In the logical structure of a document, recognized text is an attribute of:

76

ABBYY FineReader Engine 10 Guided Tour

e page clements (PageElement object)
e document elements (DocumentElement object)
e running titles (RunningTitle, RunningTitleSeriesText objects)

[#Note: You can work with the recognized text of the document either via its page layout or via the logical structure. This section
describes working with text via the logical structure. For information about working with text via the page layout, please see the
Working with Text section.

Working with the text of a page

The page structure usually includes one or several page sections. Each of these sections consists of one or several page streams: main
text, incuts, footnotes, and artefacts. Each page stream includes one or several page elements: text, table, barcode, or picture. Page
structure may also include running titles.

Page Structure
This page has one saclion, a headar and a footer

| ABETY o 1 Header
[Tipa & Tricks for Sheatiag Teu with INgital Camers This is one of the

Page section e i

. g N F o repertiaes] i e P b wse o gkl Garrees efe bvedy S B el R el oo e sl pagemmng l'IEI'ES

This page sacfion .‘-.a...,-..,n_. s et (e s, S VS Dy P O (PSRt e ABETY
foing Epa Frfasss qx.n-_::::n-.. R

streams — main e o B, s s Sebms Bt s VA o e e

faxt and incut Virmr Dl it
Vs o cpi Carvann ot L e ek don o bepee sy segpged s tha iokowryg besh e
4 Fuan Sasbds Toom
0 e g
L
4 ik oo DR b O T bacusng
n Wi e el i et iy e Main text
Gereral Tipy a_
e e T e S This is the page siream

ol of P docurerd ¥ ol
L e i & Y e bt i e e o el by o B o af the fype

- ST _MainTaxt it
x e e P s P contains one page

o N r;;:;:mrv‘:‘uh wra

Incut - i [t element (fext).

ke P et ol A K e O e e e § W

This is tha page S0 s S
stream of the lype

Ligghviireg and Plash
ST _Incut, It o m b I 8 A B, Mkl K 5 P il
1 @ [mesbie T Rash (n most poind-ardeshont Soisl cereres. Ba Rash & an o rmode Sy defiea
coniams one page 4+ v 8 et 3 Bl i R g A e ol i, p i Rt
o) i ety B0 Ty 10 Sccece ghi BT

alameant {pletura). o Dt e P s £ ghonty Do

Extra Tips for Advanced Ueers
e Sty § o ey yoar e “rmade ool ared wink lo reorove o kil N
e by, o wink by g Parve i resully o peesl poriies. Pan e @ e salrg b G Roliay
4 U e e Dalanos leature F yDur DETEOE S Tl R Dalnos e & ehie et of pagen
I . EACs RS LT T BP{TOTS DB o il o bghtng ooy
& (kb P S-SR SR OIS, L i TR
1 o e S
n Rado Ve ey haralin suely. Feprwlinn. o ikl sl K il Ktve
3 Lha e e s slowsd by e careen 1] or 4 51 (nBrighl dayighi. e umaler
aorhaes Ten ol Drocuos M e |
4 PO P GBS pa T el G Choe o B Rgatencl, Rkt e Pegrate) g

Footer

- This is ona of the
; ! page running titles.

Main text

To work with the main text of a page, you can receive the corresponding PageStream object using the IPageSection::MainStream
property. Then receive its collection of page elements — the PageElements object (IPageStream::PageElements property).

Working with the text of a page element:

For texts

Use the GetAsText method to receive the Text object.
For tables

1. Use the GetAsTable method to receive the TextTable object.

2. Ifyou want to receive the text of a cell, receive this cell using the ITextTable::Cell property. If you want to receive the text
of a caption, receive the collection of captions using the ITextTable::Captions property and select the desired caption
from the collection.

3. Receive the PageElement object of the TextTableCell or Caption object (use the Element property).

77

ABBYY FineReader Engine 10 Guided Tour

4. The received page element will be of type PET Text. Use its GetAsText method to receive the Text object.

For barcodes

1. Use the GetAsBarcode method to receive the TextBarcode object.
2. Use the ITextBarcode::Text property to receive the Text object.

[#Note: We recommend working with the text of barcodes via the layout, as this is more suitable for barcodes and does not require
synthesis.

For pictures
For a picture you may receive a text of its caption.

1. Use the GetAsPicture method to receive the TextPicture object.

2. Receive the collection of captions using the ITextPicture::Captions property and select the desired caption from the
collection.

3. Receive the PageElement object of the Caption object (use the Element property).
4. The received page element will be of type PET Text. Use its GetAsText method to receive the Text object.

Incuts and footnotes

To work with the text of an incut or footnote, receive the collection of page streams (IPageSection::PageStreams property) and

find the required PageStream object in the collection (IPageStream::Type = ST Incut or IPageStream::Type = ST Footnote).

Then receive its collection of page elements — the PageElements object (IPageStream::PageElements property). Further work
with the text of a page element is the same as for the main text (see above).

Running titles

To work with the text of a running title, receive the RunningTitle object using the IPageStructure::Header or
IPageStructure::Footer property. Then use the Text property of the RunningTitle object.

Working with the text of the whole document

The document structure usually includes one or several document sections. Each of these sections consists of one or several document
streams: main text, incuts, and footnotes. Artefacts are not document streams. Each page stream includes one or several page elements:

paragraph, table, barcode, or picture. The document structure may also include a collection of running title series.

Document structure
This document contains 2 pages. It has one documeant
section, one footnote series, and 2 running title series

ing title series
This is one of the
running litle serfes of
the document - the

Document section |

senes of headers
This documeant | Digital Camera OCR
section is located R e s 3
on 2 pages and has bternative Way te Digielre and Reparpor Main text
4 document sireams — p—

mailn text, two ncuts,
and one footnota

Incut

This is ona of tha
document
streams of the
type ST _Incut. it
contains ona
page element
(picture)

Footnote series
This is the footnofe
series of the
document — it
contains only ona
footnote

Footnote

This Is document
stream of the fype
ST_MainText. If
contains & set of
document elements
(paragraphs)

Incut

This is one of the
docurment
streams of the
type ST _incut. If
contains one
page element
{pictura)

Running title series
This is one of the
running litle serfes of
the document - the
senes of footers

This is the document stream of the

type ST_Footnote. It contains ong
page alement {paragraph)

Main text, incuts, and footnotes

78

ABBYY FineReader Engine 10 Guided Tour

To work with the main text, the text of an incut or footnote, find the required DocumentStream object in the document section
(IDocumentSection::DocumentStream property). Iterate through its elements (the DocumentElement objects) using the
FirstElement, LastElement, NextElement, PrevElement properties.

The work with the text of a document element depends on its type:
For paragraphs
Use the GetAsParagraph method to receive the Paragraph object.
For tables
1. Use the GetAsTable method to receive the TextTable object.

2. Ifyou want to receive the text of a cell, receive this cell using the ITextTable::Cell property. If you want to receive the text
of a caption, receive the collection of captions using the ITextTable::Captions property and select the desired caption
from the collection.

3. Receive the PageElement object of the TextTableCell or Caption object (use the Element property).
4. The received page element will be of type PET Text. Use its GetAsText method to receive the Text object.

For barcodes

1. Use the GetAsBarcode method to receive the TextBarcode object.
2. Use the ITextBarcode::Text property to receive the Text object.

[#Note: We recommend working with the text of barcodes via the layout, as this is more suitable for barcodes and does not require
synthesis.

For pictures
For a picture you may receive the text of its caption.

1. Use the GetAsPicture method to receive the TextPicture object.

2. Receive the collection of captions using the ITextPicture::Captions property and select the desired caption from the
collection.

3. Receive the PageElement object of the Caption object (use the Element property).
4. The received page element will be of type PET Text. Use its GetAsText method to receive the Text object.

Series of running title
You may receive the text of the whole series of running title:

1. Receive the RunningTitleSeriesArray object using the IDocumentStructure::RunningTitleSeriesArray property.

2. Find the desired RunningTitleSeries object in the collection and then, using its FooterOnEven, FooterOnOdd,
HeaderOnEven, HeaderOnOdd properties, receive the RunningTitleSeriesText object.

3. Use the Text property of the RunningTitleSeriesText object to view all text of the series of running titles.

See also

Document Synthesis Objects
Working with Layout and Blocks

Using Voting API

Developers can combine several Engines in their recognition solutions. When multiple Engines generate different recognition variants
for a character or word, the developer can select the best variant by voting between the variants. To enable voting, the ABBYY
FineReader Engine has a special Voting API which provides access to different hypotheses of character or word recognition with
corresponding weight values. In addition to voting, the developer can use the Voting API to check recognition results using his own
databases and algorithms, and to correct text. For example, the developer can build words from letters or check all generated
hypotheses.

[%Note: The Voting API is not available for recognizing handprinted texts.

79

ABBYY FineReader Engine 10 Guided Tour

The WordRecognitionVariants object represents a collection of hypotheses for a word, and the CharacterRecognitionVariants
object represents a collection of hypotheses for a character. The elements of these collections are the WordRecognitionVariant and
CharacterRecognitionVariant objects respectively.

The WordRecognitionVariant object represents a single hypothesis for a word and contains the text of the hypothesis, type of
model, the average width of stroke, and information on whether the hypothesis has been found in the dictionary. The
GetCharParams method of this object provides access to the parameters of a single character.

The CharacterRecognitionVariant object represents a single hypothesis for a character and contains character confidence,
probability that a character is written with a serif font, and information on whether the character is superscript or subscript.

If you wish to save all hypotheses for a word or character during recognition, do the following:

1. Set the SaveWordRecognitionVariants and SaveCharacterRecognitionVariants properties of the
RecognizerParams object to TRUE.

2. Pass the RecognizerParams object as a sub-object of the PageProcessingParams object to one of the ABBYY
FineReader Engine recognition methods.

3. The collection of hypotheses is accessible after recognition through the ICharParams::WordRecognitionVariants,
ICharParams::CharacterRecognitionVariants properties and the IParagraph::GetWordRecognitionVariants
method.

#Note: These methods return zero for non-printable characters (spaces, carriage returns, etc.) and characters which were
not recognized but added to the text during editing. Zero is also returned if the text was recognized by one of the previous
ABBYY FineReader Engine versions. The hypotheses collections contain recognition variants ranked from best to worst. If
the SaveWordRecognitionVariants or SaveCharacterRecognitionVariants property of the RecognizerParams
object is set to FALSE, the corresponding collection will contain only one element.

Sample code in Visual Basic:

Visual Basic code
" Procedure of hypotheses generation for all words and characters of a text block
Private Sub GetVariants(block As FREngine.block)
" Collection of character recognition hypotheses
Dim characterRecognitionVariants As FREngine.characterRecognitionVariants
" A single character recognition hypothesis
Dim characterRecognitionVariant As FREngine.characterRecognitionVariant
" Collection of word recognition hypotheses
Dim wordRecognitionVariants As FREngine.wordRecognitionVariants
* A single word recognition hypothesis
Dim wordRecognitionVariant As FREngine.wordRecognitionVariant
" Create CharParams object
Dim charParams As FREngine.charParams
Set charParams = Engine.CreateCharParams
" Get the collection of paragraphs of the recognized text
Dim paragraphs As FREngine.paragraphs
Set paragraphs = block.GetAsTextBlock.text.paragraphs

Dim i, j, k As Integer
" lIterate the collection of paragraphs
For i = 0 To paragraphs.Count - 1
" lterate characters in paragraph
For j = 0 To paragraphs.ltem(i).Length
" Get parameters of a single character
paragraphs. ltem(i).GetCharParams j, charParams
" Get the collection of character recognition hypotheses
Set characterRecognitionVariants = charParams.CharacterRecognitionVariants
" Get the collection of word recognition hypotheses
Set wordRecognitionVariants = charParams.WordRecognitionVariants

" Get a single word recognition hypothesis
IT Not (wordRecognitionVariant Is Nothing) Then

80

ABBYY FineReader Engine 10 Guided Tour

For k = 0 To wordRecognitionVariants.Count - 1
Set wordRecognitionVariant = wordRecognitionVariants. Item(k)
Next k
End IFf

" Get a single character recognition hypothesis
IT Not (characterRecognitionVariants Is Nothing) Then
For k = 0 To characterRecognitionVariants.Count - 1
Set characterRecognitionVariant = characterRecognitionVariants. lItem(k)
Next k
End If
Next j
Next i
End Sub

" Create PageProcessingParams object
Dim pageProcessingParams As FREngine.PageProcessingParams
Set pageProcessingParams = Engine.CreatePageProcessingParams

pageProcessingParams.RecognizerParams.SaveCharacterRecognitionVariants = True
pageProcessingParams.RecognizerParams.SaveWordRecognitionVariants = True

frDocument.Process pageProcessingParams
Dim i As Integer
" Iterate layout blocks
For i = 0 To layout.Blocks.Count - 1
IT layout.Blocks.ltem(i).-Type = BT_Text Then
" Call GetVariants procedure for text blocks
GetVariants layout.Blocks. Item(i)
End IFf
Next 1

What is the difference between the CharConfidence and the IsSuspicious properties

The CharConfidence property of the PlainText and the CharacterRecognitionVariant objects is the read-only long property
which stores the value of character confidence. It is in the range from 0 to 100, and 255 cotresponds to the fact that confidence is
undefined. It represents an estimate of recognition confidence of a character in percentage points. The greater its value, the greater the
confidence. Character confidence can be undefined, for example, for characters which were added during text editing.

Recognition confidence of a character image is a numerical estimate of the similarity of this image and the "ideal" whose recognition
confidence would be 100%. When recognizing a character, the program provides several recognition variants which are ranked by
their confidence values. For example, an image of the letter "e" may be recognized

e asthe letter "e" with a confidence of 95%,

e asthe letter "c" with a confidence of 85%,
e as the letter "0" with a confidence of 65%, etc.

The sum total of the confidence values of all the recognition variants of a character need not be 100%. The hypothesis with a higher
confidence rating is selected as the recognition result. But the choice also depends on the context (ie. the word to which the character
belongs) and the results of a differential comparison. For example, if the word with the “e” hypothesis is not a dictionary word while
the word with the “c” hypothesis is a dictionary word, the latter will be selected as the recognition result, and its confidence rating will
be 85%. The rest of the recognition variants can be obtained as hypotheses.

The IsSuspicious property of the CharParams object is the Boolean property. This property set to TRUE means that the character
was recognized unreliably. This property is determined by an algorithm which takes into account a number of parameters, such as
recognition confidence of a character, nearby characters and their recognition confidence, hypotheses and their recognition
confidence, the geometric parameters of a character, and context (i.e. the word to which a character belongs).

81

ABBYY FineReader Engine 10 Guided Tour

See also

CharacterRecognitionVariant
WordRecognitionVariant

Using Text Type Autodetection

Autodetection detects the type of a recognized piece of text. Autodetection is launched if the TextTypes property of the
RecognizerParams object is set to several constants. This mode was primarily designed for recognizing forms. In the case of common
OCR we recommend using it only if absolutely necessary.

When autodetection is on, ABBYY FineReader Engine will first try to detect the type of text in the specified block or group of blocks
(for these blocks, the TextTypes property of the RecognizerParams object is set to several constants). ABBYY FineReader Engine
will choose from the constants specified in the TextTypes property. This property contains an OR superposition of the
TextTypeEnum enumeration constants which denote the possible text types used for recognition. For example, if it is set to

TT Normal |TT Index, ABBYY FineReader Engine will assume that the text contains only common typographic text and digits written
in a ZIP-code style, ignoring all other variants. The property cannot be set to TT ToBeDetected. During autodetection, ABBYY
FineReader Engine runs preliminary recognition for all of the text types specified in the TextTypes property. The preliminary OCR
results are then compared, ABBYY FineReader Engine selects the type with the best preliminary results and runs the recognizer for this
type.

[#Note: The RecognizerParams object also provides the TextType and PossibleTextTypes properties for text type autodetection. These
properties are obsolete. We recommend using the TextTypes property instead.

How to use autodetection

Autodetection should be used for a set of blocks all of which contain text of the same type. If a separate text type must be selected for
each block, you must call the RecognizeBlocks method for each block and the RecognizerParams object must list the possible text

types.

[#Note: If a single block contains text of different types, this entire text within the block will be recognized as if it was of the same
type. For better OCR results, draw separate blocks for each type of text. An exception to this rule is a situation when TT Normal and
TT Gothic types are encountered in one block. If these types are both specified in the TextTypes property, recognition will run as
normal.

Selecting the set of text types

The speed and accuracy of autodetection depend on the set of text types specified in the TextTypes property. Autodetection is fastest
for combinations of TT Normal, TT Matrix, TT Typewriter, TT OCR_A, and TT _OCR_B types (which can be called the "fast
autodetection set"). In this case the recognizer is launched only once, autodetection is carried out during OCR, and single words rather
than blocks are used to detect the text type. If only one text type has been specified, autodetection is not launched — the Engine
launches the recognizer which corresponds to the specified text type.

[%Note: If the TextTypes property is equal to any combination of TT Matrix, TT Typewriter, TT OCR_A, and TT_OCR_B, then italic
fonts and superscript/subscript will not be recognized, regardless of the values of the ProhibitItalic, ProhibitSubscript, and
ProhibitSuperscript properties of the RecognizerParams object.

In the case of texts which are not covered by the "fast autodetection set," text types are detected by blocks, not by single words. This
means that autodetection is slower if the set of possible text types includes text types other than TT Normal, TT Matrix,

TT Typewriter, TT OCR_A, and TT OCR_B. In this case the Engine needs to carry out preliminary OCR several times — once for the
types from the "fast autodetection set" and one preliminary recognition session for each additional text type. Next the results are
compared and the best text type is selected.

M Important! Be sure to keep the number of text types in the PossibleTextTypes property to a minimum,

[%Note: If the TextTypes property is equal to any combination of TT _Handprinted and TT Index, the TrainUserPatterns property of
the RecognizerParams object cannot be set to TRUE.

See also

RecognizerParams
TextTypeEnum

Recognizing Checkmarks

ABBYY FineReader Engine 10 supports two block types for checkmarks: checkmark and checkmark group. A checkmark group block
is a collection of checkmark blocks. These block types have the corresponding constants BT Checkmark and BT CheckmarkGroup in

82

ABBYY FineReader Engine 10 Guided Tour

the BlockTypeEnum enumeration. The CheckmarkBlock and CheckmarkGroup objects provide access to the blocks of these
types. To receive these objects, you should use the corresponding methods of the Block object.

You can recognize single checkmarks as well as checkmark groups.

One check box corresponds to one CheckmarkBlock object. Possible check box statuses: checked, not checked, corrected. They
correspond to CheckmarkCheckStateEnum. A corrected checkmark is a checkmark that was put in the check box and then was
crossed out by the user.

&:Important! All the checkmarks within a checkmark group must have the same values for the IsCorrectionEnabled and
CheckmarkType properties.

For a checkmark group, you can specify a minimum and maximum number of checked check boxes in the group
(MinimumCheckedInGroup and MaximumCheckedInGroup respectively). These values can be set through CheckmarkGroup
object and will be used during recognition. The checkmark type can be specified in the ICheckmarkBlock::CheckmarkType
property.

Recognizing a group of checkmarks

1. Create a Layout object using the IEngine::CreateLayout method.
2. For each checkmark group:

1. Create 2 Region object using the IEngine::CreateRegion method and add rectangles to it using the
IRegion::AddRect method.

2. Create a Block object of the checkmark group type and add it into the layout by using the ILayout::AddBlock
method (use the BT CheckmarkGroup constant and the created Region object as input parameters).

3. Receive the CheckmarkGroup object (use the IBlock::GetAsCheckmarkGroup method) and set the required
parameters (MinimumCheckedInGroup, MaximumCheckedInGroup).

3. For each checkmark:

1. Create the Region object using the IEngine::CreateRegion method and add rectangles to it using the
IRegion::AddRect method.

2. Create a Block object of the checkmark type and add it into the checkmark group by using the
ICheckmarkGroup::AddCheckmark method (use the created Region object as an input parameter).

3. Receive the CheckmarkBlock object (use the IBlock::GetAsCheckmarkBlock method) and set the required
parameters (CheckmarkType, IsCorrectionEnabled).

4. To recognize the checkmarks, use any of the available methods that perform recognition, such as IFRPage::Recognize,
IFRPage::RecognizeBlocks, IFRDocument::Recognize, IRRDocument::RecognizePages, etc. (Do not forget to pass
the created layout to the FRPage object.)

Sample code for checkmark recognition in C++ and Visual Basic:

Visual C++ (COM) code
// Create a Layout object
FREngine: : ILayoutPtr plLayout = Engine->CreatelLayout();

// Set block region
FREngine: :IRegionPtr pRegion = Engine->CreateRegion();
pRegion->AddRect(0, 0, 100, 50);

// Create a block of the "checkmark group™ type and add into the layout
FREngine: :1BlockPtr pBlock = pLayout->AddBlock(FREngine::BT_CheckmarkGroup, pRegion);
FREngine: : ICheckmarkGroupPtr pCheckmarkGroup = pBlock->GetAsCheckmarkGroup();

// Create blocks of the "‘checkmark' type
// and add them to the checkmark group
forC int 1 =0; 1 <5; i++) {
FREngine: : IRegionPtr pCheckmarkRegion = Engine->CreateRegion();

83

ABBYY FineReader Engine 10 Guided Tour

pRegion->AddRect(10, 10 + i * 20, 90, 10 + (i + 1) * 20);

FREngine: : ICheckmarkBlockPtr pCheckmark = pCheckmarkGroup->AddCheckmark(
pCheckmarkRegion);

}

Visual Basic code

" Create a Layout object
Dim Layout As FREngine.Layout
Set Layout = Engine.CreatelLayout()

" Set block region

Dim Region As FREngine.Region

Set Region = Engine.CreateRegion()
Region.AddRect 0, 0, 100, 50

" Create a block of the '"checkmark group"™ type and add it into the layout
Dim Block As FREngine.Block

Set Block = Layout.AddBlock(BT_CheckmarkGroup, Region)

Dim CheckmarkGroup As FREngine.CheckmarkGroup

Set CheckmarkGroup = Block.GetAsCheckmarkGroup

" Create blocks of the 'checkmark"™ type

* and add them to the checkmark group

Dim 1 As Integer

For i = 0 To 4

Dim CheckmarkRegion As FREngine.Region

Set CheckmarkRegion = Engine.CreateRegion()
CheckmarkRegion.AddRect 10, 10 + i * 20, 90, 10 + (i + 1) * 20
Dim Checkmark As FREngine.block

Set Checkmark = CheckmarkGroup.AddCheckmark(CheckmarkRegion)
Next 1

Recognizing a single checkmark

1. Create a Layout object using the IEngine::CreateLayout method.

2. Create the Region object using the IEngine::CreateRegion method and add rectangles to it using the IRegion::AddRect
method.

3. Create a Block object of checkmark type and add it into the layout by using the ILayout::AddBlock method (use the
BT Checkmark constant and the created Region object as input parameters)

4. Receive the CheckmarkBlock object (use the IBlock::GetAsCheckmarkBlock method) and set the required parameters
(CheckmarkType, IsCorrectionEnabled).

5. To recognize the checkmark, use any of the available recognition methods, such as IFRPage::Recognize,
IFRPage::RecognizeBlocks, IFRDocument::Recognize, IFRDocument::RecognizePages, etc. (Do not forget to pass
the created layout to the FRPage object.)

Sample code for checkmark recognition in C++ and Visual Basic:

Visual C++ (COM) code

// Create a Layout object

FREngine: : ILayoutPtr plLayout = Engine->CreatelLayout();
// Set block region

FREngine: : IRegionPtr pRegion = Engine->CreateRegion();

84

ABBYY FineReader Engine 10 Guided Tour

pRegion->AddRect(0, 0, 100, 50);
// Create a block of the "checkmark" type and add into the layout
FREngine: : IBlockPtr pCheckmark = pLayout->AddBlock(FREngine::BT_Checkmark, pRegion);

Visual Basic code

" Create a Layout object

Dim Layout As FREngine.Layout

Set Layout = Engine.CreatelLayout()

" Set block region

Dim Region As FREngine.Region

Set Region = Engine.CreateRegion()

Region.AddRect 0, 0, 100, 50

" Create a block of the '"checkmark' type and add it into the layout
Dim Checkmark As FREngine.block

Set Checkmark = Layout.AddBlock(BT_Checkmark, Region)

See also

CheckmarkBlock
CheckmarkGroup
Working with Layout and Blocks

Recognizing Handprinted Texts

ABBYY FineReader Engine includes ABBYY FineReader ICR (Intelligent Character Recognition) technology which allows you to
recognize handprinted texts.

@Important!
e Not all recognition languages are available for handprint recognition. The languages which are available for handprint
recognition are marked with a special comment in the List of predefined languages.
e Inorder to recognize Cyrillic handprinted texts, your license must support the Cyrillic ICR module.
You need to set up certain recognition parameters which tell ABBYY FineReader Engine that the text to be recognized is handprinted.
This should be done for all blocks which are to be recognized as handprinted.

[#Note: Automatic layout analysis is not available for handprinted text. The coordinates of the blocks that contain handprinted text
must be specified manually. See Working with Layout and Blocks for details.

To set up recognition parameters, do the following for each block with handprinted characters:
1. Specify the TextTypes property of the RecognizerParams object as TT Handprinted.

2. [Optional] Specify the WritingStyle property of the RecognizerParams object which provides additional information
about the writing style of the handprinted letters.

3. [Optional] Handprinted letters can often be enclosed in a frame, box, etc. In this case you can use the FieldMarkingType
property of the RecognizerParams object. This property specifies the type of marking around the letters (e.g. undetline,
frame, box, etc.).

[#Note: For the correct operation of this property, please use the CellsCount property which allows you to set up the
number of character cells in the recognized block.

Sample code in C++(COM) and Visual Basic:

Visual C++ (COM) code
// Global ABBYY FineReader Engine object
FREngine: :l1EnginePtr Engine;

// Open an image file

85

ABBYY FineReader Engine 10 Guided Tour

// Create a Layout object

FREngine: : ILayoutPtr layout = Engine->CreatelLayout();
// Set block region

FREngine: : IRegionPtr pRegion = Engine->CreateRegion();
pRegion->AddRect(491, 314, 2268, 404);

// Create a new block

FREngine: : IBlockPtr newBlock = layout->AddBlock(FREngine::BT_Text, pRegion);
FREngine: : ITextBlockPtr textBlock = newBlock->GetAsTextBlock();

// Specify the text type

textBlock->RecognizerParams->TextTypes = FREngine::TT_Handprinted;

// Specify the type of marking around the letters
textBlock->RecognizerParams->FieldMarkingType = FREngine::FMT_SimpleText;

// Specify the letters writing style
textBlock->RecognizerParams->WritingStyle = FREngine::WS_American;

// Recognition and export

Visual Basic code

" Global ABBYY FineReader Engine object
Public Engine As FREngine.Engine

" Open an image file

" Create a Layout object

Dim Layout As FREngine.Layout

Set Layout = Engine.CreatelLayout()
" Set block region

Dim Region As FREngine.Region

Set Region = Engine.CreateRegion()
Region.AddRect 491, 314, 2268, 404

" Create a new block

Dim newBlock As FREngine.Block

Set newBlock = Layout.AddBlock(BT_Text, Region)

Dim textBlock As FREngine.textBlock

Set textBlock = newBlock.GetAsTextBlock

* Specify the text type
textBlock.RecognizerParams.TextTypes = TT_Handprinted
" Specify the type of marking around the letters
textBlock.RecognizerParams.FieldMarkingType = FMT_SimpleText
" Specify the letters writing style
textBlock.RecognizerParams.WritingStyle = WS_American

" Recognition and export
See also

RecognizerParams
List of the Predefined Languages

86

ABBYY FineReader Engine 10 Guided Tour

Recognizing Hieroglyphic Languages

This section deals with certain peculiarities of recognizing and exporting texts in hieroglyphic languages with ABBYY
FineReader Engine 10.

First, in order to recognize hieroglyphic languages you must have an ABBYY FineReader Engine license that supports the Chinese,
Japanese, and Korean language modules. For more information about licenses and modules, see the Licensing section.

Recognition languages
For hieroglyphic texts, ABBYY FineReader Engine supports the following predefined recognition languages:

e "ChinesePRC"
e "ChineseTaiwan"
e "Japanese"
e '"Korean"
e '"KoreanHangul"
To select one of the predefined hieroglyphic languages, you can use the SetPredefinedTextLanguage method of the

RecognizerParams object.

ABBYY FineReader Engine supports recognition language combinations consisting of several hieroglyphic languages or combinations
of hieroglyphic languages and non-hieroglyphic languages.

Fonts

To prevent any distortions of hieroglyphic characters, you must specify a font which includes hieroglyphs, e.g. Arial Unicode MS,
SimSun. You can do this with the help of the ISynthesisParamsForDocument::AddRecognizedTextFontName method.
Export

When you export hieroglyphic languages to PDF in any mode other than PDF Image Only (IPDFExportParams::TextExportMode
=PEM_ImageOnly), fonts are embedded and they are taken from the Text object, which represents the recognized text (for the
PDFExportParamsOld object this means that TRUE is assigned for the EmbedFonts property, and FM_UseFontsFromIText for the
FontMode property).

You can export hieroglyphic languages to PDF/A in "text under the page image" mode (IPDFExportParams:TextExportMode =
PEM ImageOnText).

The procedure of recognition and export
To process documents written in hieroglyphic languages, do the following:

1. Create a PageProcessingParams object using the CreatePageProcessingParams method of the Engine object.

2. Specify a hieroglyphic recognition language. Use the SetPredefinedTextLanguage method of the RecognizerParams
subobject of the PageProcessingParams object.

3. Create a SynthesisParamsForDocument object using the CreateSynthesisParamsForDocument method of the
Engine object.

4. Specify a font which includes hieroglyphs, e.g. Arial Unicode MS. Use the
ISynthesisParamsForDocument::AddRecognizedTextFontName method.

5. Pass these parameter objects to the Process method of the FRDocument object. If you use methods of the Engine object,
you should call one of the synthesis methods of the Engine object with the created SynthesisParamsForDocument
object as a parameter before export.

6. Perform export of the recognized text with the help of the Export method of the FRDocument object. If you export to
PDF of PDF/A format, specify the required export mode.

Sample code for processing hieroglyphic languages in C++ and Visual Basic:
Visual C++ (COM) code

// Create a PageProcessingParams object

87

ABBYY FineReader Engine 10 Guided Tour

FREngine: : IPageProcessingParamsPtr pPageProcessingParams = Engine-
>CreatePageProcessingParams();

// Specify hieroglyphic recognition language
pPageProcessingParams->RecognizerParams->SetPredefinedTextLanguage("Japanese™);
// Create a SynthesisParamsForDocument object

FREngine: : 1SynthesisParamsForDocumentPtr pSynthesisParams = Engine-
>CreateSynthesisParamsForDocument() ;

// Specify font
pSynthesisParams->CleanRecognizedTextFontNames() ;
pSynthesisParams->AddRecognizedTextFontName("Arial Unicode MS"™);

// Recognize and export the document. Suppose that we have already created the
FRDocument object.

frDocument->Process(pPageProcessingParams, 0, pSynthesisParams)
frDocument->Export(L"D:\\Demo.rtf', FREngine::FEF_RTF, 0);

Visual Basic code

" Create a PageProcessingParams object

Dim pageProcessingParams As FREngine.pageProcessingParams

Set pageProcessingParams = Engine.CreatePageProcessingParams
* Specify hieroglyphic recognition language
pageProcessingParams.RecognizerParams.SetPredefinedTextLanguage "Japanese’
" Create a SynthesisParamsForDocument object

Dim synthesisParams As FREngine.SynthesisParamsForDocument
Set synthesisParams = Engine.CreateSynthesisParamsForDocument
" Specify font

synthesisParams.CleanRecognizedTextFontNames
synthesisParams.AddRecognizedTextFontName "Arial Unicode MS"

" Recognize and export the document. Suppose that we have already created the
FRDocument object.

frDocument.Process pageProcessingParams, Nothing, synthesisParams
frDocument._Export "D:\Demo.rtf", FEF_RTF, Nothing

See also

Working with Languages

Recognizing with Training

ABBYY FineReader Engine can read texts set in practically any font regardless of print quality. Consequently, no prior training is
normally required before recognition can take place. ABBYY FineReader Engine, nevertheless, features a number of user pattern
training tools.

Train User Pattern mode may come in useful when:

e recognizing texts set in decorative fonts
e recognizing texts containing unusual characters (€.g. mathematical symbols)
e recognizing large volumes (more than a hundred pages) of texts of low print quality

[#Note: Use Train User Pattern mode only if one of the above applies. In other cases you may obtain a slight increase in recognition
quality, but the time and effort involved will probably outweigh the benefit received.

Pattern training works as follows. One or two pages are recognized in training mode, and, subsequently, a pattern is created. A paitern
is a set of pairs "a character image — the character itself" created during pattern training. A pattern is used as a source of additional
information during recognition. ABBYY FineReader Engine then uses this pattern to aid recognition of the remaining text.

88

ABBYY FineReader Engine 10 Guided Tour

Sometimes two or even three characters may get "stuck” together, and ABBYY FineReader Engine may be unable to enclose each
character in an individual frame to separate them. If this proves to be the case (i.e. you cannot move the frame so that it contains only
one whole character and no other character parts), you can train ABBYY FineReader Engine to recognize the inseparable character
combinations in their entirety. Examples of character combinations frequently found stuck together include ff, fi, and fl. Such
combinations are referred to as ligatures.

You can find additional information in Training User Patterns.
[#Note:

e Apattern is only useful in the case of documents that have the same font, font size, and resolution as the document used to
create the user pattern.

e Pattern training is not supported for hieroglyphic languages.

e Pattern training cannot be performed when recognizing in parallel processes.

To recognize with training

1. Create a RecognizerParams object.

2. Set the IRecognizerParams:: TrainUserPatterns property to TRUE.

3. Create an empty user pattern file by using the IEngine::CreateEmptyUserPattern method.

4. Specify the full path to this user pattern file in the IRecognizerParams::UserPatternsFile property.

5. Call a recognition method (e.g. IFRDocument::Process) with these recognition parameters. Whenever an unknown
character is encountered, the Pattern Training dialog will open, with the character image displayed within it.

6. Train your pattern — recognize one or more pages in Train User Pattern mode. Trained characters are saved in the user
pattern file.

7. [Optional] If you wish to edit this pattern, call the EditUserPattern method of the Engine object.
8. Recognize the images by using this pattern.

[#Note: If the IRecognizerParams::UseBuiltInPatterns property is set to TRUE, then ABBYY FineReader Engine will use its own
built-in patterns for recognition. Set this property to FALSE when you do not want to use the standard ABBYY FineReader Engine
patterns for character recognition. This may be useful for recognition of texts typed in decorative or non-standard fonts, in which case
you can use your own user-defined patterns trained specifically for these fonts. If the UserPatternsFile property (where the path to
the user-defined pattern file is stored) is empty, the UseBuiltInPatterns property is ignored.

Sample code in C++ and Visual Basic:

Visual C++ (COM) code
FREngine: :1EnginePtr Engine;
FREngine: : IFRDocumentPtr frDocument;
// Create a PageProcessingParams object
FREngine: : IPageProcessingParamsPtr pParams = Engine->CreatePageProcessingParams();
// Set the TrainUserPatterns property
pParams->RecognizerParams->TrainUserPatterns = VARIANT_TRUE;
// Create an empty user pattern file
Engine->CreateEmptyUserPattern(L"D:\\test.ptn');
// Set the full path to the user pattern file
pParams->RecognizerParams->UserPatternsFile = L"D:\\test.ptn";

// Analyze and recognize