
USER’S GUIDE

ABBYY FineReader Engine 10 User's Guide

Contents

Introducing ABBYY FineReader Engine 10.. 4
Basic Usage Scenarios Overview... 5
Key Features... 7

Document Scanning and Image Import ... 9
Image Preprocessing...10
Document Analysis ...12
OCR and Other Recognition Technologies .. 13
PDF Conversion..16
Advanced Development Tools ..18
Receiving and Exporting Recognized Text..19
Multi�CPU Recognition Architecture ...20

Benefits... 20
Short Specifications... 20
Getting Started.. 21

Guided Tour.. 22
Basic Usage Scenarios Implementation.. 22

Document Conversion ..22
Document Archiving ...27
Book Archiving ... 32
Text Extraction... 37
Field�Level Recognition...41
Barcode Recognition...45
Image Preprocessing... 49
Scanning... 53

Advanced Techniques.. 57
Programming Aspects ...58
Error Handling ...59
Working with Properties ...59
Working with Connectable Objects ...62
Working with COM Interfaces from a Scripting Language.. 63
Using ABBYY FineReader Engine in Delphi... 64
Working with Profiles..65
Tuning Analysis, Recognition, and Synthesis Parameters... 66
Tuning Export Parameters ...68
Working with Images ..70
Working with Languages ..71
Working with Layout and Blocks .. 73
Working with Text ..75
Working with the Logical Structure of a Document .. 76
Using Voting API.. 79
Using Text Type Autodetection ...82
Recognizing Checkmarks..82
Recognizing Handprinted Texts ...85
Recognizing Hieroglyphic Languages..87

 1

ABBYY FineReader Engine 10 User's Guide

Recognizing with Training..88
Training User Patterns..90
Pattern Training Dialog Box ..91
Working with Dictionaries .. 93
Working with ABBYY FineReader Engine Regular Expressions... 96
Recognizing Words with Spaces.. 97
Setting up Scanning Options... 99

Best Practices .. 100
Tips for Document Scanning ..101
Tips for Taking Photos ..102
Improving Recognition Quality...104

Description of the ABBYY FineReader Engine Samples.. 105

API Reference ..106
Alphabetical List of the ABBYY FineReader Engine 10 Objects and Interfaces ... 106
ABBYY FineReader Engine 10 Object Diagram... 111
GetEngineObject Function ... 112
DeinitializeEngine function.. 113
Engine Object (IEngine Interface) .. 115
Image�Related Objects ... 164
Layout�Related Objects.. 210
Language�Related Objects ... 244
Text�Related Objects ... 279
Document�Related Objects .. 318
Document Organization Objects ... 320
Document Synthesis Objects... 355
Document Supplementary Objects...433
Mechanism Objects .. 436
Parameter Objects ... 467
License�Related Objects .. 512
Supplementary Objects.. 517
Enumerations.. 544
Standard Return Codes .. 613

Licensing ...614
About ABBYY FineReader Engine 10 Activation... 614

License Manager Utility...616
License Parameters...617

Working with the LicensingSettings.xml File .. 619
Installing the Hardware Key Drivers.. 620
ABBYY FineReader Engine 10 Modules... 622
Copyright and Trademark Notices.. 625
The minimum terms of End User License Agreement (EULA).. 627

Distribution of Applications Which Use the ABBYY FineReader Engine Library630
Installing the ABBYY FineReader Engine Library... 630
Installing the ABBYY FineReader Engine Library in Automatic Mode.. 631
Installing the ABBYY FineReader Engine Library in Manual Mode... 632
Activating the ABBYY FineReader Engine Library with the Runtime License...633

 2

ABBYY FineReader Engine 10 User's Guide

 3

Installing the License Service...633
ABBYY FineReader Engine Distribution Kit... 634
ABBYY FineReader Engine Distribution Kit: PDF .. 648

Specifications ..654
Supported Image Formats ... 654
Predefined Languages in ABBYY FineReader Engine .. 655
Text Types... 660
Barcode Types.. 661
Export Formats.. 662
What's New in ABBYY FineReader Engine 10.. 663
ABBYY FineReader Engine 10 and 9.0 compatibility .. 665
Version History.. 681
System Requirements .. 683

Frequently Asked Questions ..685

Contact ABBYY ..688
How to Buy ABBYY FineReader Engine 10 .. 688
Technical Support ... 688

ABBYY FineReader Engine 10 Introduction

Introducing ABBYY FineReader Engine 10

Welcome to ABBYY FineReader Engine 10!

Accuracy and speed, power and simplicity – are you expecting all these qualities from OCR SDK, but they seem to be contradictive? No
more!

With new ABBYY FineReader Engine 10 you receive outstanding level of OCR quality and usability:

• Optimally balanced profiles with fine�tuned parameters for your particular tasks

• Worldwide recognized accuracy of technologies

• Amazingly improved speed

• Absolute world record – 198 recognition languages, including Chinese, Japanese, Korean and Arabic

• SDK Developer's Guide (Help), currently recognized for its unbeatable comprehensibility and usefulness, now becomes even
better with its improved appearance and revised content

ABBYY FineReader Engine 10 – powerful and convenient OCR technology. Just try and appreciate!

Key Features

• Extreme Recognition Speed

• Improved Recognition Accuracy

• Powerful and Simple API

• Unique Layout Reconstruction Abilities

• Improved PDF Export

• Unrivaled Document Image and Photo Processing

• Flexible and Strong Protection System

Basic Usage Scenarios

Rich experience in use of ABBYY SDK in hundreds of products all over the world allows us to extract the most widespread scenarios of
OCR SDK usage:

Document Conversion Scenarios Scenarios for Data Capture General Scenarios

• Document Conversion for
Content Reuse

• Text Extraction • Image Preprocessing

• Field�Level Recognition • Scanning • Document Archiving

• Barcode Recognition • Book Archiving

How to Use this Help

In this Developer's Help you can find all the necessary information about ABBYY FineReader Engine 10.

Guided Tour
See the Guided Tour section to learn about how to use ABBYY FineReader Engine:

• Basic Usage Scenarios Implementation
You can find here the way to use ABBYY FineReader Engine for your task.

• Advanced Techniques
The information for advanced users.

 4

ABBYY FineReader Engine 10 Introduction

• Best Practices
Offers you some advice on how to prepare images for recognition.

• Samples
Short description of available samples. The detailed description of the samples you can find in the Code Samples Library
provided with this distribution pack.

API Reference
The complete reference of the FineReader Engine API.

Licensing
Important information about ABBYY FineReader Engine licenses and activation.

Distribution
Information about distribution of applications which use the ABBYY FineReader Engine library.

Specifications
The list of supported image formats, predefined languages, text types, barcode types, export formats, system requirements, and:

• What's New in ABBYY FineReader Engine 10

• Compatibility with ABBYY FineReader Engine 9.0

Frequently Asked Questions
The extracts of the most important information.

Contact ABBYY
You can find here the contacts of ABBYY offices and Technical support service.

You can visit our website at www.abbyy.com for the most up�to�date information about ABBYY FineReader Engine.

Basic Usage Scenarios Overview
This section describes the most common scenarios in which ABBYY FineReader Engine may be used. We recommend to start your
work with ABBYY FineReader Engine with selecting the appropriate scenario. After you found the appropriate scenario, you can find a
detailed description of the scenario, implementation advice, and suggestions on optimizing the code for specific tasks in the Guided
Tour section.

Document Conversion
The result of this scenario is an editable version of a document.

In this scenario, document images are recognized, retaining all the
original formatting intact and the data are saved to an editable file
format. As a result, you get editable versions of your documents,
which can be easily checked for errors and modified.

See for details Document Conversion.

Under this processing scenario, paper documents are converted
into not editable electronic copies containing all document
information in searchable format. As a result of such processing,
the resulting copies may be easily found in the electronic archive
using full�text search, document text segments may be copied and
the document may be sent by email or printed out.

See for details Document Archiving.

 5

ABBYY FineReader Engine 10 Introduction

This scenario is used for processing books, magazines, newspapers
to create an electronic library; for instance, when digitizing
paper book collections for purposes of facilitating and expanding
access to them and for their preservation.

Under this scenario, books, magazines, newspapers are converted
into not editable electronic copies containing all information from
the source in searchable format.

See for details Book Archiving.

Data Capture
This scenario is used to recognize the entire document text in
order to prepare the document for search and extraction of useful
data.

Such a scenario may serve as a basis for implementing more
complex scenarios to extract vital data from documents, especially
for automated input of paper document data into information
systems and databases as well as for automated classification and
indexation of documents in document management systems (e.g.,
inputting invoices into accounting software, inputting
questionnaires into the CRM system).

This scenario enables extraction of the main text of the document,
which contains all necessary information about the document.
When using this scenario, all text data including texts on logos,
seals and elements other than the main text, are extracted from
the text.

See for details Text Extraction.

In the case of field�level recognition, short text fragments are
recognized in order to capture data from certain fields.
Recognition quality is crucial in this scenario.

This scenario may also be used as part of more complex scenarios
where meaningful data are to be extracted from documents (for
example, to capture data from paper documents into information
systems and databases or to automatically classify and index
documents in Document Management Systems).

In this scenario, the system recognizes either several lines of text in
only some of the fields or the entire text on a small image. The
system computes a certainty rating for each recognized character.
The certainty ratings can then be used when checking the
recognition results. Additionally, the system may store multiple
recognition variants for words and characters in the text, which
may then be used in voting algorithms to improve the quality of
recognition.

See for details Field�Level Recognition.

In this scenario, ABBYY FineReader Engine is used to read
barcodes. Barcodes may need to be read, for example, for purposes
of automatic document separation, for processing documents by a
Document Management System, or for indexing and classifying
documents.

This scenario may be used as part of other scenarios. For example,
documents scanned with high�speed production scanners may be
separated by means of barcodes, or documents prepared for long�
term storage may be placed into archiving Document Management
Systems based on the values of their barcodes.

When extracting barcodes from texts, the system may detect all
barcodes or only barcodes of a certain type with a certain value.
The system may get the value of a barcode and calculate its check

 6

ABBYY FineReader Engine 10 Introduction

sum.

Recognized barcode values can be saved into formats most
convenient for further processing, for example into TXT.

See for details Barcode Recognition.

General
In this scenario, ABBYY FineReader Engine is used on a "scanning
computer," which scans images and saves them as files.

This scenario may be used as part of other scenarios in the
preliminary stage of document processing, i.e. for obtaining
electronic versions of documents for further processing. Usage
examples include scanning documents for archiving purposes,
getting editable versions of documents, and extracting meaningful
data from documents.

Paper documents are scanned and the images are saved in an
electronic format, producing high�quality electronic versions of
your printed documents.

See for details Scanning.

This scenario can be used to prepare images for further processing
or to improve their visual quality (e.g. after scanning or prior to
recognition).

This scenario may be used as part of other scenarios in the first
stage of document processing, i.e. to prepare documents for
recognition. Usage examples include creating uneditable
document copies for archiving, getting editable versions of
documents, and extracting meaningful data from documents.

See for details Image Preprocessing.

See also

Basic Usage Scenarios

Key Features

Extreme Recognition Speed

Tuned Fast Mode Perfectly adjusted Fast mode provides absolutely amazing results – about 90�110% speed increasing*
with more than 98,5% accuracy for most of European languages

* comparing to Fast mode of ABBYY FineReader Engine 9.0 (First release, 21 October 2008)

Note: ABBYY unrivaled multicore support architecture ensures close to linear performance growth with increasing number of cores
for multipage documents. For 2 CPU cores it works almost 2 times faster, for 4 cores – almost 4 times!

Improved Recognition Accuracy

ABBYY OCR technologies are worldwide famed for the recognition accuracy but now they show the
really outstanding results! The accuracy increased 50%** on average for European languages and
valued more than 99.3% of correctly recognized characters.

Accuracy tuning for
European languages

Improved classifier for CJK The recognition accuracy for Chinese, Japanese and Korean languages went up 30�60% due to
improved Asian characters classifier. Now ABBYY OCR SDK provides the top level of accuracy
among international multilanguage OCR technologies.

New mode for low
resolution scans

The special new recognition mode for low quality documents – old faxes, low resolution scans
provides 20% higher accuracy for such documents than standard Normal mode.

** comparing to Normal mode of ABBYY FineReader Engine 9.0 (First release, 21 October 2008)

 7

ABBYY FineReader Engine 10 Introduction

Powerful and Simple API

A lot of developers mentioned that ABBYY FineReader Engine API is the most powerful and full�
functional among OCR SDKs. Now it becomes simpler with new profiles for the most popular
recognition tasks. They are predefined with optimal parameters for easy start and guaranteed OCR
quality without long�time manual tuning.

Special profiles for popular
usage scenarios

Manual parameters setting is also available for any custom solutions.

Document structure API ABBYY FineReader Engine 10 provides unique feature�set for access to document structure elements
like headings, chapters, page numbers, footnotes, headers, footers and so on.

Unique Layout Reconstruction Abilities

ABBYY FineReader Engine 10 automatically detects headings in recognized document, determines
their level in document structure, defines their text styles and reconstructs the whole structure as
Document Map of resulting document.

Document structure
detection

In final document the Table of Contents appears as a set of links to the headings. After document
editing TOC could be updated automatically as a single object to add new headings and revise page
numbers.

TOC reconstruction

Charts and diagrams
detection

Automatic charts and diagrams detection feature was improved in 10th version of ABBYY OCR SDK.
Now it is possible to choose if recognize text on chart or stay it in origin image form.

Picture and table captions
processing

ABBYY FineReader Engine 10 automatically detects picture’s and table’s captions and exports them
to final document as a single frame including the picture and its title.

ABBYY FineReader Engine 10 analyzes text font type, size, and its placement and defects the
corresponding font style for every type of text. So for the headings of each level there are special
styles, for ordinary text, for TOC and for picture captions there are also special styles.

Document styles defining

“Glossy magazine”
processing model

New ABBYY SDK can reconstruct complicated layouts consisted of many pictures and text blocks
on a page or including very large pictures for the whole page.

Improved PDF Export

Superior quality�size ratio
for PDF files

New PDF export together with improved MRC (Mixed Raster Content) compression technology
allows achieving higher quality and less size of PDF documents.

There are more than 40 parameters for PDF export tuning. ABBYY FineReader Engine 10 provides
predefined profiles with optimal values for popular export variants:

• MaxQuality

PDF export profiles • Balanced

• MinSize

• MaxSpeed

Unrivaled Document Image and Photo Processing

Camera OCR technology – the set of document photo adjustment features for better recognition
results was improved with new unique features:

• Automatic correction of 3D perspective distortions New features of Camera
OCR™ • Blurred image correction

• ISO noise reduction

Previous OCR SDK version provided very high quality of binarization, but in some the most difficult
cases it could commit errors and losses of information. New binarization technology ensures the
whole text retention and prevents information losses even in difficult cases.

New binarization

Flexible and Strong Protection System

Improved protection Protection system of ABBYY FineReader Engine 10 provides:

 8

ABBYY FineReader Engine 10 Introduction

• Delegate and control SDK usage rights in local network

• Count and control the numbers of recognized characters, pages, usage time and
computing power

• Track and control SDK usage on terminal servers and virtual machines

Full functionality

• Document Scanning and Image Import

• Image Preprocessing

• Document Analysis

• OCR and Other Recognition Technologies

• PDF Conversion

• Advanced Development Tools

• Receiving and Exporting Recognized Text

• Multi�CPU Recognition Architecture

Document Scanning and Image Import

ABBYY FineReader Engine can receive images from three types of sources: document scanning, opening from files, or directly from
memory.

Document Scanning APIs

• TWAIN interface (including ADF support and manual input feeding)

• FineReader document scanning UI

With its powerful document scanning software tools, ABBYY FineReader Engine 10 enables flexible management of scanning
parameters, such as: brightness, colority, resolution, image size, duplex scanning, pause between pages setup and more. For OCR
purposes, the best resolutions lie in the range of 200�400 dpi. The choice of resolution depends on the quality of the paper original, the
size of the font and other factors. For more details, please see the description of the Scanning scenario.

Image file formats

The OCR SDK supports the majority of image formats, including multi�page TIFF and JPEG 2000 (part1), and works with black�and�
white, grayscale and color images. It also opens PDF files by converting them into images with Adobe® PDF Library Technology.

• BMP • JBIG2 • PNG

• DCX • JPEG • PDF

• DjVu • JPEG 2000 • TIFF and multi�page TIFF

• GIF • PCX • WDP

See more in Supported Image Formats.

Memory image formats

• Raw

• Bitmap (HBITMAP)

• DIB

 9

ABBYY FineReader Engine 10 Introduction

Additional features for PDF files

• Extracting text layer from PDF

• Image only PDF input

• Vectorized PDF

• Password protected PDF

See also

Key Features
Image Preprocessing
Basic Usage Scenarios Implementation: Scanning

Image Preprocessing

Why improve images?

The task of improving image quality is two�fold.

On the one hand, we need to improve the quality of the images to make them more suitable for OCR.

On the other hand, we need to improve the appearance of the images, which is necessary, for example, when we store document
images in archives.

As ABBYY technologies are focused on document analysis and recognition, the system includes a set of powerful image preprocessing
technologies: adaptive binarization, correction of distortions, straightening text lines, splitting facing pages, and others.

No third�party tools are needed to get accurate OCR results. ABBYY offers a complete set of preprocessing technologies geared
towards OCR.

Image Preprocessing

Upon receiving images, ABBYY FineReader Engine performs a range of image preprocessing functions to improve the quality of
document images for further recognition or archiving:

Image preprocessing (straightening + filters)
Auto�detection
of page
orientation (90,
180, and 270
degrees)

This document imaging feature is very important for bulk input of images, when the direction in which
document pages are scanned is unknown and can be different. The system automatically detects the orientation
of each page and corrects it if needed.

Splitting facing
pages and dual
pages

It is used for scanning books as broadsides – for both left and right pages. The recognition quality is higher if the
page is split into two, with each page corresponding to a single book page. Recognition and layout analysis are
then performed separately for each page, along with the de�skewing if required.

Automated
image de�
skewing

It is an essential document imaging function which is applied to scanned documents requiring the compensation
for image skew. It does not require leading edge borders or lines. New ABBYY FineReader Engine 10 provides
several methods for de�skewing images: with pairs of black squares, lines or lines of text.

Lines When capturing text from scanned or photographed books, the text lines may be uneven and difficult to OCR.

 10

ABBYY FineReader Engine 10 Introduction

straightening ABBYY technologies offer special algorithms that correct skew and straighten text lines for accurate text
recognition.

Image
despeckling (or
image clean�up)

When scanning poor to medium quality documents, you may get very noisy images with lots of dots or speckles
on them. These speckles, when they appear close to the letters or numbers, may affect the quality of OCR. This
feature removes such noise. The size of the speckles to be removed may be specified by the user. Can be applied
to an image as well as to any individual block (or zone) of the image.

Adaptive
processing of
digital photos

This technology automatically identifies digital photos and corrects distortions typically introduced by digital
cameras. The system is aware of the typical defects commonly found in digital images, such as distorted text lines,
and trapezoid 3D distortions, poor focus, smudge, darkened areas on facing pages in thick books, glare, ISO
noise, etc. These defects are corrected by the system automatically, so that the user does not need any third�party
applications to correct the photos.

Texture
filtering

Texture filtering technology helps to filter out background "noise" such as color and texture, increasing accuracy
for difficult�to�read documents such as newsprint, color documents, faxes, and copies.

Binarization
Adaptive
binarization

This is the process of converting images to black�and�white, removing noise, removing the background,
removing the textures, and obtaining sharp text. The process ensures the best OCR quality. The required
parameters are identified for each fragment separately. In the case of thin newspaper, the text printed on the
reverse side may be visible on the scans. Adaptive binarization removes this text.

Innovative Adaptive Binarization technology dynamically adjusts threshold of brightness for each image
fragment during the recognition. By applying individual recognition parameters, it produces accurate recognition
results for documents with gray or color�variable contrast background and textures.

Dithering This is binarization of grayscale images using very small dots. It improves the appearance of the document, as the
document appears to have more shades.

Filters for binary images
Image Scaling For documents scanned at lower resolutions (less than 120 dpi) and documents with small fonts (less than 10

pt), the images may be digitally enlarged to achieve better OCR quality.

See also

Usage Scenarios Implementation: Image Preprocessing
Key Features

 11

ABBYY FineReader Engine 10 Introduction

Document Analysis

Basic document analysis features

Document Analysis is a set of functions for automatic detection of the following objects on a page:

• Text blocks

• Pictures

• Tables and table cells

• Barcodes

• Separators

Additionally document analysis provides some special features to prepare image for OCR:

• process detection of page orientation – 90, 180, and 270 degrees

• split double pages

• process vertical text detection in table cells

• detect and mark the blocks of garbage on page

This preparation is significantly important to specify which fields on page should be recognized and what should be kept in initial
form.

And also there is an ability to designate the field for recognition manually. In this case you have to set field’s coordinates and type of
data inside. It is used in Field�Level Recognition scenario mostly for data capture.

ABBYY FineReader Engine 10 provides 3 automatic and 1 manual types of document analysis:

• General document analysis

• Document analysis for invoices

• Document analysis for full�text indexing

• Manual blocks specification for field�level recognition

General document analysis

This is default document analysis type which searches all objects: text blocks, pictures, tables, barcodes and separators.
The results of this analysis are used for document structure and layout retrieval in content reuse scenario. All pictures and
diagrams are preserved in original form without recognizing text on them.

Document analysis for invoices

This is a preprocessing engine for converting semi�structured documents, such as invoices, payment drafts, bills, waybills,
business cards, agreements, health claim forms, resumes, etc. It has been designed to accurately locate all the text on these
documents, including characters and numbers — even if this information is located within stamps, pictures, logos or
small�text areas.

Unlike the standard full�page document analysis, this one assumes that all printed information on documents is text. It
also ensures that important text information is not identified as graphic elements and words or numerical values are not
separated into multiple characters. As a result, maximum information about the text, including its coordinates, is available
for analysis, field�by�field processing and parsing at subsequent processing stages by other systems.

Document analysis for full�text indexing

Automatically detects and recognizes all text on documents including text embedded in pictures, charts, and diagrams.
Developers may choose to use this mode of document analysis to extract exhaustive full�text information on documents
needed for document index building (as in DMS, CMS, Archiving systems).

 12

ABBYY FineReader Engine 10 Introduction

Manual blocks specification for field�level recognition

This case does not need any analysis because the recognition field is directly defined by user or application. Recognizer
receives the coordinates of field and type of text and process OCR in specified zone.

See also

Key Features

OCR and Other Recognition Technologies

Optical Character Recognition (OCR)

• OCR technology — printed text recognition is available for 198 languages, including:

o European languages (Latin, Cyrillic, Armenian, Greek alphabets)

o Chinese (Simplified and Traditional), Japanese, and Korean (CJK)

o Thai, Vietnamese and Hebrew

o Arabic — technical preview version

o FineReader XIX — an OCR module designed specifically for digitizing and archiving old documents, books and
newspapers published in the XVII�XX centuries, many of which are rare and unique. Stored in the historical
archives of libraries and government organizations, they are national heritage that must be preserved. FineReader
XIX provides a unique capability to recognize texts published in the period from 1600 till 1937 in English, French,
German, Italian and Spanish. It supports recognition of old fonts such as Fraktur, Schwabacher and the majority of
Gothic fonts.

• 47 languages have dictionary/morphology support that is significantly improves OCR accuracy.

• Multilingual documents recognition feature provides recognition of several languages e.g. German and Chinese; English,
Russian and Korean at the same document.

• Dot�matrix documents recognition — ABBYY FineReader Engine recognizes printed dot matrix texts of many types. It
has been trained using several thousand samples produced by a variety of printers including dot matrix, daisy wheel, chain
and band printers, as well as using draft and Near Letter Quality (NLQ) printing modes.

 13

ABBYY FineReader Engine 10 Introduction

• Typewritten documents recognition.

• Recognition of OCR�A, OCR�B, MICR (E13B) and CMC7 fonts.

See the full list of supported languages and text types.

Intelligent Character Recognition (ICR)

• ICR technology – hand�printing characters recognition for more than 110 languages.

• About 30 languages (with Latin, Greek and Cyrillic alphabets) with morphology/dictionary support and 85 languages
with Latin characters without dictionaries.

• ICR for Indian digits used in Arab states.

• 22 regional styles of hand�printing used in different countries and regions of the world (for supported ICR languages).

• Recognition of hand�printed characters in fields and frames – underlined fields, boxes, comb�style fields, etc.

• Multilingual ICR. One of the main advantages of ABBYY ICR technology is that it delivers almost the same high accuracy
on digits and digits combined with letters of one or several languages, even if the fields contain both upper and lower case
letters.

Optical Mark Recognition (OMR)
The ABBYY’s OMR technology recognizes simple checkmarks, grouped checkmarks, model checkmarks and checkmarks with
“corrections” made by hand in different variations:

• char box series

• comb in frame

• gray boxes

• partitioned frame

• simple comb

• text in frame

• underlined text

OMR delivers accuracy rate of 99.995 %

Optical Barcode Recognition (OBR)

• 1D and 2D barcode types. ABBYY OCR SDK supports recognition of popular types of 1D and 2D barcodes. See the list of
supported types of barcodes.

• Fast barcode extraction. This feature enables automated detection and recognition of barcodes at any angle on a
document. It works both for 1D and 2D barcodes

Recognition modes
With the Engine's pre�defined processing modes, developers have the ability to quickly set up and tune the processing speed and
accuracy in a way which is the most appropriate for their needs. In addition to the default processing mode, both OCR and ICR
recognition can be performed in normal, fast and balanced recognition modes:

• Normal recognition mode
It is the most accurate mode for achieving the highest quality of recognition. This mode is highly recommended if you are
planning to reuse recognized content and in other tasks when the accuracy is the critically important issue.

• Fast recognition mode
It is designed for high�volume document processing and for the cases when speed is of primary importance. This mode
increases processing speed by 200�250% making the technology ideal for using in content management (CMS), document
management (DMS) and archiving systems.

 14

ABBYY FineReader Engine 10 Introduction

• Balanced recognition mode
It sets the intermediate values of recognition accuracy and speed between Normal and Fast modes. Generally it provides
higher speed for almost the same accuracy level as Normal mode.

Full Text and Field�Level Recognition
There are two types of recognition which could be separated: full text and field�level recognition. The main difference is that full text
recognition usually includes OCR technology and used for document conversion. Field�level recognition includes OCR, ICR and other
technologies that are used in local area for recognizing and extraction particular data.

The following table shows specifications of these recognition types:

Specification Full text recognition Field�level recognition
Where is used Document conversion, books archiving Data capture
Document analysis Manual blocks specification for field�level recognition General document analysis, document analysis for

invoices, document analysis for full�text indexing
Recognition OCR with general accuracy about 96�99% OCR, ICR, OMR, Barcodes recognition with predefined

data types and values range. Accuracy is about 100%
Verification Recommended for content reuse Obligatory in most cases
Synthesis Used for document retrieval Not used

Document files (RTF, DOC, PDF, etc.) Export to XML file or database Export of
recognition results
Full text recognition

Full text recognition is a basic recognition type for different tasks, like:

• Documents and books conversion for archiving

• Document conversion for content reuse

• Ground text extraction for fields detection and documents classification

All of them require the recognition (OCR) of whole text on document (page). Before recognition the document analysis usually
processes for splitting and correct orientation of pages, detection of text blocks, pictures and other objects.

Then after OCR document synthesis rebuilds the structure and layout of document (for content reuse task) or just retrieves the correct
text order for complex documents with several text columns and pictures (for archive scenario). Resulted text is exported depending
on task as pure text or as a document of supported format.

The text could be manually verified for increasing its accuracy, especially for future reuse.

Field�level recognition

ABBYY FineReader Engine 10 delivers complete field�level recognition capabilities to support key business processes such as forms
processing, keyword classification, and keyword indexing. Powerful image processing functions increase its ability to intelligently
detect small zone areas of any quality, with any type of graphic specifics which may affect the recognition accuracy (i.e. underlined
text, after�scanning garbage, spaces in the text, etc.)

Key functionality for field�level or zonal recognition includes multilingual OCR and ICR, OMR, barcode recognition and a range of
specific functions, such as:

• Data extraction from fields with various borders and frames, including combo�box, underlined fields, boxes, and even fields
where the data does not fit within the field border

• Definition of field content by setting alphabets, dictionaries, regular expressions, types of segmentations, handwriting styles,
etc.

• Detection of in�field spacing, accurately recognizing fields where the spaces are allowed. ABBYY FineReader Engine 10 also
allows use of dictionaries which contain word combinations with spaces

• Intelligent processing of blocks with intersecting parts and lines, provides recognition of text (words and symbols) located
entirely within the block borders, saving time spent on non�relevant text block recognition

• Text block despeckle, with the ability to specify the size of white or black "garbage"

Field�level recognition is supported by the Engine’s special tools for developers such as Voting API and "On�the�Fly" Recognition
Tuning. For details, please see Advanced Development Tools.

 15

ABBYY FineReader Engine 10 Introduction

User Languages
ABBYY FineReader Engine provides an API for creating and editing recognition languages, creating copies of predefined recognition
languages and adjusting them, and adding new words to user languages.

Below are two examples illustrating how user languages can help you to improve recognition quality:

• In documents filled out by hand, the values in the form fields usually belong to a specific set such as city names, countries,
zip codes, product codes, sums, etc. To improve the quality of ICR recognition, you can use user languages to describe the
information which may be entered in each field.

• If a document contains "structures" such as product codes, telephone numbers, passport numbers etc., recognition errors
may occur. This happens because the program reads such structures letter by letter. To improve the recognition of product
codes and the like, you can create a new recognition language which will help the program to read specific types of data
correctly.

Pattern Training
In the vast majority of cases ABBYY FineReader Engine can successfully read texts without prior training. However, in such cases as
recognition of decorative or outlined fonts or bulk input of low print quality documents, preliminary pattern training will prove useful.

The OCR SDK allows you to create and exploit user patterns directly via API or import them from the ABBYY FineReader desktop
application (Professional or Corporate Edition). Since ABBYY FineReader Engine 10

th
 version you can “teach patterns” by loading

pictures and matching corresponding characters.

See also
Key Features
Advanced Development Tools

PDF Conversion

The PDF format is often used in electronic archives for data storage purposes. It is the format of choice because of its versatility and
possibility to keep both images and text.

Technologies developed by ABBYY allow recognized texts to be saved in PDF and PDF/A formats. One of the main goals of archiving is
to achieve the smallest file size possible without losing in data quality.

A special compression technology called MRC (Mixed Raster Content) is used to minimize the size of PDF and PDF/A files.

PDF Input

Intelligent PDF
processing

ABBYY FineReader Engine analyses internal information within the source PDF files such as:

• annotations,

• metadata,

• text objects,

• font dictionaries

• content stream

SDK enhances PDF conversion performance and speed by efficient and accurate text selection. If text is
embedded into the PDF file, the OCR engine examines the integrity of the text layer, and makes a decision as
to whether or not to extract the text or apply OCR on a block by block basis.

Capture of internal
PDF information

It extracts internal PDF links, hyperlinks and document properties such as: subject, author, title, and
keywords.

PDF Output

PDF security
and encryption
support

ABBYY FineReader Engine 10 supports a variety of PDF security settings, increasing its applicability for
government agencies and other organizations demanding high security.

• "Open File" password settings designed to prevent unauthorized access to a document.

• Restriction of certain operations, such as printing, editing or extracting file content, by assigning
permission passwords.

 16

ABBYY FineReader Engine 10 Introduction

• Support for the latest encryption standards.

Output in
Tagged PDF
format

Tagged PDF can be "reflowed" to fit different page or screen widths. Ideal for use with handheld devices (PDAs)
or screen readers typically used by visually impaired users.

Page size Ability to set the size for all pages of an output file during PDF conversion.

Metadata export ABBYY FineReader Engine 10 enables metadata exporting (bookmarks, hyperlinks, cross�references, etc.).

Conversion to
PDF/A format

Conversion to PDF/A format which is recommended as a standard for long�term preservation of page�oriented
documents.

ABBYY’s technologies allow saving documents to PDF/A formats of different compliance levels: PDF/A�1a,
PDF/A�1b.
The PDF/A�1a format has the following features: best retention of document formatting, logical structure, and
ordinary appearance as well as the possibility of retaining the document appearance when using displays of
different sizes (the document content is organized in a specific way to achieve this).

The PDF/A�1b format is used to reproduce the document appearance only. When processing by ABBYY
technologies, documents are saved in PDF/A�1b format by default.

CJK to PDF
export

Enables conversion of documents in Chinese (both simplified and traditional), Japanese and Korean into PDF
format.

PDF (PDF/A) MRC compression

A special compression technology called MRC (Mixed Raster Content) is used to minimize the size of PDF and PDF/A files.

Document image files are usually very large due to the background, which is often makes up to 90% of the file size. The background
may, however, be unnecessary in the resulting document. It is the text and pictures that are important.

The MRC compression technology allows locating the color background and deleting it or compressing to a high degree. This leaves
text and pictures against a white background contributing to smaller file size.

Picture objects (diagrams, graphs, logos, photos, drawings, stamps, signatures, etc.) are also slightly compressed, but only to an extent
that doesn’t lower the quality.

 17

ABBYY FineReader Engine 10 Introduction

The MRC technology analyzes the outlines of similar characters in the document, creates an average character template and uses it
instead of a character itself. This leads to better readability, because some of the text defects are corrected, and the character outlines
become more precise.

As a result, you get a smaller image which looks even better than before. The resulting document will have an unobtrusive bland
background with fine text and pictures.

This “reconstruction” of the document can be useful when you have to deal with low quality images due to: bad lighting, out�of�focus
photo, incorrect scanning/photo parameters, dark uncoated paper, or document dilapidation.

All this results in the image having a dark background with additional textures. The text appears blurred and difficult to read.
The MRC technology allows for better document appearance and up to 8�10 smaller file size than JPEG.

Clear and simple PDF Conversion

ABBYY FineReader Engine provides developers with special tools to achieve the optimal PDF conversion mode appropriate for their
particular needs.

Description PDF Export
Scenario
MaxQuality Optimize the PDF (PDF/A) export in order to receive the best quality of the resulting file.

Balanced The PDF (PDF/A) export will be balanced between the quality of the resulting file, its size and the time of
processing.

MinSize Optimize the PDF (PDF/A) export in order to receive the minimum size of the resulting file.

MaxSpeed Optimize the PDF (PDF/A) export in order to receive the highest speed of processing.

See also

Key Features

Advanced Development Tools

Useful tools that enhance the developer's ability to interact with ABBYY FineReader Engine and manipulate the recognition process on
the core level:

Working with Profiles

ABBYY FineReader Engine 10 provides a set of predefined profiles which are already fine�tuned for the basic usage scenarios. The
settings specified in these profiles provide the best results in the corresponding situations. Besides, most of the profiles come in two
forms: with the settings optimized for the best quality of the resulting document or with the settings optimized for the highest speed of
processing. Below is a list of available predefined profiles:

Scenario Profile Name
Document archiving • DocumentArchiving_Accuracy

• DocumentArchiving_Speed

Book archiving • BookArchiving_Accuracy

• BookArchiving_Speed

Document conversion for content reuse • DocumentConversion_Accuracy

• DocumentConversion_Speed

• TextExtraction_Accuracy

Text extraction for fields detection and documents classification • TextExtraction_Speed

Field�level recognition • FieldLevelRecognition

 18

ABBYY FineReader Engine 10 Introduction

Barcode recognition • BarcodeRecognition

Note: You can view the list of settings provided by these profiles in the description of corresponding scenarios.

The settings provided with these profiles can be loaded using the LoadPredefinedProfile method of the Engine object. After the
profile is loaded, newly created objects will have the new default values specified in the profile.

Voting API support

When ABBYY FineReader Engine is used as one of the participating recognition engines in a third�party application, it supplies
recognition alternatives (or hypotheses) with a relevant confidence level for characters, words and intercharacter separation. This
information helps developers design an efficient and accurate voting algorithm for applications that require multiple recognition
technologies. For example, when recognizing an "O", ABBYY FineReader Engine may return 3 hypotheses: "0" (zero), with 60%
confidence; capital "O", with 80% confidence; and capital "C", with 10% confidence. Another example for intercharacter separation: the
possible hypotheses for an "m" would be "m", "rn", and "in". See more in Using Voting API.

"On�the�fly" tuning of core recognition

ABBYY FineReader provides developers with the access and ability to manipulate the recognition engine during the OCR process on a
core level. The FineReader recognition engine generates hypotheses (or recognition alternatives) and allows developers to influence or
fine�tune the procedure of setting the confidence level for each hypothesis (or selecting the best hypothesis) using their own specific
ranking criteria.

Sample Codes for common conversion tasks

The SDK is supplied with the set of Source Code Samples showing how to use the Engine in different scenarios. The Code Samples are
provided for Visual Basic, Visual Basic .Net, Delphi, raw C++, C++ with the Native COM Support, C#, and script languages.

See also

Key Features

Receiving and Exporting Recognized Text
The FineReader Engine OCR API provides a wide range of options for export of recognition results on different levels of document
reconstruction:

• Various levels of text format retention when exporting to external formats (from simple text without formatting to
complete page layout retention, including columns, tables, frames, fonts, font size, paragraph styles, borders, etc.)

• Access to detailed information about each recognized character

• A set of functions for post�editing and post�formatting of the recognized text before prior to export

• Export of recognized text to various formats:

o RTF

o DOC/DOCX

o XLS/XLSX

o PPTX

o PDF

o PDF/A

o HTML

o TXT/CSV

o XML

See Export Formats.

• Replacing uncertain characters with the corresponding images when saving to PDF

• Retaining text color and pictures of original image into all export formats

 19

ABBYY FineReader Engine 10 Introduction

See also

Key Features
Tuning Export Parameters

Multi�CPU Recognition Architecture

ABBYY FineReader Engine automatically combines and executes steps of distributing pages, and coordinating recognition and
synthesis. That provides easy scalability and utilization of multi Core/CPU hardware and brings up to 90% of speed increase for each
additional core comparing to one�core systems.

Note: This graphic does not take into account document export step because it could vary from scenario to scenario and can’t be
paralleled. Speed increase rate can also be different depending on a document complexity. For documents with complex layout it is
higher, for simple – lower. The more time spent for analysis and recognition – the higher benefit from multi�processing. The graphic
also shows that the more pages are in a document the more effective load balancing and performance rate.

Numbers quoted are based on internal ABBYY testing.

See also

Key Features

Benefits
• Choose ABBYY FineReader Engine 10 and get award�winning OCR SDK providing unrivaled accuracy, high recognition

speed, outstanding functionality and 198 supported languages.

• Enjoy working with comprehensive, easily�integrated API supplied with clear documentation.

• Appreciate unique set of breakthrough technologies including improved ADRT™, Camera OCR™, new binarization and
others.

• Expand your markets with ABBYY SDK’s multiple OS support: Windows, Linux, Mac OS and variety of embedded platforms.

• Trust in ABBYY’s proven partnerships with industry leaders worldwide who have been choosing ABBYY’s technologies for
decades.

See also

Key Features

Short Specifications
• OCR for 198 languages including:

o European (Armenian, Cyrillic, Greek, Latin alphabets)

o Asian (Chinese, Japan, Korean, Taiwanese, Vietnamese, Thai)

o Arabic

o Hebrew

o Old fonts (English, French, German, Italian, Spanish)

 20

ABBYY FineReader Engine 10 Introduction

 21

• ICR for 110 languages (Cyrillic, Greek, Latin alphabets)

• OMR

• Barcodes 1D (15 types) and 2D (PDF417, Aztec, DataMatrix, QR Code)

• Recognition modes (Normal, Balanced, Fast)

• Text font types (Matrix, MICR E13B, MICR CMC7, Normal, OCR�A, OCR�B, Gothic, Typewriter)

• Import formats

o Scanning (API, TWAIN UI, FineReader UI)

o Image files (BMP, DCX, DjVu, GIF, JBIG2, JPEG, JPEG 2000, PCX, PNG, TIFF)

o Memory Image Formats (Raw, Bitmap [HBITMAP], DIB)

o PDF formats (Extracting text layer, Image only, Vectorized, Password protected)

• Export formats

o HTML, RTF/DOC/DOCX, XLS/XLSX, PPTX, TXT/CSV, ABBYY XML

o PDF formats (Image Only/Image on Text/Text and Images/Text on Image/Font embedding, PDF MRC), PDF/A�1a,
PDF/A�1b

o ODF (Open Office document format), EPUB, FB2, ALTO – available in Maintenance release

o Image formats (BMP, DCX, JBIG2, JPEG, JPEG 2000, PCX, PNG, TIFF)

See also

Supported Image Formats
List of the Predefined Languages
Text Types
Barcode Types
Export Formats
Specifications

Getting Started
We recommend starting your work with ABBYY FineReader Engine with selecting the appropriate scenario. After you found the
appropriate scenario, you can find a detailed description of the scenario, implementation advice, and suggestions on optimizing the
code for specific tasks in the Basic Usage Scenarios section.

If your task is not compatible with any of the basic scenarios, you may find useful advices in the Advanced Techniques section. We
recommend you to refer to the Programming Aspects section, where you can find useful information on using ABBYY FineReader
Engine in different programming languages. Either you can view Sample codes provided with the ABBYY FineReader Engine developer
package for quick start.

To start your work with FineReader Engine API, you should create the Engine object with the GetEngineObject function. The
detailed API Reference you can also find in this Developer's Help.

ABBYY FineReader Engine 10 Guided Tour

Guided Tour

This section contains information which will help you in your work with ABBYY FineReader Engine 10:

• Basic Usage Scenarios Implementation
Describes the main scenarios in which ABBYY FineReader Engine can be used. We recommend that you begin work with
ABBYY FineReader Engine by selecting the scenario most suitable for your task.

• Advanced Techniques
Provides advanced information about working with the ABBYY FineReader Engine API, including information on tuning the
parameters of document processing, working with images, languages, recognized texts, special recognition cases such as
recognition of hieroglyphic languages, checkmarks, handprinted texts, and recognition with training.

• Best Practices
Offers you some advice on how to prepare images for recognition.

• Samples
Provides a short description of the samples. A detailed description of the samples is available in the Code Samples Library
provided with this distribution pack.

Basic Usage Scenarios Implementation
This section describes the most common scenarios in which ABBYY FineReader Engine may be used. Each article contains a detailed
description of the scenario, implementation advice, and suggestions on optimizing the code for specific tasks.

Select the scenario appropriate for your task:

• Document Conversion
Suitable for converting documents into an editable format.

• Document Archiving
Suitable for processing paper documents for electronic archives.

• Book Archiving
Suitable for processing books, magazines, and newspapers for electronic libraries.

• Text Extraction
Suitable for extracting entire text from documents to make them searchable and to extract useful data.

• Field�Level Recognition
Suitable for recognition of small text fragments to capture data from document fields.

• Barcode Recognition
Suitable for reading barcodes.

• Image Preprocessing
Suitable for preparing images for further processing or for improving their visual quality.

• Scanning
Suitable for getting images from a scanner and their subsequent processing.

Document Conversion

The result of this scenario is an editable version of a document.

In this scenario, document images are recognized, retaining all the original formatting intact, and the data are saved to an editable file
format. As a result, you get editable versions of your documents, which can be easily checked for errors and modified. You will also be
able to copy all or some of the text for re�use.

A document goes through several processing steps, which are in some ways slightly different from the other common scenarios:

1. Image preprocessing
Images you get by means of a scanner or a digital camera may need some tweaking before they can be optically recognized.

 22

ABBYY FineReader Engine 10 Guided Tour

For example, noisy images or images with distorted text lines will need some correction for optical recognition to be
successful.

2. Recognition
When recognizing a document, various layout elements (text, tables, images, separators, etc.) of the document are identified.
In the course of the document synthesis, the logical structure of the document is restored, while the page synthesis enables
one to fully restore the document formatting (fonts, styles, etc.)

3. Export
The recognized document is saved to an editable format, such as RTF, DOC, DOCX.

Scenario implementation

Below is the detailed description of a recommended method of using ABBYY FineReader Engine 10 for the implementation of the
above scenario. The proposed method employs the processing settings that are most suitable for the above scenario.

Step 1. Loading ABBYY FineReader Engine

To start your work with ABBYY FineReader Engine you need to create the Engine object. The Engine object is the top object in the
hierarchy of the ABBYY FineReader Engine objects and is the only ABBYY FineReader Engine externally creatable object.

To create the Engine object use the GetEngineObject exported function.

Sample code for the procedure of ABBYY FineReader Engine loading and initialization in C++ and Visual Basic:

Visual C++ (COM) code
// HANDLE to FREngine.dll

static HMODULE libraryHandle = 0;

// Global FineReader Engine object.

FREngine::IEnginePtr Engine;

void LoadFREngine()

{

 if(Engine != 0) {

 // Already loaded

 return;

 }

 // First step: load FREngine.dll

 if(libraryHandle == 0) {

 libraryHandle = LoadLibraryEx(::GetFreDllPathU(), 0,
LOAD_WITH_ALTERED_SEARCH_PATH);

 if(libraryHandle == 0) {

 throw L"Error while loading ABBYY FineReader Engine";

 }

 }

 // Second step: obtain the Engine object

 typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine::IEngine**);

 GetEngineObjectFunc pGetEngineObject =

 (GetEngineObjectFunc)GetProcAddress(libraryHandle, "GetEngineObject"
);

 if(pGetEngineObject == 0 || pGetEngineObject(::GetFreDeveloperSN(), 0, 0,
&Engine) != S_OK) {

 UnloadFREngine();

 throw L"Error while loading ABBYY FineReader Engine";

 }

}

Visual Basic code
Public Engine As FREngine.Engine

 23

ABBYY FineReader Engine 10 Guided Tour

Private Declare Function GetEngineObject Lib "FREngine.dll" (_

 ByVal DeveloperSN As String, _

 ByVal Reserved1 As String, _

 ByVal Reserved2 As String, _

 EngineObj As FREngine.Engine) As Long

Sub Engine_Load(ByVal DeveloperSN As String)

 ' Visual Basic may load libraries from the current path only

 ChDir "Path to the folder with FREngine.dll"

 ' this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

 Dim DeveloperSN_WideChar As String

 DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)

 If GetEngineObject(DeveloperSN_WideChar, "", "", Engine) <> 0 Then

 MsgBox "Error loading ABBYY FineReader Engine"

 End If

End Sub

Step 2. Loading setting for the above scenario

ABBYY FineReader Engine enables loading of all processing settings that are most suitable for this scenario using the
LoadPredefinedProfile method of the Engine object. This method uses the name of a used settings profile as an input parameter.
Please see Working with Profiles for more information.

ABBYY FineReader Engine supports 2 options of settings for this scenario. Both these profiles enable font style detection and full
document synthesis:

• DocumentConversion_Accuracy
This profile optimizes the document conversion process in order to ensure that the resulting document is of the highest
quality possible.

• DocumentConversion_Speed
This profile optimizes the processing speed of the document conversion process: the processes of document analysis and
recognition are sped up.

Important! This profile requires the Fast Mode module available in the license.

Sample code for the procedure of profile loading in C++ and Visual Basic:

Visual C++ (COM) code
// Load a predefined profile

Engine->LoadPredefinedProfile(L"DocumentConversion_Speed");

Visual Basic code
' Load a predefined profile

Engine.LoadPredefinedProfile "DocumentConversion_Speed"

If you wish to change processing settings, use appropriate parameter objects. Please see Additional optimization for specific tasks
below for further information.

Step 3. Loading and preprocessing of images

ABBYY FineReader Engine provides the FRDocument object which allows processing multi�page documents. Use of this object allows
you to preserve the logical organization of the document, retaining the original text and columns, fonts, styles, etc.

To load images of a single document and preprocess them, you should create the FRDocument object and add images into it. You
may do one of the following:

• Create the FRDocument object using the CreateFRDocumentFromImage method of the Engine object. This method
creates the FRDocument object and loads images from the specified file.

• Create the FRDocument object with the help of the CreateFRDocument method of the Engine object, then add images to
the created FRDocument object from file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method of the FRDocument object).

 24

ABBYY FineReader Engine 10 Guided Tour

Sample code for the procedure of image loading and preprocessing in C++ and Visual Basic:

Visual C++ (COM) code
// Open image file and create the FRDocument object

FREngine::IFRDocumentPtr frDocument = Engine->CreateFRDocumentFromImage(
L"C:\\MyImage.tif", 0);

Visual Basic code
' Open image file and create the FRDocument object

Dim frDocument As FREngine.FRDocument

Set frDocument = Engine.CreateFRDocumentFromImage("C:\MyImage.tif")

Note: Image preprocessing with the loaded DocumentConversion_Accuracy or DocumentConversion_Speed profile does not include
the orientation detection. If you want orientation to be automatically detected, you will need to tune additional parameters and pass
corresponding object to the preprocessing function. Please refer Additional optimization for specific tasks below for further
information.

Step 4. Document recognition

To recognize a document, we suggest that the analysis and recognition methods of the FRDocument object be used. This object
provides a whole array of methods for document analysis, recognition and synthesis. The most convenient method allowing document
analysis, recognition and synthesis using just one method is the Process method. It also uses simultaneous processing features of
multiprocessor and multicore systems in the most efficient manner. However, you may also carry out consecutive analysis, recognition
and synthesis using Analyze, Recognize (or AnalyzeAndRecognize) and Synthesize methods.

Sample code for the procedure of document recognition in C++ and Visual Basic:

Visual C++ (COM) code
// Analyze, recognize, and synthesize the document.

// While the profile is loaded, you do not need to pass any additional parameters to
the processing method.

pFRDocument->Process(0, 0, 0);

Visual Basic code
' Analyze, recognize, and synthesize the document.

' While the profile is loaded, you do not need to pass any additional parameters to the
processing method.

frDocument.Process

Step 5. Document export

To save a recognized document, you may use the Export method of the FRDocument object by assigning the
FileExportFormatEnum constant as one of the parameters. You may change the default parameters of export using the
corresponding export object. Please see Additional optimization for specific tasks below for further information.

After you have finished your work with the FRDocument object, release all the resources that were used by this object. Use the
IFRDocument::Close method.

Sample code for the procedure of document export to RTF in C++ and Visual Basic:

Visual C++ (COM) code
// Save a recognized document to an editable format (e.g. RTF)

frDocument->Export(L"C:\\MyText.rtf", FREngine::FEF_RTF, 0);

// Release the FRDocument object

frDocument->Close();

Visual Basic code
' Save a recognized document to an editable format (e.g. RTF)

frDocument.Export "C:\MyText.rtf", FEF_RTF, Nothing

' Release the FRDocument object

frDocument.Close

Step 6. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine you need to unload the Engine object. To do this use the
DeinitializeEngine exported function.

Sample code for the procedure of ABBYY FineReader Engine unloading and deinitialization in C++ and Visual Basic:

Visual C++ (COM) code

 25

ABBYY FineReader Engine 10 Guided Tour

void UnloadFREngine()

{

 if(libraryHandle == 0) {

 return;

 }

 // Release Engine object

 Engine = 0;

 // Deinitialize FineReader Engine

 typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();

 DeinitializeEngineFunc pDeinitializeEngine =

 (DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine");

 if(pDeinitializeEngine == 0 || pDeinitializeEngine() != S_OK) {

 throw L"Error while unloading ABBYY FineReader Engine";

 }

 // Now it's safe to free the FREngine.dll library

 FreeLibrary(libraryHandle);

 libraryHandle = 0;

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function DeinitializeEngine Lib "FREngine.dll" () As Long

Sub Engine_Unload()

 Set Engine = Nothing

 ChDir "Path to the folder with FREngine.dll"

 DeinitializeEngine

End Sub

Additional optimization for specific tasks

Below is the overview of the Help topics containing additional information regarding customization of settings at different stages of
the document conversion to an editable format:

• Scanning

o Scanning
Description of the ABBYY FineReader Engine scenario for document scanning.

• Opening and preprocessing

o Image Preprocessing
Description of the ABBYY FineReader Engine scenario for preliminary preparation of images or enhancement of
their visual quality.

• Recognition

o Tuning Analysis, Recognition, and Synthesis Parameters
Customization of document processing using objects of analysis, recognition and synthesis parameters.

o PageProcessingParams Object
This object enables customization of analysis and recognition parameters. Using this object, you can indicate
which image and text characteristics must be detected (inverted image, orientation, barcodes, recognition
language, recognition error margin).

o SynthesisParamsForPage Object
This object includes parameters responsible for restoration of a page formatting during synthesis.

o SynthesisParamsForDocument Object
This object enables customization of the document synthesis: restoration of its structure and formatting.

 26

ABBYY FineReader Engine 10 Guided Tour

o MultiProcessingParams Object
Simultaneous processing of documents may be useful when processing a large number of documents. In this case
the document load will be spread over the processor cores during the analysis and recognition, which makes it
possible to speed up processing. Reading modes (simultaneous or consecutive) are set using the
MultiProcessingMode property. The RecognitionProcessesCount property controls the number of processes,
which may be started.

• Export

o Tuning Export Parameters
Customization of the document export using objects of export parameters.

o RTFExportParams Object
This object enables customization of the RTF/DOC/DOCX saving format parameters.

o HTMLExportParams Object
This object allows customization of export to the HTML format.

o PPTExportParams Object
Object for customization of the PPTX saving format parameters.

See also

Basic Usage Scenarios Implementation

Document Archiving

This scenario is used for processing paper documents to save them to an electronic archive, especially when creating an archive of
agreements, project documentation, invoices, certificates, etc.

Under this processing scenario, paper documents are converted into uneditable electronic copies containing all document information
in searchable format. As a result of such processing, the resulting copies may be easily found in the electronic archive using full�text
search, document text segments may be copied and the document may be sent by email or printed out.

To create an electronic copy, the document first needs to go through several processing stages, each of which has its own peculiarities
in this scenario:

1. Scanning
Scanning may be done manually for each separate document as well as automatically by scanning a whole batch of
documents. In the latter case, a batch of images may have to be separated additionally into documents after scanning.

2. Image preprocessing
Scanned images may require some preprocessing prior to recognition, for example, if scanned documents contain
background noise, skewed text, inverted colors, black margins, wrong orientation or resolution.

3. Recognition
To extract text data from a document, the document recognition is required. When processing a large volume of documents,
simultaneous document processing may be come in useful. In this case, in the course of analysis and recognition the
document load will be spread over the processor cores, which makes it possible to speed up processing.

4. Export
The recognized document is saved to a suitable storage format. The most convenient formats for storing documents are PDF,
PDF/A, PDF and PDF/A with MRC. When saving to these formats, one may use a mode, under which the text is placed
underneath the document image — this enables full preservation of the document formatting and provides a full�text search.
The MRC settings allow significant reduction of a file size without loss of visual quality. Also when saving to the PDF format,
one may customize security settings of the document protecting it from unauthorized viewing and printing.

Scenario implementation

Below is the detailed description of the recommended method of using ABBYY FineReader Engine 10 for implementation of the above
scenario. The proposed method uses processing settings that are most suitable for this scenario. Under the proposed implementation
of the scenario, the document scanning phase is omitted. Please see Additional optimization for specific tasks below for the tips on
scanning implementation.

Step 1. Loading ABBYY FineReader Engine

To start your work with ABBYY FineReader Engine you need to create the Engine object. The Engine object is the top object in the
hierarchy of the ABBYY FineReader Engine objects and is the only ABBYY FineReader Engine externally creatable object.

 27

ABBYY FineReader Engine 10 Guided Tour

To create the Engine object use the GetEngineObject exported function.

Sample code for the procedure of ABBYY FineReader Engine loading and initialization in C++ and Visual Basic:

Visual C++ (COM) code
// HANDLE to FREngine.dll

static HMODULE libraryHandle = 0;

// Global FineReader Engine object.

FREngine::IEnginePtr Engine;

void LoadFREngine()

{

 if(Engine != 0) {

 // Already loaded

 return;

 }

 // First step: load FREngine.dll

 if(libraryHandle == 0) {

 libraryHandle = LoadLibraryEx(::GetFreDllPathU(), 0,
LOAD_WITH_ALTERED_SEARCH_PATH);

 if(libraryHandle == 0) {

 throw L"Error while loading ABBYY FineReader Engine";

 }

 }

 // Second step: obtain the Engine object

 typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine::IEngine**);

 GetEngineObjectFunc pGetEngineObject =

 (GetEngineObjectFunc)GetProcAddress(libraryHandle, "GetEngineObject"
);

 if(pGetEngineObject == 0 || pGetEngineObject(::GetFreDeveloperSN(), 0, 0,
&Engine) != S_OK) {

 UnloadFREngine();

 throw L"Error while loading ABBYY FineReader Engine";

 }

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function GetEngineObject Lib "FREngine.dll" (_

 ByVal DeveloperSN As String, _

 ByVal Reserved1 As String, _

 ByVal Reserved2 As String, _

 EngineObj As FREngine.Engine) As Long

Sub Engine_Load(ByVal DeveloperSN As String)

 ' Visual Basic may load libraries from the current path only

 ChDir "Path to the folder with FREngine.dll"

 ' this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

 Dim DeveloperSN_WideChar As String

 DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)

 If GetEngineObject(DeveloperSN_WideChar, "", "", Engine) <> 0 Then

 28

ABBYY FineReader Engine 10 Guided Tour

 MsgBox "Error loading ABBYY FineReader Engine"

 End If

End Sub

Step 2. Loading settings for the above scenario

ABBYY FineReader Engine enables loading of all processing settings that are most suitable for this scenario using the
LoadPredefinedProfile method of the Engine object. This method uses the name of a used settings profile as an input parameter.
Please see Working with Profiles for more information.

ABBYY FineReader Engine supports 2 options of settings for this scenario. Both these profiles enable detection of all text on an image,
including text embedded into the image, while skew correction is not performed, fonts and styles are not detected, and full document
synthesis is not performed:

• DocumentArchiving_Accuracy
This profile optimizes the document archiving process in order to ensure that the resulting document is of the highest
quality possible.

• DocumentArchiving_Speed
This profile optimizes the processing speed of the document archiving process: the processes of document analysis and
recognition are sped up.

Important! These profiles require the DA for Full�Text Indexing module available in the license. The DocumentArchiving_Speed
profile requires additionally the Fast Mode module.

Note: The settings provided by these predefined profiles are not intended for converting a document into an editable format. Use
the document conversion profiles for such purpose.

Sample code for the procedure of profile loading in C++ and Visual Basic:

Visual C++ (COM) code
// Load a predefined profile

Engine->LoadPredefinedProfile(L"DocumentArchiving_Accuracy");

Visual Basic code
' Load a predefined profile

Engine.LoadPredefinedProfile "DocumentArchiving_Accuracy"

If you wish to change processing settings, use appropriate parameter objects. Please see Additional optimization for specific tasks for
further information.

Step 3. Loading and preprocessing of images

ABBYY FineReader Engine provides the FRDocument object which allows processing multi�page documents. Use of this object allows
you to preserve the logical organization of the document.

To load images of a single document and preprocess them, you should create the FRDocument object and add images into it. You
may do one of the following:

• Create the FRDocument object using the CreateFRDocumentFromImage method of the Engine object. This method
creates the FRDocument object and loads images from the specified file.

• Create the FRDocument object with the help of the CreateFRDocument method of the Engine object, then add images to
the created FRDocument object from file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method of the FRDocument object).

Sample code for the procedure of image loading and preprocessing in C++ and Visual Basic:

Visual C++ (COM) code
// Open image file and create the FRDocument object

FREngine::IFRDocumentPtr frDocument = Engine->CreateFRDocumentFromImage(
L"C:\\MyImage.tif", 0);

Visual Basic code
' Open image file and create the FRDocument object

Dim frDocument As FREngine.FRDocument

Set frDocument = Engine.CreateFRDocumentFromImage("C:\MyImage.tif")

Step 4. Document recognition

 29

ABBYY FineReader Engine 10 Guided Tour

To recognize a document, we suggest that the methods of the FRDocument object analysis and recognition be used. This object
provides a whole array of methods for document analysis, recognition and synthesis. The most convenient method allowing document
analysis, recognition and synthesis using just one method is the Process method. It also uses simultaneous processing features of
multiprocessor and multicore systems in the most efficient manner. However, you may also carry out consecutive analysis, recognition
and synthesis using the Analyze, Recognize (or AnalyzeAndRecognize) and Synthesize methods.

Sample code for the procedure of document recognition in C++ and Visual Basic:

Visual C++ (COM) code
// Analyze, recognize, and synthesize the document.

// While the profile is loaded, you do not need to pass any additional parameters to
the processing method.

pFRDocument->Process(0, 0, 0);

Visual Basic code
' Analyze, recognize, and synthesize the document.

' While the profile is loaded, you do not need to pass any additional parameters to the
processing method.

frDocument.Process

Step 5. Document export

To save a recognized document, you may use the Export method of the FRDocument object by assigning the
FileExportFormatEnum constant as one of the parameters. In this scenario you can save the document, for example, to the PDF
format using MRC in the export mode PEM_ImageOnText (property TextExportMode of the PDFExportParams object). You may
change the default parameters of export using the corresponding export object. Please see Additional optimization for specific tasks
below for further information.

After you have finished your work with the FRDocument object, release all the resources that were used by this object. Use the
IFRDocument::Close method.

Sample code for the procedure of document export to PDF in C++ and Visual Basic:

Visual C++ (COM) code
// Save a recognized document to an archive format (e.g. PDF)

 // Create a PDFExportParams object
 FREngine::IPDFExportParamsPtr params = Engine->CreatePDFExportParams();
 // Set necessary parameters
 params->MRCMode = FREngine::MRC_Auto;
 params->TextExportMode = FREngine::PEM_ImageOnText;

 // Use the parameters during export
 frDocument->Export(L"C:\\MyText.pdf", FREngine::FEF_PDF, params);

 // Release the FRDocument object
 frDocument->Close();

Visual Basic code
' Save a recognized document to an archive format (e.g. PDF)

' Create a PDFExportParams object

Dim params As FREngine.PDFExportParams

Set params = Engine.CreatePDFExportParams

' Set necessary parameters

params.MRCMode = MRC_Auto

params.TextExportMode = PEM_ImageOnText

' Use the parameters during export

frDocument.Export "C:\MyText.pdf", FEF_PDF, params

' Release the FRDocument object

frDocument.Close

Step 6. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine you need to unload the Engine object. To do this use the
DeinitializeEngine exported function.

 30

ABBYY FineReader Engine 10 Guided Tour

Sample code for the procedure of ABBYY FineReader Engine unloading and deinitialization in C++ and Visual Basic:

Visual C++ (COM) code
void UnloadFREngine()

{

 if(libraryHandle == 0) {

 return;

 }

 // Release Engine object

 Engine = 0;

 // Deinitialize FineReader Engine

 typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();

 DeinitializeEngineFunc pDeinitializeEngine =

 (DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine");

 if(pDeinitializeEngine == 0 || pDeinitializeEngine() != S_OK) {

 throw L"Error while unloading ABBYY FineReader Engine";

 }

 // Now it's safe to free the FREngine.dll library

 FreeLibrary(libraryHandle);

 libraryHandle = 0;

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function DeinitializeEngine Lib "FREngine.dll" () As Long

Sub Engine_Unload()

 Set Engine = Nothing

 ChDir "Path to the folder with FREngine.dll"

 DeinitializeEngine

End Sub

Additional optimization for specific tasks

Below is the overview of the Help topics containing additional information regarding customization of settings at different stages of
document processing:

• Scanning

o Scanning
Description of the ABBYY FineReader Engine scenario for document scanning.

o Tips for Document Scanning
Getting quality images from scanning paper documents.

o Setting up Scanning Options
Implementing scanning using ABBYY FineReader Engine scanning interfaces.

• Opening and preprocessing

o Image Preprocessing
Description of the ABBYY FineReader Engine scenario for preliminary preparation of images and enhancement of
their visual quality.

• Recognition

o Tuning Analysis, Recognition, and Synthesis Parameters
Customization of document processing using objects of analysis, recognition and synthesis parameters.

o PageProcessingParams Object
This object enables customization of analysis and recognition parameters. Using this object, you can indicate
which image and text characteristics must be detected (inverted image, orientation, bar codes, recognition
language, recognition error margin).

 31

ABBYY FineReader Engine 10 Guided Tour

o SynthesisParamsForPage Object
This object includes parameters responsible for restoration of a page formatting during synthesis.

o SynthesisParamsForDocument Object
This object enables customization of the document synthesis: restoration of its structure and formatting.

o MultiProcessingParams Object
Simultaneous processing of documents may be useful when processing a large number of documents. In this case
the document load will be spread over the processor cores during the analysis and recognition, which makes it
possible to speed up processing. Reading modes (simultaneous or consecutive) are set using the
MultiProcessingMode property, the RecognitionProcessesCount property controls the number of processes,
which may be started.

• Export

o Tuning Export Parameters
Customization of document export using objects of export parameters.

o PDFExportParams Object
This object allows you to tune PDF (PDF/A) export with only several parameters.

o To customize the PDF (PDF/A) format export mode, use the TextExportMode property of the
PDFExportParams object, and to customize MRC settings, use the MRCMode property.

o In addition, you can customize image export settings to ensure faster processing, additional reduction of a file size,
etc. For example, you can save a colored image as a grayscale or black and white image, if this fits your scenario
(use the Colority property of the PDFExportParams object).

o You can change the image resolution in such a way that the resulting electronic copy may subsequently be printed
out on a printer, viewed on a computer screen or you can select low resolution allowing only for reading of text
and providing very poor quality of graphics (use the Resolution and ResolutionType property of the
PDFExportParams object).

• Separation into documents

o Under this scenario, the batch of images may have to be separated into documents. ABBYY FineReader Engine 10
does not support automatic document separation. However, you can use ABBYY FlexiCapture Engine to
implement automatic separation. The documents may be separated, for instance, based on the number of pages in
a document or based on pages having separating barcodes. When implementing barcode separation, you can use
the scenario for extraction of barcode values only from the document.

See also

Basic Usage Scenarios Implementation

Book Archiving

This scenario is used for processing books, magazines, newspapers to create an electronic library; for instance, when digitizing paper
book collections for purposes of facilitating and expanding access to them and for their preservation.

Under this scenario, books, magazines, newspapers are converted into uneditable electronic copies containing all information from the
source in searchable format. As a result of such processing, the resulting copies may be easily found in the electronic library using full�
text search. During processing a special emphasis is placed on preserving the quality of the recognized text and restoring the structural
elements of the document, especially the content.

To create an electronic copy, image files obtained by scanning or saved in electronic format first need to go through several processing
stages, each of which has its own peculiarities for this scenario:

1. Image preprocessing
Images obtained by scanning may require some preprocessing prior to recognition. For instance, the image of a scanned
book may require straightening out of the lines skewed near the fold line, removal of the fold line darks, splitting of the
image of a double�page spread into two separate pages.

2. Recognition
To extract text data from a document, the document needs to be recognized. When recognizing books and newspapers,
restoring logical structure of a document is of special importance. When processing a large volume of documents,
simultaneous document processing may come in useful. In this case, during analysis and recognition the document load will
be spread over processor cores, which makes it possible to speed up processing.

 32

ABBYY FineReader Engine 10 Guided Tour

3. Export
The recognized document is saved to a format used for storing data. The most convenient formats for storing documents in
an electronic library are PDF, PDF/A, PDF and PDF/A with MRC. When saving to these formats, one may use a mode, under
which the text is placed underneath a document image — this enables one to fully preserve the document formatting and
provides a full�text search. The MRC settings allow significant reduction of a file size without loss of visual quality. Also when
saving to the PDF format, one may customize security settings of the document protecting it from unauthorized viewing and
printing.

Scenario implementation

Below is the detailed description of a recommended method of using ABBYY FineReader Engine 10 for the implementation of the
above scenario. The proposed method employs the processing settings that are most suitable for the above scenario.

Step 1. Loading ABBYY FineReader Engine

To start your work with ABBYY FineReader Engine you need to create the Engine object. The Engine object is the top object in the
hierarchy of the ABBYY FineReader Engine objects and is the only ABBYY FineReader Engine externally creatable object.

To create the Engine object use the GetEngineObject exported function.

Sample code for the procedure of ABBYY FineReader Engine loading and initialization in C++ and Visual Basic:

Visual C++ (COM) code
// HANDLE to FREngine.dll

static HMODULE libraryHandle = 0;

// Global FineReader Engine object.

FREngine::IEnginePtr Engine;

void LoadFREngine()

{

 if(Engine != 0) {

 // Already loaded

 return;

 }

 // First step: load FREngine.dll

 if(libraryHandle == 0) {

 libraryHandle = LoadLibraryEx(::GetFreDllPathU(), 0,
LOAD_WITH_ALTERED_SEARCH_PATH);

 if(libraryHandle == 0) {

 throw L"Error while loading ABBYY FineReader Engine";

 }

 }

 // Second step: obtain the Engine object

 typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine::IEngine**);

 GetEngineObjectFunc pGetEngineObject =

 (GetEngineObjectFunc)GetProcAddress(libraryHandle, "GetEngineObject"
);

 if(pGetEngineObject == 0 || pGetEngineObject(::GetFreDeveloperSN(), 0, 0,
&Engine) != S_OK) {

 UnloadFREngine();

 throw L"Error while loading ABBYY FineReader Engine";

 }

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function GetEngineObject Lib "FREngine.dll" (_

 ByVal DeveloperSN As String, _

 33

ABBYY FineReader Engine 10 Guided Tour

 ByVal Reserved1 As String, _

 ByVal Reserved2 As String, _

 EngineObj As FREngine.Engine) As Long

Sub Engine_Load(ByVal DeveloperSN As String)

 ' Visual Basic may load libraries from the current path only

 ChDir "Path to the folder with FREngine.dll"

 ' this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

 Dim DeveloperSN_WideChar As String

 DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)

 If GetEngineObject(DeveloperSN_WideChar, "", "", Engine) <> 0 Then

 MsgBox "Error loading ABBYY FineReader Engine"

 End If

End Sub

Step 2. Loading settings for the above scenario

ABBYY FineReader Engine enables one to load all processing settings that are most suitable for this scenario using the
LoadPredefinedProfile method of the Engine object. This method uses the name of a used settings profile as an input parameter.
Please see Working with Profiles for more information.

ABBYY FineReader Engine supports 2 options of settings for this scenario. Both these profiles enable font style detection and full
document synthesis:

• BookArchiving_Accuracy
This profile optimizes document processing in order to ensure that the resulting document is of the highest quality possible.

• BookArchiving_Speed
This profile optimizes the processing speed of the document creation process.

Important! This profile requires the Fast Mode module available in the license.

Sample code for the procedure of profile loading in C++ and Visual Basic:

Visual C++ (COM) code
// Load a predefined profile

Engine->LoadPredefinedProfile(L"BookArchiving_Speed");

Visual Basic code
' Load a predefined profile

Engine.LoadPredefinedProfile "BookArchiving_Speed"

If you wish to change processing settings, use appropriate parameter objects. Please see Additional optimization for specific tasks
below for further information.

Step 3. Loading and preprocessing of images

ABBYY FineReader Engine provides the FRDocument object which allows processing multi�page documents. Use of this object allows
you to preserve the logical organization of the document, retaining the original text and columns, fonts, styles, etc.

To load images of a single document and preprocess them, you should create the FRDocument object and add images into it. You
may do one of the following:

• Create the FRDocument object using the CreateFRDocumentFromImage method of the Engine object. This method
creates the FRDocument object and loads images from the specified file.

• Create the FRDocument object with the help of the CreateFRDocument method of the Engine object, then add images to
the created FRDocument object from file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method of the FRDocument object).

Sample code for the procedure of image loading and preprocessing in C++ and Visual Basic:

Visual C++ (COM) code
// Open image file and create the FRDocument object

 34

ABBYY FineReader Engine 10 Guided Tour

FREngine::IFRDocumentPtr frDocument = Engine->CreateFRDocumentFromImage(
L"C:\\MyImage.tif", 0);

Visual Basic code
' Open image file and create the FRDocument object

Dim frDocument As FREngine.FRDocument

Set frDocument = Engine.CreateFRDocumentFromImage("C:\MyImage.tif")

Step 4. Document recognition

To recognize a document, we suggest that the methods of the FRDocument object analysis and recognition be used. This object
provides a whole array of methods for document analysis, recognition and synthesis. The most convenient method allowing document
analysis, recognition and synthesis using just one method is the Process method. It also takes advantage simultaneous processing
features of multiprocessor and multicore systems in the most efficient manner. However, you may also perform consecutive analysis,
recognition and synthesis using Analyze, Recognize (or AnalyzeAndRecognize) and Synthesize methods.

Sample code for the procedure of document recognition in C++ and Visual Basic:

Visual C++ (COM) code
// Analyze, recognize, and synthesize the document

// While the profile is loaded, you do not need to pass any additional parameters to
the processing method.

pFRDocument->Process(0, 0, 0);

Visual Basic code
' Analyze, recognize, and synthesize the document

' While the profile is loaded, you do not need to pass any additional parameters to the
processing method.

frDocument.Process

Step 5. Document export

To save a recognized document, you may use the Export method of the FRDocument object by assigning the
FileExportFormatEnum constant as one of the parameters. In this scenario you can save the document, for example, to the PDF/A
format with MRC in the PEM_ImageOnText export mode (the TextExportMode property of the PDFExportParams object). You
may change the default parameters of export using the corresponding export object. Please see Additional optimization for specific
tasks below for further information.

After you have finished your work with the FRDocument object, release all the resources that were used by this object. Use the
IFRDocument::Close method.

Sample code for the procedure of document export to PDF/A in C++ and Visual Basic:

Visual C++ (COM) code
// Save a recognized document to an archive format (e.g. PDF/A)

 // Create a PDFExportParams object
 FREngine::IPDFExportParamsPtr params = Engine->CreatePDFExportParams();
 // Set necessary parameters
 params->PDFAComplianceMode = FREngine::PCM_Pdfa_1a;
 params->MRCMode = FREngine::MRC_Always;
 params->TextExportMode = FREngine::PEM_ImageOnText;

 // Use the parameters during export
 frDocument->Export(L"C:\\MyText.pdf", FREngine::FEF_PDFA, params);

 // Release the FRDocument object
 frDocument->Close();

Visual Basic code
' Save a recognized document to an archive format (e.g. PDF/A)

 ' Create a PDFExportParams object
 Dim params As FREngine.PDFExportParams
 Set params = Engine.CreatePDFExportParams
 ' Set necessary parameters
 params.PDFAComplianceMode = PCM_Pdfa_1a
 params.MRCMode = MRC_Always
 params.TextExportMode = PEM_ImageOnText

 35

ABBYY FineReader Engine 10 Guided Tour

 ' Use the parameters during export
 frDocument.Export "C:\MyText.pdf", FEF_PDFA, params

 ' Release the FRDocument object
 frDocument.Close

Step 6. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine you need to unload the Engine object. To do this use the
DeinitializeEngine exported function.

Sample code for the procedure of ABBYY FineReader Engine unloading and deinitialization in C++ and Visual Basic:

Visual C++ (COM) code
void UnloadFREngine()

{

 if(libraryHandle == 0) {

 return;

 }

 // Release Engine object

 Engine = 0;

 // Deinitialize FineReader Engine

 typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();

 DeinitializeEngineFunc pDeinitializeEngine =

 (DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine");

 if(pDeinitializeEngine == 0 || pDeinitializeEngine() != S_OK) {

 throw L"Error while unloading ABBYY FineReader Engine";

 }

 // Now it's safe to free the FREngine.dll library

 FreeLibrary(libraryHandle);

 libraryHandle = 0;

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function DeinitializeEngine Lib "FREngine.dll" () As Long

Sub Engine_Unload()

 Set Engine = Nothing

 ChDir "Path to the folder with FREngine.dll"

 DeinitializeEngine

End Sub

Additional optimization for specific tasks

Below is the overview of the Help topics containing additional information regarding customization of settings at different stages of
document processing:

• Scanning

o Scanning
Description of the ABBYY FineReader Engine scenario for document scanning.

• Opening and preprocessing

o Image Preprocessing
Description of the ABBYY FineReader Engine scenario for preliminary preparation of images or enhancement of
their visual quality.

• Recognition

o Tuning Analysis, Recognition, and Synthesis Parameters
Customization of document processing using objects of analysis, recognition and synthesis parameters.

 36

ABBYY FineReader Engine 10 Guided Tour

o PageProcessingParams Object
This object enables customization of analysis and recognition parameters. Using this object, you can indicate
which image and text characteristics must be detected (inverted image, orientation, barcodes, recognition
language, recognition error margin).

o SynthesisParamsForPage Object
This object includes parameters responsible for restoration of a page formatting during synthesis.

o SynthesisParamsForDocument Object
This object enables customization of document synthesis: restoration of its structure and formatting.

o MultiProcessingParams Object
Simultaneous processing of documents may be useful when processing a large number of documents. In this case
the document load will be spread over the processor cores during the analysis and recognition, which makes it
possible to speed up processing. Reading modes (simultaneous or consecutive) are set using the
MultiProcessingMode property. The RecognitionProcessesCount property controls the number of
processes, which may be started.

• Export

o Tuning Export Parameters
Customization of the document export using objects of export parameters.

o PDFExportParams Object
This object enables customization of the PDF saving format parameters.

o To customize the PDF (PDF/A) format export mode, use the TextExportMode property of the
PDFExportParams object, and to customize MRC settings, use the MRCMode property.

See also

Basic Usage Scenarios Implementation

Text Extraction

This scenario is used to recognize the entire document text in order to prepare the document for search and extraction of useful data.

Such a scenario may serve as a basis for implementing more complex scenarios to extract vital data from documents, especially for
automated input of paper document data into information systems and databases as well as for automated classification and
indexation of documents in document management systems (e.g., inputting invoices into accounting software, inputting
questionnaires into the CRM system).

This scenario enables extraction of the main text of the document, which contains all necessary information about the document.
When using this scenario, main text data including texts on logos, seals and elements other than the main text, are extracted from the
text.

To extract the main text of the document, image files obtained by scanning or saved in electronic format typically go through several
processing stages, each of which has its own peculiarities in the content of this scenario:

1. Image preprocessing
Scanned images may require some preprocessing prior to recognition, for example, if scanned documents contain
background noise, skewed text, inverted colors, black margins, wrong orientation or resolution.

2. Recognition
Recognition of images is performed using settings, which ensure that the maximum amount of text is extracted from a
document image.

The text obtained as a result of processing may be used for searching vital data (however, information regarding the search for vital
data lies outside the scope of this scenario). A certain algorithm is used to look up key words, e.g. names of form margins, tables, lines
and table columns, signature and stamp fields, etc. Field containing important data are highlighted based on key words. These fields
may be re�read using special recognition parameters depending on the type of data. The data found may be checked for consistency
with the type and restrictions specified.

The data found may be saved to a database and an electronic uneditable copy of the paper document may be placed in the archive.

Scenario implementation

Below is the detailed description of the recommended method of using ABBYY FineReader Engine 10 for implementation of the above
scenario. The proposed method uses processing settings that are most suitable for this scenario.

 37

ABBYY FineReader Engine 10 Guided Tour

Step 1. Loading ABBYY FineReader Engine

To start your work with ABBYY FineReader Engine you need to create the Engine object. The Engine object is the top object in the
hierarchy of the ABBYY FineReader Engine objects and is the only ABBYY FineReader Engine externally creatable object.

To create the Engine object use the GetEngineObject exported function.

Sample code for the procedure of ABBYY FineReader Engine loading and initialization in C++ and Visual Basic:

Visual C++ (COM) code
// HANDLE to FREngine.dll

static HMODULE libraryHandle = 0;

// Global FineReader Engine object.

FREngine::IEnginePtr Engine;

void LoadFREngine()

{

 if(Engine != 0) {

 // Already loaded

 return;

 }

 // First step: load FREngine.dll

 if(libraryHandle == 0) {

 libraryHandle = LoadLibraryEx(::GetFreDllPathU(), 0,
LOAD_WITH_ALTERED_SEARCH_PATH);

 if(libraryHandle == 0) {

 throw L"Error while loading ABBYY FineReader Engine";

 }

 }

 // Second step: obtain the Engine object

 typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine::IEngine**);

 GetEngineObjectFunc pGetEngineObject =

 (GetEngineObjectFunc)GetProcAddress(libraryHandle, "GetEngineObject"
);

 if(pGetEngineObject == 0 || pGetEngineObject(::GetFreDeveloperSN(), 0, 0,
&Engine) != S_OK) {

 UnloadFREngine();

 throw L"Error while loading ABBYY FineReader Engine";

 }

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function GetEngineObject Lib "FREngine.dll" (_

 ByVal DeveloperSN As String, _

 ByVal Reserved1 As String, _

 ByVal Reserved2 As String, _

 EngineObj As FREngine.Engine) As Long

Sub Engine_Load(ByVal DeveloperSN As String)

 ' Visual Basic may load libraries from the current path only

 ChDir "Path to the folder with FREngine.dll"

 ' this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

 Dim DeveloperSN_WideChar As String

 DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)

 If GetEngineObject(DeveloperSN_WideChar, "", "", Engine) <> 0 Then

 MsgBox "Error loading ABBYY FineReader Engine"

 End If

End Sub

 38

ABBYY FineReader Engine 10 Guided Tour

Step 2. Loading settings for the above scenario

The most suitable settings for this scenario may be selected in ABBYY FineReader Engine using the LoadPredefinedProfile method
of the Engine object. This method uses the name of a used settings profile as an input parameter. Please see Working with Profiles for
more information.

ABBYY FineReader Engine supports 2 options of settings for this scenario. Both these profiles enable detection of all text on an image,
including small text areas of low quality (pictures and tables are not detected), while fonts and styles are not detected, and full
document synthesis is not performed:

• TextExtraction_Accuracy
This profile optimizes the text extraction process in order to ensure that the resulting document is of the highest quality
possible.

• TextExtraction_Speed
This profile optimizes the processing speed of the text extraction process: the processes of document analysis and
recognition are sped up.

Important! These profiles require the DA for Invoices module available in the license. The TextExtraction_Speed profile requires
additionally the Fast Mode module.

Sample code for the procedure of profile loading in C++ and Visual Basic:

Visual C++ (COM) code
// Load a predefined profile

Engine->LoadPredefinedProfile(L"TextExtraction_Accuracy");

Visual Basic code
' Load a predefined profile

Engine.LoadPredefinedProfile "TextExtraction_Accuracy"

If you wish to change processing settings, use appropriate parameter objects. Please see Additional optimization for specific tasks
below for further information.

Step 3. Loading and preprocessing of images

ABBYY FineReader Engine provides the FRDocument object which allows processing multi�page documents.

To load images of a single document and preprocess them, you should create the FRDocument object and add images into it. You
may do one of the following:

• Create the FRDocument object using the CreateFRDocumentFromImage method of the Engine object. This method
creates the FRDocument object and loads images from the specified file.

• Create the FRDocument object with the help of the CreateFRDocument method of the Engine object, then add images to
the created FRDocument object from file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method of the FRDocument object).

Sample code for the procedure of image loading and preprocessing in C++ and Visual Basic:

Visual C++ (COM) code
// Open image file and create the FRDocument object

FREngine::IFRDocumentPtr frDocument = Engine->CreateFRDocumentFromImage(
L"C:\\MyImage.tif", 0);

Visual Basic code
' Open image file and create the FRDocument object

Dim frDocument As FREngine.FRDocument

Set frDocument = Engine.CreateFRDocumentFromImage("C:\MyImage.tif")

Step 4. Document recognition

To recognize the document you should use analysis and recognition methods of the FRDocument object. This object provides a
whole array of methods for document analysis and recognition. The most convenient method allowing document analysis, recognition
and synthesis using just one method is the Process method. It also uses simultaneous processing features of multiprocessor and
multicore systems in the most efficient manner. However, you may also carry out consecutive analysis, recognition and synthesis using
Analyze, Recognize (or AnalyzeAndRecognize) methods.

Sample code for the procedure of document recognition in C++ and Visual Basic:

 39

ABBYY FineReader Engine 10 Guided Tour

Visual C++ (COM) code
// Analyze, recognize, and synthesize the document.

// While the profile is loaded, you do not need to pass any additional parameters to
the processing method.

pFRDocument->Process(0, 0, 0);

Visual Basic code
' Analyze, recognize, and synthesize the document.

' While the profile is loaded, you do not need to pass any additional parameters to the
processing method.

frDocument.Process

Step 5. Searching for vital information

During analysis ABBYY FineReader Engine selects image blocks containing text, tables, pictures, etc. In the course of recognition the
blocks containing text data get filled with the recognized text.

In ABBYY FineReader Engine the Layout object serves as a storage for blocks and recognized text. The main scenario of document
processing works with layout within the FRDocument object which represents processing document. To access a layout of a
document page, use the IFRPage::Layout property.

To search for key words, you may view the recognized text using the Text object, which is accessible via the properties of the text,
table or barcode blocks.

The vital data you have found may be saved or processed as required. Please see Additional optimization for specific tasks below for
more detailed information.

After you have finished your work with the FRDocument object, release all the resources that were used by this object. Use the
IFRDocument::Close method.

Step 6. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine you need to unload the Engine object. To do this use the
DeinitializeEngine exported function.

Sample code for the procedure of ABBYY FineReader Engine unloading and deinitialization in C++ and Visual Basic:

Visual C++ (COM) code
void UnloadFREngine()

{

 if(libraryHandle == 0) {

 return;

 }

 // Release Engine object

 Engine = 0;

 // Deinitialize FineReader Engine

 typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();

 DeinitializeEngineFunc pDeinitializeEngine =

 (DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine");

 if(pDeinitializeEngine == 0 || pDeinitializeEngine() != S_OK) {

 throw L"Error while unloading ABBYY FineReader Engine";

 }

 // Now it's safe to free the FREngine.dll library

 FreeLibrary(libraryHandle);

 libraryHandle = 0;

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function DeinitializeEngine Lib "FREngine.dll" () As Long

Sub Engine_Unload()

 Set Engine = Nothing

 ChDir "Path to the folder with FREngine.dll"

 DeinitializeEngine

 40

ABBYY FineReader Engine 10 Guided Tour

End Sub

Additional optimization for specific tasks

• Scanning

o Scanning
Description of the ABBYY FineReader Engine scenario for document scanning.

• Opening and preprocessing

o Image Preprocessing
Description of the ABBYY FineReader Engine scenario for preliminary preparation of images.

• Recognition

o Tuning Analysis, Recognition, and Synthesis Parameters
Customization of document processing using objects of analysis, recognition and synthesis parameters.

o PageProcessingParams Object
This object enables customization of analysis and recognition parameters. Using this object, you can indicate
which image and text characteristics must be detected (inverted image, orientation, barcodes, recognition
language, recognition error margin).

o SynthesisParamsForPage Object
This object includes parameters responsible for restoration of a page formatting during synthesis.

o SynthesisParamsForDocument Object
This object enables customization of document synthesis: restoration of its structure and formatting.

o MultiProcessingParams Object
Reading modes (simultaneous or consecutive) are set using the MultiProcessingMode property. The
RecognitionProcessesCount property controls the number of processes, which may be started.

• Searching for vital information

o Working with Layout and Blocks
About page layout, block types, and working with them.

o Layout Object
This object's parameters provide access to the page layout and the recognized text after document recognition.

o Working with Text
Working with recognized text, paragraphs, words and symbols.

• Re�reading of document using special parameters for specified data type

o Field�Level Recognition
Description of scenario for recognizing short text segments.

• Saving data

o To save recognized data, you may use the Export or ExportPages methods of the FRDocument object by
assigning the FileExportFormatEnum constant as one of the parameters.

o Document Archiving
Description of the scenario for saving an electronic copy of document.

See also

Basic Usage Scenarios Implementation

Field�Level Recognition

In the case of field�level recognition, short text fragments are recognized in order to capture data from certain fields. Recognition
quality is crucial in this scenario.

 41

ABBYY FineReader Engine 10 Guided Tour

This scenario may also be used as part of more complex scenarios where meaningful data are to be extracted from documents (for
example, to capture data from paper documents into information systems and databases or to automatically classify and index
documents in Document Management Systems).

In this scenario, the system recognizes either several lines of text in only some of the fields or the entire text on a small image. The
system computes a certainty rating for each recognized character. The certainty ratings can then be used when checking the
recognition results. Additionally, the system may store multiple recognition variants for words and characters in the text, which may
then be used in voting algorithms to improve the quality of recognition.

The processing of small text fragments in this scenario is in some ways different from the same steps in other scenarios:

1. Image preprocessing
The images to be recognized may include markup and background noise, both of which may hamper recognition. For this
reason, any unwanted markup and background noise are removed at this stage.

2. Recognition
When recognizing small text fragments, the type of the data to be recognized is known in advance. Therefore, the quality of
recognition may be improved through the use of external dictionaries, regular expressions, custom recognition languages
and alphabets, and by imposing restrictions on the number of characters in a string. Text fields may contain both printed
and handprinted text.

3. Working with the recognized data
This scenario requires maximum recognition accuracy in order to keep data verification work to a minimum. The system
may compute a certainty rating for each recognized word or character and provide multiple recognition variants from
which several Engines may then choose the best candidate by applying voting algorithms.

Implementing the scenario

Below follows a detailed description of the recommended method of using of ABBYY FineReader Engine 10 in this scenario. The
suggested method uses processing settings deemed most appropriate for this scenario.

Step 1. Loading ABBYY FineReader Engine

To start working with ABBYY FineReader Engine, you need to create the Engine object. The Engine object is the top object in the
hierarchy of the ABBYY FineReader Engine objects and is the only externally creatable object in ABBYY FineReader Engine.

To create the Engine object, use the GetEngineObject exported function. Sample C++ and Visual Basic code for loading and
initializing ABBYY FineReader Engine:

Visual C++ (COM) code
// HANDLE to FREngine.dll

static HMODULE libraryHandle = 0;

// Global FineReader Engine object.

FREngine::IEnginePtr Engine;

void LoadFREngine()

{

 if(Engine != 0) {

 // Already loaded

 return;

 }

 // First step: load FREngine.dll

 if(libraryHandle == 0) {

 libraryHandle = LoadLibraryEx(::GetFreDllPathU(), 0,
LOAD_WITH_ALTERED_SEARCH_PATH);

 if(libraryHandle == 0) {

 throw L"Error while loading ABBYY FineReader Engine";

 }

 }

 // Second step: obtain the Engine object

 typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine::IEngine**);

 GetEngineObjectFunc pGetEngineObject =

 (GetEngineObjectFunc)GetProcAddress(libraryHandle, "GetEngineObject"
);

 42

ABBYY FineReader Engine 10 Guided Tour

 if(pGetEngineObject == 0 || pGetEngineObject(::GetFreDeveloperSN(), 0, 0,
&Engine) != S_OK) {

 UnloadFREngine();

 throw L"Error while loading ABBYY FineReader Engine";

 }

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function GetEngineObject Lib "FREngine.dll" (_

 ByVal DeveloperSN As String, _

 ByVal Reserved1 As String, _

 ByVal Reserved2 As String, _

 EngineObj As FREngine.Engine) As Long

Sub Engine_Load(ByVal DeveloperSN As String)

 ' Visual Basic may load libraries from the current path only

 ChDir "Path to the folder with FREngine.dll"

 ' this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

 Dim DeveloperSN_WideChar As String

 DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)

 If GetEngineObject(DeveloperSN_WideChar, "", "", Engine) <> 0 Then

 MsgBox "Error loading ABBYY FineReader Engine"

 End If

End Sub

Step 2. Loading settings for the scenario

The most suitable settings can be selected by using the LoadPredefinedProfile method of the Engine object. This method accepts
the name of the settings profile being used as an input parameter. The most suitable settings can be loaded by using the pre�defined
profile named FieldLevelRecognition. For more about profiles, see Working with Profiles.

Sample code for the procedure of profile loading in C++ and Visual Basic:

Visual C++ (COM) code
// Load a predefined profile

Engine->LoadPredefinedProfile(L"FieldLevelRecognition");

Visual Basic code
' Load a predefined profile

Engine.LoadPredefinedProfile "FieldLevelRecognition"

If you wish to change the settings used for processing, use the corresponding parameter objects. See the Additional optimization
section below for more information.

Step 3. Loading and preprocessing images

ABBYY FineReader Engine provides a FRDocument object for processing multi�page documents. To load the images of a document
and preprocess them, you should create the FRDocument object and add images into it. You can do one of the following:

• Create an FRDocument object using the CreateFRDocumentFromImage method of the Engine object. This method
creates an FRDocument object and loads images from a specified file.

• Create an FRDocument object with the help of the CreateFRDocument method of the Engine object, then add the images
into the created FRDocument object from a file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method of the FRDocument object).

Sample code for the procedure of image loading and preprocessing in C++ and Visual Basic:

Visual C++ (COM) code
// Open image file and create the FRDocument object

FREngine::IFRDocumentPtr frDocument = Engine->CreateFRDocumentFromImage(
L"C:\\MyImage.tif", 0);

Visual Basic code

 43

ABBYY FineReader Engine 10 Guided Tour

' Open image file and create the FRDocument object

Dim frDocument As FREngine.FRDocument

Set frDocument = Engine.CreateFRDocumentFromImage("C:\MyImage.tif")

Step 4. Recognition

In this scenario, methods which include synthesis have to be used for recognition. Only this approach will make the character
attributes available for further operations after recognition. The most convenient method allowing document analysis, recognition and
synthesis using just one method is the Process method. However, you may also perform consecutive analysis, recognition and
synthesis using Analyze, Recognize (or AnalyzeAndRecognize) and Synthesize methods.

Also you may use user dictionaries and special languages during recognition. See the Additional optimization section below for more
information.

Sample code for the procedure of document recognition in C++ and Visual Basic:

Visual C++ (COM) code
// Analyze, recognize, and synthesize the document

// While the profile is loaded, you do not need to pass any additional parameters to
the processing method.

pFRDocument->Process(0, 0, 0);

Visual Basic code
' Analyze, recognize, and synthesize the document

' While the profile is loaded, you do not need to pass any additional parameters to the
processing method.

frDocument.Process

Step 5. Working with the recognized data

Use the Text object to access the recognized text fragment (you can get this object for a text block via the ITextBlock::Text
property). Use the Paragraphs property to get the collection of paragraphs in the fragment and the IParagraphs::Item method to
access the individual paragraphs. The IParagraph::Text property provides access to the recognized text of a paragraph.

You can use the IParagraph::Words to get the collection of words in a paragraph. Use the IWords::Item method to access
individual words in the collection. The IWord::Text property returns the line that contains the recognized word. Use the
GetRecognitionVariants method of the Word object or the GetWordRecognitionVariants method of the Paragraph object to
get the recognition variants for a word.

The attributes of individual characters can be accessed via the GetCharParams method of the Paragraphs object. This method
provides access to the CharParams object, which contains the parameters of the recognized character. The recognition variants for a
character are accessible via the ICharParams::CharacterRecognitionVariants property.

For detailed information on working with text, see Working with Text. For information on using the Engine in voting algorithms, see
Using Voting API.

After you have finished your work with the FRDocument object, release all the resources that were used by this object. Use the
IFRDocument::Close method.

Step 6. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine, you need to unload the Engine object. To do this, use the
DeinitializeEngine exported function.

Sample C++ and Visual Basic code for unloading and deinitializing ABBYY FineReader Engine:

Visual C++ (COM) code
void UnloadFREngine()

{

 if(libraryHandle == 0) {

 return;

 }

 // Release Engine object

 Engine = 0;

 // Deinitialize FineReader Engine

 typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();

 DeinitializeEngineFunc pDeinitializeEngine =

 (DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine");

 44

ABBYY FineReader Engine 10 Guided Tour

 if(pDeinitializeEngine == 0 || pDeinitializeEngine() != S_OK) {

 throw L"Error while unloading ABBYY FineReader Engine";

 }

 // Now it's safe to free the FREngine.dll library

 FreeLibrary(libraryHandle);

 libraryHandle = 0;

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function DeinitializeEngine Lib "FREngine.dll" () As Long

Sub Engine_Unload()

 Set Engine = Nothing

 ChDir "Path to the folder with FREngine.dll"

 DeinitializeEngine

End Sub

Additional optimization

These are the sections of the help file where you can find additional information about setting up the parameters for the various
processing stages:

• Opening and preprocessing images

o Image Preprocessing
Describes a scenario of using ABBYY FineReader Engine to preprocess images.

• Recognition

o Working with Languages
Using built�in and custom recognition languages.

o Working with Dictionaries
Using dictionaries to improve recognition quality.

o Recognizing Words with Spaces
Using dictionaries to recognize words with spaces (such as New York, etc.)

o Recognizing Handprinted Texts
Using ICR (Intelligent Character Recognition).

o Recognizing Checkmarks
Setting up recognition of checkmarks and groups of checkmarks.

• Working with the recognized data

o Working with Text
Working with the recognized text, paragraphs, words, and characters.

o Using Voting API
Working with words and character recognition alternatives.

See also

Basic Usage Scenarios Implementation

Barcode Recognition

In this scenario, ABBYY FineReader Engine is used to read barcodes. Barcodes may need to be read, for example, for purposes of
automatic document separation, for processing documents by a Document Management System, or for indexing and classifying
documents.

This scenario may be used as part of other scenarios. For example, documents scanned with high�speed production scanners may be
separated by means of barcodes, or documents prepared for long�term storage may be placed into archiving Document Management
Systems based on the values of their barcodes.

 45

ABBYY FineReader Engine 10 Guided Tour

When extracting barcodes from texts, the system may detect all barcodes or only barcodes of a certain type with a certain value. The
system may get the value of a barcode and calculate its check sum.

Recognized barcode values can be saved into formats most convenient for further processing, for example into TXT.

Implementing the scenario

Below follows a detailed description of the recommended method of using of ABBYY FineReader Engine 10 in this scenario. The
suggested method uses processing settings deemed most appropriate for this scenario.

Step 1. Loading ABBYY FineReader Engine

To start working with ABBYY FineReader Engine, you need to create the Engine object. The Engine object is the top object in the
hierarchy of the ABBYY FineReader Engine objects and is the only externally creatable object in ABBYY FineReader Engine.

To create the Engine object, use the GetEngineObject exported function. Sample C++ and Visual Basic code for loading and
initializing ABBYY FineReader Engine:

Visual C++ (COM) code
// HANDLE to FREngine.dll

static HMODULE libraryHandle = 0;

// Global FineReader Engine object.

FREngine::IEnginePtr Engine;

void LoadFREngine()

{

 if(Engine != 0) {

 // Already loaded

 return;

 }

 // First step: load FREngine.dll

 if(libraryHandle == 0) {

 libraryHandle = LoadLibraryEx(::GetFreDllPathU(), 0,
LOAD_WITH_ALTERED_SEARCH_PATH);

 if(libraryHandle == 0) {

 throw L"Error while loading ABBYY FineReader Engine";

 }

 }

 // Second step: obtain the Engine object

 typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine::IEngine**);

 GetEngineObjectFunc pGetEngineObject =

 (GetEngineObjectFunc)GetProcAddress(libraryHandle, "GetEngineObject"
);

 if(pGetEngineObject == 0 || pGetEngineObject(::GetFreDeveloperSN(), 0, 0,
&Engine) != S_OK) {

 UnloadFREngine();

 throw L"Error while loading ABBYY FineReader Engine";

 }

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function GetEngineObject Lib "FREngine.dll" (_

 ByVal DeveloperSN As String, _

 ByVal Reserved1 As String, _

 ByVal Reserved2 As String, _

 EngineObj As FREngine.Engine) As Long

Sub Engine_Load(ByVal DeveloperSN As String)

 ' Visual Basic may load libraries from the current path only

 ChDir "Path to the folder with FREngine.dll"

 ' this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

 46

ABBYY FineReader Engine 10 Guided Tour

 Dim DeveloperSN_WideChar As String

 DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)

 If GetEngineObject(DeveloperSN_WideChar, "", "", Engine) <> 0 Then

 MsgBox "Error loading ABBYY FineReader Engine"

 End If

End Sub

Step 2. Loading settings for the scenario

The most suitable settings can be selected by using the LoadPredefinedProfile method of the Engine object. This method accepts
the name of the settings profile being used as an input parameter. For more about profiles, see Working with Profiles.

The most suitable settings for the scenario can be loaded by using the predefined profile named BarcodeRecognition. This profile
enables extracting only barcodes (texts, pictures, or tables are not detected).

Important! This profile requires the Barcode Autolocation module available in the license.

Sample code for the procedure of profile loading in C++ and Visual Basic:

Visual C++ (COM) code
// Load a predefined profile

Engine->LoadPredefinedProfile(L"BarcodeRecognition");

Visual Basic code
' Load a predefined profile

Engine.LoadPredefinedProfile "BarcodeRecognition"

If you wish to change the settings used for processing, use the corresponding parameter objects. See the Additional optimization
section below for more information.

Step 3. Loading and preprocessing images

ABBYY FineReader Engine provides a FRDocument object for processing multi�page documents. To load the images of a document
and preprocess them, you should create the FRDocument object and add images into it. You can do one of the following:

• Create an FRDocument object using the CreateFRDocumentFromImage method of the Engine object. This method
creates an FRDocument object and loads images from a specified file.

• Create an FRDocument object with the help of the CreateFRDocument method of the Engine object, then add the images
into the created FRDocument object from a file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method of the FRDocument object).

Sample code for the procedure of image loading and preprocessing in C++ and Visual Basic:

Visual C++ (COM) code
// Open image file and create the FRDocument object

FREngine::IFRDocumentPtr frDocument = Engine->CreateFRDocumentFromImage(
L"C:\\MyImage.tif", 0);

Visual Basic code
' Open image file and create the FRDocument object

Dim frDocument As FREngine.FRDocument

Set frDocument = Engine.CreateFRDocumentFromImage("C:\MyImage.tif")

Step 4. Extracting barcodes

If the BarcodeRecognition profile is loaded, you may use the Process method of the FRDocument object to extract only barcodes. In
this case ABBYY FineReader Engine detects only blocks with barcodes. No other blocks are detected. The recognized barcode blocks
can be accessed via the Layout object obtained by the above methods.

To read barcodes of a specific type, specify the appropriate parameters of the BarcodeParams object and pass the BarcodeParams
object as a parameter of one of the above functions.

Sample code for the procedure of extracting barcodes in C++ and Visual Basic:

Visual C++ (COM) code
// Extract barcodes

// While the BarcodeRecognition profile is loaded, you do not need to pass any
additional parameters to the processing method.

pFRDocument->Process(0, 0, 0);

 47

ABBYY FineReader Engine 10 Guided Tour

Visual Basic code
' Extract barcodes

' While the BarcodeRecognition profile is loaded, you do not need to pass any
additional parameters to the processing method.

frDocument.Process

Step 5. Exporting the recognized data

To save the values of the recognized barcodes to a file, you may use the Export method of the FRDocument object by assigning the
FileExportFormatEnum constant as one of the parameters. This scenario can export, for example, to TXT. You may change the
default parameters of export using the corresponding export object. Please see Additional optimization for specific tasks below for
further information.

After you have finished your work with the FRDocument object, release all the resources that were used by this object. Use the
IFRDocument::Close method.

Sample code for the procedure of document export to text format in C++ and Visual Basic:

Visual C++ (COM) code
// Save recognized barcodes to some format (e.g. TXT)

frDocument->Export(L"C:\\sample.txt", FREngine::FEF_TXT, 0);

// Release the FRDocument object

frDocument->Close();

Visual Basic code
' Save recognized barcodes to some format (e.g. TXT)

frDocument.Export "C:\sample.txt", FEF_TXT, Nothing

' Release the FRDocument object

frDocument.Close

Step 6. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine, you need to unload the Engine object. To do this, use the
DeinitializeEngine exported function.

Sample C++ and Visual Basic code for unloading and deinitializing ABBYY FineReader Engine:

Visual C++ (COM) code
void UnloadFREngine()

{

 if(libraryHandle == 0) {

 return;

 }

 // Release Engine object

 Engine = 0;

 // Deinitialize FineReader Engine

 typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();

 DeinitializeEngineFunc pDeinitializeEngine =

 (DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine");

 if(pDeinitializeEngine == 0 || pDeinitializeEngine() != S_OK) {

 throw L"Error while unloading ABBYY FineReader Engine";

 }

 // Now it's safe to free the FREngine.dll library

 FreeLibrary(libraryHandle);

 libraryHandle = 0;

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function DeinitializeEngine Lib "FREngine.dll" () As Long

Sub Engine_Unload()

 Set Engine = Nothing

 ChDir "Path to the folder with FREngine.dll"

 48

ABBYY FineReader Engine 10 Guided Tour

 DeinitializeEngine

End Sub

Additional optimization

These are the sections of the help file where you can find additional information about setting up the parameters for the various
processing stages:

• Opening and preprocessing images

o Image Preprocessing
Describes a scenario of using ABBYY FineReader Engine to preprocess images.

• Extracting and reading barcodes

o BarcodeParams Object
This object allows you to set up the barcode analysis and reading parameters.

o Barcode Types
The list of barcodes supported in ABBYY FineReader Engine 10 and their brief descriptions.

o FRDocument Object
Apart from barcode values, you may need to extract other information contained in document. In this case you
may wish to use the methods of the FRDocument object.

o PageProcessingParams Object
This object allows you to set up analysis and recognition parameters for the entire document. Using this object,
you may specify whether barcode values should be recognized. To detect barcodes, set the value of the
DetectBarcodes property to TRUE. Otherwise, barcodes will be identified as pictures. The barcode reading
parameters are accessible via the BarcodeParams property.

o Working with Layout and Blocks
You can also mark barcode blocks manually and specify their analysis and reading parameters. This section
provides detailed information on working with blocks.

• Working with the recognized barcode values

o BarcodeBlock Object
The Text and BarcodeText properties of this object contain the value of the barcode obtained through
recognition. The other properties of this object can be used to get the type of the barcode, its orientation, and
other parameters.

• Export

o Tuning Export Parameters
Setting up export with the objects of export parameters.

o TextExportParams Object
This object allows you to set up the saving of recognition results to TXT.

See also

Basic Usage Scenarios Implementation

Image Preprocessing

This scenario can be used to prepare images for further processing or to improve their visual quality (e.g. after scanning or prior to
recognition).

This scenario may be used as part of other scenarios in the first stage of document processing, i.e. to prepare documents for
recognition. Usage examples include creating uneditable document copies for archiving, getting editable versions of documents, and
extracting meaningful data from documents.

In this scenario, image files are subjected to additional processing, such as:

• Auto�detection of page orientation
Is very important for bulk input of images, when the direction in which document pages are scanned is unknown and can
be different.

 49

ABBYY FineReader Engine 10 Guided Tour

• Automated image de�skewing
It is applied to scanned documents requiring the compensation for image skew. ABBYY FineReader Engine provides several
methods for de�skewing images: with pairs of black squares, lines or lines of text.

• Image despeckling
When scanning poor to medium quality documents, you may get very noisy images with lots of dots or speckles on them.
These speckles, when they appear close to the letters or numbers, may affect the quality of OCR. The size of the speckles to
be removed may be specified by the user. Despeckling can be applied to an image as well as to any individual zone of the
image.

• Splitting facing pages of scanned books into two separate images
It is used for scanning books as broadsides – for both left and right pages. The recognition quality is higher if the page is split
into two, with each page corresponding to a single book page.

• Lines straightening
When capturing text from scanned or photographed books, the text lines may be uneven and difficult to OCR. For accurate
text recognition skew correction and straightening text lines should be performed.

• Texture filtering
Texture filtering technology helps to filter out background "noise" such as color and texture, increasing accuracy for
difficult�to�read documents such as newsprint, color documents, faxes, and copies.

• Removing motion blur and ISO noise from digital photos
The system automatically identifies the typical defects commonly found in digital images, such as glare, ISO noise.

• Clipping page margins
When need to improve the appearance of the images, you may want to clip some image areas, e.g. excess margins on digital
photos.

Once preprocessed, the images are saved in user�defined formats or forwarded to further processing.

Implementing the scenario

Below follows a detailed description of the recommended method of using of ABBYY FineReader Engine 10 in this scenario.

Step 1. Loading ABBYY FineReader Engine

To start working with ABBYY FineReader Engine, you need to create the Engine object. The Engine object is the top object in the
hierarchy of the ABBYY FineReader Engine objects and is the only externally creatable object in ABBYY FineReader Engine.

To create the Engine object, use the GetEngineObject exported function. Sample C++ and Visual Basic code for loading and
initializing ABBYY FineReader Engine:

Visual C++ (COM) code
// HANDLE to FREngine.dll

static HMODULE libraryHandle = 0;

// Global FineReader Engine object.

FREngine::IEnginePtr Engine;

void LoadFREngine()

{

 if(Engine != 0) {

 // Already loaded

 return;

 }

 // First step: load FREngine.dll

 if(libraryHandle == 0) {

 libraryHandle = LoadLibraryEx(::GetFreDllPathU(), 0,
LOAD_WITH_ALTERED_SEARCH_PATH);

 if(libraryHandle == 0) {

 throw L"Error while loading ABBYY FineReader Engine";

 }

 }

 // Second step: obtain the Engine object

 50

ABBYY FineReader Engine 10 Guided Tour

 typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine::IEngine**);

 GetEngineObjectFunc pGetEngineObject =

 (GetEngineObjectFunc)GetProcAddress(libraryHandle, "GetEngineObject"
);

 if(pGetEngineObject == 0 || pGetEngineObject(::GetFreDeveloperSN(), 0, 0,
&Engine) != S_OK) {

 UnloadFREngine();

 throw L"Error while loading ABBYY FineReader Engine";

 }

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function GetEngineObject Lib "FREngine.dll" (_

 ByVal DeveloperSN As String, _

 ByVal Reserved1 As String, _

 ByVal Reserved2 As String, _

 EngineObj As FREngine.Engine) As Long

Sub Engine_Load(ByVal DeveloperSN As String)

 ' Visual Basic may load libraries from the current path only

 ChDir "Path to the folder with FREngine.dll"

 ' this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

 Dim DeveloperSN_WideChar As String

 DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)

 If GetEngineObject(DeveloperSN_WideChar, "", "", Engine) <> 0 Then

 MsgBox "Error loading ABBYY FineReader Engine"

 End If

End Sub

Step 2. Image preprocessing

The basic scenarios of image processing work with images within the FRDocument object which represents processing document.

To load images to the document, you may do one of the following:

• When creating the FRDocument object, use the CreateFRDocumentFromImage method of the Engine object.

• Add images to the created FRDocument object from file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method).

All these methods use as a parameter PrepareImageMode object which allows you to specify different parameters of image
preprocessing. Create this object by calling the IEngine::CreatePrepareImageMode function, then change its properties as
necessary and then pass it to a function that requires it.

Also you can modify loaded images. See the Additional optimization section below for more information.

See sample C++ and Visual Basic code for preprocessing images:

Visual C++ (COM) code
// Preprocess image

// Create a PrepareImageMode object

FREngine::IPrepareImageModePtr preParams = Engine->CreatePrepareImageMode();

// Set necessary parameters, e.g. CorrectSkewMode property

preParams->CorrectSkewMode = FREngine::CSM_CorrectSkewByBlackSquaresHorizontally;

// Open image file, preprocess it with the specified parameters, and create the
FRDocument object

FREngine::IFRDocumentPtr frDocument = Engine->CreateFRDocumentFromImage(
L"C:\\MyImage.tif", preParams);

Visual Basic code
' Preprocess image

 51

ABBYY FineReader Engine 10 Guided Tour

' Create a PrepareImageMode object

Dim preParams As FREngine.PrepareImageMode

Set preParams = Engine.CreatePrepareImageMode

' Set necessary parameters, e.g. CorrectSkewMode property

params.CorrectSkewMode = CSM_CorrectSkewByBlackSquaresHorizontally

' Open image file, preprocess it with the specified parameters, and create the
FRDocument object

Dim frDocument As FREngine.FRDocument

Set frDocument = Engine.CreateFRDocumentFromImage("C:\MyImage.tif", preParams)

Step 3. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine, you need to unload the Engine object. To do this, use the
DeinitializeEngine exported function.

Sample C++ and Visual Basic code for unloading and deinitializing ABBYY FineReader Engine:

Visual C++ (COM) code
void UnloadFREngine()

{

 if(libraryHandle == 0) {

 return;

 }

 // Release Engine object

 Engine = 0;

 // Deinitialize FineReader Engine

 typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();

 DeinitializeEngineFunc pDeinitializeEngine =

 (DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine");

 if(pDeinitializeEngine == 0 || pDeinitializeEngine() != S_OK) {

 throw L"Error while unloading ABBYY FineReader Engine";

 }

 // Now it's safe to free the FREngine.dll library

 FreeLibrary(libraryHandle);

 libraryHandle = 0;

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function DeinitializeEngine Lib "FREngine.dll" () As Long

Sub Engine_Unload()

 Set Engine = Nothing

 ChDir "Path to the folder with FREngine.dll"

 DeinitializeEngine

End Sub

Additional optimization

These are the sections of the help file where you can find additional information about setting up the parameters for the various
processing stages:

• Image preprocessing

o Working with Images
Working with images in ABBYY FineReader Engine and setting up image opening and preprocessing parameters.

o ImageDocument Object
The main object which provides access to images.

o PrepareImageMode Object
The parameters of this object affect image opening and preprocessing: skew correction, image inversion,
mirroring, prepared image compression, resolution, rotation.

 52

ABBYY FineReader Engine 10 Guided Tour

o ImageModification Object
Use this object for additional processing of source images (cropping, despeckling).

o DetectOrientation Method of the FRPage Object
This method detects text orientation on the image.

o CorrectSkew Method of the ImageDocument Object
Use this method to correct skew of the already opened image.

o RemoveGarbage Method of the ImageDocument Object
This method removes garbage (excess dots that are smaller than a certain size) from the image.

o FindPageSplitPosition Method of the FRPage Object
This method detects the direction of text on the image and finds the position where it can be split.

o To straighten out distorted lines on an image, use the IFRPage::RemoveGeometricalDistortions or
IDocumentAnalyzer::RemoveGeometricalDistortions method.

o SmoothImage Method of the ImageDocument Object
Allows you to smooth the image.

o RemoveColorObjects Method of the ImageDocument Object
With this method you can remove color objects from the whole image, or only from some parts of the image:
specified region, its background, or only stamps and signatures in this region.

o SubtractColor Method of the ImageDocument Object
Removes the color with the specified hue and saturation from the image. The method is primary designed for
filtering color on images of passports and certificates.

o To preprocess digital photos, you may use the IImageDocument::RemoveCameraBlur and
IImageDocument::RemoveCameraNoise methods.

• Saving images

o WriteToFile Method of the Image Object
Use this method to save images to a file in a format of your choice.

See also

Basic Usage Scenarios Implementation

Scanning

In this scenario, ABBYY FineReader Engine is used on a "scanning computer," which scans images and saves them as files.

This scenario may be used as part of other scenarios in the preliminary stage of document processing, i.e. for obtaining electronic
versions of documents for further processing. Usage examples include scanning documents for archiving purposes, getting editable
versions of documents, and extracting meaningful data from documents.

Paper documents are scanned and the images are saved in an electronic format, producing high�quality electronic versions of your
printed documents.

Documents may go through the following processing stages:

1. Scanning
Documents may be scanned via one of the two available scanning interfaces provided by scanners (TWAIN or WIA), by using
ABBYY's own scanning interface, or without a scanning interface.

2. Image preprocessing
Once scanned, the images may be preprocessed. Preprocessing includes despeckling, correction of distorted text lines, color
inversion, removal of black margins, and correction of image orientation or resolution. Facing pages may be split into two
separate images. Processed images may be saved in various image formats such as JPEG, TIFF, BMP.

Implementing the scenario

Below follows a detailed description of the recommended method of using of ABBYY FineReader Engine 10 in this scenario. Under the
proposed implementation of the scenario, the image preparation phase is omitted. Please see Additional optimization for specific tasks
below for the tips on image preparation implementation.

 53

ABBYY FineReader Engine 10 Guided Tour

Step 1. Loading ABBYY FineReader Engine

To start working with ABBYY FineReader Engine, you need to create the Engine object. The Engine object is the top object in the
hierarchy of the ABBYY FineReader Engine objects and is the only externally creatable object in ABBYY FineReader Engine.

To create the Engine object, use the GetEngineObject exported function. Sample C++ and Visual Basic code for loading and
initializing ABBYY FineReader Engine:

Visual C++ (COM) code
// HANDLE to FREngine.dll

static HMODULE libraryHandle = 0;

// Global FineReader Engine object.

FREngine::IEnginePtr Engine;

void LoadFREngine()

{

 if(Engine != 0) {

 // Already loaded

 return;

 }

 // First step: load FREngine.dll

 if(libraryHandle == 0) {

 libraryHandle = LoadLibraryEx(::GetFreDllPathU(), 0,
LOAD_WITH_ALTERED_SEARCH_PATH);

 if(libraryHandle == 0) {

 throw L"Error while loading ABBYY FineReader Engine";

 }

 }

 // Second step: obtain the Engine object

 typedef HRESULT (STDAPICALLTYPE* GetEngineObjectFunc)(BSTR, BSTR, BSTR,
FREngine::IEngine**);

 GetEngineObjectFunc pGetEngineObject =

 (GetEngineObjectFunc)GetProcAddress(libraryHandle, "GetEngineObject"
);

 if(pGetEngineObject == 0 || pGetEngineObject(::GetFreDeveloperSN(), 0, 0,
&Engine) != S_OK) {

 UnloadFREngine();

 throw L"Error while loading ABBYY FineReader Engine";

 }

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function GetEngineObject Lib "FREngine.dll" (_

 ByVal DeveloperSN As String, _

 ByVal Reserved1 As String, _

 ByVal Reserved2 As String, _

 EngineObj As FREngine.Engine) As Long

Sub Engine_Load(ByVal DeveloperSN As String)

 ' Visual Basic may load libraries from the current path only

 ChDir "Path to the folder with FREngine.dll"

 ' this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

 Dim DeveloperSN_WideChar As String

 DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)

 If GetEngineObject(DeveloperSN_WideChar, "", "", Engine) <> 0 Then

 MsgBox "Error loading ABBYY FineReader Engine"

 End If

End Sub

Step 2. Scanning

 54

ABBYY FineReader Engine 10 Guided Tour

ABBYY FineReader Engine offers a ScanManager object for scanning. Scanning and saving to file may be implemented with the Scan
method of the ScanManager object.

See sample C++ and Visual Basic code for scanning:

Visual C++ (COM) code
// Create ScanManager object
 FREngine::IScanManagerPtr scanManager = Engine->CreateScanManager();

 // Specify the scan source
 FREngine::IStringsCollectionPtr sources = scanManager->ScanSources;
 _bstr_t scanner = sources->Item(0);

 // Create the ScanSourceSettings object
 FREngine::IScanSourceSettingsPtr scanSettings = scanManager-
>GetScanSourceSettings(scanner);

 // Set an interface type
 scanManager->ScanOptionsInterfaceType = FREngine::SOIT_None;

 // Tune the scanning options
 scanSettings->Resolution = 300;
 scanSettings->PictureMode = FREngine::SPM_Grayscale;

 // Set up the scanning options
 scanManager->PutScanSourceSettings(scanner, scanSettings);

 // The name of the folder in which scanned pages will be stored
 char scanFolder[MAX_PATH + 1];

 // Scan and save images into scanFolder folder

 FREngine::IStringsCollectionPtr scannedImages =
 scanManager->Scan(scanner, scanFolder, VARIANT_FALSE);

Visual Basic code
' Create the ScanManager object
 Dim ScanManager As FREngine.ScanManager
 Set ScanManager = Engine.CreateScanManager

 ' Specify the scan source
 Dim Scanner As String
 Scanner = ScanManager.ScanSources(0)

 ' Create the ScanSourceSettings object
 Dim ScanSettings As FREngine.ScanSourceSettings
 Set ScanSettings = ScanManager.ScanSourceSettings(Scanner)

 ' Set an interface type
 ScanManager.ScanOptionsInterfaceType = SOIT_None

 ' Tune the scanning options
 ScanSettings.Resolution = 300
 ScanSettings.PictureMode = SPM_Grayscale

 ' Set up the scanning options
 ScanManager.ScanSourceSettings(Scanner) = ScanSettings

 ' The name of the folder in which scanned pages will be stored
 Dim ScanFolder As String

 ' Scan and save images into scanFolder folder
 Dim ScannedImages As FREngine.StringsCollection
 Set ScannedImages = ScanManager.Scan(Scanner, ScanFolder, False)

Step 3. Unloading ABBYY FineReader Engine

After finishing your work with ABBYY FineReader Engine, you need to unload the Engine object. To do this, use the
DeinitializeEngine exported function.

 55

ABBYY FineReader Engine 10 Guided Tour

Sample C++ and Visual Basic code for unloading and deinitializing ABBYY FineReader Engine:

Visual C++ (COM) code
void UnloadFREngine()

{

 if(libraryHandle == 0) {

 return;

 }

 // Release Engine object

 Engine = 0;

 // Deinitialize FineReader Engine

 typedef HRESULT (STDAPICALLTYPE* DeinitializeEngineFunc)();

 DeinitializeEngineFunc pDeinitializeEngine =

 (DeinitializeEngineFunc)GetProcAddress(libraryHandle,
"DeinitializeEngine");

 if(pDeinitializeEngine == 0 || pDeinitializeEngine() != S_OK) {

 throw L"Error while unloading ABBYY FineReader Engine";

 }

 // Now it's safe to free the FREngine.dll library

 FreeLibrary(libraryHandle);

 libraryHandle = 0;

}

Visual Basic code
Public Engine As FREngine.Engine

Private Declare Function DeinitializeEngine Lib "FREngine.dll" () As Long

Sub Engine_Unload()

 Set Engine = Nothing

 ChDir "Path to the folder with FREngine.dll"

 DeinitializeEngine

End Sub

Additional optimization

These are the sections of the help file where you can find additional information about setting up the parameters for the various
processing stages:

• Scanning

o Tips for Document Scanning
Some tips on how to get good�quality scans of printed documents.

o Setting up Scanning Options
Using the ABBYY FineReader Engine scanning interfaces for scanning.

o ScanSourceSettings Object
Use this object to set up the scanning parameters.

• Image preprocessing

o Image Preprocessing
Describes a scenario of using ABBYY FineReader Engine to preprocess images or to improve their visual quality.

• Document separation

o In this scenario, you may need to separate images into documents. ABBYY FineReader Engine 10 provides no
means for automatic document separation. However, you can use ABBYY FlexiCapture Engine for the purpose.
Documents may be separated based on the number of pages in each document or by using separator pages with
barcodes. To implement barcode document separation, you can use the barcode recognition scenario.

See also

Basic Usage Scenarios Implementation

 56

ABBYY FineReader Engine 10 Guided Tour

Advanced Techniques
The main programming aspects are presented in the following sections:

• Programming Aspects

o Error Handling

o Working with Properties

o Working with Connectable Objects

o Working with COM Interfaces from a Script Language

o Using ABBYY FineReader Engine in Delphi

For tuning document processing parameters, see the following sections:

• Working with Profiles

• Tuning Analysis, Recognition, and Synthesis Parameters

• Tuning Export Parameters

For information on working with images, languages, layout, and recognized texts, see:

• Working with Images

• Working with Languages

• Working with Layout and Blocks

• Working with Text

• Working with Logical Structure of a Document

• Using Voting API

• Using Text Type Autodetection

For details on special cases, such as recognition of hieroglyphic languages, checkmarks, handprinted texts, and recognition with
training, see the following sections:

• Recognizing Checkmarks

• Recognizing Handprinted Texts

• Recognizing Hieroglyphic Languages

• Recognizing with Training

• Training User Patterns

Information on working with dictionaries can be found here:

• Working with Dictionaries

• Working with Regular Expressions

• Recognizing Words with Spaces

Finally, scanning with ABBYY FineReader Engine is described in:

• Setting up Scanning Options

 57

ABBYY FineReader Engine 10 Guided Tour

Programming Aspects

The ABBYY FineReader Engine application programming interface conforms to the COM standard and can be easily used in C/C++,
Visual Basic, .Net, Delphi, or any other development tools supporting COM components. The Engine can be adapted for use in
scripting languages like VBS, JS, Perl.

This section describes the main aspects of using ABBYY FineReader Engine in applications written in different programming languages
and provides references to articles which discuss related topics.

Loading, initialization, and deinitialization

The Engine object is a singleton, so only one object of this type may be created in a single instance of the application that uses ABBYY
FineReader Engine. Repeated attempts to create the Engine object will return the same object.

It is prohibited to initialize and deinitialize ABBYY FineReader Engine at the entry points of other DLLs, and also in constructors and
destructors of static and global objects implemented in DLLs, because they are called at the DLL entry points. This restriction is due to
the fact that the Win32 LoadLibrary and FreeLibrary functions are not re�entrant. A user should initialize and deinitialize ABBYY
FineReader Engine elsewhere, for example, in WinMain function of an EXE module.

During initialization, ABBYY FineReader Engine will reset the LC_CTYPE setting of msvcrt.dll to the operating system defaults. This fact
should be taken into account if your application depends upon the msvcrt.dll locale�dependent services.

For details see the description of the GetEngineObject function.

Note: .NET developers must make sure to specify [STAThread] (single�thread apartment model) as an attribute on the application
main function, otherwise an error may occur:

[STAThread]

public static void Main()

{

 ...

}

The "Engine deinitialization failed" exception can be thrown during the deinitialization of the Engine object if not all of the objects
which were created and used by the application have been deleted before the Engine object deinitialization. If you work with
programming languages which do not have garbage collections (for example, С++), you must either use smart pointer classes (see the
samples in C++ (COM)) or release objects that were created by creation methods when they are no longer needed. If all the objects
have been deleted, the exception may be caused by the scavenger operation. If the application is developed in Visual Basic .Net, all
objects with the Nothing value are not deleted, they are only marked for deletion. The exact moment when the garbage collector
deletes the object is not known. Therefore, you should call the following methods before the deinitialization of the Engine object so
that the garbage collector deletes the object:

GC.Collect()
GC.WaitForPendingFinalizers()

You can use the StartLogging method of the Engine object to get the list of objects that have not been deleted.

Also in this section

• Error Handling
Information about error handling.

• Working with Properties
The interfaces of ABBYY FineReader Engine objects have various properties and methods. The way the properties are
handled in different languages is discussed in this article.

• Working with Connectable Objects
Some of the objects in ABBYY FineReader Engine are so�called "connectable objects." Here you can find useful
recommendations on working with such objects.

• Working with COM Interfaces from a Scripting Language
The detailed description of how to use FineReader Engine in a scripting language.

• Using ABBYY FineReader Engine in Delphi
The description of the initialization and deinitialization procedure in Delphi.

 58

ABBYY FineReader Engine 10 Guided Tour

Error Handling

All ABBYY FineReader Engine interface methods and properties return a value of the HRESULT type. The HRESULT (for result handle)
is a way of returning success, warning, and error values. HRESULTs are really not handles to anything; they are only 32�bit values with
several fields encoded in the value. A zero result indicates success and a non�zero result indicates failure.

Note: Please do not handle exceptions that may be thrown during the work of the ABBYY FineReader Engine interface methods,
because these exceptions are handled within ABBYY FineReader Engine.

If a method or property call was not successful, this method or property returns an HRESULT code that indicates the failure. Besides, it
initializes the IErrorInfo object with a more detailed description of the error. Visual Basic users may access the HRESULT code
through the Number property of the Err object. Other attributes of the Err object are initialized with the information from the
IErrorInfo. Please refer to the documentation on COM for detailed description of error handling. The most general tips for it are as
follows:

• Visual Basic. Error handling here is performed with the use of the On Error statement. If you do not use the On Error
Resume Next statement anywhere in your code, any run�time error that occurs can cause an error message from the
IErrorInfo object to be displayed and code execution stopped.

• Raw C++. ABBYY FineReader Engine interface methods and properties cannot throw exceptions but return HRESULTs. The
most important means for handling these return codes are the SUCCEEDED and FAILED macros. They test the HRESULT
value and deduce from it what was the result of the operation — success or failure. To get a pointer to the IErrorInfo
object's interface, use the GetErrorInfo API function.

• C++ with the Native COM support. The Native COM support technology translates the HRESULT codes of interface
functions into exceptions of a special type (_com_error) and automatically uses information from the IErrorInfo object.
Thus, a sequence of ABBYY FineReader Engine methods may be enclosed by the statements:

try {

 ...

 } catch (_com_error e) {

 ...

 }

If any method or property that was called from inside the try�catch block returns an error code, this leads to throwing an exception,
the code after the erroneous statement is not executed, and control is transferred to the code after the catch statement. Generally,
error handling with the Native COM support may be performed in a way standard for any C++ code using functions that may throw
exceptions.

See also

Standard Return Codes

Working with Properties

The interfaces of ABBYY FineReader Engine objects have various properties and methods. As Visual Basic users are familiar with the
notion of property, we will discuss the way the properties are handled in C++.

For a C++ user, a property is a couple of methods (get and put for read�write properties) or a single get method (for read�only
properties). However, the "Native COM support" featured by Microsoft Visual C++ makes the way the properties are handled more like
the one used in Visual Basic. This is the way implied by the sense on the noun "property."

The ABBYY FineReader Engine properties may be of the following types:

Visual Basic type C++ type
Boolean (with two values, True and False) VARIANT_BOOL (with two values VARIANT_TRUE and VARIANT_FALSE)

Long long

Double double

String BSTR, a pointer to Unicode string. Zero value specifies an empty srting.

Object IUnknown�derived interface

 Enumeration

See the details of working with different types of properties below:

 59

ABBYY FineReader Engine 10 Guided Tour

Working with simple properties

We will use the Boolean property to describe how simple properties are used. This property is described in the type library as follows:

interface IMyObject : IUnknown {

...

[propget]

HRESULT MyProperty([out, retval]VARIANT_BOOL* pVal);

 [propput]

HRESULT MyProperty([in]VARIANT_BOOL newVal);

...

};

A Visual Basic user handles this property as follows:

If MyObject.MyProperty <> True Then

 MyObject.MyProperty = True

End If

A C++ user, on the other hand, uses two methods to work with this property. These methods have get_ and put_ prefixes. The
respective C++ code should look as follows:

IMyObject* pMyObject;

...

VARIANT_BOOL res;

pMyObject->get_MyProperty(&res);

if(res != VARIANT_TRUE)

 pMyObject->put_MyProperty(VARIANT_TRUE);

However, the Native COM support makes the procedure simpler, and the respective code should look as follows:

IMyObjectPtr pMyObject;

...

if(pMyObject->MyProperty != VARIANT_TRUE)

 pMyObject->MyProperty = VARIANT_TRUE

If the type library only defines the "get" method for a property, this property is called read�only. Its value cannot be changed by the
user, it may only be accessed for "reading."

Working with string properties

Working with string properties is very similar to working with simple properties, but has its own specifics. A C++ user working with
string properties must free the strings that are passed to set�methods, and also those that are returned by get�methods. However, this is
done automatically in Visual Basic and in C++ with the Native COM support. Suppose MyObject also supports a string property called
Name. This property is described in the type library as follows:

interface IMyObject : IUnknown {

...

[propget]

HRESULT Name([out, retval]BSTR* pVal);

 [propput]

HRESULT Name([in]BSTR newVal);

...

};

A C++ user works with this property like this:

IMyObject* pMyObject;

...

// "get" method

BSTR res;

pMyObject->get_Name(&res);

...

// Now free the string allocated in ABBYY FineReader Engine

::SysFreeString(res);

// "put" method

BSTR str = ::SysAllocString(L"New Name");

 60

ABBYY FineReader Engine 10 Guided Tour

pMyObject->put_Name(str);

// Now free the string that we allocated

::SysFreeString(str);

For Visual Basic this may be rewritten as follows:

Dim obj As MyObject

Dim res As String

res = obj.Name

Dim str As String

str = "New Name"

obj.Name = str

Working with object properties

A C++ user will say that the parameters of "get" methods of "Object" properties are pointers to an object's interface pointer. As the
interfaces of the objects are derived from IUnknown, they may be passed as IUnknown pointers to the properties or methods, which
use objects of several types as input or output parameters (you may, however, get the interface you need by calling the QueryInterface
method).

There are two different types of "put" methods for object properties — clear put, described by the propput keyword in the type library
(the object is copied in this case); and put by reference, described by the propputref keyword in the type library (only a pointer to an
existing object's interface is stored in the property in this case). A property may support only one of these put methods; most of ABBYY
FineReader Engine object properties support clear put, while the IRecognizerParams::TextLanguage property supports put by
reference. In Visual Basic, put by reference is performed using the Set statement, while clear put is performed without this keyword.

Suppose again the MyObject object supports MyObjectProperty property that refers to an object of MyChildObject type.

interface IMyObject : IUnknown {

...

[propget]

HRESULT MyObjectProperty([out, retval]IMyChildObject** pVal);

 [propputref]

HRESULT MyObjectProperty([in]IMyChildObject* newVal);

...

};

The same property is accessed as follows in Visual Basic:

Dim ChildObj As MyChildObject

Set ChildObj=MyObject.MyObjectProperty

' Do something with the object

...

' Clear put (If it were put by reference, we would write

' Set MyObject.MyObjectProperty=ChildObj)

MyObject.MyObjectProperty=ChildObj

A C++ user will writes this code as follows:

IMyObject* pMyObject;

...

IMyChildObject* pChildObj=0;

// get_ method may return 0 in certain cases

pMyObject->get_MyObjectProperty(&pChildObj);

// Do something with the object

...

pMyObject->put_MyObjectProperty(pChildObj);

...

pChildObj->Release();

Note that in C++ you should call the Release method for an object got via a property. The Native COM support calls AddRef and
Release methods automatically using auto pointers.

Important! If an object property refers to a child object of the object that exposes this property, a pointer to the child object's
interface is valid until its parent object exists. An attempt to access a child object after its parent object is destroyed may result in an
error.

 61

ABBYY FineReader Engine 10 Guided Tour

Working with read�only object properties in raw C++

Certain ABBYY FineReader Engine objects (for example, ILayout::Blocks) have read�only object properties. Such properties cannot
be changed directly in raw C++. If you want to change such a property, you need to pass a reference to the property object to a new
variable, and then use this variable to change it. Below you can see a C++ sample for the ILayout::Blocks property which is
represented by a read�only collection:

ILayout* pLayout = 0;

ILayoutBlocks* pLayoutBlocks = 0;

long blockIndex;

...

// The pLayoutBlocks variable receives a reference to the blocks collection from Layout

pLayout->get_Blocks(&pLayoutBlocks);

// Remove an element from the blocks collection

pLayoutBlocks->Remove(blockIndex);

Working with Connectable Objects

Some of the objects in ABBYY FineReader Engine are so�called "connectable objects". This means that they implement the
IConnectionPointContainer interface. Connectable objects support communication between ABBYY FineReader Engine and its
clients. Connectable objects in ABBYY FineReader Engine are:

• DocumentAnalyzer

• Exporter

• ImageDocument

• ScanManager

• FRDocument

• FRPages

• FRPage

Each of the ABBYY FineReader Engine connectable objects provides connection points of two types — one that uses a dispatch
interface and one that uses the interface derived from IUnknown. The dispatch interface is designed for automatic use in Visual Basic
and similar environments, while the vtbl�based interface is suitable for use in C++.

An ABBYY FineReader Engine client application that wants to receive notifications of certain events in ABBYY FineReader Engine
should implement interfaces of a specific type and "advise" the objects implementing these interfaces to the corresponding
connectable objects.

In Visual Basic, this is done by simply declaring the object WithEvents and implementing the corresponding methods of the callback
interface. The procedure for Visual Basic is described in detail in the "ABBYY FineReader Engine API Reference" section for each
connectable object.

Here is how you can connect an object on the client side to a notification source. We will use DocumentAnalyzer as an example.

class CDocumentAnalyzerEventsListener : public IDocumentAnalyzerEvents {

public:

...

 // Provide IUnknown methods simple implementation. They may also be

 // implemented by inheritance from some standard class with COM support

 ULONG AddRef();

 ULONG Release();

 HRESULT QueryInterface(REFIID iid, void** ppvObject)

 {

 if(ppvObject == 0)

 return E_INVALIDARG;

 if(riid == __uuidof(IDocumentAnalyzerEvents)) {

 ppvObject = static_cast<IDocumentAnalyzerEvents>(this);

 } else if(riid == IID_IUnknown) {

 ppvObject = static_cast<IUnknown>(this);

 62

ABBYY FineReader Engine 10 Guided Tour

 } else {

 *ppvObject = 0;

 return E_NOINTERFACE;

 }

 AddRef();

 return S_OK;

 }

 // Provide IDocumentAnalyzerEvents methods implementation

 HRESULT OnRegionProcessed(long, IRegion*, VARIANT_BOOL*);

 HRESULT OnProgress(long, VARIANT_BOOL*);

};

Thus we have the CDocumentAnalyzerEventListener class which may be used to receive notifications from the
DocumentAnalyzer object. The following section of code advises this object to the notification source (error handling is omitted):

// Suppose that we have already created the DocumentAnalyzer object

IDocumentAnalyzer* da;

IConnectionPointContainer* pContainer=0;

da->QueryInterface(IID_IConnectionPointContainer, (void**)&pContainer);

IConnectionPoint* pPoint=0;

pContainer->FindConnectionPoint(__uuidof(IDocumentAnalyzerEvents),

 &pPoint);

CDocumentAnalyzerEventsListener listener;

IUnknown* listenerUnknown=0;

listener.QueryInterface(IID_IUnknown, (void**)&listenerUnknown);

// A variable to store the cookie returned from the IConnectionPoint::Advise method

DWORD cookie;

pPoint->Advise(listenerUnknown, &cookie);

...

// After notification, the listener is no longer needed and should be unadvised

pPoint->Unadvise(cookie);

Refer to the documentation on COM for a more detailed description of connectable objects.

See also

See sample: EventsHandling

Working with COM Interfaces from a Scripting Language

ABBYY FineReader Engine 10 supports dynamic binding in COM interfaces:

• Almost all ABBYY FineReader Engine 10 interfaces are derived from IDispatch (the exceptions are some of the callback
interfaces implemented on the client side).

• Scripting languages (for example, VBScript and JScript) support only dynamic binding. Therefore, due to inheriting such
interfaces from IDispatch the use of ABBYY FineReader Engine API from these languages requires minimal additional effort:
only the Engine object cannot be created by using the COM method CoCreateObject. So you will have to create an
additional object for creating the Engine object. See the method for creating this additional object in the FRECOMWrapper
sample.

• The other objects created by the methods of the Engine object named "Create..." or "Load..." can now be created and used
directly from the scripting language.

The FRECOMWrapper sample code produces FREngineWrap.dll that can be used for getting the ABBYY FineReader Engine object
from a scripting language such as VBScript or JavaScript. The FREngineWrap.dll library has the FRELoader class with the Load
method which loads the ABBYY FineReader Engine library and with the EngineObject property containing a pointer to the Engine
object.

Note: In order to create the FREngineWrap.dll library, compile the FRECOMWrapper sample located in \Samples\Visual C++
(COM)\FRECOMWrapper.

 63

ABBYY FineReader Engine 10 Guided Tour

For example, you can create the Engine object by using the JavaScript ActiveXObject function.

// create the FRELoader object

FRELoader = new ActiveXObject("FREngineWrap.FRELoader");

...

// load the library

FRELoader.Load();

...

// get the Engine object

var Engine = FRELoader.EngineObject;

In VBScript, use the CreateObject method:

' create FRELoader object

Set FRELoader = CreateObject("FREngineWrap.FRELoader")

...

' load the library

FRELoader.Load

...

' get the Engine object

Set Engine = FRELoader.EngineObject

In Perl, use the CreateObject method:

create the FRELoader object

$FRELoader = $WScript->CreateObject('FREngineWrap.FRELoader');

...

load the library

$FRELoader->Load();

...

get the Engine object

my $Engine = $FRELoader->{EngineObject};

An example illustrating the use of the FREngineWrap.dll library can be found in \Samples\Visual C++
(COM)\FRECOMWrapper\TestScripts.

See also

Description of ABBYY FineReader Engine Samples

Using ABBYY FineReader Engine in Delphi

This section deals with certain peculiarities of using ABBYY FineReader Engine 10 in Delphi.

Creating the Object Pascal Wrapper Unit

In order to use ABBYY FineReader Engine 10 in Delphi, it is necessary to create the Object Pascal wrapper unit for the type library (the
FREngine_TLB.pas file). Do the following:

1. Run command prompt (cmd.exe) and go to the folder where the ABBYY FineReader Engine 10 type library (FREngine.tlb) is
located.

2. Run the tlibimp utility with the following parameters:
Delphi 5.0:
tlibimp �O� �E� �C� �P+ �T+ FREngine.tlb

Delphi 6.0 and 7.0:
tlibimp �O� �Cd� �C� �P+ �Pt+ FREngine.tlb

Delphi 2010:
tlibimp �O� �Cd� �C� �P+ �Pt+ FREngine.tlb

This will generate the FREngine_TLB.pas file.

3. Add FREngine_TLB.pas to your project.

 64

ABBYY FineReader Engine 10 Guided Tour

You need to re�generate FREngine_TLB.pas each time you receive an updated version of ABBYY FineReader Engine 10.

Deinitialization of the Engine Object

If not all the objects which were created and used by the application have been deleted before the deinitialization of the Engine
object, the "Engine deinitialization failed" exception is thrown. If all the objects have been deleted, the exception may be caused by the
scavenger operation. In Delphi all objects with the nil value are deleted only after exiting the procedure in which the objects were
declared. Therefore, the entire ABBYY FineReader Engine code must be inserted into a separate procedure, and this procedure must be
called before the deinitialization of the Engine object.

Note: You can use the StartLogging method of the Engine object to get the list of objects that have not been deleted.

Working with Profiles

ABBYY FineReader Engine supports numerous parameters which allow the user to fine�tune the Engine. The user can specify
parameters for image preprocessing, analysis, recognition, synthesis, and export to receive the optimal speed and quality of processing.
For example, if the application will export recognition results to TXT, then page layout is not relevant and many layout�related
properties can be disabled.

When new objects are created, either directly with the help of the creation methods of the Engine object or indirectly, the properties
of newly created objects are usually set to reasonable defaults (for more information about the default value of a property, see the
description of the corresponding property). But default values are not always optimal for all usage scenarios. You may need to change
these properties in some cases. This can be done either via the API or with the help of a profile. A profile contains a list of new default
values for object properties.

Predefined profiles

ABBYY FineReader Engine provides a set of predefined profiles which are designed for the main usage scenarios. The settings provided
in these profiles are most suitable in the corresponding situations. Besides, most of the profiles come in two forms: with the settings
optimized for the best quality of the resulting document or with the settings optimized for the highest speed of processing. Below is a
list of available predefined profiles:

• DocumentConversion_Accuracy — for converting documents into editable formats, optimized for accuracy

• DocumentConversion_Speed — for converting documents into editable formats, optimized for speed

• DocumentArchiving_Accuracy — for creating an electronic archive, optimized for accuracy

• DocumentArchiving_Speed — for creating an electronic archive, optimized for speed

• BookArchiving_Accuracy — for creating an electronic library, optimized for accuracy

• BookArchiving_Speed — for creating an electronic library, optimized for speed

• TextExtraction_Accuracy — for extracting text from documents, optimized for accuracy

• TextExtraction_Speed — for extracting text from documents, optimized for speed

• FieldLevelRecognition — for recognizing short text fragments

• BarcodeRecognition — for extracting barcodes

• Version9Compatibility — provided for compatibility, sets the processing parameters to the default values of ABBYY
FineReader Engine 9.0.

Note: You can view the list of settings provided by these profiles in the descriptions of the corresponding scenarios.

Important! The profiles may require additional modules available in the license. See details in the descriptions of corresponding
scenarios.

The settings provided with these profiles can be loaded using the LoadPredefinedProfile method of the Engine object. After the
profile is loaded, newly created objects will have the new default values specified in the profile.

User profiles

You can also create your own profile file. The syntax of a profile file is similar to that of *.ini files. The sections contain the names of the
objects whose properties are to be re�specified, and the keys contain the properties with their new values. The special section called

 65

ABBYY FineReader Engine 10 Guided Tour

UserData can contain any user�defined keys. The values of Boolean properties are represented by the strings "true" or "false," while
enumeration properties are represented by corresponding constants, for example:

[PrepareImageMode]

DiscardColorImage = true

[PDFExportParams]

TextExportMode = PEM_ImageOnText

[RecognizerParams]

TextLanguage = English,Russian

The LoadProfile method of the Engine object allows you to load a user profile file. After this file is loaded, newly created objects will
have the new default values specified in the file. Loading parameters from a profile is similar to specifying the corresponding properties
in the program code, but it simplifies the logic and data in the application.

A profile file can be used to re�specify all the properties of the following objects:

• PrepareImageMode • RTFExportParams

• ImageProcessingParams • HTMLExportParams

• PageProcessingParams • XLExportParams

• PageAnalysisParams • TextExportParams

• TableAnalysisParams • PPTExportParams

• BarcodeParams • XMLExportParams

• ObjectsExtractionParams • PDFExportParams

• PDFExportParamsOld, except the
EncryptionInfo property

• OrientationDetectionParams

• RecognizerParams, except the PossibleTextTypes
property • PDFAExportParamsOld

• SynthesisParamsForPage • PDFMRCParams

• SynthesisParamsForDocument

• DocumentStructureDetectionParams

• FontFormattingDetectionParams

If an empty string is passed to IEngine::LoadProfile, the standard default values will be used.

The correctness of the new values of the properties and their conformity to the license are checked when a corresponding object is
created.

See also

Tuning Analysis, Recognition, and Synthesis Parameters
Tuning Export Parameters

Tuning Analysis, Recognition, and Synthesis Parameters

Document processing in ABBYY FineReader Engine consists of several steps: analysis, recognition, synthesis, and export. This section
concerns with the parameters of analysis, recognition, and synthesis. For details about export parameters, see Tuning Export
Parameters.

During analysis ABBYY FineReader Engine finds certain areas on the document pages. These areas are called "blocks." Each block has
its type. Then the parts of the image that lie inside the blocks are recognized in the way defined by the block type. Finally, the text and
background colors, fonts and other formatting elements are detected (this process is called "synthesis").

Before processing, you can set the parameters of analysis, recognition, and synthesis with the help of the parameters objects. Pointers
to these objects can be passed to the processing methods as input parameters, and thus affect the results of processing. The following
ABBYY FineReader Engine objects provide analysis, recognition, and synthesis methods: FRDocument, FRPage, Engine,
DocumentAnalyzer.

 66

ABBYY FineReader Engine 10 Guided Tour

The processes of analysis, recognition, and synthesis can also be tuned using profiles. See Working with Profiles for details.

Parameters of analysis and recognition

To set the parameters of analysis and recognition, you need to tune the properties of the PageProcessingParams object. The
PageProcessingParams object is the parent for a group of ABBYY FineReader Engine objects which set up the page processing
parameters. For analysis and recognition, the following child objects of the PageProcessingParams object are used:

• PageAnalysisParams — affects the page layout analysis

• RecognizerParams — contains the general page recognition parameters

• BarcodeParams — contains a set of properties specific to barcode recognition

• ObjectsExtractionParams — contains the parameters used for detecting additional objects (e.g. garbage, texture, small
text areas of low quality, etc.) on an image before recognition

• OrientationDetectionParams — affects the page orientation detection

Parameters of synthesis

The process of synthesis may be divided into two stages: page synthesis and document synthesis. During page synthesis, only hyperlinks
and text and background colors are detected. Font styles and formatting is detected during document synthesis. A set of Engine API
objects become meaningful only after document synthesis — these are so�called document synthesis objects, which provide access to
the logical structure of the document and formatting attributes, including headers, footers, page numbers, fonts, styles, and more.

The parameters of synthesis can be set with the help of the following objects:

• SynthesisParamsForPage. This object is used for setting up the parameters of page synthesis.

• SynthesisParamsForDocument. This object is used for setting up the parameters of document synthesis.

Tuning document processing

A step�by�step procedure that uses the parameter objects mentioned above should look like this:

1. Create a PageProcessingParams object with the help of the CreatePageProcessingParams method of the Engine
object.

2. Set up the necessary properties of the sub�objects of the PageProcessingParams object. You do not need to set up all the
properties of all the sub�objects, as on creation they are initialized with reasonable defaults. You only have to tune up those
of the properties that you want to have values other than default ones.
When you are setting up the parameters to be used by the layout analysis functions, do not forget to set the correct values of
the properties of the sub�objects of the PageProcessingParams that affect recognition. This is recommended, because all
these parameters are copied into the blocks that are created during the layout analysis and are then used for recognition,
and also because analysis of certain parts of the image may involve recognition.

3. Create SynthesisParamsForPage and/or SynthesisParamsForDocument objects.

4. Set up the necessary properties of these objects. You do not need to set up all the properties of all the objects and sub�
objects, as on creation they are initialized with reasonable defaults. You only have to tune up those of the properties that you
want to have values other than the default ones.

5. You can pass these parameters to one of the processing methods of the FRDocument, FRPage, Engine, and
DocumentAnalyzer objects.
To recognize a document, we suggest that the processing methods of the FRDocument object be used. This object provides
a whole array of methods for document analysis, recognition, and synthesis. The most convenient method allowing
document analysis, recognition, and synthesis using just one method is the Process method. It also uses simultaneous
processing features of multiprocessor and multicore systems in the most efficient manner. However, you can also carry out
consecutive analysis, recognition, and synthesis using Analyze, Recognize (or AnalyzeAndRecognize), and Synthesize
methods.

Sample code for setting the parameters of analysis, recognition, and synthesis.

Visual C++ (COM) code

FREngine::IEnginePtr Engine;

FREngine::IFRDocumentPtr frDocument;

// Create a PageProcessingParams object

 67

ABBYY FineReader Engine 10 Guided Tour

FREngine::IPageProcessingParamsPtr processingParams = Engine-
>CreatePageProcessingParams();

// Set necessary parameters (do not forget to set the right recognition language)

processingParams->RecognizerParams->SetPredefinedTextLanguage(L"Russian,English");

processingParams->DetectOrientation = VARIANT_TRUE;

// Create a SynthesisParamsForDocument object

FREngine::ISynthesisParamsForDocumentPtr synthesisParams = Engine-
>CreateSynthesisParamsForDocument();

// Set necessary parameters

synthesisParams->SaveRecognitionInfo = VARIANT_FALSE;

// Recognize document with the specified parameters

frDocument->Process(processingParams, 0, synthesisParams);

Visual Basic code

Dim Engine As FREngine.Engine

Dim frDocument As FREngine.frDocument

' Create a PageProcessingParams object

Dim processingParams As FREngine.PageProcessingParams

Set processingParams = Engine.CreatePageProcessingParams

' Set necessary parameters (do not forget to set the right recognition language)

processingParams.RecognizerParams.SetPredefinedTextLanguage("Russian,English")

processingParams.DetectOrientation = True

' Create a SynthesisParamsForDocument object

Dim synthesisParams As FREngine.SynthesisParamsForDocument

Set synthesisParams = Engine.CreateSynthesisParamsForDocument

' Set necessary parameters

synthesisParams.SaveRecognitionInfo = False

' Recognize document with the specified parameters

frDocument.Process processingParams, Nothing, synthesisParams

See also

Working with Profiles
Tuning Export Parameters

Tuning Export Parameters

During export, recognized documents are saved in files in suitable formats. ABBYY FineReader Engine has a group of objects which
provide tools for tuning different export parameters. Pointers to these objects can be passed to the export methods as input
parameters, and thus affect the results of export. The following ABBYY FineReader Engine objects provide export methods:
FRDocument, FRPage, Engine, Exporter.

For each supported external format, there is a corresponding export parameter object. These are:

• RTFExportParams for RTF, DOC, and DOCX formats

• TextExportParams for TXT and CSV formats

• XLExportParams for XLS and XLSX formats

• HTMLExportParams for HTML format

• PDFExportParams for PDF and PDF/A format

• XMLExportParams for XML format

• PPTExportParams for PPTX format

Export processes can also be tuned using profiles. See Working with Profiles for details.

The export procedure

A step�by�step procedure that uses objects of this group should look like this:

 68

ABBYY FineReader Engine 10 Guided Tour

1. Create an export parameter object that corresponds to the external format in which you are going to save your text. Use the
corresponding creation method of the Engine object.

2. Set up the necessary properties of the object you created. You do not need to set up all the properties of the export
parameter object, as on creation they are initialized with reasonable defaults. You only have to tune up those of the
properties that you want to have values other than default ones.

3. Pass it to one of the export methods of the FRDocument, FRPage, Engine, Exporter objects.

Sample code that uses the RTFExportParams object in C++ and Visual Basic:

Visual C++ (COM) code

FREngine::IEnginePtr Engine;

FREngine::IFRDocumentPtr frDocument;

// Create export parameter object

FREngine::IRTFExportParamsPtr params = Engine->CreateRTFExportParams();

// Tune export parameters

params->KeepLines = VARIANT_TRUE;

// Now export text into a file

frDocument->Export(L"C:\\myFile.rtf", FREngine::FEF_RTF, params);

Visual Basic code

Dim Engine As FREngine.Engine

Dim FRDocument As FREngine.FRDocument

' Create export parameter object

Dim Params As FREngine.RTFExportParams

Set Params = Engine.CreateRTFExportParams

' Tune export parameters

Params.KeepLines = True

' Now export text into a file

FRDocument.Export "C:\myFile.rtf", FEF_RTF, Params

Export to PDF and PDF/A formats

ABBYY FineReader Engine allows you to tune export to PDF and PDF/A formats in an even more convenient way. It provides the
PDFExportParams object, which allows you to tune export with only a few parameters. You do not need to set all the parameters of
the obsolete PDFExportParamsOld or PDFAExportParamsOld objects, but simply set the parameters of the PDFExportParams
object for your task. For example, using only one IPDFExportParams::Scenario property you can optimize your PDF for quality and
size.

The procedure which uses the PDFExportParams object is as follows:

1. Create a PDFExportParams object using the CreatePDFExportParams method of the Engine object.

2. Set the necessary parameters of the PDFExportParams object:

o the scenario of export, which optimizes export for some parameters: quality, size of the file, or/and speed of
export (the Scenario property)

o the format of export: PDF, PDF/A�1a, or PDF/A�1b (the PDFAComplianceMode property)

o the mode of recognized text export: text and pictures only, text over the page image, text under the page image,
page image only (the TextExportMode property)

o set other parameters, if necessary

3. Pass the object of export parameters to one of the export methods of the FRDocument, FRPage, Engine, Exporter
objects.

Sample code in C++ and Visual Basic:

Visual C++ (COM) code

FREngine::IEnginePtr Engine;
 FREngine::IFRDocumentPtr frDocument;

 // Create a PDFExportParams object
 FREngine::IPDFExportParamsPtr params = Engine->CreatePDFExportParams();
 // Set necessary parameters

 69

ABBYY FineReader Engine 10 Guided Tour

 params->Scenario = FREngine::PES_MaxSpeed;
 params->TextExportMode = FREngine::PEM_ImageOnText;

 // Use the parameters during export
 frDocument->Export(L"C:\\MyText.pdf", FREngine::FEF_PDF, params);

Visual Basic code

Dim Engine As FREngine.Engine
 Dim FRDocument As FREngine.FRDocument

 ' Create a PDFExportParams object
 Dim params As FREngine.PDFExportParams
 Set params = Engine.CreatePDFExportParams
 ' Set necessary parameters
 params.Scenario = PES_MaxSpeed
 params.TextExportMode = PEM_ImageOnText

 ' Use the parameters during export
 frDocument.Export "C:\MyText.pdf", FEF_PDF, params

See also

Export Formats
Working with Profiles
Tuning Analysis, Recognition, and Synthesis Parameters

Working with Images

The basic scenarios of image processing work with images within the FRDocument object, which represents the document being
processed.

Image opening

To load images into the document, do one of the following:

• When creating the FRDocument object, use the CreateFRDocumentFromImage method of the Engine object.

• Add images to the created FRDocument object from a file (use the AddImageFile, AddImageFileWithPassword, or
AddImageFileWithPasswordCallback method).

All these methods use the PrepareImageMode object as a parameter, which allows you to specify different parameters of image
preprocessing. Create this object by calling the IEngine::CreatePrepareImageMode function, then change its properties as
necessary, and then pass it to a function that requires it.

ImageDocument structure

Pages of the document provide access to the images via the IFRPage::ImageDocument property. Each open image in ABBYY
FineReader Engine, each image in the so�called "internal format," is represented by the ImageDocument object, which includes three
image planes. One image plane corresponds to one Image object:

• Black�and�white plane. It is the black�and�white copy of the source image. The copy is deskewed or non�deskewed,
depending on the internal file preparation mode (see the description of the IPrepareImageMode::CorrectSkewMode
property).

• Color plane. This is the color or gray copy of the source image. The copy is deskewed or non�deskewed, depending on the
internal file preparation mode (see the description of the IPrepareImageMode::CorrectSkewMode object). If the source
image was black�and�white, this page is the same as the "black�and�white" plane.

• Preview. A small color image used for displaying a preview image in the user interface. It may be or may not be available in
the file in the internal format. The availability of this preview image depends on the internal file preparation mode (see the
description of the IPrepareImageMode::CreatePreview property).

Each image plane of the above�mentioned set is characterized by its own size and resolution. The size and resolution of black�and�
white and color images are the same. Since image documents may consist of deskewed images, the ImageDocument object has a set
of coordinate conversion functions. Use the IImageDocument::ConvertCoordinates function to convert pixel coordinates from
one image plane to another. The coordinates of pixels on the black�and�white image plane and the color image plane are the same.
Remember that the recognition functions use the page received after image preparation (therefore, the page may be deskewed). So, it
is this page size and resolution that should be used when you create your Layout objects, otherwise the ABBYY FineReader Engine
export functions may not work correctly.

 70

ABBYY FineReader Engine 10 Guided Tour

You can add an already created ImageDocument object to a document using the AddImage method of the FRDocument object.

Image modification

ABBYY FineReader Engine provides functionality for image editing (inversion, stretch, etc.) via the ImageModification object. To
perform modification, do the following:

1. Create an ImageModification object with the help of the CreateImageModification method of the Engine object.

2. Specify the necessary parameters.

3. Call the IImageDocument::Modify method that takes the ImageModification object as an input parameter. The actual
change takes place only when you call this method.

4. Save the changes using the IImageDocument::SaveModified method.
Important! Modifications to the image are not saved until the IImageDocument::SaveModified method is called. If

the ImageDocument object is released before a call to this method, the modifications are not saved.

Image saving

You can save the current image plane into an image file in a specified format using the WriteToFile method of the Image object.

Note that though the ImageDocument object provides a set of saving methods (SaveTo, SaveToFile, SaveToMemory), these
methods cannot be used for saving an image in an external format. These methods save the contents of the ImageDocument object
in the ABBYY FineReader Engine internal format, which cannot be viewed in any external program.

ABBYY FineReader Engine also provides functionality for saving several images into a single image file. To save multi�page image file,
use the MultipageImageWriter object:

1. Create a MultipageImageWriter object using the CreateMultipageImageWriter method of the Engine object.

2. Add images to the end of the multi�page image file using the AddPage method of the MultipageImageWriter object. Each
image is added as a single page.

3. Before the newly created image file can be used, all the references to the MultipageImageWriter object must be released.

See also

Supported Image Formats
Tips for Document Scanning
Tips for Taking Photos

Working with Languages

One of the main recognition parameters is the language which is used during recognition. It is important to set the right language
before analysis and recognition. Recognition language can be easily specified with the help of the
IRecognizerParams::SetPredefinedTextLanguage method. This method effects the IRecognizerParams::TextLanguage
property. By default, this parameter is initialized with the English recognition language.

Below you can find useful information about the languages supported in ABBYY FineReader Engine by default and objects that provide
advanced functionality for working with recognition languages.

Predefined languages

ABBYY FineReader Engine provides a set of languages supported by default. These languages are called "predefined languages." The
collection of available predefined languages represented by the PredefinedLanguages object is accessible via the
PredefinedLanguages property of the Engine object. It is a collection of PredefinedLanguage objects.

The predefined languages are identified by their internal names. You may directly specify a recognition language by the name of the
corresponding predefined language via the IRecognizerParams::SetPredefinedTextLanguage method. For the list of the internal
names of the predefined languages see Predefined Languages in ABBYY FineReader Engine.

Recognition language for a text

The language which is used during recognition is represented by the TextLanguage object. The RecognizerParams object that
specifies the recognition parameters stores a reference to the TextLanguage object. The recognition functions take this object either
as a sub�object of the PageProcessingParams object passed to them as an input parameter, or from a block in a Layout object.

The TextLanguage object exposes the following main properties:

 71

ABBYY FineReader Engine 10 Guided Tour

• Internal name. We recommend selecting a unique name for the internal language; it is already unique for the languages
supplied in the ABBYY FineReader Engine distribution pack. Be sure to make the names of new languages unique.

• Letter sets. The TextLanguage object contains the following letter sets: punctuation marks that may be encountered
between words, prohibited characters, and additional punctuation marks that go immediately before and after words.

• Prohibiting dictionaries. You can create a collection of prohibiting dictionaries using the ProhibitingDictionaries
property of the TextLanguage object. The words from these dictionaries cannot be used as variants of a recognized word.
But if no variants are left and using a prohibited word is the only option, words from these dictionaries may still appear in
the recognized text. See Working with Dictionaries.

Recognition language for characters

During the recognition, the text is separated into words, with one or several recognition languages corresponding to each word. One
recognition language is assigned to each character in a word. This recognition language is represented by the BaseLanguage object
and is accessible via the ITextLanguage::BaseLanguages property.

The BaseLanguage object has the following properties:

• Internal name. We recommend selecting a unique name for the internal language; it is already unique for the languages
supplied with the ABBYY FineReader Engine distribution pack. Be sure to make the names of new languages unique.
If one base recognition language corresponds to one recognized word, the ICharParams::LanguageName property for
each character in this word is set to the internal name of the base language after recognition. If several base recognition
languages correspond to one word (e.g. for bilingual compound words), the ICharParams::LanguageName property for
the characters in this word is empty. The ICharParams::LanguageId property contains the identifier of the base language
no matter what the recognized word.

• Letter sets. A letter set comprises letters that form the alphabet of the language, letters that form its extended alphabet
(used in loan words), punctuation marks that go immediately before and after words, characters that are allowed inside
words but are ignored by the internal spelling check system, and symbols allowed in subscript and in superscript.

• Dictionary. A recognition language for a word may have a dictionary attached to it. See Working with Dictionaries.

Creating a compound recognition language

ABBYY FineReader Engine provides an easy way to create compound recognition languages made up of several predefined recognition
languages. This is done via the LanguageDatabase object. For example, you may create a recognition language that includes both
English and German words:

1. Create a LanguageDatabase object by calling the IEngine::CreateLanguageDatabase method.

2. Call the ILanguageDatabase::CreateTextLanguage or ILanguageDatabase::CreateCompoundTextLanguage
method with the parameters "English" and "German."

3. Use the received TextLanguage object for text recognition.

The LanguageDatabase object also allows you to import custom user�defined languages created in ABBYY FineReader. ABBYY
FineReader's Graphical User Interface provides a means for creating custom recognition languages with letter sets, dictionaries, and
other parameters specified by the user. See the ABBYY FineReader User's Guide for details. The recognition languages created in this
way are stored in a set of files and may be accessed by using the LanguageDatabase object. If you wish to use the languages created in
ABBYY FineReader, do the following:

1. Create a LanguageDatabase object by calling the IEngine::CreateLanguageDatabase method.

2. Load the languages into the LanguageDatabase object using the ILanguageDatabase::LoadFrom method.

3. Get the required language by its name as a TextLanguage object from the LanguageDatabase object.

4. Use the received TextLanguage object for text recognition.

See also

Working with Dictionaries
Recognizing Words with Spaces
Recognizing Hieroglyphic Languages

 72

ABBYY FineReader Engine 10 Guided Tour

Working with Layout and Blocks

When processing a document, ABBYY FineReader Engine first analyzes its layout and detects certain areas on the document pages.
These areas are called "blocks." Blocks determine how and in what order the image areas should be recognized.

In ABBYY FineReader Engine, the Layout object serves as a storage for blocks and recognized text. The basic document processing
scenarios work with the layout within the FRDocument object, which represents the document being processed. To access the layout
of a document page, use the IFRPage::Layout property.

Geometrical characteristics of page layout

The Layout object has the following geometrical parameters: width and height. A user should not care about assigning values to
them — this is done automatically when the Layout object is being used. An analysis or recognition method initializes the geometrical
properties of the Layout object with the values of the corresponding properties of the black�and�white image page of the
ImageDocument object. It is the black�and�white image page that is used for text recognition, which is why the geometrical
characteristics of the black�and�white image page are copied into the Layout object.

Layout blocks

The Layout object provides access to the layout structure via the Blocks and BlackSeparators properties. Both these properties
provide access to the LayoutBlocks sub�objects, which represent collections of blocks. The first one refers to the main set of layout
blocks, which contains texts, tables, pictures, barcodes, and checkmarks. The second one refers to the collection of blocks for
separators. Separators are black lines that are detected during the page layout analysis. They are used for more precise page layout
reconstruction during export.

Each block has its region, which is a set of rectangles positioned one under another. A region is represented by the Region object.

Depending on the type of data contained in the block, blocks may be of different types, each having its own specific properties. These
properties are accessible via the corresponding block type objects which can be received using the methods of the Block object. The
corresponding block type interfaces are derived from the IBlock interface and inherit all its properties. The following block types are
available:

Text block

These blocks correspond to an image zone recognized as formatted text. Properties of this block type are accessible via the TextBlock
object. The recognized text from the part of the image enclosed by this block is also accessible via this object.

Table block

The region of blocks of this type may consist of one rectangle only. The properties of this block type are accessible via the TableBlock
object. The structure of the table is described by two collections of table separators, horizontal and vertical (the TableSeparators
objects), and by a collection of table cells (the TableCells object). Each table cell is treated as a block of some type. A cell has four
coordinates — the indexes of the left, right, top, and bottom separators that enclose it. The recognized text is a property of a single cell,
not of the entire table. If a cell is a picture, the image enclosed in the cell bounds is not recognized and is displayed as a picture in the
recognized text. Table separators are may be of different types. A separator type is in fact a property of the corresponding separator's
portion which lies between its nearest intersections with other separators, and not of the entire separator. Separators may be of the
following types:

• Absent. This type is assigned to table separators that go through merged cells.

• Unknown. This type is assigned by default to every newly added table separator.

• Invisible. This type is assigned to an "imaginary" table separator created as a result of table structure analysis in a place
where the source table did not have one but where it should logically be.

• Explicit. Table separators of this type appear where the black lines of the source table are located.

• Multiple. This type of separator may appear as a result of table editing.

 73

ABBYY FineReader Engine 10 Guided Tour

Raster picture block

This one represents an image zone treated as a raster picture. The part of the image that this block encloses is not recognized, and the
block is exported "as is." The properties of this block type are represented by the RasterPictureBlock object.

Vector picture block

This one represents an image zone treated as a vector picture. Blocks of this type may appear in the layout only if a page has been
analyzed with the IPageAnalysisParams::DetectVectorGraphics property set to TRUE. Usually, background pictures are
recognized as blocks of this type. The properties of this block type are represented by the VectorPictureBlock object.

Barcode block

A part of image enclosed by a block of this type is treated as a barcode. ABBYY FineReader Engine may recognize barcodes of several
types, it may also detect barcode types automatically. The information read from a recognized barcode is accessible via the barcode
block specific properties represented by the BarcodeBlock object.

Checkmark block

A part of image enclosed by a block of this type is treated as a checkmark. It corresponds to an image area recognized as a checkmark.
The information read from a recognized checkmark is accessible via the checkmark block specific properties represented by the
CheckmarkBlock object.

Checkmarks group block

A part of image enclosed by a block of this type is treated as a checkmarks group. It corresponds to an image area recognized as
checkmarks group. The information read from a recognized checkmarks group is accessible via the checkmarks group block specific
properties represented by the CheckmarkGroup object.

Separator block

A part of image enclosed by a block of this type is treated as a separator. Separators are lines that are detected during the page layout
analysis. They may be parts of a table, lines that separate different text elements, etc. The coordinates and type of a separator are
accessible via the SeparatorBlock object.

Separators group block

A part of image enclosed by a block of this type is treated as a separators group. It corresponds to an image zone recognized as a group
of separators. A group of separators usually includes four separators, which form a rectangle. For example, four lines of a table border
are recognized as a separator group. Each separator group contains a collection of separator blocks. The specific properties of a
separators group block are represented by the SeparatorGroup object.

Adding blocks manually

Blocks are found on a page automatically during layout analysis. But you may want to create a Layout object and add blocks manually.
In this case:

1. Create a Layout object with the help of the CreateLayout method of the Engine object.

2. Create a Region object for the block using the IEngine::CreateRegion method and add rectangles to it using the
IRegion::AddRect method.

3. Create a block of required type and add it into the collection using the AddBlock method of the Layout object.

4. Set the required parameters of the block (use the block properties object corresponding to the type of block).

 74

ABBYY FineReader Engine 10 Guided Tour

Changing block type

A block type can only be changed using the following procedure:

1. Delete this block from the layout by calling the ILayoutBlocks::Remove method.

2. Create a Region object for the block using the IEngine::CreateRegion method and add rectangles to it using the
IRegion::AddRect method.

3. Create a block of required type and add it into the collection using the AddBlock or InsertBlock method of the Layout
object.

See also

Recognizing Checkmarks
Working with Text

Working with Text

The text that ABBYY FineReader Engine works with is plain text, i.e. it does not contain frames, tables, and so on. All characters are
Unicode. Plain text may contain the following special characters:

• 0x2028 — Line break symbol.

• 0xFFFC — Object replacement character. Denotes an embedded picture inside the text.

• 0x0009 — Tabulation.

• 0x005E — Circumflex accent.

The attributes and formatting of a text is available via the corresponding objects and properties.

You can work with the recognized text of a document either via its page layout (IFRPage::Layout property) or via the logical
structure of the document (IFRPage::PageStructure and IFRDocument::DocumentStructure properties). The recognized text in
the layout becomes available after recognition, though some of its attributes are unavailable until page and document synthesis are
performed. To access the recognized text in the logical structure of the document, you must first perform full document synthesis. This
provides access to the full set of text attributes, including its role in the document and formatting attributes.

This section describes working with text via the page layout. For more information about working with text via the logical structure of
a document, please see the Working with the Logical Structure of a Document section.

Recognized text in the layout

Only text, table, and barcode blocks contain text after recognition. Other blocks have no text. The Text object provides access to the
recognized text of text and table blocks, while the BarcodeText object provides access to the text of a barcode block.

To access the recognized text of a block, do the following:

• For text blocks
Use the ITextBlock::Text property.

• For table blocks

1. Receive the collection of table cells using the ITableBlock::Cells property.

2. Select the desired cell. Use the methods of the TableCells object.

3. Receive the block object of the cell (the ITableCell::Block property).

4. Check that the block is of type BT_Text (the IBlock::Type property) and receive the TextBlock object using the
IBlock::GetAsTextBlock method.

5. Use the ITextBlock::Text property.

• For barcode blocks
Receive the barcode text using the IBarcodeBlock::BarcodeText or IBarcodeBlock::Text property. The first one returns
the BarcodeText object, which is a collection of characters of the recognized barcode (the BarcodeSymbol objects). The

 75

ABBYY FineReader Engine 10 Guided Tour

second one returns the text of the barcode as a single string. The BarcodeText allows you to edit the text of the barcode.
The IBarcodeBlock::Text property is read�only.

Text and paragraphs

The Text object contains a collection of paragraphs. This collection is a Paragraphs object accessible via the Paragraphs property of
the Text object. The Paragraphs object is a collection of Paragraph objects. The recognized text is accessible via the
IParagraph::Text property. The text in the property is a Unicode string.

There also exists a ParagraphParams object that contains attributes specific to the whole paragraph, such as information on its
alignment and indent. This object is accessible via the IParagraph::ExtendedParams property.

The IParagraph::Lines property provides access to a collection of paragraph lines represented by the ParagraphLines object,
which, in turn, is a collection of ParagraphLine objects. The latter provides information on the geometrical position of a single
paragraph line and so represents the division of the text into lines.

The IParagraph::Words property provides access to a collection of paragraph words represented by the Words object, which is a
collection of Word objects. The Word object provides access to a single word of the paragraph.

Character attributes

Each character of the text has its own parameters. They are accessible via the CharParams object. The CharParams object has a
large set of character attributes such as its geometrical parameters, its font, and language. The CharParams object contains the
character itself in the SelectedCharacterRecognitionVariant property.

The position of a character in the text is defined by the index of its paragraph and its own index in this paragraph. There also exists a
so�called "special position" in the text: the index of the paragraph is the total number of paragraphs and the index of the character is 0.
This is the insertion point at the end of the text. Some methods of the Text object perform operations with the special position, i.e.
insert another text fragment or picture in it.

The SelectedCharacterRecognitionVariant property of the CharParams object provides access to an extended set of attributes
specific to a single character, represented by the CharacterRecognitionVariant object. These attributes are set during the
recognition and provide some internal recognition information specific to the character. In particular, this object provides more
precise information on character recognition certainty, the probability that the character is in a serif font, etc.

Text editing

You may try changing the attributes of the Text object, but you should do it very carefully if the text is to be exported into an external
format. The ABBYY FineReader Engine export methods assume that the recognized text is the result of recognition, and that the user
only corrected the recognition errors and made no other changes. The objects of the Text group have a lot of interdependent
properties, and often changing one of these properties requires changing others as well. For this reason changes in the recognized
text's attributes may sometimes result in unpredictable export results.

See also

Working with Layout and Blocks
Working with Languages
Using Voting Algorithms
Working with the Logical Structure of a Document

Working with the Logical Structure of a Document

The logical structure of a document is recreated during document synthesis, which is performed after recognition. During document
synthesis, formatting attributes, including headers, footers, page numbers, fonts, styles etc., are also detected. ABBYY FineReader Engine
provides the DocumentStructure and PageStructure objects and a set of their subobjects to access the results of document and
page synthesis. You can access these objects via the IFRDocument::DocumentStructure and IFRPage::PageStructure properties.

Important! Pointers to a child object's interfaces are valid until the parent object exists. An attempt to access a child object after its
parent object has been destroyed may result in an error. Therefore, you must keep the reference to the FRDocument object (which is
the root for the document synthesis objects) while you work with the elements of the document structure. Please see Working with
Properties for details.

Recognized text in the logical structure of a document

Important! To access the recognized text in the logical structure of a document, you must first perform full document synthesis.
The document synthesis objects become valuable only after synthesis.

In the logical structure of a document, recognized text is an attribute of:

 76

ABBYY FineReader Engine 10 Guided Tour

• page elements (PageElement object)

• document elements (DocumentElement object)

• running titles (RunningTitle, RunningTitleSeriesText objects)

Note: You can work with the recognized text of the document either via its page layout or via the logical structure. This section
describes working with text via the logical structure. For information about working with text via the page layout, please see the
Working with Text section.

Working with the text of a page

The page structure usually includes one or several page sections. Each of these sections consists of one or several page streams: main
text, incuts, footnotes, and artefacts. Each page stream includes one or several page elements: text, table, barcode, or picture. Page
structure may also include running titles.

Main text

To work with the main text of a page, you can receive the corresponding PageStream object using the IPageSection::MainStream
property. Then receive its collection of page elements — the PageElements object (IPageStream::PageElements property).

Working with the text of a page element:

For texts

Use the GetAsText method to receive the Text object.

For tables

1. Use the GetAsTable method to receive the TextTable object.

2. If you want to receive the text of a cell, receive this cell using the ITextTable::Cell property. If you want to receive the text
of a caption, receive the collection of captions using the ITextTable::Captions property and select the desired caption
from the collection.

3. Receive the PageElement object of the TextTableCell or Caption object (use the Element property).

 77

ABBYY FineReader Engine 10 Guided Tour

4. The received page element will be of type PET_Text. Use its GetAsText method to receive the Text object.

For barcodes

1. Use the GetAsBarcode method to receive the TextBarcode object.

2. Use the ITextBarcode::Text property to receive the Text object.

Note: We recommend working with the text of barcodes via the layout, as this is more suitable for barcodes and does not require
synthesis.

For pictures

For a picture you may receive a text of its caption.

1. Use the GetAsPicture method to receive the TextPicture object.

2. Receive the collection of captions using the ITextPicture::Captions property and select the desired caption from the
collection.

3. Receive the PageElement object of the Caption object (use the Element property).

4. The received page element will be of type PET_Text. Use its GetAsText method to receive the Text object.

Incuts and footnotes

To work with the text of an incut or footnote, receive the collection of page streams (IPageSection::PageStreams property) and
find the required PageStream object in the collection (IPageStream::Type = ST_Incut or IPageStream::Type = ST_Footnote).
Then receive its collection of page elements — the PageElements object (IPageStream::PageElements property). Further work
with the text of a page element is the same as for the main text (see above).

Running titles

To work with the text of a running title, receive the RunningTitle object using the IPageStructure::Header or
IPageStructure::Footer property. Then use the Text property of the RunningTitle object.

Working with the text of the whole document

The document structure usually includes one or several document sections. Each of these sections consists of one or several document
streams: main text, incuts, and footnotes. Artefacts are not document streams. Each page stream includes one or several page elements:
paragraph, table, barcode, or picture. The document structure may also include a collection of running title series.

Main text, incuts, and footnotes

 78

ABBYY FineReader Engine 10 Guided Tour

To work with the main text, the text of an incut or footnote, find the required DocumentStream object in the document section
(IDocumentSection::DocumentStream property). Iterate through its elements (the DocumentElement objects) using the
FirstElement, LastElement, NextElement, PrevElement properties.

The work with the text of a document element depends on its type:

For paragraphs

Use the GetAsParagraph method to receive the Paragraph object.

For tables

1. Use the GetAsTable method to receive the TextTable object.

2. If you want to receive the text of a cell, receive this cell using the ITextTable::Cell property. If you want to receive the text
of a caption, receive the collection of captions using the ITextTable::Captions property and select the desired caption
from the collection.

3. Receive the PageElement object of the TextTableCell or Caption object (use the Element property).

4. The received page element will be of type PET_Text. Use its GetAsText method to receive the Text object.

For barcodes

1. Use the GetAsBarcode method to receive the TextBarcode object.

2. Use the ITextBarcode::Text property to receive the Text object.

Note: We recommend working with the text of barcodes via the layout, as this is more suitable for barcodes and does not require
synthesis.

For pictures

For a picture you may receive the text of its caption.

1. Use the GetAsPicture method to receive the TextPicture object.

2. Receive the collection of captions using the ITextPicture::Captions property and select the desired caption from the
collection.

3. Receive the PageElement object of the Caption object (use the Element property).

4. The received page element will be of type PET_Text. Use its GetAsText method to receive the Text object.

Series of running title

You may receive the text of the whole series of running title:

1. Receive the RunningTitleSeriesArray object using the IDocumentStructure::RunningTitleSeriesArray property.

2. Find the desired RunningTitleSeries object in the collection and then, using its FooterOnEven, FooterOnOdd,
HeaderOnEven, HeaderOnOdd properties, receive the RunningTitleSeriesText object.

3. Use the Text property of the RunningTitleSeriesText object to view all text of the series of running titles.

See also

Document Synthesis Objects
Working with Layout and Blocks

Using Voting API

Developers can combine several Engines in their recognition solutions. When multiple Engines generate different recognition variants
for a character or word, the developer can select the best variant by voting between the variants. To enable voting, the ABBYY
FineReader Engine has a special Voting API which provides access to different hypotheses of character or word recognition with
corresponding weight values. In addition to voting, the developer can use the Voting API to check recognition results using his own
databases and algorithms, and to correct text. For example, the developer can build words from letters or check all generated
hypotheses.

Note: The Voting API is not available for recognizing handprinted texts.

 79

ABBYY FineReader Engine 10 Guided Tour

The WordRecognitionVariants object represents a collection of hypotheses for a word, and the CharacterRecognitionVariants
object represents a collection of hypotheses for a character. The elements of these collections are the WordRecognitionVariant and
CharacterRecognitionVariant objects respectively.

The WordRecognitionVariant object represents a single hypothesis for a word and contains the text of the hypothesis, type of
model, the average width of stroke, and information on whether the hypothesis has been found in the dictionary. The
GetCharParams method of this object provides access to the parameters of a single character.

The CharacterRecognitionVariant object represents a single hypothesis for a character and contains character confidence,
probability that a character is written with a serif font, and information on whether the character is superscript or subscript.

If you wish to save all hypotheses for a word or character during recognition, do the following:

1. Set the SaveWordRecognitionVariants and SaveCharacterRecognitionVariants properties of the
RecognizerParams object to TRUE.

2. Pass the RecognizerParams object as a sub�object of the PageProcessingParams object to one of the ABBYY
FineReader Engine recognition methods.

3. The collection of hypotheses is accessible after recognition through the ICharParams::WordRecognitionVariants,
ICharParams::CharacterRecognitionVariants properties and the IParagraph::GetWordRecognitionVariants
method.

Note: These methods return zero for non�printable characters (spaces, carriage returns, etc.) and characters which were
not recognized but added to the text during editing. Zero is also returned if the text was recognized by one of the previous
ABBYY FineReader Engine versions. The hypotheses collections contain recognition variants ranked from best to worst. If
the SaveWordRecognitionVariants or SaveCharacterRecognitionVariants property of the RecognizerParams
object is set to FALSE, the corresponding collection will contain only one element.

Sample code in Visual Basic:

Visual Basic code

' Procedure of hypotheses generation for all words and characters of a text block

Private Sub GetVariants(block As FREngine.block)

 ' Collection of character recognition hypotheses

 Dim characterRecognitionVariants As FREngine.characterRecognitionVariants

 ' A single character recognition hypothesis

 Dim characterRecognitionVariant As FREngine.characterRecognitionVariant

 ' Collection of word recognition hypotheses

 Dim wordRecognitionVariants As FREngine.wordRecognitionVariants

 ' A single word recognition hypothesis

 Dim wordRecognitionVariant As FREngine.wordRecognitionVariant

 ' Create CharParams object

 Dim charParams As FREngine.charParams

 Set charParams = Engine.CreateCharParams

 ' Get the collection of paragraphs of the recognized text

 Dim paragraphs As FREngine.paragraphs

 Set paragraphs = block.GetAsTextBlock.text.paragraphs

 Dim i, j, k As Integer

 ' Iterate the collection of paragraphs

 For i = 0 To paragraphs.Count - 1

 ' Iterate characters in paragraph

 For j = 0 To paragraphs.Item(i).Length

 ' Get parameters of a single character

 paragraphs.Item(i).GetCharParams j, charParams

 ' Get the collection of character recognition hypotheses

 Set characterRecognitionVariants = charParams.CharacterRecognitionVariants

 ' Get the collection of word recognition hypotheses

 Set wordRecognitionVariants = charParams.WordRecognitionVariants

 ' Get a single word recognition hypothesis

 If Not (wordRecognitionVariant Is Nothing) Then

 80

ABBYY FineReader Engine 10 Guided Tour

 For k = 0 To wordRecognitionVariants.Count - 1

 Set wordRecognitionVariant = wordRecognitionVariants.Item(k)

 Next k

 End If

 ' Get a single character recognition hypothesis

 If Not (characterRecognitionVariants Is Nothing) Then

 For k = 0 To characterRecognitionVariants.Count - 1

 Set characterRecognitionVariant = characterRecognitionVariants.Item(k)

 Next k

 End If

 Next j

 Next i

End Sub

...

' Create PageProcessingParams object

Dim pageProcessingParams As FREngine.PageProcessingParams

Set pageProcessingParams = Engine.CreatePageProcessingParams

pageProcessingParams.RecognizerParams.SaveCharacterRecognitionVariants = True

pageProcessingParams.RecognizerParams.SaveWordRecognitionVariants = True

frDocument.Process pageProcessingParams

Dim i As Integer

' Iterate layout blocks

For i = 0 To layout.Blocks.Count - 1

 If layout.Blocks.Item(i).Type = BT_Text Then

 ' Call GetVariants procedure for text blocks

 GetVariants layout.Blocks.Item(i)

 End If

Next i

...

What is the difference between the CharConfidence and the IsSuspicious properties

The CharConfidence property of the PlainText and the CharacterRecognitionVariant objects is the read�only long property
which stores the value of character confidence. It is in the range from 0 to 100, and 255 corresponds to the fact that confidence is
undefined. It represents an estimate of recognition confidence of a character in percentage points. The greater its value, the greater the
confidence. Character confidence can be undefined, for example, for characters which were added during text editing.

Recognition confidence of a character image is a numerical estimate of the similarity of this image and the "ideal" whose recognition
confidence would be 100%. When recognizing a character, the program provides several recognition variants which are ranked by
their confidence values. For example, an image of the letter "e" may be recognized

• as the letter "e" with a confidence of 95%,

• as the letter "c" with a confidence of 85%,

• as the letter "o" with a confidence of 65%, etc.

The sum total of the confidence values of all the recognition variants of a character need not be 100%. The hypothesis with a higher
confidence rating is selected as the recognition result. But the choice also depends on the context (i.e. the word to which the character
belongs) and the results of a differential comparison. For example, if the word with the “e” hypothesis is not a dictionary word while
the word with the “c” hypothesis is a dictionary word, the latter will be selected as the recognition result, and its confidence rating will
be 85%. The rest of the recognition variants can be obtained as hypotheses.

The IsSuspicious property of the CharParams object is the Boolean property. This property set to TRUE means that the character
was recognized unreliably. This property is determined by an algorithm which takes into account a number of parameters, such as
recognition confidence of a character, nearby characters and their recognition confidence, hypotheses and their recognition
confidence, the geometric parameters of a character, and context (i.e. the word to which a character belongs).

 81

ABBYY FineReader Engine 10 Guided Tour

See also

CharacterRecognitionVariant
WordRecognitionVariant

Using Text Type Autodetection

Autodetection detects the type of a recognized piece of text. Autodetection is launched if the TextTypes property of the
RecognizerParams object is set to several constants. This mode was primarily designed for recognizing forms. In the case of common
OCR we recommend using it only if absolutely necessary.

When autodetection is on, ABBYY FineReader Engine will first try to detect the type of text in the specified block or group of blocks
(for these blocks, the TextTypes property of the RecognizerParams object is set to several constants). ABBYY FineReader Engine
will choose from the constants specified in the TextTypes property. This property contains an OR superposition of the
TextTypeEnum enumeration constants which denote the possible text types used for recognition. For example, if it is set to
TT_Normal | TT_Index, ABBYY FineReader Engine will assume that the text contains only common typographic text and digits written
in a ZIP�code style, ignoring all other variants. The property cannot be set to TT_ToBeDetected. During autodetection, ABBYY
FineReader Engine runs preliminary recognition for all of the text types specified in the TextTypes property. The preliminary OCR
results are then compared, ABBYY FineReader Engine selects the type with the best preliminary results and runs the recognizer for this
type.

Note: The RecognizerParams object also provides the TextType and PossibleTextTypes properties for text type autodetection. These
properties are obsolete. We recommend using the TextTypes property instead.

How to use autodetection

Autodetection should be used for a set of blocks all of which contain text of the same type. If a separate text type must be selected for
each block, you must call the RecognizeBlocks method for each block and the RecognizerParams object must list the possible text
types.

Note: If a single block contains text of different types, this entire text within the block will be recognized as if it was of the same
type. For better OCR results, draw separate blocks for each type of text. An exception to this rule is a situation when TT_Normal and
TT_Gothic types are encountered in one block. If these types are both specified in the TextTypes property, recognition will run as
normal.

Selecting the set of text types

The speed and accuracy of autodetection depend on the set of text types specified in the TextTypes property. Autodetection is fastest
for combinations of TT_Normal, TT_Matrix, TT_Typewriter, TT_OCR_A, and TT_OCR_B types (which can be called the "fast
autodetection set"). In this case the recognizer is launched only once, autodetection is carried out during OCR, and single words rather
than blocks are used to detect the text type. If only one text type has been specified, autodetection is not launched — the Engine
launches the recognizer which corresponds to the specified text type.

Note: If the TextTypes property is equal to any combination of TT_Matrix, TT_Typewriter, TT_OCR_A, and TT_OCR_B, then italic
fonts and superscript/subscript will not be recognized, regardless of the values of the ProhibitItalic, ProhibitSubscript, and
ProhibitSuperscript properties of the RecognizerParams object.

In the case of texts which are not covered by the "fast autodetection set," text types are detected by blocks, not by single words. This
means that autodetection is slower if the set of possible text types includes text types other than TT_Normal, TT_Matrix,
TT_Typewriter, TT_OCR_A, and TT_OCR_B. In this case the Engine needs to carry out preliminary OCR several times — once for the
types from the "fast autodetection set" and one preliminary recognition session for each additional text type. Next the results are
compared and the best text type is selected.

Important! Be sure to keep the number of text types in the PossibleTextTypes property to a minimum.

Note: If the TextTypes property is equal to any combination of TT_Handprinted and TT_Index, the TrainUserPatterns property of
the RecognizerParams object cannot be set to TRUE.

See also

RecognizerParams
TextTypeEnum

Recognizing Checkmarks

ABBYY FineReader Engine 10 supports two block types for checkmarks: checkmark and checkmark group. A checkmark group block
is a collection of checkmark blocks. These block types have the corresponding constants BT_Checkmark and BT_CheckmarkGroup in

 82

ABBYY FineReader Engine 10 Guided Tour

the BlockTypeEnum enumeration. The CheckmarkBlock and CheckmarkGroup objects provide access to the blocks of these
types. To receive these objects, you should use the corresponding methods of the Block object.

You can recognize single checkmarks as well as checkmark groups.

One check box corresponds to one CheckmarkBlock object. Possible check box statuses: checked, not checked, corrected. They
correspond to CheckmarkCheckStateEnum. A corrected checkmark is a checkmark that was put in the check box and then was
crossed out by the user.

Important! All the checkmarks within a checkmark group must have the same values for the IsCorrectionEnabled and
CheckmarkType properties.

For a checkmark group, you can specify a minimum and maximum number of checked check boxes in the group
(MinimumCheckedInGroup and MaximumCheckedInGroup respectively). These values can be set through CheckmarkGroup
object and will be used during recognition. The checkmark type can be specified in the ICheckmarkBlock::CheckmarkType
property.

Recognizing a group of checkmarks

1. Create a Layout object using the IEngine::CreateLayout method.

2. For each checkmark group:

1. Create a Region object using the IEngine::CreateRegion method and add rectangles to it using the
IRegion::AddRect method.

2. Create a Block object of the checkmark group type and add it into the layout by using the ILayout::AddBlock
method (use the BT_CheckmarkGroup constant and the created Region object as input parameters).

3. Receive the CheckmarkGroup object (use the IBlock::GetAsCheckmarkGroup method) and set the required
parameters (MinimumCheckedInGroup, MaximumCheckedInGroup).

3. For each checkmark:

1. Create the Region object using the IEngine::CreateRegion method and add rectangles to it using the
IRegion::AddRect method.

2. Create a Block object of the checkmark type and add it into the checkmark group by using the
ICheckmarkGroup::AddCheckmark method (use the created Region object as an input parameter).

3. Receive the CheckmarkBlock object (use the IBlock::GetAsCheckmarkBlock method) and set the required
parameters (CheckmarkType, IsCorrectionEnabled).

4. To recognize the checkmarks, use any of the available methods that perform recognition, such as IFRPage::Recognize,
IFRPage::RecognizeBlocks, IFRDocument::Recognize, IFRDocument::RecognizePages, etc. (Do not forget to pass
the created layout to the FRPage object.)

Sample code for checkmark recognition in C++ and Visual Basic:

Visual C++ (COM) code

...

// Create a Layout object

FREngine::ILayoutPtr pLayout = Engine->CreateLayout();

// Set block region

FREngine::IRegionPtr pRegion = Engine->CreateRegion();

pRegion->AddRect(0, 0, 100, 50);

// Create a block of the "checkmark group" type and add into the layout

FREngine::IBlockPtr pBlock = pLayout->AddBlock(FREngine::BT_CheckmarkGroup, pRegion);

FREngine::ICheckmarkGroupPtr pCheckmarkGroup = pBlock->GetAsCheckmarkGroup();

// Create blocks of the "checkmark" type

// and add them to the checkmark group

for(int i = 0; i < 5; i++) {

 FREngine::IRegionPtr pCheckmarkRegion = Engine->CreateRegion();

 83

ABBYY FineReader Engine 10 Guided Tour

 pRegion->AddRect(10, 10 + i * 20, 90, 10 + (i + 1) * 20);

 FREngine::ICheckmarkBlockPtr pCheckmark = pCheckmarkGroup->AddCheckmark(
pCheckmarkRegion);

}

...

Visual Basic code

...

' Create a Layout object

Dim Layout As FREngine.Layout

Set Layout = Engine.CreateLayout()

' Set block region

Dim Region As FREngine.Region

Set Region = Engine.CreateRegion()

Region.AddRect 0, 0, 100, 50

' Create a block of the "checkmark group" type and add it into the layout

Dim Block As FREngine.Block

Set Block = Layout.AddBlock(BT_CheckmarkGroup, Region)

Dim CheckmarkGroup As FREngine.CheckmarkGroup

Set CheckmarkGroup = Block.GetAsCheckmarkGroup

' Create blocks of the "checkmark" type

' and add them to the checkmark group

Dim i As Integer

For i = 0 To 4

Dim CheckmarkRegion As FREngine.Region

Set CheckmarkRegion = Engine.CreateRegion()

CheckmarkRegion.AddRect 10, 10 + i * 20, 90, 10 + (i + 1) * 20

Dim Checkmark As FREngine.block

Set Checkmark = CheckmarkGroup.AddCheckmark(CheckmarkRegion)

Next i

...

Recognizing a single checkmark

1. Create a Layout object using the IEngine::CreateLayout method.

2. Create the Region object using the IEngine::CreateRegion method and add rectangles to it using the IRegion::AddRect
method.

3. Create a Block object of checkmark type and add it into the layout by using the ILayout::AddBlock method (use the
BT_Checkmark constant and the created Region object as input parameters)

4. Receive the CheckmarkBlock object (use the IBlock::GetAsCheckmarkBlock method) and set the required parameters
(CheckmarkType, IsCorrectionEnabled).

5. To recognize the checkmark, use any of the available recognition methods, such as IFRPage::Recognize,
IFRPage::RecognizeBlocks, IFRDocument::Recognize, IFRDocument::RecognizePages, etc. (Do not forget to pass
the created layout to the FRPage object.)

Sample code for checkmark recognition in C++ and Visual Basic:

Visual C++ (COM) code

...

// Create a Layout object

FREngine::ILayoutPtr pLayout = Engine->CreateLayout();

// Set block region

FREngine::IRegionPtr pRegion = Engine->CreateRegion();

 84

ABBYY FineReader Engine 10 Guided Tour

pRegion->AddRect(0, 0, 100, 50);

// Create a block of the "checkmark" type and add into the layout

FREngine::IBlockPtr pCheckmark = pLayout->AddBlock(FREngine::BT_Checkmark, pRegion);

...

Visual Basic code

...

' Create a Layout object

Dim Layout As FREngine.Layout

Set Layout = Engine.CreateLayout()

' Set block region

Dim Region As FREngine.Region

Set Region = Engine.CreateRegion()

Region.AddRect 0, 0, 100, 50

' Create a block of the "checkmark" type and add it into the layout

Dim Checkmark As FREngine.block

Set Checkmark = Layout.AddBlock(BT_Checkmark, Region)

...

See also

CheckmarkBlock
CheckmarkGroup
Working with Layout and Blocks

Recognizing Handprinted Texts

ABBYY FineReader Engine includes ABBYY FineReader ICR (Intelligent Character Recognition) technology which allows you to
recognize handprinted texts.

Important!

• Not all recognition languages are available for handprint recognition. The languages which are available for handprint
recognition are marked with a special comment in the List of predefined languages.

• In order to recognize Cyrillic handprinted texts, your license must support the Cyrillic ICR module.

You need to set up certain recognition parameters which tell ABBYY FineReader Engine that the text to be recognized is handprinted.
This should be done for all blocks which are to be recognized as handprinted.

Note: Automatic layout analysis is not available for handprinted text. The coordinates of the blocks that contain handprinted text
must be specified manually. See Working with Layout and Blocks for details.

To set up recognition parameters, do the following for each block with handprinted characters:

1. Specify the TextTypes property of the RecognizerParams object as TT_Handprinted.

2. [Optional] Specify the WritingStyle property of the RecognizerParams object which provides additional information
about the writing style of the handprinted letters.

3. [Optional] Handprinted letters can often be enclosed in a frame, box, etc. In this case you can use the FieldMarkingType
property of the RecognizerParams object. This property specifies the type of marking around the letters (e.g. underline,
frame, box, etc.).

Note: For the correct operation of this property, please use the CellsCount property which allows you to set up the
number of character cells in the recognized block.

Sample code in C++(COM) and Visual Basic:

Visual C++ (COM) code

// Global ABBYY FineReader Engine object

FREngine::IEnginePtr Engine;

...

// Open an image file

...

 85

ABBYY FineReader Engine 10 Guided Tour

// Create a Layout object

FREngine::ILayoutPtr layout = Engine->CreateLayout();

// Set block region

FREngine::IRegionPtr pRegion = Engine->CreateRegion();

pRegion->AddRect(491, 314, 2268, 404);

// Create a new block

FREngine::IBlockPtr newBlock = layout->AddBlock(FREngine::BT_Text, pRegion);

FREngine::ITextBlockPtr textBlock = newBlock->GetAsTextBlock();

// Specify the text type

textBlock->RecognizerParams->TextTypes = FREngine::TT_Handprinted;

// Specify the type of marking around the letters

textBlock->RecognizerParams->FieldMarkingType = FREngine::FMT_SimpleText;

// Specify the letters writing style

textBlock->RecognizerParams->WritingStyle = FREngine::WS_American;

// Recognition and export

...

Visual Basic code

' Global ABBYY FineReader Engine object

Public Engine As FREngine.Engine

...

' Open an image file

...

' Create a Layout object

Dim Layout As FREngine.Layout

Set Layout = Engine.CreateLayout()

' Set block region

Dim Region As FREngine.Region

Set Region = Engine.CreateRegion()

Region.AddRect 491, 314, 2268, 404

' Create a new block

Dim newBlock As FREngine.Block

Set newBlock = Layout.AddBlock(BT_Text, Region)

Dim textBlock As FREngine.textBlock

Set textBlock = newBlock.GetAsTextBlock

' Specify the text type

textBlock.RecognizerParams.TextTypes = TT_Handprinted

' Specify the type of marking around the letters

textBlock.RecognizerParams.FieldMarkingType = FMT_SimpleText

' Specify the letters writing style

textBlock.RecognizerParams.WritingStyle = WS_American

' Recognition and export

...

See also

RecognizerParams
List of the Predefined Languages

 86

ABBYY FineReader Engine 10 Guided Tour

Recognizing Hieroglyphic Languages

This section deals with certain peculiarities of recognizing and exporting texts in hieroglyphic languages with ABBYY
FineReader Engine 10.

First, in order to recognize hieroglyphic languages you must have an ABBYY FineReader Engine license that supports the Chinese,
Japanese, and Korean language modules. For more information about licenses and modules, see the Licensing section.

Recognition languages

For hieroglyphic texts, ABBYY FineReader Engine supports the following predefined recognition languages:

• "ChinesePRC"

• "ChineseTaiwan"

• "Japanese"

• "Korean"

• "KoreanHangul"

To select one of the predefined hieroglyphic languages, you can use the SetPredefinedTextLanguage method of the
RecognizerParams object.

ABBYY FineReader Engine supports recognition language combinations consisting of several hieroglyphic languages or combinations
of hieroglyphic languages and non�hieroglyphic languages.

Fonts

To prevent any distortions of hieroglyphic characters, you must specify a font which includes hieroglyphs, e.g. Arial Unicode MS,
SimSun. You can do this with the help of the ISynthesisParamsForDocument::AddRecognizedTextFontName method.

Export

When you export hieroglyphic languages to PDF in any mode other than PDF Image Only (IPDFExportParams::TextExportMode
= PEM_ImageOnly), fonts are embedded and they are taken from the Text object, which represents the recognized text (for the
PDFExportParamsOld object this means that TRUE is assigned for the EmbedFonts property, and FM_UseFontsFromIText for the
FontMode property).

You can export hieroglyphic languages to PDF/A in "text under the page image" mode (IPDFExportParams::TextExportMode =
PEM_ImageOnText).

The procedure of recognition and export

To process documents written in hieroglyphic languages, do the following:

1. Create a PageProcessingParams object using the CreatePageProcessingParams method of the Engine object.

2. Specify a hieroglyphic recognition language. Use the SetPredefinedTextLanguage method of the RecognizerParams
subobject of the PageProcessingParams object.

3. Create a SynthesisParamsForDocument object using the CreateSynthesisParamsForDocument method of the
Engine object.

4. Specify a font which includes hieroglyphs, e.g. Arial Unicode MS. Use the
ISynthesisParamsForDocument::AddRecognizedTextFontName method.

5. Pass these parameter objects to the Process method of the FRDocument object. If you use methods of the Engine object,
you should call one of the synthesis methods of the Engine object with the created SynthesisParamsForDocument
object as a parameter before export.

6. Perform export of the recognized text with the help of the Export method of the FRDocument object. If you export to
PDF of PDF/A format, specify the required export mode.

Sample code for processing hieroglyphic languages in C++ and Visual Basic:

Visual C++ (COM) code

...

// Create a PageProcessingParams object

 87

ABBYY FineReader Engine 10 Guided Tour

FREngine::IPageProcessingParamsPtr pPageProcessingParams = Engine-
>CreatePageProcessingParams();

// Specify hieroglyphic recognition language

pPageProcessingParams->RecognizerParams->SetPredefinedTextLanguage("Japanese");

// Create a SynthesisParamsForDocument object

FREngine::ISynthesisParamsForDocumentPtr pSynthesisParams = Engine-
>CreateSynthesisParamsForDocument();

// Specify font

pSynthesisParams->CleanRecognizedTextFontNames();

pSynthesisParams->AddRecognizedTextFontName("Arial Unicode MS");

// Recognize and export the document. Suppose that we have already created the
FRDocument object.

frDocument->Process(pPageProcessingParams, 0, pSynthesisParams)

frDocument->Export(L"D:\\Demo.rtf", FREngine::FEF_RTF, 0);

...

Visual Basic code

...

' Create a PageProcessingParams object

Dim pageProcessingParams As FREngine.pageProcessingParams

Set pageProcessingParams = Engine.CreatePageProcessingParams

' Specify hieroglyphic recognition language

pageProcessingParams.RecognizerParams.SetPredefinedTextLanguage "Japanese"

' Create a SynthesisParamsForDocument object

Dim synthesisParams As FREngine.SynthesisParamsForDocument

Set synthesisParams = Engine.CreateSynthesisParamsForDocument

' Specify font

synthesisParams.CleanRecognizedTextFontNames

synthesisParams.AddRecognizedTextFontName "Arial Unicode MS"

' Recognize and export the document. Suppose that we have already created the
FRDocument object.

frDocument.Process pageProcessingParams, Nothing, synthesisParams

frDocument.Export "D:\Demo.rtf", FEF_RTF, Nothing

...

See also

Working with Languages

Recognizing with Training

ABBYY FineReader Engine can read texts set in practically any font regardless of print quality. Consequently, no prior training is
normally required before recognition can take place. ABBYY FineReader Engine, nevertheless, features a number of user pattern
training tools.

Train User Pattern mode may come in useful when:

• recognizing texts set in decorative fonts

• recognizing texts containing unusual characters (e.g. mathematical symbols)

• recognizing large volumes (more than a hundred pages) of texts of low print quality

Note: Use Train User Pattern mode only if one of the above applies. In other cases you may obtain a slight increase in recognition
quality, but the time and effort involved will probably outweigh the benefit received.

Pattern training works as follows. One or two pages are recognized in training mode, and, subsequently, a pattern is created. A pattern
is a set of pairs "a character image — the character itself" created during pattern training. A pattern is used as a source of additional
information during recognition. ABBYY FineReader Engine then uses this pattern to aid recognition of the remaining text.

 88

ABBYY FineReader Engine 10 Guided Tour

Sometimes two or even three characters may get "stuck" together, and ABBYY FineReader Engine may be unable to enclose each
character in an individual frame to separate them. If this proves to be the case (i.e. you cannot move the frame so that it contains only
one whole character and no other character parts), you can train ABBYY FineReader Engine to recognize the inseparable character
combinations in their entirety. Examples of character combinations frequently found stuck together include ff, fi, and fl. Such
combinations are referred to as ligatures.

You can find additional information in Training User Patterns.

Note:

• A pattern is only useful in the case of documents that have the same font, font size, and resolution as the document used to
create the user pattern.

• Pattern training is not supported for hieroglyphic languages.

• Pattern training cannot be performed when recognizing in parallel processes.

To recognize with training

1. Create a RecognizerParams object.

2. Set the IRecognizerParams::TrainUserPatterns property to TRUE.

3. Create an empty user pattern file by using the IEngine::CreateEmptyUserPattern method.

4. Specify the full path to this user pattern file in the IRecognizerParams::UserPatternsFile property.

5. Call a recognition method (e.g. IFRDocument::Process) with these recognition parameters. Whenever an unknown
character is encountered, the Pattern Training dialog will open, with the character image displayed within it.

6. Train your pattern — recognize one or more pages in Train User Pattern mode. Trained characters are saved in the user
pattern file.

7. [Optional] If you wish to edit this pattern, call the EditUserPattern method of the Engine object.

8. Recognize the images by using this pattern.

Note: If the IRecognizerParams::UseBuiltInPatterns property is set to TRUE, then ABBYY FineReader Engine will use its own
built�in patterns for recognition. Set this property to FALSE when you do not want to use the standard ABBYY FineReader Engine
patterns for character recognition. This may be useful for recognition of texts typed in decorative or non�standard fonts, in which case
you can use your own user�defined patterns trained specifically for these fonts. If the UserPatternsFile property (where the path to
the user�defined pattern file is stored) is empty, the UseBuiltInPatterns property is ignored.

Sample code in C++ and Visual Basic:

Visual C++ (COM) code

FREngine::IEnginePtr Engine;
 FREngine::IFRDocumentPtr frDocument;
 ...
 // Create a PageProcessingParams object
 FREngine::IPageProcessingParamsPtr pParams = Engine->CreatePageProcessingParams();
 // Set the TrainUserPatterns property
 pParams->RecognizerParams->TrainUserPatterns = VARIANT_TRUE;
 // Create an empty user pattern file
 Engine->CreateEmptyUserPattern(L"D:\\test.ptn");
 // Set the full path to the user pattern file
 pParams->RecognizerParams->UserPatternsFile = L"D:\\test.ptn";

 // Analyze and recognize the image
 frDocument->Process(pParams, 0, 0);
 ...

Visual Basic code

Public Engine As FREngine.Engine
 Dim frDocument As FREngine.FRDocument
 ...
 ' Create a PageProcessingParams object
 Dim Params As FREngine.PageProcessingParams
 Set Params = Engine.CreatePageProcessingParams()

 89

ABBYY FineReader Engine 10 Guided Tour

 ' Set the TrainUserPatterns property
 Params.RecognizerParams.TrainUserPatterns = True
 ' Create an empty user pattern file
 Engine.CreateEmptyUserPattern("D:\test.ptn")
 ' Set the full path to the user pattern file
 Params.RecognizerParams.UserPatternsFile = "D:\test.ptn"

 ' Analyze and recognize the image
 frDocument.Process Params
 ...

See also

Training User Patterns

Training User Patterns

If the IRecognizerParams::TrainUserPatterns property is set to TRUE, the Train User Pattern mode will be used during the
recognition. Whenever an unknown character is encountered, the Pattern Training dialog will open, with the character image
displayed within it.

Note: You can also use the IEngine::TrainUserPattern method to perform pattern training without showing the dialog. This method
takes as input parameters the TrainingImagesCollection object, which stores a collection of character images, and the character itself.

Training to recognize a character

The frame in the top dialog window should enclose a single character, and this character must be fully enclosed by the frame. If
the frame encloses only part of the character or more than one character, click the frame borders and move them so that the above�

stated requirements are met. The and buttons move the frame border as well (and are useful for training italic symbols).
Once you have positioned the frame correctly, type in the character and click the Train button.

Note:

• You may only train the system to read characters included in the alphabet. If you wish to train ABBYY FineReader Engine to
read characters that cannot be entered from the keyboard, use a combination of two characters to denote these non�

existent characters or copy the required character from the Character Table (click the button in the Pattern
Training dialog to open the Character Table).

• If you wish to train the system to retain character formatting, select the corresponding Italic or Bold item in the Pattern
Training dialog before clicking the Train button.

 90

ABBYY FineReader Engine 10 Guided Tour

• Make sure that only uppercase/lowercase characters are entered when training uppercase/lowercase character images
respectively.

If you make a mistake during training, click the Back button to return the frame to its previous position. The last "image — character"
pair to be entered will automatically be removed from the pattern. Note that this "undo" function is limited to the last word trained.

Training to recognize ligatures

A ligature is a combination of two or three characters "stuck" together, for example, fi, fl, ffi. These characters are difficult to separate
because they are "stuck" together as part of the printing process. In fact, better results can be obtained by treating them as "single"
compound characters.

Training ligatures is no different to training separate characters:

1. Type the necessary character combination and click the Train button.

2. The frame in the top dialog window should enclose the entire ligature. You can move the frame border using the mouse

or by clicking the and buttons.

Each pattern may contain up to 1000 new characters. However, you should not create too many ligatures, as it may adversely affect the
recognition quality

Training limitations

You should also take the following limitations into account when you train ABBYY FineReader Engine:

• ABBYY FineReader Engine does not differentiate between certain characters which are usually considered different. Such
images are recognized as one and the same character. For example, the straight ('), right (’) and left (‘) apostrophes are kept
in the pattern as one character — the straight apostrophe. Thus, you will never see the right and left apostrophes in the
recognized text, even if you try to train them.

• In some cases a certain image is recognized as a certain character depending on its environment.

• Pattern training is not supported for hieroglyphic languages.

See also

Recognizing with Training
RecognizerParams

Pattern Training Dialog Box

This dialog box displays during recognition if the IRecognizerParams::TrainUserPatterns property is TRUE and some user pattern
file is specified in the IRecognizerParams::UserPatternsFile property.

The top dialog window displays the character you train. The frame enclosing the character must fully enclose the character or
several characters (in case you train ligatures).

 91

ABBYY FineReader Engine 10 Guided Tour

Option Option description
Active
pattern

Displays the active user pattern file that should by specified in the IRecognizerParams::UserPatternsFile
property.

Moves the enclosing frame left. Move the frame so as to enclose the entire character.
button

Moves the enclosing frame right. Move the frame so as to enclose the entire character.
button

Specify the name of the character enclosed by the frame in the top window. If you train ABBYY FineReader to
recognize characters you cannot type, you may use two–character combinations as captions, or you may copy the

necessary character from the character table. Click the

Enter
character

button to open the table.

Opens the character table. You may choose the necessary character from the table and copy it to the Enter
character field. button

Train
(button) Trains the character, i.e. adds the new pair "character image–character caption" to the active pattern.

Effects group
Italic Specifies that the current character is italic.

Bold Specifies that the current character is bold.

Superscript Specifies that the current character is superscript.

Subscript Specifies that the current character is subscript.

If you have made a mistake during training, you may click the Back button and the frame will go back to the
previous position, and the latest pair "image–character" will be removed from the pattern. This "undo" is limited: you
may only "undo" training in the last word.

Back
(button)

Skips the current character. Use this button if what the frame encloses is not a character, or if you were unable to
enclose a character or a group of character fully. Skip

(button) Note: If you click the Skip button, you'll see the ^ character in the recognized text in the place of the character
you skipped.

See also

RecognizerParams
Recognizing with Training
Training User Patterns

 92

ABBYY FineReader Engine 10 Guided Tour

Working with Dictionaries

ABBYY FineReader Engine allows you to attach dictionaries of various types to a recognition language, which greatly improves
recognition quality.

Dictionary types

Dictionaries may be of several types:

Standard dictionary

This type of dictionary is already provided for the predefined languages that have built�in dictionary support (see the comments in the
list of predefined languages). Additionally, for some languages there are dictionaries of specialized terms (e.g. medical and law).
Standard dictionaries are represented by three or four files. They have names which are usually the same as the full or short name of
the language and an .amd, .amm, .amt or .ame extension. Files with .amd, .amm and .amt extensions are always present (they are stored
in folder /Bin) and cannot be changed. No .ame file is provided with ABBYY FineReader Engine: this is a file for storing a dictionary
extension, i.e. words added to the dictionary by the user. You can create a dictionary extension in ABBYY FineReader and then copy
the created file to the folder /Bin in the ABBYY FineReader Engine folder. ABBYY FineReader stores the extensions of standard
dictionaries in %appdata%\ABBYY\FineReader\10.00\UserDictionaries.
This dictionary type is described by the StandardDictionaryDescription object.

User dictionary

Can be created either by using the Dictionary object or in ABBYY FineReader (see the ABBYY FineReader help file for more details on
creating user dictionaries). The Dictionary object allows you to add and remove words using its methods, and to edit the dictionary
with the help of the Dictionary dialog box. This dialog box allows you to import any text file in Windows ANSI and Unicode
encoding (the only requirement is that words must be separated by spaces or other non�alphabetic characters).
This dictionary type is described by the UserDictionaryDescription object.

Regular�expression�based dictionary

Specifies the rules that define what words are allowed in a language and what words are not allowed.
This dictionary type is described by the RegExpDictionaryDescription object.

External dictionary

Allows you to implement your own type of dictionary. This dictionary is represented as the IExternalDictionary interface, which is
implemented on the client side.
This dictionary type is described by the ExternalDictionaryDescription object.

ABBYY FineReader Engine provides a DictionaryDescription object for describing all types of dictionary. This is the basic object
from which the descriptions of different dictionary types are inherited.

All these dictionary descriptions are elements of the DictionaryDescriptions collection.

Creating a dictionary description

To create dictionary descriptions, the CreateStandardDictionaryDesc, CreateUserDictionaryDesc,
CreateRegExpDictionaryDesc, and CreateExternalDictionaryDesc methods of the Engine object are used. These methods
return a reference to the object describing the corresponding dictionary type.

Dictionary properties

For each dictionary, the identification property of the dictionary must be specified:

• For a standard dictionary (StandardDictionaryDescription), specify its LanguageId property, which defines the ID of
the language.

• For a user dictionary (UserDictionaryDescription), specify its FileName property, which provides the path to the user
dictionary.

• For a regular�expression�based dictionary (RegExpDictionaryDescription), use the SetText method to specify the
regular expression. See Semantics of ABBYY FineReader Engine Regular Expressions.

• For an external dictionary (ExternalDictionaryDescription), use the SetDictionary method to specify the dictionary.

All dictionary types are assigned a weight. The weight of a dictionary affects the weight of words from the given dictionary when they
are detected during recognition. The weight parameter is a percentage and must be non�negative. A weight of 0 does not automatically
mean that there is no such dictionary. Weights of more than 100 percent are allowed, but the user must be very careful when using
such parameters. The weight is specified in the IDictionaryDescription::Weight property and is set to 100 by default.

 93

ABBYY FineReader Engine 10 Guided Tour

Standard dictionaries also have a CanUseTrigrams option which allows or forbids the program to use trigrams built on the basis of
the selected dictionary. Trigrams are combinations of three letters. Not all of these combinations occur in real words. A word with a
non�dictionary trigram is very likely to be unpronounceable. Trigrams are used to cut off unreliable words. We recommend enabling
trigrams for "general" standard dictionaries and disabling them for dictionaries of terms.

Dictionaries of a recognition language

A text recognition language (the TextLanguage object) can have both dictionaries containing words of the language and dictionaries
with prohibited words. The first ones are specified for each basic recognition language of the text language and are accessible via the
IBaseLanguage::DictionaryDescriptions property. A base language may have no dictionary attached to it. The prohibiting
dictionaries are attached directly to the text recognition language through the ITextLanguage::ProhibitingDictionaries property.

If you want only the dictionary words to be allowed during recognition, set the
IBaseLanguage::AllowWordsFromDictionaryOnly property to TRUE. In this case, a word that is not found in the dictionary of the
base language can appear in the recognized text only if ABBYY FineReader Engine found no dictionary variants.

How to attach a dictionary to a recognition language

1. Create a TextLanguage object and receive its collection of base languages (the BaseLanguages object).

2. Create a BaseLanguage object and receive its collection of dictionary descriptions (the DictionaryDescriptions object).

3. Create a dictionary description with the help of the CreateStandardDictionaryDesc, CreateUserDictionaryDesc,
CreateRegExpDictionaryDesc, or CreateExternalDictionaryDesc method of the Engine object.

4. [Optional] Specify the weight of the created dictionary.

5. Specify the identification property of the dictionary: the LanguageId property for a standard dictionary, the FileName
property for a user dictionary, call the IRegExpDictionaryDescription::SetText method for a regular�expression�based
dictionary, or call the IExternalDictionaryDescription::SetDictionary method for an external dictionary.

6. Add the newly created dictionary description to the collection of dictionary descriptions of the base language. Use the Add
method of the DictionaryDescriptions collection.

Note: You can create several dictionaries of different types and add them to the DictionaryDescriptions collection of
one base recognition language.

7. [Optional] Specify other properties of the BaseLanguage object.

8. Add the BaseLanguage object with the attached dictionary to the BaseLanguages collection.

9. [Optional] Set the prohibiting dictionaries using the ProhibitingDictionaries property of the TextLanguage object.

10. Assign the created TextLanguage object to the TextLanguage property of the RecognizerParams object.

Sample code in C++ and Visual Basic:

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.
 FREngine::IEnginePtr Engine;
 ...
 // Create a TextLanguage object and receive its collection of base languages
 FREngine::ITextLanguagePtr pTextLang = Engine->CreateTextLanguage();
 FREngine::IBaseLanguagesPtr pBaseLangCollection = pTextLang->BaseLanguages;

 // Create a BaseLanguage object and receive its collection of dictionary descriptions
 FREngine::IBaseLanguagePtr pBaseLang = Engine->CreateBaseLanguage();
 pBaseLang->InternalName = L"SampleBaseLanguage";
 pBaseLang->put_LetterSet(FREngine::BLLS_Alphabet, L"abc123");

 FREngine::IDictionaryDescriptionsPtr pDictDescCollection = pBaseLang-
>DictionaryDescriptions;

 // Create a standard dictionary description
 FREngine::IStandardDictionaryDescriptionPtr pDicDescription =
 Engine->CreateStandardDictionaryDesc();

 // [optional] Specify the weight of the created dictionary
 pDicDescription->Weight = 100;

 94

ABBYY FineReader Engine 10 Guided Tour

 // Specify the identification property of the dictionary
 pDicDescription->LanguageId = FREngine::LI_EnglishUnitedStates;

 // Add the created dictionary to the DictionaryDescriptions collection
 pDictDescCollection->Add(pDicDescription);

 // [optional] Specify other properties of the BaseLanguage base language
 pBaseLang->AllowWordsFromDictionaryOnly = VARIANT_TRUE;

 // Add the BaseLanguage object with the attached dictionary
 // to the BaseLanguages collection
 pBaseLangCollection->Add(pBaseLang);

 // Create a RecognizerParams object
 FREngine::IRecognizerParamsPtr pParams = Engine->CreateRecognizerParams();
 // Assign the created TextLanguage object to the TextLanguage property
 pParams->TextLanguage = pTextLang;
 ...

Visual Basic code

' Global ABBYY FineReader Engine object.
 Public Engine As FREngine.Engine
 ...
 ' Create a TextLanguage object and receive its collection of base languages
 Dim TextLang As FREngine.TextLanguage
 Set TextLang = Engine.CreateTextLanguage

 ' Create a BaseLanguage object and receive its collection of dictionary descriptions
 Dim BaseLangCollection As FREngine.BaseLanguages
 Set BaseLangCollection = TextLang.BaseLanguages

 Dim BaseLang As FREngine.BaseLanguage
 Set BaseLang = Engine.CreateBaseLanguage
 BaseLang.InternalName = "SampleBaseLanguage"
 BaseLang.LetterSet(BLLS_Alphabet) = "abc123"

 Dim DictDescCollection As FREngine.DictionaryDescriptions
 Set DictDescCollection = BaseLang.DictionaryDescriptions

 ' Create a standard dictionary description
 Dim DicDescription As FREngine.StandardDictionaryDescription
 Set DicDescription = Engine.CreateStandardDictionaryDesc

 ' [optional] Specify the weight of the created dictionary
 DicDescription.Weight = 100

 ' Specify the identification property of the dictionary
 DicDescription.LanguageId = LI_EnglishUnitedStates

 ' Add the created dictionary to the DictionaryDescriptions collection
 DictDescCollection.Add DicDescription

 ' [optional] Specify other properties of the BaseLanguage base language
 BaseLang.AllowWordsFromDictionaryOnly = True

 ' Add the BaseLanguage object with the attached dictionary
 ' to the BaseLanguages collection
 BaseLangCollection.Add BaseLang

 ' Create a RecognizerParams object
 Dim Params As FREngine.RecognizerParams
 Set Params = Engine.CreateRecognizerParams
 ' Assign the created TextLanguage object to the TextLanguage property
 Set Params.TextLanguage = TextLang
 ...

 95

ABBYY FineReader Engine 10 Guided Tour

Cache dictionaries

A cache dictionary is a small dictionary (about a hundred words) which can be changed easily during processing. Cache dictionaries
can be used when it is possible to select a dictionary more precisely, e.g. if you find new information about the document during
processing. Such dictionaries are suitable for field level recognition.

For example, suppose there are two fields on a form you need to recognize: the name of a city and the name of a street. You have
recognized the name of the city and you have the list of streets in this city. In this case you may load the appropriate cache dictionary
with the street names and thus recognize the name of the street more quickly and accurately.

ABBYY FineReader Engine provides the AddWordsToCacheDictionary, AddWordToCacheDictionary, and
CleanCacheDictionary methods of the DocumentAnalyzer object for working with cache dictionaries.

See also

Working with Languages
Recognizing Words with Spaces

Working with ABBYY FineReader Engine Regular Expressions

Regular expressions are used in regular�expression�based dictionaries to define what words are allowed in a language and what are not.

The ABBYY FineReader Engine regular expression alphabet is described in the following table:

Conventional
regular expression
sign

Item name Usage examples and explanations

Any character . c.t — denotes words like “cat”, “cot”

Character from a
character range

[b�d]ell — denotes words like “bell”, “cell”, “dell”
[ty]ell — denotes words “tell” and “yell” []

[^y]ell — denotes words like “dell”, “cell”, “tell”, but forbids “yell”
[^n�s]ell — denotes words like “bell”, “cell”, but forbids “nell”, “oell”, “pell”, “qell”,
“rell”, and “sell"

Character out of a
character range [^]

Or | c(a|u)t — denotes words “cat” and “cut"

0 or more
occurrences in a
row

* 10* — denotes numbers 1, 10, 100, 1000, etc.

1 or more
occurrences in a
row

+ 10+ — allows numbers 10, 100, 1000, etc., but forbids 1.

[0�9a�zA�Z] — allows a single character;
[0�9a�zA�Z]+ — allows any word Letter or digit [0�9a�zA�Z]

Capital Latin letter [A�Z]

Small Latin letter [a�z]

Capital Cyrillic
letter [А�Я]

Small Cyrillic letter [а�я]

Digit [0�9]

Space \s

Character, used by
system. @

The Dictionary parameter sets the path to the user dictionary from which words
must be taken. Backslahes in the path must be doubled. For example:
@(D:\\MyFolder\\MyDictionary.amd).

Word from
dictionary @(Dictionary)

Note:

 96

ABBYY FineReader Engine 10 Guided Tour

• Some characters used in regular expressions are “auxiliary,” i.e. they are used for system purposes. As you can see from the list
above, such characters include square brackets, periods, etc. If you wish to enter an auxiliary character as a normal one, put a
backslash (\) before it. Example: [t�v]x+ denotes words like “tx”, “txx”, “txxx”, etc., “ux”, “uxx”, etc., but \[t�v\]x+ denotes
words like “[t�v]x”, “[t�v]xx”, “[t�v]xxx” etc.

• If you need to group certain regular expression elements, use brackets. For example, (a|b)+|c denotes “c” and any
combinations like “abbbaaabbb”, “ababab”, etc. (a word of any non�zero length in which there may be any number of a's and
b's in any order), whilst a|b+|c denotes “a”, “c”, and “b”, “bb”, “bbb”, etc.

Sample regular expressions

Regular expression for dates

The number denoting day may consist of one digit (e.g. 1, 2 etc.) or two digits (e.g. 02, 12), but it cannot be zero (00 or 0). The regular
expression for the day should then look like this: ((|0)[1�9])|([1|2][0�9])|(30)|(31).

The regular expression for the month should look like this: ((|0)[1�9])|(10)|(11)|(12).

The regular expression for the year should look like this: (((19)|(20))[0�9][0�9])|([0�9][0�9]).

What is left is to combine all this together and separate the numbers by a period (e.g. 1.03.1999). The period is an auxiliary sign, so we
must put a backslash (\) before it. The regular expression for the full date should then look like this:

(((|0)[1�9])|([1|2][0�9])|(30)|(31))\.(((|0)[1�9])|(10)|(11)|(12))\.((((19)|(20))[0�9][0�9])|([0�9][0�9]))

Regular expression for e�mail addresses

You can easily make a language for denoting e�mail addresses. The regular expression for an e�mail address should look like this:

[a�zA�Z0�9_\�\.]+\@[a�zA�Z0�9\.\�]+\.[a�zA�Z]+

See also

Working with Dictionaries
RegExpDictionaryDescription

Recognizing Words with Spaces

ABBYY FineReader Engine allows you to add words with spaces to a dictionary. This feature can be very useful for checking words like
“New York.” We recommend using a dictionary for words with spaces when recognizing fields (small areas) on the image. Fields are
cut from the document and passed to ABBYY FineReader Engine for recognition as small images, each representing one word.

To recognize words with spaces, do the following:

1. Add the "space" character to the alphabet of the current language.

2. Add the necessary words with spaces to the dictionary.

3. Set the OneWordPerLine property of the RecognizerParams object to TRUE.

Below is a detailed description of this operation:

1. Create a new text language on the basis of a predefined language. To do this, create a TextLanguage object using the
CreateTextLanguage method of the Engine object and copy the attributes of the predefined language.

2. Add the "space" character to the BaseLanguage object within TextLanguage object, using the LetterSet property of the
BaseLanguage object.

3. Create a new dictionary and add all the necessary words with spaces to this dictionary. You can use the Dictionary object
to do this.

4. Create a UserDictionaryDescription object. Assign the path to the new dictionary to the FileName property of this
object.

5. Add the UserDictionaryDescription object to the DictionaryDescriptions collection of the BaseLanguage object.

6. In the RecognizerParams object of all text blocks, assign the previously created TextLanguage object to the
TextLanguage property, and the TRUE value to the OneWordPerLine property.

 97

ABBYY FineReader Engine 10 Guided Tour

Sample code in Visual C++ (COM), where the "space" character has been added to the alphabet of the English language, and the word
“New York” has been added to the dictionary:

Visual C++ (COM) code

...
 // Create a new TextLanguage object
 FREngine::ITextLanguagePtr pTextLanguage = Engine->CreateTextLanguage();

 // Copy all attributes from the predefined English language
 FREngine::ITextLanguagePtr pEnglishLanguage =
 Engine->PredefinedLanguages->FindLanguage("English")->TextLanguage;
 pTextLanguage->CopyFrom(pEnglishLanguage);
 pTextLanguage->InternalName = L"SampleTL";

 // Bind new dictionary to the first (and single) BaseLanguage object within
TextLanguage
 FREngine::IBaseLanguagePtr pBaseLanguage = pTextLanguage->BaseLanguages->Item(0);

 // Change the internal dictionary name to a user-defined name
 pBaseLanguage->InternalName = L"SampleBL";

 // Add the "space" character
 _bstr_t alphabet = pBaseLanguage->GetLetterSet(FREngine::BLLS_Alphabet);
 pBaseLanguage->PutLetterSet(FREngine::BLLS_Alphabet, alphabet + L" ");

 // Create a new dictionary
 _bstr_t dictionaryFile = L"D:\\sample.amd";

 FREngine::IDictionaryPtr pDictionary =
 Engine->CreateNewDictionary(dictionaryFile,
 FREngine::LI_EnglishUnitedStates);
 pDictionary->Name = L"Sample";

 // Add words with space to the dictionary
 pDictionary->AddWord("New York", 100);

 // Get the collection of dictionary descriptions and remove all items
 FREngine::IDictionaryDescriptionsPtr pDictionaryDescriptions =
 pBaseLanguage->DictionaryDescriptions;
 pDictionaryDescriptions->RemoveAll();

 // Create a user dictionary description and add it to the collection
 FREngine::IUserDictionaryDescriptionPtr userDic =
 Engine->CreateUserDictionaryDesc();
 // Specify the path to the dictionary which contains words with spaces
 userDic->FileName = dictionaryFile;
 pDictionaryDescriptions->Add(userDic);

 // Specify the properties of the RecognizerParams object of all text blocks
 // Iterate blocks
 for(long i = pLayout->Blocks->Count - 1; i >= 0; i--) {
 FREngine::BlockTypeEnum blockType = pLayout->Blocks->Item(i)->Type;
 // Find the text block
 if(blockType != FREngine::BT_Text) {
 pLayout->Blocks->Remove(i);
 } else {
 pLayout->Blocks->Item(i)->GetAsTextBlock()->RecognizerParams->
 TextLanguage = pTextLanguage;
 pLayout->Blocks->Item(i)->GetAsTextBlock()->RecognizerParams->
 OneWordPerLine = VARIANT_TRUE;
 }
 }
 ...

See also

Working with Languages
Working with Dictionaries

 98

ABBYY FineReader Engine 10 Guided Tour

Setting up Scanning Options

ABBYY FineReader Engine 10 provides the user control over the scanning parameters via the API. The following parameters are
accessible via the ABBYY FineReader Engine 10 API: brightness, color, resolution, the size of the scanning area, duplex scanning mode,
a pause between pages and some more. The scanning parameters are set by using the ScanSourceSettings property of the
ScanManager object. This property is required to get to access to the ScanSourceSettings object which, in its turn, provides access
to the scanning settings of a source. You can find some useful recommendations in the Tips for Document Scanning section.

To set up the scanning parameters:

1. Create a ScanManager object.

2. From the ScanSources property of the ScanManager object, choose the scan source.

3. Create a ScanSourceSettings object and initialize it with the settings of the selected scanner.

4. Set the ScanOptionsInterfaceType property of the ScanManager object to SOIT_None, in this case no interface will be
displayed.

5. Tune the scanning options. Select the appropriate values for brightness, resolution, and the other parameters in the
corresponding properties of the ScanSourceSettings object.

6. Set these scanning parameters in the ScanSourceSettings property of the ScanManager object.

7. Specify the folder name in which scanned pages will be stored. The folder name should be a String variable, for example,
ScanFolder.

8. Scan paper documents, save the images to the ScanFolder folder, and save the full path to the image files to the
StringsCollection object by using the Scan method of the ScanManager object. You can get the image file names from
this StringsCollection object and open the files as usual image files by using the methods of the Engine object, for
example, OpenImage or PrepareAndOpenImage.

Sample code in C++ and Visual Basic:

Visual C++ (COM) code

// Global FineReader Engine object.

FREngine::IEnginePtr Engine;

...

// Create ScanManager object

FREngine::IScanManagerPtr scanManager = Engine->CreateScanManager();

// Specify the scan source

FREngine::IStringsCollectionPtr sources = scanManager->ScanSources;

_bstr_t scanner = sources->Item(0);

// Create a ScanSourceSettings object

FREngine::IScanSourceSettingsPtr scanSettings = scanManager-
>GetScanSourceSettings(scanner);

// Do not display any interface

scanManager->ScanOptionsInterfaceType = FREngine::SOIT_None;

// Tune the scanning options

scanSettings->Resolution = 300;

scanSettings->PictureMode = FREngine::SPM_Grayscale;

// Set up the scanning options

scanManager->PutScanSourceSettings(scanner, scanSettings);

// The name of the folder in which scanned pages will be stored

char scanFolder[MAX_PATH + 1];

 99

ABBYY FineReader Engine 10 Guided Tour

// Scan and save images into scanFolder folder

FREngine::IStringsCollectionPtr scannedImages =

 scanManager->Scan(scanner, scanFolder, VARIANT_FALSE);

...

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Create a ScanManager object

Dim ScanManager As FREngine.ScanManager

Set ScanManager = Engine.CreateScanManager

' Specify the scan source

Dim Scanner As String

Scanner = ScanManager.ScanSources(0)

' Create a ScanSourceSettings object

Dim ScanSettings As FREngine.ScanSourceSettings

Set ScanSettings = ScanManager.ScanSourceSettings(Scanner)

' Do not display any interface

ScanManager.ScanOptionsInterfaceType = SOIT_None

' Tune the scanning options

ScanSettings.Resolution = 300

ScanSettings.PictureMode = SPM_Grayscale

' Set up the scanning options

ScanManager.ScanSourceSettings(Scanner) = ScanSettings

' The name of the folder in which scanned pages will be stored

Dim ScanFolder As String

' Collection of the full paths to the image files that were received from the scanner

Dim ScannedImages As FREngine.StringsCollection

' Scan paper documents and save the images into the ScanFolder folder

Set ScannedImages = ScanManager.Scan(Scanner, ScanFolder, False)

...

See also

ScanManager
ScanSourceSettings
Tips for Document Scanning

Best Practices
This section provides recommendations on how to scan and photograph documents and how to set recognition parameters in order
to achieve the best recognition results:

• Tips for Document Scanning

• Tips for Taking Photos

• Improving Recognition Quality

 100

ABBYY FineReader Engine 10 Guided Tour

Tips for Document Scanning

Recognition quality depends largely on the quality of the image, which greatly depends on the settings used during the document
scanning process.

Font Is Too Small

For optimal recognition results, scan documents printed in very small fonts at higher resolutions.

You can specify the desired resolution in the Resolution property of the ScanSourceSettings object.

Source image Recommended resolution
300 dpi for typical texts (printed in fonts of size 10 pt or larger)

400�600 dpi for texts printed in smaller fonts (9 pt or smaller)

Tuning Brightness

You may need to adjust the brightness setting when scanning in black�and�white mode. You can specify the desired brightness in the
Brightness property of the ScanSourceSettings object. A medium value of around 50% should suffice in most cases.

If the resulting image contains too many "torn" or "stuck" together letters, troubleshoot using the table below.

Your image looks like this Recommendations

This image is suitable for recognition.

• Lower the brightness to make the image darker.

• Scan in grayscale. Brightness will be tuned automatically. characters are "torn" or very light

• Increase the brightness to make the image brighter.

• Scan in grayscale. Brightness will be tuned automatically. characters are distorted, stuck together, or filled out

Print Quality

Poor�quality documents with "noise" (i.e. random black dots or speckles), blurred and uneven letters, or skewed lines and shifted table
borders may require specific scanning settings. For example, this fax and newspaper:

Poor�quality documents are best scanned in grayscale. When scanning in grayscale, the program will select the optimal brightness value
automatically.

Grayscale mode retains more information about the letters in the scanned text to achieve better recognition results when recognizing
documents of medium to poor quality.

 101

ABBYY FineReader Engine 10 Guided Tour

See also

Setting up Scanning Options
Tips for Taking Photos
Improving Recognition Quality

Tips for Taking Photos

Taking photos of documents requires some skill and practice. The characteristics of your camera and shooting conditions are also
important.

Note: For detailed information about the settings of your camera, please refer to the documentation supplied with your camera.

Before taking a picture:

1. Make sure that the page fits entirely within the frame.

2. Make sure that lighting is evenly distributed across the page and that there are no dark areas or shadows.

3. Straighten out the page if required and position the camera parallel to the plane of the document so that the lens looks to
the center of the text being photographed.

The topics below outline the required camera specifications and shooting modes.

Digital Camera Requirements

Minimum Requirements

• 2�megapixel sensor

• Variable focus lens (fixed�focus cameras, common in cell phones and hand�held devices, will usually produce images
unsuitable for OCR)

Recommended Requirements

• 5�megapixel sensor

• Flash disable feature

• Manual aperture control or aperture priority mode

• Manual focusing

• An anti�shake system, otherwise the use of a tripod is recommended

• Optical zoom

Shooting Modes

Lighting

Make sure there is enough light (preferably daylight). In artificial lighting, use two light sources positioned so as to avoid shadows.

Positioning the Camera

If possible, use a tripod. Position the lens parallel to the plane of the document and point it toward the center of the text.

 102

ABBYY FineReader Engine 10 Guided Tour

At full optical zoom, the distance between the camera and the document must be sufficient to fit the entire document into the frame.
Usually this distance will be 50�60 cm.

Flash

Whenever possible, turn off the flash to avoid glare and sharp shadows on the page. In poor lighting conditions, try using the flash
from a distance of about 50 cm, or, preferably, use additional lighting.

Important! Using the flash when photographing documents printed on glossy paper causes the worst glare.

White Balance

If your camera allows, use a white sheet of paper to set white balance. Otherwise, select the white balance mode which best suits the
current lighting conditions.

What do I do if...

There is not enough light

Try the following:

• Select a greater aperture value

• Select a greater ISO value for sensitivity

• Use manual focusing if the camera cannot lock the focus automatically

The picture is too dark and low�contrast

Try using additional light sources. Otherwise, increase the aperture value.

The picture is not sharp enough

Auto focus may not work properly in poor lighting or when photographing at a close distance. In poor lighting conditions, try using an
additional light source. When photographing a document up close, try using the Macro (or Close�Up) mode. Otherwise, if possible,
focus the camera manually.

If only a part of the picture is blurred, try reducing the aperture value. Increase the distance between the document and the camera
and use maximum zoom. Focus on a point anywhere in between the center and a border of the image.

In poor lighting conditions, when shooting in auto mode, the camera will use slower shutter speeds, which makes the resulting photo
less sharp. In this case, try the following:

• Enable the anti�shake system, if available.

 103

ABBYY FineReader Engine 10 Guided Tour

• Use auto release to prevent the shaking of the camera caused by pressing the shutter release button (even when using a
tripod).

The flash causes glare in the center of the picture

Turn off the flash. Otherwise, try photographing from a greater distance.

See also

Tips for Document Scanning

Improving Recognition Quality

Recognition quality depends not only on the quality of the image (see recommendations for scanning and taking photos), but on the
recognition settings as well.

Print Type

When recognizing draft dot�matrix printouts or typewritten texts, recognition quality can sometimes be improved by selecting the
right text type. You can specify the text type in the TextTypes property of the RecognizerParams object. By default, the value of this
property is TT_Normal, which corresponds to common typographic text. However, you may also select a more specific type.

An example of typewritten text. All letters are of equal width (compare, for example, "w" and "a"). Select
TT_Typewriter for texts of this type.

An example of draft dot�matrix text. Character lines are made up of dots. Select TT_Matrix for texts of
this type.

Document Languages

ABBYY FineReader Engine recognizes both mono� and multi�lingual (e.g. written in several languages) documents. For multi�lingual
documents, you must specify several recognition languages. English is the default recognition language. To change the default
recognition language, use the SetPredefinedTextLanguage method of the RecognizerParams object.

Scanning Facing Pages

When scanning facing pages of a book, both pages will appear as a single image, e.g.

To improve recognition quality, split the facing pages into two separate images. You can find the position where to split the image into
pages using the IFRPage::FindPageSplitPosition and IDocumentAnalyzer::FindPageSplitPosition methods.

When scanning very thick books, the text close to the binding may be distorted. The IFRPage::RemoveGeometricalDistortions
and IDocumentAnalyzer::RemoveGeometricalDistortions methods straighten out distorted lines on an image.

Photo Correction

OCR quality may be affected by distorted text lines close to the margins, by document skew, by noise, and other defects commonly
found on digital photos. A set of photo correction methods allows you to straighten out text lines, remove motion blur, and reduce
noise:

• to straighten out distorted lines on an image, use the IFRPage::RemoveGeometricalDistortions and
IDocumentAnalyzer::RemoveGeometricalDistortions methods

• to remove motion blur, use the IImageDocument::RemoveCameraBlur method

• to reduce noise, use the IImageDocument::RemoveCameraNoise method

 104

ABBYY FineReader Engine 10 Guided Tour

 105

See also

Tips for Document Scanning
Tips for Taking Photos

Description of the ABBYY FineReader Engine Samples
The ABBYY FineReader Engine 10 distribution pack contains a set of sample source code showing how to use Engine in different
scenarios. This section contains a short description of these samples. The detailed description of the samples can be found in the Code
Samples Library provided with this distribution pack (Start > Programs > ABBYY FineReader Engine 10 > Code Samples
Library).

The ABBYY FineReader Engine samples are provided for Visual Basic, Visual Basic .Net, Delphi, raw C++, C++ with the Native COM
Support, C#, and script languages. For each of these developer platforms, a similar set of samples is provided.

All sample code can be found in:

• %ALLUSERSPROFILE%\Application Data\ABBYY\SDK\10\FineReader Engine — for Windows 2000, Windows XP,
Windows Server 2003;

• %ProgramData%\ABBYY\SDK\10\FineReader Engine — for Windows Vista, Windows Server 2008, Windows 7.

Sample Name Description

Hello Performs document conversion with just a few lines of code. This sample will help you to start
development using the ABBYY SDK.

RecognizedTextProcessing Calculates recognition statistics (e.g. the number of suspicious characters and rejects, the number of
words which are not in the dictionary).

EventsHandling
Illustrates the use of the callback interfaces using the FRDocument callback interface
(IFRDocumentEvents) as an example. The sample shows the progress of recognition and export
during image processing.

CustomLanguage
Creates a new recognition language and changes its dictionary to a manually�created sample dictionary.
After recognition, it calculates the number of words in the text and how many of them were found in
the user dictionary.

CommandLineInterface
Exists only for raw C++. Provides the command line interface of ABBYY FineReader Engine. The sample
produces a CommandLineInterface utility, which supports most of the ABBYY FineReader Engine API
functions through numerous keys.

FRECOMWrapper
Exists only for C++ (Native COM support). Provides an easy way to use ABBYY FineReader Engine from
script languages. The sample produces FREngineWrap.dll, which can be used to get an ABBYY
FineReader Engine object from a script language such as VBScript or JavaScript.

PDFExportProfiles Exists only for C#. Shows the advantages of using export profiles during export to PDF.

MultiProcessingRecognition Exists only for C#. Shows the gain in speed when using multi�processing recognition.

ABBYY FineReader Engine 10 API Reference

API Reference

Alphabetical List of the ABBYY FineReader Engine 10 Objects and
Interfaces
The ABBYY FineReader Engine functionality is implemented in a number of objects that provide methods for working with images,
page layout and blocks, languages and recognized text. The interfaces of the ABBYY FineReader Engine objects are derived from
IDispatch, that is they support early and late binding.

Important! Pointers to child object's interfaces are valid until the parent object exists. An attempt to access a child object after its
parent object has been destroyed may result in error. Please, see for details Working with Properties.

Name Description
Artefact Exposes properties of an artefact.

BackgroundLayer Exposes properties of a background layer of a page.

BarcodeBlock Provides access to specific properties of the barcode block.

BarcodeParams Allows you to tune the parameters of barcode block recognition.

BarcodeSymbol Provides access to the properties of one character of a recognized barcode.

BarcodeText Represents a text of a recognized barcode as a collection of characters.

BaseLanguage Represents a base recognition language.

BaseLanguages This object is a collection of base languages (BaseLanguage objects).

Block This object represents a single block.

Caption Provides access to specific properties of a table or picture caption.

Captions Provides access to the collection of captions of a table or picture (Caption objects).

CharacterRecognitionVariant This object represents a variant of a character's recognition.

This object represents a collection of variants of a character's recognition
(CharacterRecognitionVariant objects). CharacterRecognitionVariants

Allows you to access different parameters of a single character in the recognized
text. CharParams

CheckmarkBlock This object provides access to specific properties of a checkmark block.

This object exposes methods and properties for working with a group of
checkmarks. CheckmarkGroup

Dictionary This object is designed for working with user�defined dictionaries.

DictionaryDescription This object is a dictionary description which may be typecast to one of its child
objects: StandardDictionaryDescription, UserDictionaryDescription or
RegExpDictionaryDescription.

DictionaryDescriptions This object is a collection of dictionaries.

DocumentAnalyzer This object exposes a set of analysis and recognition functions.

DocumentContentInfo This object contains information about author, keywords, subject, title of the
document and stores document information dictionary.

DocumentElement Provides access to one element of the document stream.

DocumentInfo Stores service information about the open PDF file.

DocumentInformationDictionary Represents a document information dictionary which contains metadata from the
PDF file.

DocumentInformationDictionaryItem This object is an element of a document information dictionary.

 106

ABBYY FineReader Engine 10 API Reference

DocumentSection Represents one logical section of the document.

DocumentStream Provides access to one document stream.

DocumentStructure Provides access to the logical structure of the document.

DocumentStructureDetectionParams This object is used for setting up the parameters of the document structure
detection during document synthesis.

Engine This is the main ABBYY FineReader Engine object.

EnumDictionaryWords Serves for iterating words included in a user�defined dictionary.

Exporter Provides tools for saving recognized text into files in external formats.

This is a callback interface which is used to deliver information about dictionary
words to the recognizer. ExternalDictionaryCallback

ExternalDictionaryDescription Provides access to an external dictionary.

This object is used for setting up the parameters of font formatting detection during
document synthesis. FontFormattingDetectionParams

Specifies the parameters of font formatting detection at the stage of page synthesis. FontFormattingDetectionParamsForPage

FontStyle Exposes properties of a font style.

Footnote Exposes properties of a footnote.

FootnoteSeries Stores the parameters of one series of footnotes.

FootnoteSeriesArray Represents an array of footnote series.

FRDocument Corresponds to a document which may contain several pages.

FRPage Corresponds to a page of document.

FRPages This object is a collection of document pages.

FRRectangle Represents a location and size of a rectangle.

FuzzyString Represents a fuzzy string.

FuzzyStringsCollection Collection of the FuzzyString objects.

GlobalStyleStorage Provides access to the styles of the document.

HTMLExportParams Provides functionality for tuning parameters of recognized text export in HTML
format.

Hyperlink This object represents a hyperlink.

IDocumentAnalyzerEvents This is callback interface that is used for reporting events from the
DocumentAnalyzer object to the listeners.

IExporterEvents This is callback interface that is used for reporting events from the Exporter object
to the listeners.

IExternalDictionary This is interface for external dictionary.

IFRDocumentEvents This is callback interface that is used for reporting events from the FRDocument
object to the listeners.

IFRPageEvents This is callback interface that is used for reporting events from the FRPage object to
the listeners.

IFRPagesEvents This is callback interface that is used for reporting events from the FRPages object
to the listeners.

IImageDocumentEvents This is callback interface that is used for reporting events from the
ImageDocument object to the listeners.

IImagePasswordCallback This is callback interface that is used for processing password�protected image files

Image This object represents a single "image plane" of an open image.

 107

ABBYY FineReader Engine 10 API Reference

ImageDocument This object corresponds to an open image.

ImageDocumentsCollection Collection of ImageDocument objects.

ImageModification This object is used to store parameters of image modification.

ImageProcessingParams Specifies how an image will be preprocessed before analysis and recognition.

Incut Exposes method and properties of an incut.

IRecognizedPages This interface contains properties and methods necessary for passing recognized
texts and images of the pages to be exported, one�by�one.

IScanManagerEvents This is callback interface that is used for interaction of the ScanManager object
with its listeners.

JpegExtendedParams This object is used to store parameters used when saving images in JPEG format.

LanguageDatabase Provides means for performing advanced operations with recognition languages.

Layout Exposes methods and properties for working with the image layout.

LayoutBlocks This object represents a collection of blocks (Block objects).

LayoutsCollection Collection of Layout objects.

License Provides access to the current license parameters.

LicenseCollection Provides access to a collection of available (activated) licenses.

List Represents one list template. It is a collection of list levels (ListLevel objects).

ListLevel Provides access to the parameters of one level of a list.

ListParams Provides access to the parameters of the list to which a paragraph belongs.

LongsCollection Collection of long type variables.

MainText Exposes method and properties of a main text.

MultipageImageWriter This object is used for saving several images into a single image file.

MultiProcessingParams Provides access to the parameters of multiple CPU cores usage.

ObjectsExtractionParams Provides access to parameters used for objects extraction.

OrientationDetectionParams Provides access to the parameters used for tuning the page orientation detection.

PageAnalysisParams Provides access to parameters used for tuning the page layout analysis process.

PageBlackSeparator Represents a single page black separator.

PageElement Represents an element of a recognized page.

PageElements Collection of page elements (PageElement objects).

PageProcessingParams This object is used for tuning different parameters of layout analysis and recognition.

PageSection Represents one page section.

PageSections Collection of page sections (PageSection objects).

PageStream Represents a page stream.

PageStreams Collection of page streams (PageStream objects).

PageStructure Provides access to the logical structure of the page.

Paragraph Exposes methods and properties for working with a single paragraph of the
recognized text.

ParagraphLine Represents a single line in the paragraph of a recognized text.

ParagraphLines Represents a collection of paragraph lines.

ParagraphParams This object exposes extended properties of a single paragraph.

 108

ABBYY FineReader Engine 10 API Reference

Paragraphs This object represents collection of paragraphs of the recognized text.

ParagraphStyle Exposes properties of the paragraph style.

PDFAExportParamsOld Provides functionality for tuning parameters of recognized text export in PDF/A
format. This object is obsolete, we recommend you to use the PDFExportParams
object.
This object provides access to encryption parameters of the PDF file during export. PDFEncryptionInfo
Provides functionality for tuning parameters of recognized text export in PDF
(PDF/A) format. PDFExportParams

PDFExportParamsOld Provides functionality for tuning parameters of recognized text export in PDF
format. This object is obsolete, we recommend you to use the PDFExportParams
object.

PdfExtendedParams Provides functionality for tuning the parameters of saving an image to PDF format

PDFMRCParams Provides functionality for tuning Mixed Raster Content (MRC) parameters of the
PDF (PDF/A) file during export.

PlainText Represents recognized text without formatting.

PPTExportParams Provides functionality for tuning parameters of recognized text export in PPTX
format.

PredefinedLanguage Represents a single predefined recognition language.

PredefinedLanguages Represents ABBYY FineReader Engine predefined languages collection.

PrepareImageMode Contains different attributes specifying how an image will be prepared during
conversion to internal format.

RasterPictureBlock Provides access to specific properties of the raster picture block.

RecognizerParams Allows you to tune parameters of text recognition.

RegExpDictionaryDescription This object provides access to a regular�expression�based dictionary.

Region This supplementary object is designed to store the information on ABBYY
FineReader Engine block’s region.

RTFExportParams Provides functionality for tuning parameters of recognized text export in
RTF/DOC/DOCX format.

RunningTitle Provides access to a single header or footer on a page.

RunningTitleSeries Stores the parameters of one series of running titles.

RunningTitleSeriesArray Represents an array of running title series (RunningTitleSeries objects).

RunningTitleSeriesText Provides access to the text of the running title series.

ScanManager Exposes a set of properties and methods required to perform scanning.

ScanSourceSettings Provides access to the scanning settings of a source.

SeparatorBlock Provides access to specific properties of a separator block.

SeparatorGroup Represents a group of separator blocks (SeparatorBlock objects).

StandardDictionaryDescription Provides access to a standard dictionary.

StreamElementLocationParams Allows you to locate a text element in a column.

StringsCollection Collection of strings.

SynthesisParamsForDocument This object is used for setting up the parameters of the document synthesis.

SynthesisParamsForPage This object is used for setting up the parameters of the page synthesis.

TableAnalysisParams Provides access to parameters affecting table block analysis process.

TableBlock Provides access to specific properties of a table block.

TableCell Represents a single table cell in a table block.

 109

ABBYY FineReader Engine 10 API Reference

TableCells Represents collection of table cells of a table block.

TableSeparator Represents a single table separator in a table block.

TableSeparators This object is a collection of table block separators.

TabPosition Stores information about all tab stops in a single paragraph.

TabPositions Provides access to all the tab stops in a single paragraph.

Text This object represents recognized text.

TextBarcode Provides access to specific properties of a barcode in a logic structure of a
document.

TextBlock Provides access to specific properties of the text block.
Specifies how a text block should be analyzed. TextBlockAnalysisParams

TextExportParams Provides functionality for tuning parameters of recognized text export in TXT and
CSV formats.

TextLanguage Represents the language of recognition for a text.

TextOrientation Represents a text orientation.

TextPicture Provides access to specific properties of a picture in a logic structure of a document.

TextTable Provides access to specific properties of a table in a logic structure of a document.

Provides access to specific properties of a table cell in a logic structure of a
document. TextTableCell

TrainingImage Represents a single training image.

TrainingImagesCollection Collection of TrainingImage objects.

UserDictionaryDescription This object provides access to a user dictionary.

VectorPictureBlock Provides access to specific properties of a vector picture block.

Word This object represents a word.

WordRecognitionVariant This object represents a variant of a word's recognition.

This object represents a collection of variants of a word's recognition
(WordRecognitionVariant objects). WordRecognitionVariants

Words This object represents a collection of words (Word objects).

Provides functionality for tuning parameters of recognized text export in XLS/XLSX
format. XLExportParams

XMLExportParams Provides functionality for tuning parameters of recognized text export in XML
format.

See also

Object Diagram

 110

ABBYY FineReader Engine 10 API Reference

ABBYY FineReader Engine 10 Object Diagram

 111

ABBYY FineReader Engine 10 API Reference

GetEngineObject Function
This function is the only means to get a pointer to the IEngine interface. It takes as an input parameter a serial number of a Developer
License. You may pass the necessary serial number to this function, or select the serial number later.

Visual Basic Syntax

Private Declare Function GetEngineObject Lib "FREngine.dll" (_

 ByVal developerSN As String, _

 ByVal reserved1 As String, _

 ByVal reserved2 As String, _

 engine As FREngine.Engine) As Long

C++ Syntax

HRESULT __stdcall GetEngineObject(

 BSTR developerSN,

 BSTR reserved1,

 BSTR reserved2,

 IEngine** engine);

Parameters

developerSN

[in] A string containing developer serial number that matches the necessary license. This parameter may be 0 or an empty string. In this
case, you must select the current license later using the IEngine::SetCurrentLicense method.

reserved1

[in] Reserved for future use. The empty string "" or Null pointer must be passed.

reserved2

[in] Reserved for future use. The empty string "" or Null pointer must be passed.

engine

[out] A pointer to IEngine* pointer variable that receives the interface pointer to the resulting Engine object.

Return Values

The function may return standard return values of ABBYY FineReader Engine functions.

Remarks

The Engine object is a singleton, so only one object of this type may be created in a single instance of the application that uses ABBYY
FineReader Engine. Repeated attempts to create the Engine object will return the same object. It is important to notice that the
process of creation of the Engine object takes rather long time because it requires loading not only the FREngine.dll, but a whole set
of other DLLs.

It is possible to create and run the Engine object on a multi–processor system, but there can be only one Engine object in each
process. A second call of GetEngineObject within the same process will return the reference to the existing object. Therefore, you
should create a separate Engine object for each process by calling the GetEngineObject function.

It is prohibited to initialize ABBYY FineReader Engine at the entry points of other DLLs, and also in constructors and destructors of
static and global objects implemented in DLLs, because they are called at the DLL entry points. This restriction is due to the fact that
the Win32 LoadLibrary function is not re–entrant. A user should initialize ABBYY FineReader Engine elsewhere, for example, in
WinMain function of an EXE module.

During initialization ABBYY FineReader Engine will reset the LC_CTYPE setting of msvcrt.dll to operating system defaults. This fact
should be taken into account if your application depends upon the msvcrt.dll locale–dependent services.

The GetEngineObject function creates the Engine object no matter the serial number specified or not. If the serial number was not
specified, you can receive the collection of available activated licenses (both local licenses activated on this current computer and
network licenses) with the help of the IEngine::Licenses property. Then you can view license properties and select the current
license using the IEngine::SetCurrentLicense method. While no activated license is specified as current, only the StartLogging,
StopLogging methods and the CurrentLicense and Licenses properties of the Engine object are available. Other methods of the
Engine object will return CLASS_E_NOTLICENSED error code.

Sample

Visual C++ (COM) code

 112

ABBYY FineReader Engine 10 API Reference

HMODULE m_libraryHandle;

 IEngine* m_enginePtr;

 BOOL LoadEngine(const CHAR* filePath, const WCHAR* developerSerialNumber)

 {

 if(m_enginePtr != NULL)

 return TRUE;

 if(m_libraryHandle == NULL) {

 // load ABBYY FineReader Engine main DLL module

 m_libraryHandle = ::LoadLibraryEx(filePath, 0, LOAD_WITH_ALTERED_SEARCH_PATH);

 if(m_libraryHandle == NULL)

 return FALSE;

 }

 // Obtain ABBYY FineReader Engine main object

 typedef HRESULT (STDAPICALLTYPE* GetEngineFuncType)(const WCHAR*, const WCHAR*,

 const WCHAR*, IEngine**);

 GetEngineFuncType getEngineFunc = (GetEngineFuncType)::GetProcAddress(

 m_libraryHandle, "GetEngineObject");

 if(getEngineFunc == NULL || getEngineFunc(developerSerialNumber,

 NULL, NULL, &m_enginePtr) != S_OK) {

 UnloadEngine();

 return FALSE;

 }

 return TRUE;

 }

Visual Basic code

Public Engine As FREngine.Engine

 Private Declare Function GetEngineObject Lib "FREngine.dll" (_

 ByVal DeveloperSN As String, _

 ByVal Reserved1 As String, _

 ByVal Reserved2 As String, _

 EngineObj As FREngine.Engine) As Long

 Sub Engine_Load(ByVal DeveloperSN As String)

 ' Visual Basic may load libraries from the current path only

 ChDir "Path to the folder with FREngine.dll"

 ' this conversion is needed to pass a Unicode string as a DLL function parameter
correctly

 Dim DeveloperSN_WideChar As String

 DeveloperSN_WideChar = StrConv(DeveloperSN, vbUnicode)

 If GetEngineObject(DeveloperSN_WideChar, "", "", Engine) <> 0 Then

 MsgBox "Error loading ABBYY FineReader Engine"

 End If

 End Sub

See also

Licensing
Modules
DeinitializeEngine

See samples: Hello, RecognizedTextProcessing, CustomLanguage, EventsHandling

DeinitializeEngine function
This function deinitializes ABBYY FineReader Engine 10. It is called automatically when all the references to ABBYY FineReader Engine
API objects are released, so there is no need to call it manually except for debug purposes (to determine which objects are not
released).

 113

ABBYY FineReader Engine 10 API Reference

Visual Basic Syntax

Private Declare Function DeinitializeEngine Lib "FREngine.dll" () As Long

C++ Syntax

HRESULT __stdcall DeinitializeEngine();

Return Values

This function returns E_FAIL if not all objects are released. In that case you can get the list of not released objects using the
IEngine::StartLogging method. The function may return standard return values of ABBYY FineReader Engine functions.

Remarks

It is prohibited to deinitialize ABBYY FineReader Engine at the entry points of other DLLs, and also in constructors and destructors of
static and global objects implemented in DLLs, because they are called at the DLL entry points. This restriction is due to the fact that
the Win32 FreeLibrary function is not re–entrant. A user should deinitialize ABBYY FineReader Engine elsewhere, for example, in
WinMain function of an EXE module.

Sample

Visual C++ (COM) code

HMODULE m_libraryHandle;

IEngine* m_enginePtr;

BOOL UnloadEngine()

{

 if(m_libraryHandle == NULL)

 return TRUE;

 // Free Engine object

 if(m_enginePtr != NULL) {

 m_enginePtr–>Release();

 m_enginePtr = 0;

 }

 // Deinitialize the Engine

 typedef HRESULT (STDAPICALLTYPE* UnloadFuncType)();

 UnloadFuncType unloadFunc = (UnloadFuncType)::GetProcAddress(

 m_libraryHandle, "DeinitializeEngine");

 if(unloadFunc == NULL || unloadFunc() != S_OK)

 return FALSE;

 // Now we can free library safely

 ::FreeLibrary(m_libraryHandle);

 m_libraryHandle = NULL;

 return TRUE;

}

Visual Basic code

Public Engine As FREngine.Engine

Private Declare Function DeinitializeEngine Lib "FREngine.dll" () As Long

Sub Engine_Unload()

 Set Engine = Nothing

 ChDir "Path to the folder with FREngine.dll"

 DeinitializeEngine

End Sub

See also

GetEngineObject

See samples: Hello, RecognizedTextProcessing, CustomLanguage, EventsHandling

 114

ABBYY FineReader Engine 10 API Reference

Engine Object (IEngine Interface)
This object is the top object in the hierarchy of ABBYY FineReader Engine objects. It exposes a set of creation, analysis, recognition,
and export methods. Its properties reflect the global settings of ABBYY FineReader Engine.

The Engine object is the only externally creatable object among the ABBYY FineReader Engine objects. To create this object, use the
GetEngineObject function. The Engine object is a singleton, so only one object of this type may be created in a single instance of the
application that uses ABBYY FineReader Engine. Repeated attempts to create the Engine object will return the same object.

After you receive a reference to the Engine object, you can:

• Set the parameters of ABBYY FineReader Engine, such as the user interface language, the parent window of the client
application, application title, etc. Use the properties of the Engine object.

• Load the most suitable settings for your scenario, which are provided in a set of predefined profiles. To load a profile, use the
LoadPredefinedProfile method.

• Proceed by creating a FRDocument object. This object corresponds to a document and exposes the main recognition
functionality of ABBYY FineReader Engine. The object allows you to process multi�page documents easily. To create this
object, use the CreateFRDocumentFromImage or CreateFRDocument method.

• Create some additional ABBYY FineReader Engine objects with the help of creation methods.

• Use additional services of ABBYY FineReader Engine via supplementary methods.

• Use the processing methods of the Engine object. These methods are suitable only for working with one�page
documents. For multi�page documents, ABBYY FineReader Engine provides a more convenient way of processing. We
recommend that you create an FRDocument object and use its methods and properties for processing.

See also

Properties
Creation methods
Supplementary methods
Processing methods
Object diagram

See samples: Hello, RecognizedTextProcessing, CustomLanguage, EventsHandling, FRECOMWrapper

Properties of the Engine Object

The Engine object exposes a set of properties reflecting global settings of ABBYY FineReader Engine. With the help of these properties
you can set the parameters of ABBYY FineReader Engine such as user interface language, parent window of the client application,
application title, etc.

• In certain cases, such as training and editing of a user pattern, or editing of a user dictionary, ABBYY FineReader Engine may
display dialogs and message boxes. Messages and other text in these dialogs, as well as error description strings (IErrorInfo
object), recognition tips, etc., will be written in the specified user interface language. See the description of the
MessagesLanguage property.

• The parent window is the window that serves as parent for dialogs and message boxes. Assign the handle of the main
application window to this property. ABBYY FineReader Engine uses the standard MFC procedure to find the most suitable
parent window for popup windows. Keep it in mind to initialize the parent window handle with correct value or ABBYY
FineReader Engine may not perform correctly. See the description of the ParentWindow property.

• The application title is the name of the application that uses ABBYY FineReader Engine. This title serves as the caption of
message boxes. See the description of the ApplicationTitle property.

Important! Pointers to child object's interfaces are valid until the parent object exists. An attempt to access a child object after its
parent object has been destroyed may result in error. Please, see for details Working with Properties.

Name Type Description
Assign the name of your application to this parameter. It will be used
as the title for message boxes. ApplicationTitle String

CurrentLicense Returns the current license. License, read�only

 115

ABBYY FineReader Engine 10 API Reference

Specifies if ABBYY FineReader Engine should create the
ImageDocument objects in memory. If this property is set to TRUE,
the ImageDocument objects are saved in the memory, otherwise
the objects are saved to files on disk. Set this property to FALSE when
processing many ImageDocument objects, in which case it
decreases memory usage. This property is TRUE by default.

CreateImageDocumentsInMemory Boolean

LicenseCollection, read�
only Licenses Returns a collection of available (activated) licenses.

MessagesLanguage MessagesLanguageEnum Defines the language of interaction between ABBYY FineReader
Engine and the user. All message boxes, error messages, and
recognizer tips will be in this language. This parameter stays on
between sessions. In order that interface language changes are fully
applied, either specify required value for this property and reload the
Engine object, or in the registry modify data of the
HKEY_CURRENT_USER\Software\ABBYY\SDK\10\FineReader
Engine\InterfaceLanguage value. The value data can be one of
the MessagesLanguageEnum enumerator values.

Note: The locale for the selected messages language must be
installed on the computer.

MultiProcessingParams MultiProcessingParams,
read�only

Provides access to the parameters of multiprocessing and multiple
CPU cores usage.

ParentWindow Long Stores HWND handle — casted to Long — of the main window of
an application which uses ABBYY FineReader Engine. This parameter
is used to correctly process dialogs and message boxes. You may
change this parameter at any time or not set it at all. ABBYY
FineReader Engine uses the standard MFC procedure for finding the
main window. If the main window owns any popup windows, the
last active popup will be used as the parent window rather than the
window specified by this property. If you do not set a value for this
property, the procedure of finding the main window may fail, and
then ABBYY FineReader Engine will perform incorrectly.

Path String, read�only Returns the path to the folder that contains the ABBYY FineReader
Engine executables.

PredefinedLanguages PredefinedLanguages, read�
only

Provides access to the collection of predefined languages of ABBYY
FineReader Engine.

RecognitionSpeedLimit Long Specifies recognition speed limitation in characters per second. It
allows you to specify maximum recognition speed. It may be set to 0,
which means that there is no limit on recognition speed.
Recognition speed can be limited in the license. In this case, the
minimum value is used.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object

FREngine::IEnginePtr Engine;

// Set parent window and caption for Engine's dialog and message boxes

Engine->ParentWindow = (long) hDlg;

Engine->ApplicationTitle = L"Hello";

Visual Basic code

' Global ABBYY FineReader Engine object

Public Engine As FREngine.Engine

' Set parent window and caption for Engine's dialog and message boxes

Engine.ParentWindow = Me.hWnd

Engine.ApplicationTitle = "Hello"

 116

ABBYY FineReader Engine 10 API Reference

See also

Engine
Working with Properties

See samples: Hello, RecognizedTextProcessing, EventsHandling, CustomLanguage

Creation Methods of the Engine Object

The Engine object exposes the methods which create other ABBYY FineReader Engine objects.

Note: If you work with programming languages which do not have garbage collections (for example, Ñ++), you must either use
smart pointer classes (see the samples in C++(COM)) or release objects that were created by creation methods when they are no
longer needed. Prior to the Engine deinitialization, you must release all created objects. Otherwise, the DeinitializeEngine function
returns E_FAIL.

Name Description
CreateBarcodeParams Creates the BarcodeParams object.

CreateBaseLanguage Creates the BaseLanguage object.

CreateCharParams Creates the CharParams object.

CreateDocumentAnalyzer Creates the DocumentAnalyzer object.

CreateDocumentInfo Creates the DocumentInfo object.

CreateDocumentInformationDictionary Creates the DocumentInformationDictionary object.

CreateEmptyUserPattern Creates an empty user pattern file (*.ptn) at the specified location.

CreateExporter Creates the Exporter object.

CreateExternalDictionaryDesc Creates the ExternalDictionaryDescription object.

CreateFRDocument Creates the FRDocument object.

CreateFRDocumentFromImage Opens image file and creates the FRDocument object.

CreateHTMLExportParams Creates the HTMLExportParams object.

CreateHyperlink Creates the Hyperlink object.

CreateImageDocumentsCollection Creates the ImageDocumentsCollection object.

CreateImageModification Creates the ImageModification object.

CreateImageProcessingParams Creates the ImageProcessingParams object.

CreateJpegExtendedParams Creates the JpegExtendedParams object.

CreateLanguageDatabase Creates the LanguageDatabase object.

CreateLayout Creates the Layout object.

CreateLayoutBlocks Creates the LayoutBlocks object.

CreateLayoutsCollection Creates the LayoutsCollection object.

CreateLongsCollection Creates the LongsCollection object.

Creates a MultipageImageWriter object that may be used for saving several images
into a single multipage image file. CreateMultipageImageWriter

Creates a new empty user dictionary at the specified location and returns interface
pointer of the Dictionary object associated with it. CreateNewDictionary

CreateObjectsExtractionParams Creates the ObjectsExtractionParams object.

CreateOrientationDetectionParams Creates the OrientationDetectionParams object.

CreatePageAnalysisParams Creates the PageAnalysisParams object.

CreatePageProcessingParams Creates the PageProcessingParams object.

CreateParagraphParams Creates the ParagraphParams object.

 117

ABBYY FineReader Engine 10 API Reference

CreatePDFAExportParamsOld Creates the PDFAExportParamsOld object.

CreatePDFEncryptionInfo Creates the PDFEncryptionInfo object.

CreatePDFExportParams Creates the PDFExportParams object.

CreatePDFExportParamsOld Creates the PDFExportParamsOld object.

CreatePdfExtendedParams Creates the PdfExtendedParams object.

CreatePPTExportParams Creates the PPTExportParams object.

CreatePrepareImageMode Creates the PrepareImageMode object.

CreateRecognizerParams Creates the RecognizerParams object.

CreateRectangle Creates the FRRectangle object.

CreateRegExpDictionaryDesc Creates the RegExpDictionaryDescription object.

CreateRegion Creates the Region object.

CreateRTFExportParams Creates the RTFExportParams object.

CreateScanManager Creates the ScanManager object.

CreateStandardDictionaryDesc Creates the StandardDictionaryDescription object.

CreateStringsCollection Creates the StringsCollection object.

CreateSynthesisParamsForDocument Creates the SynthesisParamsForDocument object.

CreateSynthesisParamsForPage Creates the SynthesisParamsForPage object.

CreateTableAnalysisParams Creates the TableAnalysisParams object.

CreateTextExportParams Creates the TextExportParams object.

CreateTextOrientation Creates the TextOrientation object.

CreateTextLanguage Creates the TextLanguage object.

CreateTrainingImage Creates the TrainingImage object.

CreateTrainingImagesCollection Creates the TrainingImagesCollection object.

CreateUserDictionaryDesc Creates the UserDictionaryDescription object.

CreateXLExportParams Creates the XLExportParams object.

CreateXMLExportParams Creates the XMLExportParams object.

See also

Engine

See samples: Hello

Creation Methods of the Engine Object

The Engine object contains a number of methods that create other objects of the ABBYY FineReader Engine objects hierarchy. They
all have similar semantics. All newly created objects have default values, or, if a profile has been previously loaded, the values set by this
profile are used.

Visual Basic Syntax

Method Create<ObjectName>(

) As <ObjectName>

C++ Syntax

HRESULT Create<ObjectName>(

 I<ObjectName>** result

);

 118

ABBYY FineReader Engine 10 API Reference

Parameters

result

[out] A pointer to I<ObjectName>* pointer variable that receives the interface pointer of the created object. result must not be NULL.
*result is guaranteed to be non�NULL after successful method call.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

FREngine::IEnginePtr Engine;

...

// Create Layout object

FREngine::ILayoutPtr pLayout = Engine->CreateLayout();

...

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Create the Layout object

Dim Layout As FREngine.Layout

Set Layout = Engine.CreateLayout()

...

See also

Engine

See samples: Hello, CustomLanguage, RecognizedTextProcessing, EventsHandling

CreateEmptyUserPattern Method of the Engine Object

This method creates an empty user pattern file (*.ptn) at the specified location.

Visual Basic Syntax

Method CreateEmptyUserPattern(

 fileName As String

)

C++ Syntax

HRESULT CreateEmptyUserPattern(

 BSTR fileName

);

Parameters

fileName

[in] This variable contains the full path to the newly created user pattern file, e.g. "C:\pattern.ptn".

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

• User patterns are files that specify a number of pairs "image of a character — the character itself". User patterns may be used
during recognition to identify characters of non–standard fonts. To use a user pattern during recognition, specify a path to it
in the IRecognizerParams::UserPatternsFile property. User patterns may be edited by user via the
IEngine::EditUserPattern method or trained during recognition. See Recognizing with Training.

• The method is enabled only if the license supports the User Patterns Training module.

 119

ABBYY FineReader Engine 10 API Reference

• Pattern training is not supported for hieroglyphic languages.

See also

Recognizing with Training
Engine
IEngine::EditUserPattern

CreateFRDocumentFromImage Method of the Engine Object

This method opens image file and creates the FRDocument object.

Visual Basic Syntax

Method CreateFRDocumentFromImage(

 imageFileName As String,

 prepareMode As PrepareImageMode,

) As FRDocument

C++ Syntax

HRESULT CreateFRDocumentFromImage(

 BSTR imageFileName,

 IPrepareImageMode* prepareMode,

 IFRDocument** createdDocument

);

Parameters

imageFileName

[in] This variable contains a full path to the image file to open. For example "C:\MyPictures\MyPic.bmp".

prepareMode

[in] This parameter refers to the PrepareImageMode object which specifies how an image will be preprocessed during opening.

createdDocument

[out, retval] A pointer to IFRDocument* pointer variable that receives the interface pointer of the resulting FRDocument object.
Must not be NULL.

Return Values

This method has no specific return values. It returns the standard return values of the ABBYY FineReader Engine functions.

See also

Engine
FRDocument
IEngine::CreateFRDocument

See samples: Hello, RecognizedTextProcessing, CustomLanguage

CreateLayoutBlocks Method of the Engine Object

This method creates a LayoutBlocks object of the type specified.

Visual Basic Syntax

Method CreateLayoutBlocks(

 parentLayout As Layout

) As LayoutBlocks

C++ Syntax

HRESULT CreateLayoutBlocks(

 ILayout* parentLayout,

 ILayoutBlocks** result

);

 120

ABBYY FineReader Engine 10 API Reference

Parameters

parentLayout

[in] This parameter refers to the parent Layout object. Must not be NULL.

result

[out, retval] A pointer to ILayoutBlocks* pointer variable that receives the interface pointer of the created collection of blocks. result
must not be NULL. *result is guaranteed to be non�NULL after successful method call.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Engine
LayoutBlocks

CreateMultipageImageWriter Method of the Engine Object

This method creates a MultipageImageWriter object that may be used for saving multiple images into a single multipage image file.

Visual Basic Syntax

Method CreateMultipageImageWriter(

 fileName As String,

 fileFormat As ImageFileFormatEnum

) As MultipageImageWriter

C++ Syntax

HRESULT CreateMultipageImageWriter(

 BSTR fileName,

 ImageFileFormatEnum fileFormat,

 IMultipageImageWriter** result

);

Parameters

fileName

[in] This parameter contains the full path to the multipage image file where the images will be saved. For example, "C:\MyPic.tif". If a file
with this name already exists, it will be overwritten without prompt.

fileFormat

[in] A variable of the ImageFileFormatEnum type that specifies the format of the output file. Not all formats defined by this
enumeration are supported for writing.

result

[out, retval] A pointer to IMultipageImageWriter* pointer variable that receives the interface pointer of the
MultipageImageWriter output object. This object allows one to append images to the end of the multipage image file.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remark

Note that not all formats available for writing are suitable for multipage images. Therefore, you can create the
MultipageImageWriter object for one�page formats, but can add no more than one page to the resulting file.

See also

Engine
MultipageImageWriter

CreateNewDictionary Method of the Engine Object

This method creates a new empty user dictionary at the specified location and returns interface pointer of the Dictionary object
associated with it.

 121

ABBYY FineReader Engine 10 API Reference

Visual Basic Syntax

Method CreateNewDictionary(

 fileName As String,

 languageId As LanguageIdEnum,

) As Dictionary

C++ Syntax

HRESULT CreateNewDictionary(

 BSTR fileName,

 LanguageIdEnum languageId,

 IDictionary** result

);

Parameters

fileName

[in] This variable contains the full path to the dictionary file to be created.

languageId

[in] A variable of LanguageIdEnum type that defines the language for the dictionary. Do not pass the LI_Japanese, LI_Korean,
LI_KoreanJohab, LI_ChinesePRC, LI_ChineseTaiwan, LI_ChineseHongKong, LI_ChineseSingapore, or LI_ChineseMacau constant to this
parameter, as user dictionaries cannot be created for corresponding languages.

result

[out, retval] A pointer to IDictionary* pointer variable that receives the interface pointer of the Dictionary object associated with
the newly created dictionary. You may then edit this dictionary via this object methods.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Working with Dictionaries
Engine
Dictionary

Creation DictionaryDescription Methods of the Engine Object

The Engine object provides four methods that create types of dictionaries: standard, user, "regular expression�based", or external. They
all have similar semantics.

Visual Basic Syntax

Method Create<DictDesc>(

) As <DictDesc>

C++ Syntax

HRESULT Create<DictDesc>(

 I<DictDesc>** result

);

Parameters

result

[out] A pointer to I<DictDesc>* pointer variable that receives the interface pointer of the created object, it may be a
StandardDictionaryDescription, UserDictionaryDescription, RegExpDictionaryDescription, or
ExternalDictionaryDescription object. result must not be NULL. *result is guaranteed to be non�NULL after successful method call.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

 122

ABBYY FineReader Engine 10 API Reference

FREngine::IEnginePtr Engine;

...

// Create the StandardDictionaryDescription object

FREngine::IStandardDictionaryDescriptionPtr pStdDict = Engine-
>CreateStandardDictionaryDesc();

...

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Create the StandardDictionaryDescription object

Dim StdDict As FREngine.StandardDictionaryDescription

Set StdDict = Engine.CreateStandardDictionaryDesc

...

See also

Working with Dictionaries
Engine

Supplementary Methods of the Engine Object

The Engine object exposes the methods which provide additional services.

Name Description
Converts ABBYY FineReader Engine internal representation of language ID by the
LanguageIdEnum into Win32 standard LCID. ConvertLanguageIdToLCID

Converts Win32 standard LCID into ABBYY FineReader Engine internal representation of language
ID by the LanguageIdEnum. ConvertLCIDToLanguageId

EditUserPattern Produces the dialog box for editing user pattern in the specified path.

LoadModule Allows you to load only the modules which will be necessary for application operation.

LoadPredefinedProfile Loads one of the predefined profiles.

LoadProfile Loads a user profile file.

MergePatterns Merges several user pattern files into one file.

OpenExistingDictionary Opens an existing user�defined dictionary for editing.

SetCurrentLicense Sets current license.

StartLogging Enables logging of errors, warnings and method calls.

StopLogging Disables logging of errors, warnings and method calls.

TrainUserPattern Allows you to perform pattern training.

See also

Engine

ConvertLanguageIdToLCID Method of the Engine Object

This method converts the Win32 standard LANGID, represented by LanguageIdEnum, into the Win32 standard LCID. The return
value of this function may be directly cast to the LCID type.

Visual Basic Syntax

Method ConvertLanguageIdToLCID(

 languageId As LanguageIdEnum

) As Long

C++ Syntax

HRESULT ConvertLanguageIdToLCID(

 123

ABBYY FineReader Engine 10 API Reference

 LanguageIdEnum languageId,

 long* result

);

Parameters

languageId

[in] This variable of the LanguageIdEnum type specifies Win32 standard LANGID.

result

[out, retval] A pointer to a long variable that receives the return value of this function. Must not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

This method may return 0 in case the passed value of LanguageIdEnum does not denote any of the Win32 LCIDs.

See also

Engine
IEngine::ConvertLCIDToLanguageId

ConvertLCIDToLanguageId Method of the Engine Object

This method converts the Win32 standard LCID into the Win32 standard LANGID, represented by LanguageIdEnum.

Visual Basic Syntax

Method ConvertLCIDToLanguageId(

 win32Locale As Long

) As LanguageIdEnum

C++ Syntax

HRESULT ConvertLCIDToLanguageId(

 long win32Locale,

 LanguageIdEnum* result

);

Parameters

win32Locale

[in] This variable contains a Win32 standard LCID casted to the long type.

result

[out] A pointer to LanguageIdEnum variable that receives the return value of this method. Must not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

This method may return LI_Null in case the passed Win32 LCID is not supported by ABBYY FineReader Engine.

See also

Engine
IEngine::ConvertLanguageIdToLCID

EditUserPattern Method of the Engine Object

This method displays the User Pattern dialog box that allows a user to edit user pattern file.

Visual Basic Syntax

Method EditUserPattern(

 fileName As String

 124

ABBYY FineReader Engine 10 API Reference

)

C++ Syntax

HRESULT EditUserPattern(

 BSTR fileName

);

Parameters

fileName

[in] This variable contains the full path to the user pattern file that is to be edited. This file should be created by the
IEngine::CreateEmptyUserPattern method or by ABBYY FineReader.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

• User patterns are files that specify a number of pairs "image of a character — the character itself". User patterns may be used
during recognition to identify characters of non�standard fonts. To use a user pattern during recognition, specify a path to it
in the IRecognizerParams::UserPatternsFile property. See Recognizing with Training.

• The method is enabled only if the license supports the User Patterns Training module.

• Pattern training is not supported for hieroglyphic languages.

See also

Recognizing with Training
Engine
IEngine::CreateEmptyUserPattern

The User Pattern Dialog Box

All the trained characters together with their captions images are displayed in this dialog box. Images with the same captions are put
one under another.

The trained characters are displayed in two modes:

Images mode

Displays pairs "image – caption".

 125

ABBYY FineReader Engine 10 API Reference

Details mode

Displays a table with the character image, caption and properties columns. You may edit the character caption and properties right in
this table.

Click the Images or Details buttons to switch between modes.

The Properties button opens the Character Properties dialog box. You may change the character caption and properties in this
dialog box.

The Delete button deletes the selected characters from the pattern.

See also

IEngine::EditUserPattern
Character Properties Dialog Box

 126

ABBYY FineReader Engine 10 API Reference

The Character Properties Dialog Box

The left dialog window displays an "average" character image (all similar images are put one under another). The Character field
displays the character caption.

If the caption is incorrect, type the correct caption. If you train ABBYY FineReader to recognize characters you cannot type, you may

use two–character combinations as captions, or you may copy the necessary character from the character table. Click the button
to open the table.

Effects group

• If the characters you train are set in italics or bold and you want to keep these effects in the recognized text, do not forget to
set the Italic and/or Bold items in Pattern Training dialog box.

• If the character you train is superscript (subscript), set the Superscript (Subscript) item in the Effects group.

See also

IEngine::EditUserPattern
User Pattern Dialog Box

LoadModule Method of the Engine Object

ABBYY FineReader Engine has several functional modules:

• Export for export of recognition results

• Document Analyzer for document analysis

• Recognizer for printed text recognition

• RecognizerHP for handprinted text recognition and checkmark recognition

• FineReader Engine Processor for parallel recognition

• Chinese Traditional Patterns for recognition of texts in Chinese Traditional language

• Chinese Simplified Patterns for recognition of texts in Chinese Simplified language

• Japanese Patterns for recognition of texts in Japanese language

• Korean Patterns for recognition of texts in Korean and Korean (Hangul) languages

• European Patterns for recognition of texts in European languages

By default, these modules are loaded when the need arises. When a method dealing with one of the functionalities is first called, the
corresponding module is loaded. For example, the Export module will be loaded after any export method is called.

The LoadModule method allows you to load the modules which will be necessary for application operation.

Visual Basic Syntax

Method LoadModule(

 127

ABBYY FineReader Engine 10 API Reference

 value As FREngineModuleEnum

)

C++ Syntax

HRESULT LoadModule(

 FREngineModuleEnum value

);

Parameters

value

[in] This variable of the FREngineModuleEnum type specifies the module which is to be loaded.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Engine

LoadPredefinedProfile Method of the Engine Object

This method loads one of the predefined profiles. For more information about working with profiles, see the Working with Profiles
section of this Help file.

Important! The profiles may require additional modules available in the license. See details in the descriptions of corresponding
scenarios.

Visual Basic Syntax

Method LoadPredefinedProfile(

 ProfileName As String

)

C++ Syntax

HRESULT LoadPredefinedProfile(

 BSTR ProfileName

);

Parameters

ProfileName

[in] This variable contains a profile name. It may be one of the following:

• DocumentConversion_Accuracy
Suitable for converting documents into an editable format. The settings have been optimized for accuracy.

• DocumentConversion_Speed
Suitable for converting documents into an editable format. The settings have been optimized for processing speed.

• DocumentArchiving_Accuracy
Suitable for creating an electronic archive. The settings have been optimized for accuracy.

• DocumentArchiving_Speed
Suitable for creating an electronic archive. The settings have been optimized for processing speed.

• BookArchiving_Accuracy
Suitable for creating an electronic library. The settings have been optimized for accuracy.

• BookArchiving_Speed
Suitable for creating an electronic library. The settings have been optimized for processing speed.

• TextExtraction_Accuracy
Suitable for extracting text from a document. The settings have been optimized for accuracy.

 128

ABBYY FineReader Engine 10 API Reference

• TextExtraction_Speed
Suitable for extracting text from a document. The settings have been optimized for processing speed.

• FieldLevelRecognition
Suitable for recognizing short text fragments.

• BarcodeRecognition
Suitable for barcode extraction.

• Version9Compatibility
Provided for compatibility, sets the processing parameters to the default values of ABBYY FineReader Engine 9.0.

• Default
Sets all the processing parameters to the default values.

Note: You can view the list of settings provided by these profiles in the descriptions of corresponding main usage scenarios.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

We recommend calling this method before the FRDocument object is created. If you have already used the FRDocument object
(have already performed analysis and recognition) and now want to load a profile and recognize pages of the document again, call the
IFRPage::CleanRecognizerSession method for each page before loading a profile.

See also

Engine
Working with Profiles

LoadProfile Method of the Engine Object

This method loads a user profile file. For more information about working with profiles, see the Working with Profiles section of this
Help file.

Visual Basic Syntax

Method LoadProfile(

 filePath As String

)

C++ Syntax

HRESULT LoadProfile(

 BSTR filePath

);

Parameters

filePath

[in] This variable contains a path to the profile file. You can specify either a full path to the file, or a path relative to the current
directory. If this variable contains an empty string, standard default values for all newly created objects will be used.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

We recommend calling this method before the FRDocument object is created. If you have already used the FRDocument object
(have already performed analysis and recognition) and now want to load a profile and recognize pages of the document again, call the
IFRPage::CleanRecognizerSession method for each page before loading a profile.

See also

Engine
Working with Profiles

 129

ABBYY FineReader Engine 10 API Reference

MergePatterns Method of the Engine Object

This method merges several user pattern files into one file.

Visual Basic Syntax

Method MergePatterns(

 SourceFilesNames As StringsCollection,

 DestinationFileName As String

)

C++ Syntax

HRESULT MergePatterns(

 IStringsCollection* SourceFilesNames,

 BSTR DestinationFileName

);

Parameters

SourceFilesNames

[in] This variable of the StringsCollection type contains a collection of the full paths to the user pattern files that are to be merged.
These files should be created by the IEngine::CreateEmptyUserPattern method or by ABBYY FineReader.

DestinationFileName

[in] This variable contains the full path to the resulting user pattern file.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

User patterns are files that define a number of pairs "image of a character — the character itself". User patterns may be used during
recognition to identify characters of non�standard fonts. To use a user pattern during recognition, set the path to it in the
IRecognizerParams::UserPatternsFile property.

See also

Engine
IEngine::CreateEmptyUserPattern
Recognizing with Training

OpenExistingDictionary Method of the Engine Object

This method opens an existing user dictionary for editing. It returns the interface pointer to the Dictionary object associated with the
dictionary. The OpenExistingDictionary method can open dictionaries created with the help of the
IEngine::CreateNewDictionary method, as well as user dictionaries (*.amd) created in ABBYY FineReader. The user dictionaries in
ABBYY FineReader are created together with user languages and are saved in the folder of the current document. For more details on
the creation of user languages and dictionaries, see the ABBYY FineReader help file.

Visual Basic Syntax

Method OpenExistingDictionary(

 fileName As String

) As Dictionary

C++ Syntax

HRESULT CreateNewDictionary(

 BSTR fileName,

 IDictionary** result

);

Parameters

fileName

[in] This variable contains the full path to the dictionary file.

result

 130

ABBYY FineReader Engine 10 API Reference

[out] A pointer to IDictionary* pointer variable that receives the interface pointer to the Dictionary object associated with the
dictionary. You may then edit this dictionary via this object's methods.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Working with Dictionaries
Engine
IEngine::CreateNewDictionary
Dictionary

SetCurrentLicense Method of the Engine Object

This method sets the current license.

Important! All the ABBYY FineReader Engine objects, which were in use before this method call, become invalid (except the
current Engine object). The only thing that you can do with these objects is to call Release method for them.

Visual Basic Syntax

Method SetCurrentLicense(

 license As License

 serialNumber As String

)

C++ Syntax

HRESULT SetCurrentLicense(

 ILicense* license

 BSTR serialNumber

);

Parameters

license

[in] This parameter refers to the License object representing the license.

serialNumber

[in] This variable contains the serial number of the Developer License. This serial number must correspond to the serial number from
the SerialNumber property of the License object.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Engine

StartLogging Method of the Engine Object

This method enables logging of errors, warnings and method calls.

Visual Basic Syntax

Method StartLogging(

 logFileName As String,

 writeMethodCalls As Boolean

)

C++ Syntax

HRESULT StartLogging(

 BSTR logFileName,

 VARIANT_BOOL writeMethodCalls

);

 131

ABBYY FineReader Engine 10 API Reference

Parameters

logFileName

[in] This parameter contains the full path to the log file. If the file does not exist, it will be created.

writeMethodCalls

[in] This parameter enables logging calls of ABBYY FineReader Engine methods to the log file. The format is as follows:
<time of call>, <duration of execution (in ms)>, <Interface::Method (parameter1, …)>
For example, 12:40:31.254, 17 ms, IRecognizerParams::put_OneWordPerLine(VARIANT_TRUE)

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The log file can contain a list of objects that have not been deleted before the deinitialization of the Engine object. To do this, do not
call the StopLogging method which disables logging, before the deinitialization.

See also

Engine
IEngine::StopLogging

StopLogging Method of the Engine Object

This method disables logging of errors, warnings and method calls.

Visual Basic Syntax

Method StopLogging()

C++ Syntax

HRESULT StopLogging();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Engine
IEngine::StartLogging

TrainUserPattern Method of the Engine Object

This method allows you to perform pattern training. The method adds new pairs "a character image — the character itself" to the
specified pattern.

Visual Basic Syntax

Method TrainUserPattern(

 fileName As String,

 trainingImages As TrainingImagesCollection,

 characterOrLigature As String,

 flags As Long,

 textType As TextTypeEnum

)

C++ Syntax

HRESULT TrainUserPattern(

 BSTR fileName,

 ITrainingImagesCollection* trainingImages,

 BSTR characterOrLigature,

 long flags,

 TextTypeEnum textType

);

 132

ABBYY FineReader Engine 10 API Reference

Parameters

fileName

[in] This variable specifies the path to the user pattern file.

trainingImages

[in] This variable refers to the TrainingImagesCollection object that stores a collection of character images.

characterOrLigature

[in] This variable specifies the character which is represented by the collection of images.

flags

[in] This parameter contains a bitwise OR combination of the UPTF_ prefixed flags which specifies the character attributes.

textType

[in] This parameter specifies the text type of the character using the TextTypeEnum enumeration constant.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Engine
UPTF_ prefixed flags
Recognizing with Training

Processing Methods of the Engine Object

The Engine object exposes a set of processing methods. These methods are suitable only for working with one�page documents. For
multi�page documents ABBYY FineReader Engine provides more convenient way of processing. We recommend to create
FRDocument object and use its methods and properties for processing.

Methods for working with images

These methods allow you to open images, bitmaps, and convert them into ABBYY FineReader Engine internal format.

Name Description
GetNumberOfPagesInImageFile Returns the number of pages in an image file.

Restores the contents of the ImageDocument object from the file previously saved with the
help of the IImageDocument::SaveToFile method. LoadImageDocFromFile

LoadImageDocFromMemory Restores the contents of the ImageDocument object from the global memory.

OpenBitmapImage Opens bitmap image given its HBITMAP handle.

OpenDib Opens a device�independent bitmap image file.

OpenImage Opens an image in ABBYY FineReader Engine internal format.

OpenMemoryImage Opens an image from the buffer in memory.

PrepareAndOpenBitmap Converts bitmap image into ABBYY FineReader Engine internal format and opens it.

Converts device�independent bitmap into ABBYY FineReader Engine internal format and
opens it. PrepareAndOpenDib

PrepareAndOpenImage Converts an image file into ABBYY FineReader Engine internal format and opens it.

PrepareAndOpenMemoryImage Creates a copy of a memory image in ABBYY FineReader Engine internal format and opens it.

PrepareBitmap Creates a copy of the specified bitmap image in ABBYY FineReader Engine internal format

Creates a copy of the specified device�independent bitmap in ABBYY FineReader Engine
internal format. PrepareDib

PrepareImage Creates a copy of an image file in ABBYY FineReader Engine internal format.

PrepareMemoryImage Creates a copy of a memory image in the file in ABBYY FineReader Engine internal format.

 133

ABBYY FineReader Engine 10 API Reference

Analysis, recognition and synthesis methods

These methods are analogous to those of the DocumentAnalyzer object, though have simpler semantics. They create the
DocumentAnalyzer object internally and use its methods.

Name Description
AnalyzeAndRecognizePage Performs layout analysis, recognition, and page synthesis of the specified image.

AnalyzeAndRecognizePages Performs layout analysis, recognition, and page synthesis of a collection of images.

AnalyzePage Performs layout analysis of an image.

AnalyzePages Performs the layout analysis of a collection of images.

Opens an image file, recognizes it and returns recognized text in a special "plain text"
format. RecognizeImageAsPlainText

RecognizeImageDocumentAsPlainText Recognizes an image and returns recognized text in a special "plain text" format.

Performs analysis, recognition, and synthesis of the specified image file and export of
the recognized text into a file in external format.

RecognizeImageFile

RecognizePage Recognizes parts of the specified image that lay inside the blocks in the specified
Layout object.

RecognizePages Recognizes those parts of the images from the collection that lay inside the blocks of
the specified layout collection.

SynthesizePages Performs the document synthesis of a collection of recognized images.

SynthesizePagesEx Performs the document synthesis of a collection of recognized images. This method is
optimized from the point of view of memory consumption.

Export methods

These methods are analogous to those of the Exporter object and have simple semantics. They create the Exporter object internally
and use its methods.

Name Description
ExportPage Saves recognized text from one page into a file of one of the available formats.

ExportPages Saves recognized text from several pages into a file of one of the available formats.

See also

Engine

GetNumberOfPagesInImageFile Method of the Engine Object

This method returns the number of pages in an image file.

Visual Basic Syntax

Method GetNumberOfPagesInImageFile(

 fileName As String,

 passwordCallback As ImagePasswordCallback

) As Long

C++ Syntax

HRESULT GetNumberOfPagesInImageFile(

 BSTR fileName,

 IImagePasswordCallback* passwordCallback,

 long* result

);

Parameters

fileName

[in] This variable contains the full path to the image file. For example "C:\MyPictures\MyPic.tif".

passwordCallback

 134

ABBYY FineReader Engine 10 API Reference

[in] This variable refers to the interface of the user�implemented object of the type ImagePasswordCallback which is used to handle
possible password requests for accessing images in PDF format. This parameter is optional and may be 0 in which case password�
protected files cannot be processed.

result

[out, retval] A pointer to long variable that receives the return value of this method.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Engine
IImagePasswordCallback

LoadImageDocFromFile Method of the Engine Object

This method restores the contents of the ImageDocument object from the file previously saved with the help of the
IImageDocument::SaveToFile method.

Visual Basic Syntax

Method LoadImageDocFromFile(

 fileName As String

) As ImageDocument

C++ Syntax

HRESULT LoadImageDocFromFile(

 BSTR fileName

 IImageDocument** result

);

Parameters

fileName

[in] This variable contains a full path to the file with image document.

result

[out, retval] A pointer to IImageDocument* pointer variable that receives the interface pointer of the resulting ImageDocument
object. Must not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Engine
IImageDocument::SaveToFile

LoadImageDocFromMemory Method of the Engine Object

This method restores the contents of the ImageDocument object from the global memory. The contents must be loaded to the
memory with the help of the IImageDocument::SaveToMemory method. This method returns the HGLOBAL handle of the
memory from where the object's contents are loaded.

Visual Basic Syntax

Method LoadImageDocFromMemory(

 hGlobal As Long

) As ImageDocument

C++ Syntax

HRESULT LoadImageDocFromMemory(

 long hGlobal

 IImageDocument** result

);

 135

ABBYY FineReader Engine 10 API Reference

Parameters

hGlobal

[in] This parameter specifies the HGLOBAL handle of the memory from where the object's contents should be loaded. The parameter is
statically casted to the Long type. This handle should be the one obtained from the IImageDocument::SaveToMemory method,
and should be valid (not freed by the GlobalFree function).

result

[out, retval] A pointer to IImageDocument* pointer variable that receives the interface pointer of the resulting ImageDocument
object. Must not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The size of the memory area that the object allocates, can be obtained by calling the GlobalSize function.

See also

Engine
IImageDocument::SaveToMemory

OpenBitmapImage Method of the Engine Object

This method opens a bitmap image given its HBITMAP handle.

Visual Basic Syntax

Method OpenBitmapImage(

 bitmapHandle As Long

 resolution As Long

) As ImageDocument

C++ Syntax

HRESULT OpenBitmapImage(

 long bitmapHandle,

 long resolution,

 IImageDocument** result

);

Parameters

bitmapHandle

[in] This variable contains the handle of the GDI object (HBITMAP), statically casted to the Long type. This handle should be available
to the process that operates ABBYY FineReader Engine.

resolution

[in] Resolution of the bitmap in dpi (dots per inch).

result

[out, retval] A pointer to IImageDocument* pointer variable that receives the interface pointer of the resulting ImageDocument
object. Must not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

This method may open only black�and�white bitmaps.

See also

Engine
IEngine::PrepareBitmap

 136

ABBYY FineReader Engine 10 API Reference

IEngine::PrepareAndOpenBitmap

OpenDib Method of the Engine Object

This method opens a bitmap image specified by its bitmap handle (DIB format) to a global memory block (HGLOBAL).

Note: DIB must be created using Windows API.

Visual Basic Syntax

Method OpenDib(

 dibHglobal As Long,

 resolution As Long

) As ImageDocument

C++ Syntax

HRESULT OpenDib(

 long dibHglobal,

 long resolution,

 IImageDocument** result

);

Parameters

dibHglobal

[in] This variable contains the handle of the memory block (HGLOBAL) where the bitmap is saved, statically casted to the Long type.
This handle should be available to the process that uses ABBYY FineReader Engine.

resolution

[in] Resolution of the bitmap in dpi (dots per inch).

result

[out] A pointer to IImageDocument* pointer variable that receives the interface pointer to the resulting ImageDocument object.
Must not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

This method allows you to open only black�and�white images.

See also

Engine
IEngine::PrepareAndOpenDib
IEngine::PrepareDib
IEngine::OpenBitmapImage

OpenImage Method of the Engine Object

This method allows you to open images in ABBYY FineReader Engine internal format. Images in other formats cannot be opened using
this method.

Visual Basic Syntax

Method OpenImage(

 fileName As String

) As ImageDocument

C++ Syntax

HRESULT OpenImage(

 BSTR fileName,

 IImageDocument** result

);

 137

ABBYY FineReader Engine 10 API Reference

Parameters

fileName

[in] This variable contains a full path to the folder with image in internal format.

result

[out, retval] A pointer to IImageDocument* pointer variable that receives the interface pointer to the resulting ImageDocument
object. Must not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

This method is primarily designed for multipage scenarios when it is not possible to keep all the images in memory. In this case,
ImageDocument objects are saved on disk, and then OpenImage method is called as needed.

To open images in other formats, use the IEngine::PrepareAndOpenImage method.

See also

Working with Images
Engine
IEngine::PrepareAndOpenImage
IEngine::PrepareImage

OpenMemoryImage Method of the Engine Object

This method opens an image from the buffer in memory. The image should be isotropic, that is its horizontal resolution should equal
the vertical one.

Visual Basic Syntax

Method OpenMemoryImage(

 format As MemoryImageFormatEnum,

 width As Long,

 height As Long,

 byteWidth As Long,

 resolution As Long,

 rawDataPtr As Long

) As ImageDocument

C++ Syntax

HRESULT OpenMemoryImage(

 MemoryImageFormatEnum format,

 long width,

 long height,

 long byteWidth,

 long resolution,

 long rawDataPtr,

 IImageDocument** result

);

Parameters

format

[in] This parameter of MemoryImageFormatEnum type describes the format of the memory image file that is to be opened.

width

[in] This parameter specifies the width of the image in pixels.

height

[in] This parameter specifies the height of the image in pixels.

byteWidth

 138

ABBYY FineReader Engine 10 API Reference

[in] This parameter specifies the width of the line of image in bytes (padding included).

resolution

[in] This parameter specifies resolution of the image in dots per inch.

rawDataPtr

[in] This parameter is treated as a pointer to memory buffer containing image data. See Memory image format description section for
details.

result

[out, retval] A pointer to IImageDocument* pointer variable that receives the interface pointer to the resulting ImageDocument
object.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The image data should exist while the ImageDocument object received from this method exists.

See also

Engine
IEngine::PrepareMemoryImage
IEngine::PrepareAndOpenMemoryImage
MemoryImageFormatEnum
Memory image format description

PrepareAndOpenBitmap Method of the Engine Object

This method converts a bitmap image into ABBYY FineReader Engine internal format and opens it.

Visual Basic Syntax

Method PrepareAndOpenBitmap(

 bitmapHandle As Long,

 xResolution As Long,

 yResolution As Long,

 prepareMode As PrepareImageMode

) As ImageDocument

C++ Syntax

HRESULT PrepareAndOpenBitmap(

 long bitmapHandle,

 long xResolution,

 long yResolution,

 IPrepareImageMode* prepareMode

 IImageDocument** imageDocument

);

Parameters

bitmapHandle

[in] This variable contains the handle of the GDI object (HBITMAP), statically casted to the Long type. This handle should be available
to the process that operates ABBYY FineReader Engine.

xResolution

[in] Horizontal resolution of the bitmap.

yResolution

[in] Vertical resolution of the bitmap.

prepareMode

[in] This variable refers to the PrepareImageMode object that stores parameters for bitmap conversion in internal format. This
parameter may be 0 in which case default parameters of the image preparation mode are used.

 139

ABBYY FineReader Engine 10 API Reference

imageDocument

[out] A pointer to IImageDocument* pointer variable that receives the interface pointer to the resulting ImageDocument object.
Must not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Engine
IEngine::PrepareAndOpenImage
IEngine::OpenImage
IEngine::PrepareBitmap
IEngine::OpenBitmapImage

PrepareAndOpenDib Method of the Engine Object

This method converts a bitmap image specified by its bitmap handle from DIB (Device�Independent Bitmap) format into ABBYY
FineReader Engine internal format and opens it.

Note: DIB must be created using Windows API.

Visual Basic Syntax

Method PrepareAndOpenDib(

 dibHglobal As Long,

 xResolution As Long,

 yResolution As Long,

 prepareMode As PrepareImageMode

) As ImageDocument

C++ Syntax

HRESULT PrepareAndOpenDib(

 long dibHglobal,

 long xResolution,

 long yResolution,

 IPrepareImageMode* prepareMode

 IImageDocument** imageDocument

);

Parameters

dibHglobal

[in] This variable contains the handle of the memory block (HGLOBAL) where the bitmap is saved, statically casted to the Long type.
This handle should be available to the process that operates ABBYY FineReader Engine.

xResolution

[in] Horizontal resolution of the bitmap.

yResolution

[in] Vertical resolution of the bitmap.

prepareMode

[in] This variable refers to the PrepareImageMode object that stores parameters for bitmap conversion in internal format. This
parameter may be 0 in which case default parameters of the image preparation mode are used, or, if a profile has been loaded, the
parameters set by this profile are used.

imageDocument

[out] A pointer to IImageDocument* pointer variable that receives the interface pointer to the resulting ImageDocument object.
Must not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

 140

ABBYY FineReader Engine 10 API Reference

See also

Engine
IEngine::OpenDib
IEngine::PrepareDib
Working with Profiles

PrepareAndOpenImage Method of Engine Object

This method converts an image file into ABBYY FineReader Engine internal format and opens it.

Visual Basic Syntax

Method PrepareAndOpenImage(

 fileName As String,

 prepareMode As PrepareImageMode,

 passwordCallback As ImagePasswordCallback,

 documentInfo As DocumentInfo

) As ImageDocument

C++ Syntax

HRESULT PrepareAndOpenImage(

 BSTR fileName,

 IPrepareImageMode* prepareMode,

 IImagePasswordCallback* passwordCallback,

 IDocumentInfo* documentInfo,

 IImageDocument** result

);

Parameters

fileName

[in] This variable contains the full path to the image file to open. For example "C:\MyPictures\MyPic.bmp".

prepareMode

[in] This variable refers to the PrepareImageMode object that defines the mode of converting the image file into ABBYY FineReader
Engine internal format. This parameter may be 0 in which case the default parameters of the image preparation mode are used, or, if a
profile has been loaded, the parameters set by this profile are used.

passwordCallback

[in] This variable refers to the interface of the user�implemented object of the type ImagePasswordCallback which is used to handle
possible password requests for accessing images in PDF format. This parameter is optional and may be 0 in which case password�
protected files cannot be processed.

documentInfo

[in] This variable refers to the DocumentInfo object that stores service information about the open PDF file. This parameter is
optional and may be set to 0, which means either that this information need not be used or that a file other than PDF is being opened.

result

[out, retval] A pointer to IImageDocument* pointer variable that receives the interface pointer of the resulting ImageDocument
object. Must not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

If an image file specified is not in ABBYY FineReader Engine internal format, it is automatically converted into this format. This may
take some time, the parameters specified by the prepareMode input parameter are used. If the image file is already in ABBYY
FineReader Engine internal format, it is not prepared, but opened, thus the prepareMode parameter is ignored.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

 141

ABBYY FineReader Engine 10 API Reference

FREngine::IEnginePtr Engine;

...

// Create and customize image loading parameters

FREngine::IPrepareImageModePtr prepareImageMode = Engine->CreatePrepareImageMode();

// Turn off skew correction

prepareImageMode->CorrectSkewMode = 0;

// Turn on mirroring

prepareImageMode->MirrorImage = VARIANT_TRUE;

// Open the image file

FREngine::IImageDocumentPtr pImageDoc =

 Engine->PrepareAndOpenImage("D:\\Demo.tif", prepareImageMode, 0, 0);

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Create and customize image loading parameters

Dim PrepareImageMode As FREngine.PrepareImageMode

Set PrepareImageMode = Engine.CreatePrepareImageMode

' Turn off skew correction

PrepareImageMode.CorrectSkewMode = 0

' Turn on mirroring

PrepareImageMode.MirrorImage = True

' Open the image file

Dim ImageDoc As FREngine.ImageDocument

Set ImageDoc = Engine.PrepareAndOpenImage("D:\Demo.tif", PrepareImageMode)

See also

Engine
IEngine::OpenImage
IEngine::OpenBitmapImage
IEngine::PrepareImage
IImagePasswordCallback
Working with Images
Working with Profiles

PrepareAndOpenMemoryImage Method of the Engine Object

This method creates a copy of a memory image in a temporary folder on disk in ABBYY FineReader Engine internal format and opens
it. This method is equivalent to successive calls to the IEngine::PrepareMemoryImage and IEngine::OpenImage.

Visual Basic Syntax

Method PrepareAndOpenMemoryImage(

 format As MemoryImageFormatEnum,

 width As Long,

 height As Long,

 byteWidth As Long,

 xResolution As Long,

 yResolution As Long,

 rawDataPtr As Long,

 prepareMode As PrepareImageMode

) As ImageDocument

C++ Syntax

HRESULT PrepareAndOpenMemoryImage(

 MemoryImageFormatEnum format,

 long width,

 long height,

 long byteWidth,

 142

ABBYY FineReader Engine 10 API Reference

 long xResolution,

 long yResolution,

 long rawDataPtr,

 IPrepareImageMode* prepareMode,

 IImageDocument** imageDoc

);

Parameters

format

[in] This parameter of the MemoryImageFormatEnum type describes the format of the memory image file to be prepared.

width

[in] This parameter specifies the width of the image in pixels.

height

[in] This parameter specifies the height of the image in pixels.

byteWidth

[in] This parameter specifies the width of the line of image in bytes (padding included).

xResolution

[in] This parameter specifies horizontal resolution of the image in dots per inch.

yResolution

[in] This parameter specifies vertical resolution of the image in dots per inch.

rawDataPtr

[in] This parameter is treated as a pointer to memory buffer containing image data. See Memory image format description section for
details.

prepareMode

[in] This parameter refers to the PrepareImageMode object that defines the mode of image preparation. It may be 0, in which case
default values for the PrepareImageMode properties will be used, or, if a profile has been loaded, the parameters set by this profile
are used.

imageDoc

[out, retval] A pointer to IImageDocument* pointer variable that receives the interface pointer to the resulting ImageDocument
object.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Engine
IEngine::OpenMemoryImage
IEngine::PrepareAndOpenMemoryImage
MemoryImageFormatEnum
Memory image format description
Working with Profiles

PrepareBitmap Method of the Engine Object

This method creates a copy of the specified bitmap image in ABBYY FineReader Engine internal format in the specified folder on the
disk.

Visual Basic Syntax

Method PrepareBitmap(

 bitmapHandle As Long,

 destFileName As String,

 xResolution As Long,

 yResolution As Long,

 143

ABBYY FineReader Engine 10 API Reference

 prepareMode As PrepareImageMode

)

C++ Syntax

HRESULT PrepareBitmap(

 long bitmapHandle,

 BSTR destFileName,

 long xResolution,

 long yResolution,

 IPrepareImageMode* prepareMode

);

Parameters

bitmapHandle

[in] This variable contains the handle of the GDI object (HBITMAP), statically casted to the Long type. This handle should be available
to the process that operates ABBYY FineReader Engine.

destFileName

[in] The full path to the destination folder.

xResolution

[in] Horizontal resolution of the bitmap.

yResolution

[in] Vertical resolution of the bitmap.

prepareMode

[in] This variable refers to the PrepareImageMode object that stores parameters for bitmap conversion in internal format. This
parameter may be 0 in which case default parameters of the image preparation mode are used, or, if a profile has been loaded, the
parameters set by this profile are used.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

• This method allows you to convert a bitmap image into ABBYY FineReader Engine internal format. It provides a way to get
read�write ImageDocument object corresponding to the bitmap by applying this method first, and then opening the
resulting file via the IEngine::OpenImage method.

• This is a developer concern to delete the files with prepared image when they are no longer necessary. These files are not
automatically removed from the disk by ABBYY FineReader Engine.

See also

Engine
IEngine::PrepareAndOpenBitmap
IEngine::OpenImage
IEngine::OpenBitmapImage
Working with Profiles

PrepareDib Method of the Engine Object

This method creates a copy of the bitmap image that is specified by its bitmap handle. The created copy is converted from DIB
(Device�Independent Bitmap) format into ABBYY FineReader Engine internal format and is placed in the folder you specify.

Note: DIB must be created using Windows API.

Visual Basic Syntax

Method PrepareDib(

 dibHglobal As Long,

 destFileName As String,

 xResolution As Long,

 144

ABBYY FineReader Engine 10 API Reference

 yResolution As Long,

 prepareMode As PrepareImageMode

)

C++ Syntax

HRESULT PrepareDib(

 long dibHglobal,

 BSTR destFileName,

 long xResolution,

 long yResolution,

 IPrepareImageMode* prepareMode

);

Parameters

dibHglobal

[in] This variable contains the handle of the memory block (HGLOBAL) where the bitmap is saved, statically casted to the Long type.
This handle should be available to the process that uses ABBYY FineReader Engine.

destFileName

[in] The full path to the destination folder.

xResolution

[in] Horizontal resolution of the bitmap.

yResolution

[in] Vertical resolution of the bitmap.

prepareMode

[in] This variable refers to the PrepareImageMode object that stores parameters for bitmap conversion in internal format. This
parameter may be 0 in which case default parameters of the image preparation mode are used, or, if a profile has been loaded, the
parameters set by this profile are used.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

• This method provides a way to get read�write ImageDocument object corresponding to the bitmap by applying this
method first, and then opening the resulting image in internal format via the IEngine::OpenImage method.

• This is a developer concern to delete the files with prepared image when they are no longer necessary. These files are not
automatically removed from the disk by ABBYY FineReader Engine.

See also

Engine
IEngine::PrepareAndOpenDib
IEngine::OpenImage
IEngine::OpenDib
Working with Profiles

PrepareImage Method of the Engine Object

This method creates a copy of the specified image file in ABBYY FineReader Engine internal format, in the specified folder on the
disk. The output images received from this method may then be opened using the IEngine::OpenImage method.

Visual Basic Syntax

Method PrepareImage(

 fileName As String,

 destinationFolder As String,

 prepareMode As PrepareImageMode,

 pageNumber As Long,

 145

ABBYY FineReader Engine 10 API Reference

 passwordCallback As ImagePasswordCallback,

 documentInfo As DocumentInfo

) As StringsCollection

C++ Syntax

HRESULT PrepareImage(

 BSTR fileName,

 BSTR destinationFolder,

 IPrepareImageMode* prepareMode,

 long pageNumber,

 IImagePasswordCallback* passwordCallback,

 IDocumentInfo* documentInfo,

 IStringsCollection** result

);

Parameters

fileName

[in] This string contains the full path to the image file that is to be prepared. For example, "C:\MyPictures\MyPicture.bmp".

destinationFolder

[in] This string contains the full path to the folder on disk where the destination files are created. This folder must exist, otherwise an
error code is returned.

prepareMode

[in] This variable refers to the PrepareImageMode object that stores parameters for image conversion in internal format. This
parameter may be 0 in which case default parameters of the image preparation mode are used, or, if a profile has been loaded, the
parameters set by this profile are used.

pageNumber

[in] This parameter contains the number of page to process (zero–based). This parameter is optional and may be –1, in which case all
pages of the image file are extracted.

passwordCallback

[in] This variable refers to the interface of the user–implemented object of the type ImagePasswordCallback which is used to handle
possible password requests for accessing images in PDF format. This parameter is optional and may be 0 in which case password–
protected files cannot be processed.

documentInfo

[in] This variable refers to the DocumentInfo object that stores service information about the open PDF file. This parameter is
optional and may be set to 0, which means either that this information need not be used or that a file other than PDF is being opened.

result

[out, retval] A pointer to IStringsCollection* pointer variable that receives the interface pointer of the StringsCollection object.
This object contains a list of full paths to the images in internal format. These images are located in the destination folder specified by
the destinationFolder input parameter.

Remarks

• Several output images may appear as the result of preparing a multipage image. In this case, for each image page of the
source file a separate output image in internal format is created. If an error occurs while preparing a multipage image, no
output image files are generated.

• If the source image was already in ABBYY FineReader Engine internal format and was prepared using the same prepare
image mode, it is simply copied into destination directory.

• This is a developer concern to delete the files with prepared image when they are no longer necessary. These files are not
automatically removed from the disk by ABBYY FineReader Engine.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

 146

ABBYY FineReader Engine 10 API Reference

See also

Engine
IEngine::PrepareAndOpenImage
IEngine::OpenImage
IEngine::GetNumberOfPagesInImageFile
IImagePasswordCallback
Working with Images
Working with Profiles

PrepareMemoryImage Method of the Engine Object

This method creates a copy of a memory image in the specified folder on disk in ABBYY FineReader Engine internal format.

Visual Basic Syntax

Method PrepareMemoryImage(

 format As MemoryImageFormatEnum,

 width As Long,

 height As Long,

 byteWidth As Long,

 xResolution As Long,

 yResolution As Long,

 rawDataPtr As Long,

 destFileName As String,

 prepareMode As PrepareImageMode

)

C++ Syntax

HRESULT PrepareMemoryImage(

 MemoryImageFormatEnum format,

 long width,

 long height,

 long byteWidth,

 long xResolution,

 long yResolution,

 long rawDataPtr,

 BSTR destFileName,

 IPrepareImageMode* prepareMode

);

Parameters

format

[in] This parameter of MemoryImageFormatEnum type specifies the format of the memory image file that is to be prepared.

width

[in] This parameter specifies the width of the image in pixels.

height

[in] This parameter specifies the height of the image in pixels.

byteWidth

[in] This parameter specifies the width of the line of image in bytes. It should account for justification.

xResolution

[in] This parameter specifies horizontal resolution of the image in dots per inch.

yResolution

[in] This parameter specifies vertical resolution of the image in dots per inch.

rawDataPtr

 147

ABBYY FineReader Engine 10 API Reference

[in] This parameter is treated as a pointer to memory buffer containing image data. See Memory image format description section for
details.

destFileName

[in] This parameter contains the full path to folder where the image in ABBYY FineReader Engine internal format will be saved.

prepareMode

[in] This parameter refers to the PrepareImageMode object that defines the mode of image preparation. It may be 0, in which case
default values for the PrepareImageMode properties will be used, or, if a profile has been loaded, the parameters set by this profile
are used.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

• This method provides a way to get read�write ImageDocument object corresponding to the memory image by applying
this method first, and then opening the resulting image in internal format via the IEngine::OpenImage method.

• This is a developer concern to delete the files with prepared image when they are no longer necessary. These files are not
automatically removed from the disk by ABBYY FineReader Engine.

See also

Engine
IEngine::PrepareAndOpenMemoryImage
IEngine::OpenImage
IEngine::OpenMemoryImage
MemoryImageFormatEnum
Memory image format description
Working with Profiles

AnalyzeAndRecognizePage Method of the Engine Object

This method performs layout analysis, recognition, and page synthesis of the image specified.

Visual Basic Syntax

Method AnalyzeAndRecognizePage(

 imageDocument As ImageDocument,

 processingParams As PageProcessingParams,

 synthesisParams As SynthesisParamsForPage,

 layout As Layout,

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT AnalyzeAndRecognizePage(

 IImageDocument* imageDocument,

 IPageProcessingParams* processingParams,

 ISynthesisParamsForPage* synthesisParams,

 ILayout* layout,

 IDocumentInfo* documentInfo

);

Parameters

imageDocument

[in] This variable refers to the ImageDocument object corresponding to the image that is to be recognized.

processingParams

[in] This variable refers to the PageProcessingParams object that stores the parameters of the layout analysis and recognition. This
parameter may be 0. In this case the page is analyzed and recognized using the default parameters (all page processing parameters have

 148

ABBYY FineReader Engine 10 API Reference

their properties set to default values, and the recognition language is English), or, if a profile has been loaded, the parameters set by this
profile are used.

synthesisParams

[in] This variable refers to the SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In
this case the page is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

layout

[in] This variable refers to the Layout object corresponding to the page layout. After this method is done, it contains the results of the
layout analysis and recognition.

documentInfo

[in] This variable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the same
DocumentInfo object, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this
case, all information about the image which was received during preparation is used during analysis and recognition. This parameter is
optional and may be set to 0, which means either that this information need not be used or that a file other than PDF is being
processed.

Return Values

If recognition is interrupted by the user, this method will return E_ABORT. If pattern training is interrupted by the user, this method
will return FREN_E_PATTERN_TRAINING_ABORTED. It also returns the standard return codes of the ABBYY FineReader Engine
functions.

Remarks

• If the sizes and resolutions of the image and layout do not match, this method sets the size and resolution of the layout to be
equal to those of the deskewed black�and�white page of the ImageDocument.

• All existing blocks are deleted from the layout.

• This method call is not equivalent to successive calls to IEngine::AnalyzePage and IEngine::RecognizePage methods, as
recognition information is used for more accurate layout analysis.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

FREngine::IEnginePtr Engine;

...

// Open image file

FREngine::IImageDocumentPtr pImageDoc =

Engine->PrepareAndOpenImage("D:\\Demo.tif", 0, 0, 0);

// Create Layout object

FREngine::ILayoutPtr pLayout = Engine->CreateLayout();

// Create page processing parameters

FREngine::IPageProcessingParamsPtr pPageProcessingParams =

 Engine->CreatePageProcessingParams();

// Now tune it

pPageProcessingParams->DetectBarcodes = VARIANT_TRUE;

// Perform layout analysis, recognition, and page synthesis

Engine->AnalyzeAndRecognizePage(pImageDoc, pPageProcessingParams, 0, pLayout, 0);

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Open image file

Dim ImageDoc As FREngine.ImageDocument

Set ImageDoc = Engine.PrepareAndOpenImage("D:\Demo.tif")

' Create Layout object

 149

ABBYY FineReader Engine 10 API Reference

Dim Layout As FREngine.Layout

Set Layout = Engine.CreateLayout()

' Create page processing parameters

Dim PageProcessingParams As FREngine.PageProcessingParams

Set PageProcessingParams = Engine.CreatePageProcessingParams

' Now tune it

PageProcessingParams.DetectBarcodes = True

' Perform layout analysis, recognition, and page synthesis

Engine.AnalyzeAndRecognizePage ImageDoc, PageProcessingParams, Nothing, Layout

See also

Engine
IFRPage::AnalyzeAndRecognize
IDocumentAnalyzer::AnalyzeAndRecognizePage
IEngine::AnalyzeAndRecognizePages
Working with Profiles

AnalyzeAndRecognizePages Method of the Engine Object

This method performs layout analysis, recognition, and page synthesis of a collection of images.

Visual Basic Syntax

Method AnalyzeAndRecognizePages(

 imageDocuments As ImageDocumentsCollection,

 layouts As LayoutsCollection,

 processingParams As PageProcessingParams,

 synthesisParams As SynthesisParamsForPage,

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT AnalyzeAndRecognizePages(

 IImageDocumentsCollection* imageDocuments,

 ILayoutsCollection* layouts,

 IPageProcessingParams* processingParams,

 ISynthesisParamsForPage* synthesisParams,

 IDocumentInfo* documentInfo

);

Parameters

imageDocuments

[in] This variable refers to the ImageDocumentsCollection object corresponding to the images collection that is to be recognized.
The number of images in the collection must correspond to the number of Layout objects in the collection of the layouts.

layouts

[in] This variable refers to the LayoutsCollection object corresponding to the collection of the page layouts. After this method is
done, it contains the results of layout analysis and recognition.

processingParams

[in] This variable refers to the PageProcessingParams object that stores the parameters of the layout analysis and recognition. This
parameter may be 0. In this case the page is analyzed and recognized using the default parameters (all page processing parameters have
their properties set to default values, and the recognition language is English), or, if a profile has been loaded, the parameters set by this
profile are used.

synthesisParams

[in] This variable refers to the SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In
this case the page is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

 150

ABBYY FineReader Engine 10 API Reference

documentInfo

[in] This variable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the same
DocumentInfo object, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this
case, all information about the image which was received during preparation is used during analysis and recognition. This parameter is
optional and may be set to 0, which means either that this information need not be used or that a file other than PDF is being
processed.

Return Values

If recognition is interrupted by the user, this method will return E_ABORT. If pattern training is interrupted by the user, this method
will return FREN_E_PATTERN_TRAINING_ABORTED. It also returns the standard return codes of the ABBYY FineReader Engine
functions.

Remarks

Depending on the value of the IEngine::MultiProcessingParams property, ABBYY FineReader Engine can distribute analysis and
recognition of multi�page documents to CPU cores.

See also

Engine
IFRDocument::AnalyzeAndRecognizePages
IDocumentAnalyzer::AnalyzeAndRecognizePages
IEngine::AnalyzeAndRecognizePage
Working with Profiles

AnalyzePage Method of the Engine Object

This method performs the layout analysis of an image. During layout analysis ABBYY FineReader Engine detects blocks on the image.
The blocks determine how and in what order the image areas should be recognized.

Visual Basic Syntax

Method AnalyzePage(

 imageDocument As ImageDocument,

 processingParams As PageProcessingParams,

 layout As Layout

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT AnalyzePage(

 IImageDocument* imageDocument,

 IPageProcessingParams* processingParams,

 ILayout* layout,

 IDocumentInfo* documentInfo

);

Parameters

imageDocument

[in] This variable refers to the ImageDocument object corresponding to the image that is to be analyzed.

processingParams

[in] This variable refers to the PageProcessingParams object that stores parameters of layout analysis. This parameter may be 0. In
this case the page is analyzed with default parameters (all page processing parameters are set to default values), or, if a profile has been
loaded, the parameters set by this profile are used.

layout

[in] This variable refers to the Layout object corresponding to the page layout. After analysis it contains the results of layout analysis.

documentInfo

[in] This variable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the same
DocumentInfo object, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this
case, all information about the image which was received during preparation is used during analysis and recognition. This parameter is

 151

ABBYY FineReader Engine 10 API Reference

optional and may be set to 0, which means either that this information need not be used or that a file other than PDF is being
processed.

Return Values

If layout analysis is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

Remarks

• If the sizes and resolutions of the image and layout do not match, this method sets these parameters for layout to be equal to
those of the deskewed black�and�white page of the ImageDocument.

• All existing blocks are deleted from layout.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

FREngine::IEnginePtr Engine;

...

// Open image file

FREngine::IImageDocumentPtr pImageDoc =

Engine->PrepareAndOpenImage("D:\\Demo.tif", 0, 0, 0);

// Create Layout object

FREngine::ILayoutPtr pLayout = Engine->CreateLayout();

// Perform page layout analysis

Engine->AnalyzePage(pImageDoc, 0, pLayout, 0);

...

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Open image file

Dim ImageDoc As FREngine.ImageDocument

Set ImageDoc = Engine.PrepareAndOpenImage("D:\Demo.tif")

' Create Layout object

Dim Layout As FREngine.Layout

Set Layout = Engine.CreateLayout()

' Perform page layout analysis

Engine.AnalyzePage ImageDoc, Nothing, Layout

...

See also

Engine
IFRPage::Analyze
IDocumentAnalyzer::AnalyzePage
IEngine::AnalyzePages
Working with Profiles

AnalyzePages Method of the Engine Object

This method performs the layout analysis of a collection of images. During layout analysis ABBYY FineReader Engine detects blocks on
the image. The blocks determine how and in what order the image areas should be recognized.

Visual Basic Syntax

Method AnalyzePages(

 imageDocuments As ImageDocumentsCollection,

 layouts As LayoutsCollection,

 processingParams As PageProcessingParams,

 152

ABBYY FineReader Engine 10 API Reference

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT AnalyzePages(

 IImageDocumentsCollection* imageDocuments,

 ILayoutsCollection* layouts,

 IPageProcessingParams* processingParams,

 IDocumentInfo* documentInfo

);

Parameters

imageDocuments

[in] This variable refers to the ImageDocumentsCollection object corresponding to the images collection that is to be recognized.
The number of images in the collection must correspond to the number of Layout objects in the collection of the layouts.

layouts

[in] This variable refers to the LayoutsCollection object corresponding to the collection of the page layouts. After this method is
done, it contains the results of layout analysis.

processingParams

[in] This variable refers to the PageProcessingParams object that stores parameters of layout analysis. This parameter may be 0. In
this case the page is analyzed with default parameters (all page processing parameters are set to default values), or, if a profile has been
loaded, the parameters set by this profile are used.

documentInfo

[in] This variable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the same
DocumentInfo object, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this
case, all information about the image which was received during preparation is used during analysis and recognition. This parameter is
optional and may be set to 0, which means either that this information need not be used or that a file other than PDF is being
processed.

Return Values

If layout analysis is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

Remarks

Depending on the value of the IEngine::MultiProcessingParams property, ABBYY FineReader Engine can distribute analysis and
recognition of multi�page documents to CPU cores.

See also

Engine
IFRDocument::AnalyzePages
IDocumentAnalyzer::AnalyzePages
IEngine::AnalyzePage
IEngine::AnalyzeAndRecognizePages
Working with Profiles

RecognizeImageAsPlainText Method of the Engine Object

This method opens an image file, recognizes it and returns recognized text in a special "plain text" format. This format only contains
information about recognized text symbols, recognition confidence and positions of these symbols as relative to the recognized image.
The resulting plain text is formatted with spaces.

Visual Basic Syntax

Method RecognizeImageAsPlainText(

 imageFileName As String,

 processingParams As PageProcessingParams,

 synthesisParams As SynthesisParamsForPage

 passwordCallback As ImagePasswordCallback

) As PlainText

 153

ABBYY FineReader Engine 10 API Reference

C++ Syntax

HRESULT RecognizeImageAsPlainText(

 BSTR imageFileName,

 IPageProcessingParams* processingParams,

 ISynthesisParamsForPage* synthesisParams,

 IImagePasswordCallback* passwordCallback,

 IPlainText** results

);

Parameters

imageFileName

[in] This variable contains the full path to an image file that is to be recognized. If this file is not in ABBYY FineReader Engine internal
format, it is prepared with the default values of the PrepareImageMode properties, or, if a profile has been loaded, the parameters set
by this profile are used.

processingParams

[in] This variable refers to the PageProcessingParams object that stores analysis and recognition parameters. This parameter is
optional and may be 0. In this case the page is analyzed and recognized using the default parameters (all page processing parameters
are set to default values, and the recognition language is English), or, if a profile has been loaded, the parameters set by this profile are
used.

synthesisParamsForPage

[in] This variable refers to the SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In
this case the page is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

passwordCallback

[in] This variable refers to the interface of the user�implemented object of the type ImagePasswordCallback which is used to handle
possible password requests for accessing images in PDF format. This parameter is optional and may be 0 in which case password�
protected files cannot be processed.

results

[out, retval] A pointer to IPlainText* pointer variable that receives the interface pointer of the PlainText output object. This object
provides information about recognized symbols and positions of these symbols as relative to the recognized image.

Return Values

If recognition is interrupted by the user, this method will return E_ABORT. If pattern training is interrupted by the user, this method
will return FREN_E_PATTERN_TRAINING_ABORTED. It also returns the standard return codes of the ABBYY FineReader Engine
functions.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.
 FREngine::IEnginePtr Engine;
 ...
 // Analyze and recognize the image
 FREngine::IPlainTextPtr text = Engine->RecognizeImageAsPlainText("D:\\Demo.tif", 0,
0, 0);

 // Save results as Unicode
 text->SaveToTextFile("D:\\sample.txt", FREngine::TET_UTF8, FREngine::CP_Null);

Visual Basic code

' Global ABBYY FineReader Engine object.
 Public Engine As FREngine.Engine
 ...
 ' Analyze and recognize the image
 Dim Text As FREngine.PlainText
 Set Text = Engine.RecognizeImageAsPlainText("D:\Demo.tif")

 ' Save results as Unicode
 Text.SaveToTextFile "D:\sample.txt", TET_UTF8, CP_Null

 154

ABBYY FineReader Engine 10 API Reference

See also

Engine
IEngine::RecognizeImageDocumentAsPlainText
PlainText
IImagePasswordCallback
Working with Profiles

RecognizeImageDocumentAsPlainText Method of the Engine Object

This method recognizes an image and returns recognized text in a special "plain text" format. This format only contains information
about recognized text symbols, recognition confidence and positions of these symbols as relative to the recognized image. The
resulting plain text is formatted with spaces.

Visual Basic Syntax

Method RecognizeImageDocumentAsPlainText(

 image As ImageDocument,

 processingParams As PageProcessingParams,

 synthesisParams As SynthesisParamsForPage,

 documentInfo As DocumentInfo

) As PlainText

C++ Syntax

HRESULT RecognizeImageDocumentAsPlainText(

 IImageDocument* image,

 IPageProcessingParams* processingParams,

 ISynthesisParamsForPage* synthesisParams,

 IDocumentInfo* documentInfo,

 IPlainText** results

);

Parameters

image

[in] This variable refers to the ImageDocument object corresponding to the image to be recognized

processingParams

[in] This variable refers to the PageProcessingParams object that stores analysis and recognition parameters. This parameter is
optional and may be 0. In this case the page is analyzed and recognized using the default parameters (all page processing parameters
are set to default values, and the recognition language is English), or, if a profile has been loaded, the parameters set by this profile are
used.

synthesisParams

[in] This variable refers to the SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In
this case the page is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

documentInfo

[in] This variable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the same
DocumentInfo object, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this
case, all information about the image which was received during preparation is used during analysis and recognition. This parameter is
optional and may be set to 0, which means either that this information need not be used or that a file other than PDF is being
processed.

results

[out] A pointer to IPlainText* pointer variable that receives the interface pointer of the PlainText output object. This object provides
information about recognized symbols and positions of these symbols as relative to the recognized image.

Return Values

If recognition is interrupted by the user, this method will return E_ABORT. If pattern training is interrupted by the user, this method
will return FREN_E_PATTERN_TRAINING_ABORTED. It also returns the standard return codes of the ABBYY FineReader Engine
functions.

 155

ABBYY FineReader Engine 10 API Reference

See also

Engine
IEngine::RecognizeImageAsPlainText
PlainText
Working with Profiles

RecognizeImageFile Method of the Engine Object

This method performs layout analysis and recognition of the image file specified, and exports the recognized text into the selected
output format. The RecognizeImageFile method can process multipage images and export the recognition results to a single file.

Visual Basic Syntax

Method RecognizeImageFile(
 imageFileName As String,
 pageProcessingParams As PageProcessingParams,
 synthesisParams As SynthesisParamsForPage
 documentSynthesisParams As SynthesisParamsForDocument,
 exportFormat As FileExportFormatEnum,
 exportParams As Unknown,
 passwordCallback As ImagePasswordCallback,
 outputFileName As String
)

C++ Syntax

HRESULT RecognizeImageFile(
 BSTR imageFileName,
 IPageProcessingParams* pageProcessingParams,
 ISynthesisParamsForPage* synthesisParams,
 ISynthesisParamsForDocument* documentSynthesisParams,
 FileExportFormatEnum exportFormat,
 IUnknown* exportParams,
 IImagePasswordCallback* passwordCallback,
 BSTR outputFileName
);

Parameters
imageFileName

[in] This variable contains the full path to an image file that is to be recognized. If this file is not in ABBYY FineReader Engine internal
format, it is prepared using the default values of the PrepareImageMode properties, or, if a profile has been loaded, the parameters
set by this profile are used.

pageProcessingParams

[in] This variable refers to the PageProcessingParams object that stores analysis and recognition parameters. This parameter may be
0. In this case the page is analyzed and recognized using the default parameters (all page processing parameters are set to default
values, and the recognition language is English), or, if a profile has been loaded, the parameters set by this profile are used.

synthesisParams

[in] This variable refers to the SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In
this case the page is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

documentSynthesisParams

[in] This variable refers to the SynthesisParamsForDocument object that stores parameters of document synthesis. This parameter
may be 0. In this case the document is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this
profile are used.

exportFormat

[in] This variable of the FileExportFormatEnum type specifies the format of the output file into which the recognized text is
exported.

exportParams

[in] Pass the export parameters object of type corresponding to your file format through this input parameter. For example, if you are
creating an RTF file, create the RTFExportParams object, set necessary parameters in it, and pass to this method as the
exporterParams input parameter. This parameter is optional and may be 0, in which case the parameters of export have default values,
or, if a profile has been loaded, the parameters set by this profile are used.

passwordCallback

[in] This variable refers to the interface of the user�implemented object of the type ImagePasswordCallback which is used to handle
possible password requests for accessing images in PDF format. This parameter is optional and may be 0 in which case password�
protected files cannot be processed.

 156

ABBYY FineReader Engine 10 API Reference

outputFileName

[in] This variable contains the full path to the output file where the recognized text should be exported. If a file at this location already
exists, it is overwritten without prompt, or recognized text is append to its end, depending on the mode of export.

Return Values

If recognition is interrupted by the user, this method will return E_ABORT. If pattern training is interrupted by the user, this method
will return FREN_E_PATTERN_TRAINING_ABORTED. It also returns the standard return codes of the ABBYY FineReader Engine
functions.

Remarks

This method is equivalent to successive calls to the IEngine::PrepareAndOpenImage with default parameters,
IEngine::AnalyzeAndRecognizePage and IEngine::ExportPage functions with the specified parameters.

See also

Engine
IEngine::PrepareAndOpenImage
IEngine::AnalyzeAndRecognizePage
IEngine::ExportPage
IImagePasswordCallback
Working with Profiles

RecognizePage Method of the Engine Object

This method recognizes those parts of the specified image that lay inside the blocks of the specified Layout.

Visual Basic Syntax

Method RecognizePage(

 imageDoc As ImageDocument,

 synthesisParams As SynthesisParamsForPage

 extractionParams As ObjectsExtractionParams,

 layout As Layout,

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT RecognizePage(

 IImageDocument* imageDoc,

 ISynthesisParamsForPage* synthesisParams,

 IObjectsExtractionParams* extractionParams,

 ILayout* layout,

 IDocumentInfo* documentInfo

);

Parameters

imageDoc

[in] This variable refers to the ImageDocument object corresponding to the image that is to be recognized.

synthesisParams

[in] This variable refers to the SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In
this case the page is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

extractionParams

[in] This variable refers to the ObjectsExtractionParams object that stores parameters of objects extraction. This parameter may be
0. In this case the objects are extracted with default parameters, or, if a profile has been loaded, the parameters set by this profile are
used.

layout

[in] This variable refers to the Layout object corresponding to the page layout. The blocks in the layout should be created before
calling the method. After recognition these blocks will contain the recognized text.

documentInfo

 157

ABBYY FineReader Engine 10 API Reference

[in] This variable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the same
DocumentInfo object, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this
case, all information about the image which was received during preparation is used during analysis and recognition. This parameter is
optional and may be set to 0, which means either that this information need not be used or that a file other than PDF is being
processed.

Return Values

If recognition is interrupted by the user, this method will return E_ABORT. If pattern training is interrupted by the user, this method
will return FREN_E_PATTERN_TRAINING_ABORTED. It also returns the standard return codes of the ABBYY FineReader Engine
functions.

Remarks

• If the sizes and resolutions of the image and layout do not match, this method sets the size and resolution of the layout to be
equal to those of the deskewed black�and�white page of the ImageDocument.

• Call this method after you have analyzed or created the layout of the page manually. The old text from blocks, if there is any,
is deleted. If the layout contains any table blocks with non�analyzed structure, they will be recognized as containing a single
cell corresponding to the whole table.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

FREngine::IEnginePtr Engine;

...

// Open the image file

FREngine::IImageDocumentPtr pImageDoc = Engine->PrepareAndOpenImage("D:\\Demo.tif", 0,
0, 0);

// Create the Layout object

FREngine::ILayoutPtr pLayout = Engine->CreateLayout();

// Perform page layout analysis

Engine->AnalyzePage(pImageDoc, 0, pLayout, 0);

...

// Recognizing

Engine->RecognizePage(pImageDoc, 0, 0, pLayout, 0);

...

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Open the image file

Dim ImageDoc As FREngine.ImageDocument

Set ImageDoc = Engine.PrepareAndOpenImage("D:\Demo.tif")

' Create the Layout object

Dim Layout As FREngine.Layout

Set Layout = Engine.CreateLayout()

' Perform page layout analysis

Engine.AnalyzePage ImageDoc, Nothing, Layout

...

' Recognize the image

Engine.RecognizePage ImageDoc, Nothing, Nothing, Layout

...

See also

Engine
IFRPage::Recognize
IDocumentAnalyzer::RecognizePage
Working with Profiles

 158

ABBYY FineReader Engine 10 API Reference

RecognizePages Method of the Engine Object

This method recognizes those parts of the images from the collection that lay inside the blocks of the specified layout collection.

Visual Basic Syntax

Method RecognizePages(

 imageDocuments As ImageDocumentsCollection,

 layouts As LayoutsCollection,

 synthesisParams As SynthesisParamsForPage,

 extractionParams As ObjectsExtractionParams,

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT RecognizePages(

 IImageDocumentsCollection* imageDocuments,

 ILayoutsCollection* layouts,

 ISynthesisParamsForPage* synthesisParams,

 IObjectsExtractionParams* extractionParams,

 IDocumentInfo* documentInfo

);

Parameters

imageDocuments

[in] This variable refers to the ImageDocumentsCollection object corresponding to the images collection that is to be recognized.
The number of images in the collection must correspond to the number of Layout objects in the collection of the layouts.

layouts

[in] This variable refers to the LayoutsCollection object corresponding to the collection of the page layouts. After this method is
done, it contains the results of layout analysis and recognition.

synthesisParams

[in] This variable refers to the SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In
this case the page is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

extractionParams

[in] This variable refers to the ObjectsExtractionParams object that stores parameters of objects extraction. This parameter may be
0. In this case the objects are extracted with default parameters, or, if a profile has been loaded, the parameters set by this profile are
used.

documentInfo

[in] This variable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the same
DocumentInfo object, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this
case, all information about the image which was received during preparation is used during analysis and recognition. This parameter is
optional and may be set to 0, which means either that this information need not be used or that a file other than PDF is being
processed.

Return Values

If recognition is interrupted by the user, this method will return E_ABORT. If pattern training is interrupted by the user, this method
will return FREN_E_PATTERN_TRAINING_ABORTED. It also returns the standard return codes of the ABBYY FineReader Engine
functions.

Remarks

Depending on the value of the IEngine::MultiProcessingParams property, ABBYY FineReader Engine can distribute analysis and
recognition of multi�page documents to CPU cores.

See also

Engine
IDocumentAnalyzer::RecognizePages
IFRDocument::Recognize

 159

ABBYY FineReader Engine 10 API Reference

IFRDocument::RecognizePages
Working with Profiles

SynthesizePages Method of the Engine Object

This method performs the document synthesis of a collection of recognized images.

Visual Basic Syntax

Method SynthesizePages(

 imageDocumentsCollection As ImageDocumentsCollection,

 layoutsCollection As LayoutsCollection,

 synthesisParamsForDocument As SynthesisParamsForDocument,

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT SynthesizePages(

 IImageDocumentsCollection* imageDocumentsCollection,

 ILayoutsCollection* layoutsCollection,

 ISynthesisParamsForDocument* synthesisParamsForDocument,

 IDocumentInfo* documentInfo

);

Parameters
imageDocumentsCollection

[in] This variable refers to the ImageDocumentsCollection object corresponding to the images collection that is to be synthesized.
The number of images in the collection must correspond to the number of Layout objects in the collection of the layouts.

layoutsCollection

[in] This variable refers to the LayoutsCollection object corresponding to the collection of the page layouts. After this method is
done, it contains the results of synthesis.

synthesisParamsForDocument

[in] This variable refers to the SynthesisParamsForDocument object that stores parameters of document synthesis. This parameter
may be 0. In this case, the document is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this
profile are used.

documentInfo

[in] This variable refers to the DocumentInfo object. Then use this object during export, in order the text attributes which were
detected during synthesis are available during export.

Return Values

This method returns the standard return codes of the ABBYY FineReader Engine functions.

See also

Engine
IEngine::SynthesizePagesEx
IFRDocument::SynthesizePages
IFRDocument::Synthesize
Working with Profiles

SynthesizePagesEx Method of the Engine Object

This method performs the document synthesis of a collection of recognized images. It requires interface of user�implemented object of
type RecognizedPages, as its input parameter. This object allows you to pass pages one�by�one rather than as the batch, and thus
requires memory for only one recognized page at a time.

Visual Basic Syntax

Method SynthesizePagesEx(

 RecognizedPages As RecognizedPages,

 synthesisParamsForDocument As SynthesisParamsForDocument,

 documentInfo As DocumentInfo

)

 160

ABBYY FineReader Engine 10 API Reference

C++ Syntax

HRESULT SynthesizePagesEx(

 IRecognizedPages* RecognizedPages,

 ISynthesisParamsForDocument* synthesisParamsForDocument,

 IDocumentInfo* documentInfo

);

Parameters
RecognizedPages

[in] This variable refers to the interface of the user�implemented object of the type RecognizedPages which is used to pass recognized
texts and images of the synthesized pages one�by�one.

synthesisParamsForDocument

[in] This variable refers to the SynthesisParamsForDocument object that stores parameters of document synthesis. This parameter
may be 0. In this case the document is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this
profile are used.

documentInfo

[in] This variable refers to the DocumentInfo object. Then use this object during export, in order the text attributes which were
detected during synthesis are available during export.

Return Values

This method returns the standard return codes of the ABBYY FineReader Engine functions.

See also

Engine
IEngine::SynthesizePages
IFRDocument::SynthesizePages
IFRDocument::Synthesize
Working with Profiles

ExportPage Method of the Engine Object

This method saves recognized text into a file in an external format. Available file formats are represented by the
FileExportFormatEnum enumeration constants.

Visual Basic Syntax

Method ExportPage(

 format As FileExportFormatEnum,

 fileName As String,

 imageDoc As ImageDocument,

 layout As Layout,

 exportParams As Unknown

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT ExportPage(

 FileExportFormatEnum format,

 BSTR fileName,

 IImageDocument* imageDoc,

 ILayout* layout,

 IUnknown* exportParams

 IDocumentInfo* documentInfo

);

Parameters

format

[in] This variable specifies the format of the output file. See the FileExportFormatEnum description for the supported file formats.

fileName

 161

ABBYY FineReader Engine 10 API Reference

[in] This variable contains the full path to the output file. If this file already exists, it is overwritten without prompt.

imageDoc

[in] This variable refers to the ImageDocument that corresponds to the exported page. This parameter must not be 0.

layout

[in] This variable refers to the Layout object that contains blocks and recognized text corresponding to the exported page. This
parameter may be 0 when exporting a page to PDF (PDF/A) format using PEM_ImageOnly mode.

exportParams

[in] Pass the export parameters object of the type corresponding to your file format through this input parameter. For example, if you
are saving the text into an RTF file, create an RTFExportParams object, set the necessary parameters in it, and pass it to this method
as the exportParams input parameter. This parameter may be 0, in which case the default values for the export parameters are used, or,
if a profile has been loaded, the parameters set by this profile are used.

documentInfo

[in] This variable refers to the DocumentInfo object. You should use the same DocumentInfo object, which was used as a
parameter in the SynthesizePages or SynthesizePagesEx methods of the Engine object. In this case, all the information about
document which was received during synthesis is used during export. This parameter may be 0, in which case the text attributes which
were detected during synthesis are not available.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.
 FREngine::IEnginePtr Engine;
 ...
 // Open the image file
 FREngine::IImageDocumentPtr pImageDoc =
 Engine->PrepareAndOpenImage("D:\\Demo.tif", 0, 0, 0);

 // Create the Layout object
 FREngine::ILayoutPtr pLayout = Engine->CreateLayout();

 // Analyze and recognize the image
 Engine->AnalyzeAndRecognizePage(pImageDoc, 0, 0, pLayout, 0);

 // Save the results
 Engine->ExportPage(FREngine::FEF_RTF, "D:\\sample.rtf", pImageDoc, pLayout, 0, 0);

Visual Basic code

' Global ABBYY FineReader Engine object.
 Public Engine As FREngine.Engine
 ...
 ' Open the image file
 Dim ImageDoc As FREngine.ImageDocument
 Set ImageDoc = Engine.PrepareAndOpenImage("D:\Demo.tif")

 ' Create the Layout object
 Dim Layout As FREngine.Layout
 Set Layout = Engine.CreateLayout()

 ' Analyze and recognize the image
 Engine.AnalyzeAndRecognizePage ImageDoc, Nothing, Nothing, Layout

 ' Save the results
 Engine.ExportPage FEF_RTF, "D:\sample.rtf", ImageDoc, Layout

See also

Engine
IFRPage::Export
IEngine::ExportPages
Working with Profiles

 162

ABBYY FineReader Engine 10 API Reference

ExportPages Method of the Engine Object

This method saves recognized text from several pages into a file in an external format. Available file formats are represented by the
FileExportFormatEnum enumeration constants.

Visual Basic Syntax

Method ExportPages(

 format As FileExportFormatEnum,

 fileName As String,

 imageDocuments As ImageDocumentsCollection,

 layouts As LayoutsCollection,

 exportParams As Unknown,

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT ExportPages(

 FileExportFormatEnum format,

 BSTR fileName,

 IImageDocumentsCollection* imageDocuments,

 ILayoutsCollection* layouts,

 IUnknown* exportParams

 IDocumentInfo* documentInfo,

);

Parameters

format

[in] This variable specifies the format of the output file. See the FileExportFormatEnum description for the supported file formats.

fileName

[in] This variable contains the full path to the output file. If this file already exists, it is overwritten without prompt.

imageDocuments

[in] This variable refers to the ImageDocumentsCollection object that corresponds to the set of images that belong to the exported
pages. The number of images in the collection must correspond to the number of Layout objects in the collection of the exported
layouts. This parameter must not be 0.

layouts

[in] This variable refers to the LayoutsCollection object containing the set of layouts that belong to the exported pages. This
parameter may be 0 when exporting pages to PDF (PDF/A) format using PEM_ImageOnly mode.

exportParams

[in] Pass the export parameters object of the type corresponding to your file format through this input parameter. For example, if you
are saving your text into an RTF file, create a RTFExportParams object, set necessary parameters in it, and pass it to this method as
the exportParams input parameter. This parameter may be 0, in which case the default values for the export parameters are used, or, if
a profile has been loaded, the parameters set by this profile are used.

documentInfo

[in] This variable refers to the DocumentInfo object. You should use the same DocumentInfo object, which was used as a
parameter in the SynthesizePages or SynthesizePagesEx methods of the Engine object. In this case, all the information about
document which was received during synthesis is used during export. This parameter may be 0, in which case the text attributes which
were detected during synthesis are not available.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

• This method is similar to IEngine::ExportPage, except that it performs export of several pages into a single file.

 163

ABBYY FineReader Engine 10 API Reference

• To analyze and recognize pages that will be exported into a single file, specify identical values for all the properties of the
SynthesisParamsForPage object except for the properties CorrectDynamicRange, DetectBackgroundColor,
DetectTextColor.

See also

Engine
IFRDocument::ExportPages
IExporter::ExportPages
IExporter::ExportPagesEx
IEngine::ExportPage
Working with Profiles

Image�Related Objects
An open image file is represented by an object of the ImageDocument type. This object contains a number of image planes,
represented by a respective number of the Image objects. These planes are: full�size black�and�white copy of the deskewed image, full�
size color copy of the deskewed image, and a small color preview, which is optional. ABBYY FineReader Engine also provides several
objects, which allow you to modify an image, prepare it for recognition, etc.

This section contains descriptions of the following image�related objects:

• ImageDocument

• IImageDocumentEvents

• ImageDocumentsCollection

• Image

• ImageProcessingParams

• PrepareImageMode

• JpegExtendedParams

• PdfExtendedParams

• ImageModification

• MultipageImageWriter

• IImagePasswordCallback

• TrainingImagesCollection

• TrainingImage

You can find additional information about how to work with images in the Working with Images section.

 164

ABBYY FineReader Engine 10 API Reference

The image�related objects hierarchy

For more information about the hierarchy of the ABBYY FineReader Engine objects, please see the Object Diagram.

ImageDocument Object (IImageDocument Interface)

This object corresponds to an open image. Its attributes reflect the attributes of an image. ImageDocument object is a root for a
collection of Image objects, or "image planes". Each image document includes 3 "image planes": black�and�white, color and preview.
They are accessible via corresponding properties.

You can set whether ImageDocument objects should be created in memory or saved to file on disk with the help of the
CreateImageDocumentsInMemory property of the Engine object. This property may be useful when processing a lot of
ImageDocument objects simultaneously.

This object supports the IConnectionPointContainer interface, which means that it may report events to listeners attached to it,
and implementing the IImageDocumentEvents interface. It may be declared WithEvents in Visual Basic.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Provides access to the black�and�white image plane of the current
ImageDocument object. BlackWhiteImage Image, read�only

Provides access to the color image plane of the current
ImageDocument object. ColorImage Image, read�only

Id Stores the ID of the image document. Long, read�only

Each color plane of the image document is characterized by its own
color type. This property specifies the color type for the whole image
document as the maximum of the corresponding values for its color
planes (black�and�white, gray, color).

ImageColorTypeEnum,
read�only ImageColorType

Specifies rotation that was performed upon the current
ImageDocument object from the opening or from the last call to
the SaveModified method.

RotationTypeEnum,
read�only ImageRotation

This property set to TRUE specifies that the image colors were
inverted after opening or after the last call to SaveModified
method.

ImageWasInverted Boolean, read�only

This property set to TRUE specifies that the image was mirrored
around the vertical axis after opening or after the last call to
SaveModified method.

ImageWasMirrored Boolean, read�only

IsInMemory Boolean, read�only Specifies if the image document is stored in memory only or it is also
represented as a folder on disk.

Specifies if any modifications were made upon the
ImageDocument object since it was obtained from the image file
or from the last call of the SaveModified method. Information
about modifications is available through the ImageWasInverted,

IsModified Boolean, read�only

 165

ABBYY FineReader Engine 10 API Reference

ImageWasMirrored and ImageRotation properties.

IsSkewCorrected Boolean, read�only This property provides information about whether the skew of the
image was fully corrected.
This property is TRUE if the image does not need any skew
correction (the CorrectSkewMode property of the
PrepareImageMode object is 0) or if the skew was fully corrected
during the preparation process as defined by the
CorrectSkewMode property of the PrepareImageMode object. If
the value of this property is FALSE, an attempt to correct the skew of
the image failed.

Path String, read�only Stores the path to the folder with object's internal representation on
disk. The property contains an empty string, if the value of the
IsInMemory property is TRUE.

PreviewImage Image, read�only Provides access to the preview image plane of the current
ImageDocument object. An open image contains this image plane,
only if IPrepareImageMode::CreatePreview property was set to
TRUE during image preparation. Otherwise the object accessed
through this property is NULL.

Stores the tangent of skew angle that was detected for the image and
corrected during opening. If the skew angle is negative the image is
rotated clockwise; if the angle is positive the image is rotated
counter�clockwise. The image can be rotated around any point. The
size of the deskewed image is always larger than the size of the
original image.

SkewAngle Double, read�only

Provides information about format of the source image file of the
current ImageDocument object. If this information is not available
or image was received from scanner, the value of this property is
IFF_UnknownFormat.

ImageFileFormatEnum,
read�only SourceImageFileFormat

Provides information about scanner used to acquire the image. If
information about source image parameters is not available or image
was received from file, the value of this property is empty string.

SourceImageScannerInfo String, read�only

Provides information about scanning intensity threshold for the
current ImageDocument object. If information about source image
parameters is not available or image was obtained from file, the value
of this property is �1.

SourceImageScanThreshold Long, read�only

SourceImageXResolution Long, read�only Provides information about horizontal resolution of the source
image of the current ImageDocument object. If information about
source image parameters is not available, the value of this property is
0.

SourceImageYResolution Long, read�only Provides information about vertical resolution of the source image of
the current ImageDocument object. If information about source
image parameters is not available, the value of this property is 0.

Methods

Name Description
ChangeResolution Changes resolution of the image.

ConvertCoordinates Converts coordinates of a pixel between image planes of the ImageDocument.

CorrectSkew Corrects a skew of the image.

GetTextBackgroundColor Detects colors of text and background in the specified rectangle on image.

Allows you to modify the image. This method provides advanced modifications as compared with the
Transform method. Modify

RemoveCameraBlur Removes motion blur from the image.

RemoveCameraNoise Removes ISO noise from the image.

 166

ABBYY FineReader Engine 10 API Reference

RemoveColorObjects Removes specified color objects from the whole image or its parts.

RemoveGarbage Removes garbage (excess dots that are smaller than a certain size) from the image.

SaveImageRegionTo Saves the parts of the image into a folder on disk. The saved image is in ABBYY FineReader Engine
internal format.

Saves the contents of the ImageDocument object into a folder on disk. The image is saved in ABBYY
FineReader Engine internal format. SaveTo

SaveToFile Saves the contents of the ImageDocument object into a file.

SaveToMemory Saves the contents of the ImageDocument object into the global memory.

Saves all modifications that were performed upon the current ImageDocument object into the files
on disk. SaveModified

SmoothImage Allows you to smooth the image. This method can be used for gray and color images only.

SubtractColor Removes the color with the specified hue and saturation from the image.

Transform Applies a limited set of transformations to the image.

Related objects

Output parameter

This object is the output parameter of the following methods LoadImageDocFromFile, LoadImageDocFromMemory,
OpenBitmapImage, OpenDib, OpenImage, OpenMemoryImage, PrepareAndOpenBitmap, PrepareAndOpenDib,
PrepareAndOpenImage, PrepareAndOpenMemoryImage of the Engine object.

Input parameter

This object is the input parameter of the following methods:

• AnalyzeAndRecognizePage, AnalyzePage, RecognizeImageDocumentAsPlainText, RecognizePage, ExportPage
of the Engine object.

• AnalyzeAndRecognizePage, AnalyzePage, AnalyzeRegion, AnalyzeTable, DetectOrientation, ExtractBarcodes,
FindPageSplitPosition, RecognizeBlocks, RecognizeImageDocumentAsPlainText, RecognizePage,
RemoveGeometricalDistortions of the DocumentAnalyzer object.

• AddImage of the FRDocument object.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.
 FREngine::IEnginePtr Engine;
 ...
 // Open the image file
 FREngine::IImageDocumentPtr pImageDoc =
 Engine->PrepareAndOpenImage(L"D:\\Demo.tif", 0, 0, 0);

 // Extract image dimensions

 167

ABBYY FineReader Engine 10 API Reference

 FREngine::IImagePtr image = pImageDoc->ColorImage;
 long width = image->Width;
 long height = image->Height;

 // Obtain text and background colors
 long textColor, backgroundColor;
 pImageDoc->GetTextBackgroundColor(0, 0, width, height, 0, &textColor,
&backgroundColor);
 ...

Visual Basic code

' Global ABBYY FineReader Engine object.
 Public Engine As FREngine.Engine
 ...
 ' Open the image file
 Dim ImageDoc As FREngine.ImageDocument
 Set ImageDoc = Engine.PrepareAndOpenImage("D:\Demo.tif")

 ' Extract image dimensions
 Dim Image As FREngine.Image
 Set Image = ImageDoc.ColorImage
 Dim Width As Long, Height As Long
 Width = Image.Width
 Height = Image.Height

 ' Obtain text and background colors
 Dim TextColor As Long, BackgroundColor As Long
 ImageDoc.GetTextBackgroundColor 0, 0, Width, Height, 0, TextColor, BackgroundColor
 ...

See also

IImageDocumentEvents,
Working with Images
Working with Connectable Objects
Working with Properties

ChangeResolution Method of the ImageDocument Object

This method changes the resolution of the image. The size of the image in pixels remains unchanged.

Visual Basic Syntax

Method ChangeResolution(

 newResolution As Long

)

C++ Syntax

HRESULT ChangeResolution(

 long newResolution,

);

Parameters

newResolution

[in] Variable containing the new value for the resolution. Must be greater than 20.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Image resolution can also be changed when opening images if the OverwriteResolution or AutoOverwriteResolution properties
of the PrepareImageMode object are set to TRUE. In this case the new resolution will be used for image preprocessing (i.e. for
binarization, deskewing, etc.). The ChangeResolution method allows you to change the resolution of the existing image.

 168

ABBYY FineReader Engine 10 API Reference

See also

ImageDocument
PrepareImageMode

ConvertCoordinates Method of the ImageDocument Object

This method converts coordinates of a pixel defined on an image plane to coordinates defined on another image plane. Conversion
between all possible pairs of image planes is permitted.

Visual Basic Syntax

Method ConvertCoordinates(

 fromPage As ImageTypeEnum,

 toPage As ImageTypeEnum,

 x As Long,

 y As Long

)

C++ Syntax

HRESULT ConvertCoordinates(

 ImageTypeEnum fromPage,

 ImageTypeEnum toPage,

 long* x,

 long* y

);

Parameters

fromPage

[in] This variable of the ImageTypeEnum type specifies the image page from which the coordinates of pixel are to be converted.

toPage

[in] This variable of the ImageTypeEnum type specifies the image page to which the coordinates of pixel are to be converted.

x

[out] This variable stores the horizontal coordinate of the pixel relative to the source image page before the method call, and the
horizontal coordinate of the pixel relative to the target image page after the method call.

y

[out] This variable stores the vertical coordinate of the pixel relative to the source image page before the method call, and the vertical
coordinate of the pixel relative to the target image page after the method call.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The coordinates of pixels on the black�and�white image page and the color image page are the same.

See also

ImageTypeEnum

CorrectSkew Method of the ImageDocument Object

This method corrects a skew of the image.

Visual Basic Syntax

Method CorrectSkew(

 CorrectSkewFlags As Long

)

C++ Syntax

HRESULT CorrectSkew(

 long CorrectSkewFlags,

 169

ABBYY FineReader Engine 10 API Reference

);

Parameters

CorrectSkewFlags

[in] The variable may contain any combination of the CorrectSkewModeEnum constants. In the case of a combination of several
flags, the following order is used: skew correction by squares, skew correction by lines, skew correction by text lines.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

You can also correct image skew when opening images by using the CorrectSkewMode property of the PrepareImageMode object.
In this case the skew will be corrected during image preprocessing.

See also

IImageDocument::CorrectSkew
PrepareImageMode

GetTextBackgroundColor Method of the ImageDocument Object

This method detects colors of text and background in the specified rectangle on image. This rectangle should be specified in the
coordinates against the deskewed black�and�white page of the ImageDocument.

Visual Basic Syntax

Method GetTextBackgroundColor(

 left As Long,

 top As Long,

 right As Long,

 bottom As Long,

 flags As Long,

 textColor As Long,

 backgroundColor As Long

)

C++ Syntax

HRESULT GetTextBackgroundColor(

 long left,

 long top,

 long right,

 long bottom,

 long flags,

 long* textColor,

 long* backgroundColor

);

Parameters

left

[in] This parameter contains coordinate of the left border of the rectangle.

top

[in] This parameter contains coordinate of the top border of the rectangle.

right

[in] This parameter contains coordinate of the right border of the rectangle.

bottom

[in] This parameter contains coordinate of the bottom border of the rectangle.

flags

 170

ABBYY FineReader Engine 10 API Reference

[in] This parameter may either be 0 or DCR_Invert. If DCR_Invert is passed, then the rectangle is considered to be inverted (white text
against the black background).

textColor

[out] This parameter receives the value of the text color in rectangle.

backgroundColor

[out] This parameter receives the value of the background color in rectangle.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Text and background colors are detected using information from the deskewed black�and�white page of the ImageDocument. But
the colors are returned as they are on the color pages of the ImageDocument. A pixel of the deskewed black�and�white image plane
that lays inside the specified rectangle is considered to belong to text if it is black (white) if the rectangle is not inverted (inverted). If
this method fails to detect the colors of text and/or background, it returns the undefined color value (0xFFFFFFFF).

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

FREngine::IEnginePtr Engine;

...

// Open the image file

FREngine::IImageDocumentPtr pImageDoc =

Engine->PrepareAndOpenImage(L"D:\\Demo.tif", 0, 0, 0);

// Extract image dimensions

FREngine::IImagePtr image = pImageDoc->ColorImage;

long width = image->Width;

long height = image->Height;

// Obtain text and background colors

long textColor, backgroundColor;

pImageDoc->GetTextBackgroundColor(0, 0, width, height, 0, &textColor,
&backgroundColor);

...

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Open the image file

Dim ImageDoc As FREngine.ImageDocument

Set ImageDoc = Engine.PrepareAndOpenImage("D:\Demo.tif")

' Extract image dimensions

Dim Image As FREngine.Image

Set Image = ImageDoc.ColorImage

Dim Width As Long, Height As Long

Width = Image.Width

Height = Image.Height

' Obtain text and background colors

Dim TextColor As Long, BackgroundColor As Long

ImageDoc.GetTextBackgroundColor 0, 0, Width, Height, 0, TextColor, BackgroundColor

...

See also

ImageDocument

 171

ABBYY FineReader Engine 10 API Reference

Modify Method of the ImageDocument Object

This method modifies the current ImageDocument. All modifications defined by the ImageModification object are possible.

Visual Basic Syntax

Method Modify(

 modification As ImageModification

)

C++ Syntax

HRESULT Modify(

 ImageModification modification

);

Parameters

modification

[in] This variable of the ImageModification type specifies the transformations that are to be performed upon the ImageDocument
object.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

All the information about the initial image will be lost after the method call.

This method applies modifications to the basic black�and�white and base color image planes of the ImageDocument. All the other
pages are deleted from the ImageDocument. They will be created upon demand.

See also

ImageModification

RemoveCameraBlur Method of the ImageDocument Object

This method removes motion blur from the specified region of the image. The method is primary designed for preprocessing the
images obtained by a digital camera.

This method does not report events to the listeners attached to the IConnectionPointContainer interface of the ImageDocument
object.

Visual Basic Syntax

Method RemoveCameraBlur(

 region As Region

)

C++ Syntax

HRESULT RemoveCameraBlur(

 IRegion* region

);

Parameters

region

[in] This parameter of the Region type specifies the set of rectangles to remove motion blur from. The coordinates of rectangles are
related to the deskewed black�and�white page of the ImageDocument. This parameter may be 0. In this case the motion blur is
removed from the whole image.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

This method removes blur from the black�and�white and color image planes of the ImageDocument. All the other pages are deleted
from the ImageDocument. They will be created upon demand.

 172

ABBYY FineReader Engine 10 API Reference

See also

ImageDocument

RemoveCameraNoise Method of the ImageDocument Object

This method removes ISO noise from the specified region of the image. The method is primary designed for preprocessing the images
obtained by a digital camera.

This method does not report events to the listeners attached to the IConnectionPointContainer interface of the ImageDocument
object.

Visual Basic Syntax

Method RemoveCameraNoise(

 region As Region

)

C++ Syntax

HRESULT RemoveCameraNoise(

 IRegion* region

);

Parameters

region

[in] This parameter of the Region type specifies the set of rectangles to remove noise from. The coordinates of rectangles are related to
the deskewed black�and�white page of the ImageDocument. This parameter may be 0. In this case the noise is removed from the
whole image.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

This method removes noise from the black�and�white and color image planes of the ImageDocument. All the other pages are deleted
from the ImageDocument. They will be created upon demand.

See also

ImageDocument

RemoveColorObjects Method of the ImageDocument Object

This method allows you to remove color objects from the image. You can remove red, green, blue, or yellow objects from the whole
image, or only from some parts of the image: specified region, its background, or only stamps and signatures in this region.

Important! This method can be used for color images only.

This method does not report events to the listeners attached to the IConnectionPointContainer interface of the ImageDocument
object.

Visual Basic Syntax

Method RemoveColorObjects(

 region As Region,

 color As ObjectsColorEnum,

 mode As ObjectsTypeEnum

)

C++ Syntax

HRESULT RemoveColorObjects(

 IRegion* region,

 ObjectsColorEnum color,

 ObjectsTypeEnum mode

);

 173

ABBYY FineReader Engine 10 API Reference

Parameters

region

[in] This parameter of the Region type specifies the set of rectangles to remove objects from. The coordinates of rectangles are related
to the deskewed black�and�white page of the ImageDocument. This parameter may be 0. In this case color objects are removed from
the whole image.

color

[in] This variable of the ObjectsColorEnum type defines the color of the object.

mode

[in] This variable of the ObjectsTypeEnum type defines the type of the objects to be removed: objects on the whole image, only
background objects, or only color stamps and signatures.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

This method applies color filtering to the color image plane of the ImageDocument. All the other pages are deleted from the
ImageDocument. They will be created upon demand.

See also

ImageDocument

RemoveGarbage Method of the ImageDocument Object

This method removes garbage (excess dots that are smaller than a certain size) from the image.

This method does not report events to the listeners attached to the IConnectionPointContainer interface of the ImageDocument
object.

Visual Basic Syntax

Method RemoveGarbage(

 region As Region,

 garbageSize As Long

)

C++ Syntax

HRESULT RemoveGarbage(

 IRegion* region,

 long garbageSize

);

Parameters

region

[in] This parameter of the Region type specifies the set of rectangles to remove garbage from. The coordinates of rectangles are related
to the deskewed black�and�white page of the ImageDocument. This parameter may be 0. In this case the garbage is removed from
the whole image.

garbageSize

[in] This variable specifies the maximum area of black dots that are to be considered garbage (in pixels). The value of �1 for this input
parameter tells ABBYY FineReader Engine to automatically calculate the size of garbage.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

This method removes garbage from the black�and�white image plane of the ImageDocument.

See also

ImageDocument

 174

ABBYY FineReader Engine 10 API Reference

SaveTo Method of the ImageDocument Object

This method saves the contents of the ImageDocument object into a folder on disk. The image is saved in ABBYY FineReader Engine
internal format.

Visual Basic Syntax

Method SaveTo(

 folderName As String

)

C++ Syntax

HRESULT SaveTo(

 BSTR folderName

);

Parameters

folderName

[in] This parameter stores the full path to the folder. For example, "C:\MyPic".

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

ImageDocument

SaveToFile Method of the ImageDocument Object

This method saves the contents of the ImageDocument object into a file. The file is saved in a format witch cannot be viewed in any
external program. The ImageDocument object saved using this method can be opened with the help of the
IEngine::LoadImageDocFromFile method only.

Visual Basic Syntax

Method SaveToFile(

 fileName As String

)

C++ Syntax

HRESULT SaveToFile(

 BSTR fileName

);

Parameters

fileName

[in] This parameter stores the full path to the file. For example, "C:\MyPic.imageDoc". If this file already exists, it is overwritten without
prompt.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

This method is not suitable for saving images, as it saves the contents of the ImageDocument object in a format not suitable for
viewing. It is designed for situations when it is not possible to use the IImageDocument::SaveTo method which saves the object's
contents into a folder on disk.

To save an image in a format suitable for viewing, use the IImage::WriteToFile method.

See also

ImageDocument
IEngine::LoadImageDocFromFile

 175

ABBYY FineReader Engine 10 API Reference

SaveToMemory Method of the ImageDocument Object

This method saves the contents of the ImageDocument object into the global memory and returns an HGLOBAL handle — casted to
the Long type, of the memory area allocated for the object. It is user's responsibility to free this memory when it is no longer needed.
As the memory is allocated by the GlobalAlloc API function, it should be freed by the GlobalFree function. The size of the memory
area that the object allocates can be obtained by calling the GlobalSize function.

Visual Basic Syntax

Method SaveToMemory() As Long

C++ Syntax

HRESULT SaveToMemory(

 long* hGlobal

);

Parameters

hGlobal

[out] A pointer to a long variable that receives the HGLOBAL handle — casted to long — of the memory area allocated for the
ImageDocument object. Should not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

ImageDocument
IEngine::LoadImageDocFromMemory

SaveModified Method of the ImageDocument Object

This method saves all the modifications that were performed upon the current ImageDocument object into the files on disk. The
method can be used only if the image document is represented as a folder on disk (the IImageDocument::IsInMemory property is
FALSE). It does not overwrite the source image file. It sets the value of the IImageDocument::IsModified property to FALSE.

Visual Basic Syntax

Method SaveModified()

C++ Syntax

HRESULT SaveModified();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

ImageDocument

SmoothImage Method of the ImageDocument Object

This method allows you to smooth the image by averaging over the square neighborhood.

Important! This method can be used for gray and color images only.

This method does not report events to the listeners attached to the IConnectionPointContainer interface of the ImageDocument
object.

Visual Basic Syntax

Method SmoothImage(

 region As Region,

 areaSize As Long

)

C++ Syntax

HRESULT SmoothImage(

 IRegion* region,

 long areaSize

 176

ABBYY FineReader Engine 10 API Reference

);

Parameters

region

[in] This parameter of the Region type specifies the set of rectangles to be smoothed. The coordinates of rectangles are related to the
deskewed black�and�white page of the ImageDocument. This parameter may be 0. In this case the whole image is smoothed.

areaSize

[in] This variable specifies the side of the square neighborhood. Must be an odd number above or equal to 3.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

This method smoothes the color image plane of the ImageDocument. All the other pages are deleted from the ImageDocument.
They will be created upon demand.

See also

ImageDocument

SubtractColor Method of the ImageDocument Object

This method removes the color with the specified hue and saturation from the image. The method is primary designed for filtering
color on images of passports and certificates. Such preprocessing allows the program to pick out texts on the images.

Important! This method can be used for color images only.

This method does not report events to the listeners attached to the IConnectionPointContainer interface of the ImageDocument
object.

Visual Basic Syntax

Method SubtractColor(

 referenceHue As Byte,

 saturationBoundary As Long

)

C++ Syntax

HRESULT SubtractColor(

 byte referenceHue,

 long saturationBoundary

);

Parameters
referenceHue

[in] This parameter specifies the hue, which is to be filtered, in HSL representation. The value of this parameter must be in range from 0
to 255. The value 0 corresponds to red color, 43 — to yellow, 85 — to green, 171 — to blue, 213 — to purple.

saturationBoundary

[in] This variable specifies saturation boundary in HSL representation. The value of this parameter must be in range from 1 to 254. If the
saturation value is higher than the value of this parameter, the specified hue will be removed from the image. For example, for
passports the value in range from 25 to 35 is suitable.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

This method applies color filtering to the color image plane of the ImageDocument. All the other pages are deleted from the
ImageDocument. They will be created upon demand.

See also

ImageDocument

 177

ABBYY FineReader Engine 10 API Reference

Transform Method of the ImageDocument Object

This method transforms the current ImageDocument. Among available transformations are inversion of colors, mirroring and
rotation by 90, 180 and 270 degrees.

This method reports events to the listeners attached to the IConnectionPointContainer interface of the ImageDocument object.

Visual Basic Syntax

Method Transform(

 rotation As RotationTypeEnum,

 mirror As Boolean,

 invert As Boolean

)

C++ Syntax

HRESULT Transform(

 RotationTypeEnum rotation,

 VARIANT_BOOL mirror,

 VARIANT_BOOL invert

);

Parameters

rotation

[in] This variable of the RotationTypeEnum type defines the angle of rotation for the image.

mirror

[in] This parameter specifies whether the image should be mirrored around the vertical axis during transformation.

invert

[in] This parameter specifies if image colors should be inverted during transformation.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

This method applies transformations to the basic black�and�white and basic color image planes of the ImageDocument. All the other
pages are deleted from the ImageDocument. They will be created upon demand.

The sequence of geometrical transformations is as follows: first the rotation by the specified angle is performed, and then the image is
mirrored around the vertical axis.

See also

ImageDocument
RotationTypeEnum

SaveImageRegionTo Method of the ImageDocument Object

This method saves the parts of the image restricted by the specified set of rectangles into a folder on disk. The saved image is in the
ABBYY FineReader Engine internal format.

The compression of a color image plane is defined by the ImageCompression property of the PrepareImageMode object, while a
black�and�white image plane is always saved with the CCITT4 compression. This new image has the rectangle that fully bounds the set
of rectangles. Parts of image that do not lay inside these rectangles but lay inside the bounding rectangle are filled in with white color.

Visual Basic Syntax

Method SaveImageRegionTo(

 folderName As String,

 rects As Region,

 prepareMode As PrepareImageMode

)

C++ Syntax

 178

ABBYY FineReader Engine 10 API Reference

HRESULT SaveImageRegionTo(

 BSTR folderName,

 IRegion* rects,

 IPrepareImageMode* prepareMode

);

Parameters
folderName

[in] This parameter stores the full path to the folder. For example, "C:\MyPic".

rects

[in] This parameter of the Region type specifies the set of rectangles that are to be copied from the source image into the target one.
The coordinates of rectangles are related to the deskewed black�and�white page of the ImageDocument.

prepareMode

[in] This parameter of the PrepareImageMode type specifies the parameters of image preparation during the rectangles extraction.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Sample

Visual C++ (COM) code

void DoHorizontalSplit(FREngine::IImageDocument* imageDoc, long position1, long
position2)
 {
 // Obtain the black-and-white image plane
 FREngine::IImagePtr image = imageDoc->BlackWhiteImage;

 // Create regions for the top and bottom parts of the image
 FREngine::IRegionPtr region1 = Engine->CreateRegion();
 FREngine::IRegionPtr region2 = Engine->CreateRegion();

 // Add rectangles for the image parts into regions
 region1->AddRect(0, 0, image->Width, position1);
 region2->AddRect(0, position2, image->Width, image->Height);

 // Save the image parts into files with unique names
 // and with default PrepareImageMode
 imageDoc->SaveImageRegionTo(L"D:\\MyPic1", region1, 0);
 imageDoc->SaveImageRegionTo(L"D:\\MyPic2", region2, 0);
 }

Visual Basic code

Private Sub DoHorizontalSplit(ImageDoc As FREngine.ImageDocument, Position1 As Long,
Position2 As Long)

 ' Obtain the black-and-white image plane

 Dim Image As FREngine.Image

 Set Image = ImageDoc.BlackWhiteImage

 ' Create regions for the top and bottom parts of the image

 Dim Region1 As FREngine.Region

 Dim Region2 As FREngine.Region

 Set Region1 = Engine.CreateRegion

 Set Region2 = Engine.CreateRegion

 ' Add rectangles for the image parts into regions

 Region1.AddRect 0, 0, Image.Width, Position1

 Region2.AddRect 0, Position2, Image.Width, Image.Height

 ' Save the image parts into files with unique names

 ' and with default PrepareImageMode

 ImageDoc.SaveImageRegionTo "D:\MyPic1", Region1

 ImageDoc.SaveImageRegionTo "D:\MyPic2", Region2

 179

ABBYY FineReader Engine 10 API Reference

End Sub

See also

ImageDocument
PrepareImageMode

IImageDocumentEvents Interface

This is callback interface that is used for reporting events from the ImageDocument object to the listeners. This interface is
implemented on the client side. As it derives from the IUnknown interface, the client object should also implement the IUnknown
methods. This interface is designed primarily for using in C++. Visual Basic users that want to receive notifications from the
ImageDocument object should declare it WithEvents and implement the following Sub:

Public WithEvents imageDoc As FREngine.ImageDocument

Private Sub imageDoc_TransformationMade(ByVal rotation As RotationTypeEnum,

 ByVal wasMirrored As Boolean,

 ByVal wasInverted As Boolean)

...

End Sub

Methods

Name Description
TransformationMade Called by ABBYY FineReader Engine when some transformation was made with the ImageDocument.

See also

ImageDocument
Working with Connectable Objects

TransformationMade Method of the IImageDocumentEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine when some transformation was made upon
image either explicitly by call of the IImageDocument::Transform method, or internally by ABBYY FineReader Engine. The latter
situation may occur when an image with wrong orientation is analyzed and the IPageProcessingParams::DetectOrientation
property is TRUE. Implementation of this method may reload the image to show the changes to the user, as it is done in ABBYY
FineReader. Reloading of the image is necessary, if, say, the client application receives events from the DocumentAnalyzer object,
and fills out recognized parts of the image with color.

Visual Basic Syntax

Sub TransformationMade(

 ByVal rotation As RotationTypeEnum,

 ByVal wasMirrored As Boolean,

 ByVal wasInverted As Boolean

)

C++ Syntax

HRESULT TransformationMade(

 RotationTypeEnum rotation,

 VARIANT_BOOL wasMirrored,

 VARIANT_BOOL wasInverted

);

Parameters

rotation

[in] This variable of type RotationTypeEnum specifies what kind of rotation was performed upon the image.

wasMirrored

[in] This Boolean variable specifies if the image was inverted.

wasInverted

[in] This Boolean variable specifies whether image colors were inverted.

 180

ABBYY FineReader Engine 10 API Reference

Return Values

The return value of this method is ignored.

Remarks

The client implementation of this method must assure that no exceptions are thrown inside it, as it may lead to unpredictable results.

If the image was transformed, its pixel dimensions may change.

See also

ImageDocument
IImageDocumentEvents

ImageDocumentsCollection Object (IImageDocumentsCollection Interface)

This object represents a collection of ImageDocument objects. It serves as a storage to pass various sets of parameters into those
ABBYY FineReader Engine functions that require them. It may also be return value of ABBYY FineReader Engine methods.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element ImageDocument Provides access to a single element of the collection.

Methods

Name Description
Add Adds a new element at the end of the collection.

CopyFrom Initializes properties of the current object with values of similar properties of another object.

Insert Inserts a new element into the specified position in the collection.

Item Provides access to a single element of the collection.

Remove Removes an element from the collection.

RemoveAll Removes all the elements from the collection.

Related objects

Output parameter

This collection is the output parameter of the CreateImageDocumentsCollection method of the Engine object.

Input parameter

This collection is the input parameter of the following methods:

• AnalyzeAndRecognizePages, AnalyzePages, ExportPages, RecognizePages, SynthesizePages methods of the
Engine object.

• AnalyzeAndRecognizePages, AnalyzePages, RecognizePages methods of the DocumentAnalyzer object.

 181

ABBYY FineReader Engine 10 API Reference

• ExportPages method of the Exporter object.

See also

Working with Properties

Image Object (IImage Interface)

This object represents a single "image plane" (black�and�white, color or preview) of an open image. It gives a user access to properties
of this "image plane", such as its geometrical parameters and resolution. It allows you to get a bitmap handle corresponding to this
image.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Stores the height of the current image plane in pixels.The height of the black�and�
white image plane of an image is equal to the height of the color image plane of
the image.

Height Long, read�only

Specifies the color type for the current image plane (black�and�white, gray, color).
By agreement on the ABBYY FineReader Engine API, if the ImageDocument
object represents black�and�white image, an image plane received from
IImageDocument::ColorImage property will actually be of black�and�white
color type. This property provides information about actual color type of the
current image plane.

ImageColorTypeEnum,
read�only ImageColorType

ImageDocument ImageDocument, read�
only

This property refers to the parent ImageDocument object of the current image
plane. As Image object cannot exist independently of the ImageDocument
object, this property always refers to a valid ImageDocument object.

Width Long, read�only Stores the width of the current image plane in pixels. The width of the black�and�
white image plane of an image is equal to the width of the color image plane of
the image.

XResolution Long, read�only Stores the horizontal resolution of the current image plane in pixels per inch. The
resolution of the black�and�white image plane of an image is equal to the
resolution of the color image plane of the image.

YResolution Long, read�only Stores the vertical resolution of the current image plane in pixels per inch. The
resolution of the black�and�white image plane of an image is equal to the
resolution of the color image plane of the image.

Methods

Name Description
EstimateBitmapSize Estimates the size of the bitmap that will be returned by the GetPicture method.

GetPicture Returns a handle of bitmap that corresponds to the current image plane.

WriteToFile Writes the image of the current image plane into an image file.

Related objects

Input parameter

This object is the input parameter of the IMultipageImageWriter::AddPage method.

 182

ABBYY FineReader Engine 10 API Reference

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.
 FREngine::IEnginePtr Engine;
 ...
 // Open the image file
 FREngine::IImageDocumentPtr pImageDoc = Engine->PrepareAndOpenImage(L"D:\\Demo.tif",
0, 0, 0);

 // Extract image dimensions
 FREngine::IImagePtr image = pImageDoc->ColorImage;
 long width = image->Width;
 long height = image->Height;

 // Obtain text and background colors
 long textColor, backgroundColor;
 pImageDoc->GetTextBackgroundColor(0, 0, width, height, 0, &textColor,
&backgroundColor);
 ...
 // Create and initialize the IimageModification object
 FREngine::IImageModificationPtr imageModification =
 Engine->CreateImageModification();
 ...
 // Saving the modified image
 image->WriteToFile(L"D:\\sample.png", FREngine::IFF_PngColorPng, imageModification, 0
);

Visual Basic code

' Global ABBYY FineReader Engine object.
 Public Engine As FREngine.Engine
 ...
 ' Open the image file
 Dim ImageDoc As FREngine.ImageDocument
 Set ImageDoc = Engine.PrepareAndOpenImage("D:\Demo.tif")

 ' Extract image dimensions
 Dim Image As FREngine.Image
 Set Image = ImageDoc.ColorImage
 Dim Width As Long, Height As Long
 Width = Image.Width
 Height = Image.Height
 ...
 ' Obtain text and background colors
 Dim TextColor As Long, BackgroundColor As Long
 ImageDoc.GetTextBackgroundColor 0, 0, Width, Height, 0, TextColor, BackgroundColor
 ' Create and initialize the IimageModification object
 Dim ImageModification As FREngine.ImageModification
 Set ImageModification = Engine.CreateImageModification
 ...
 ' Save the modified image
 Image.WriteToFile "D:\sample.png", IFF_PngColorPng, ImageModification

 Set Image = Nothing

See also

ImageDocument
Working with Images
Working with Properties

EstimateBitmapSize Method of the Image Object

This method estimates the size of memory that is to be allocated for the bitmap returned from the IImage::GetPicture method called
with the same parameters. Thus, its input parameters are analogous to those of the IImage::GetPicture.

Visual Basic Syntax

Method EstimateBitmapSize(

 modification As ImageModification,

 183

ABBYY FineReader Engine 10 API Reference

 mode As Long

) As Long

C++ Syntax

HRESULT EstimateBitmapSize(

 ImageModification* modification,

 long mode,

 long* size

);

Parameters

modification

[in] This parameter of the ImageModification type specifies modifications that are performed upon image. It may include clipping
rectangles, in which case only specified parts of the image are passed, stretch ratio, painting rectangles for filling up parts of the image
with color and so on. This parameter may be 0, and in this case no modifications will be performed upon the image page and it will be
passed "as is".

mode

[in] This parameter may be any combination of GP_ prefixed flags or contain 0.

GP_ flag value Description
GP_ScaleToGray For black�and�white image page and the stretch ratio <1, as defined by the ImageModification

object, a gray bitmap will be created and returned by this method.

For color image page the presence of this flag reduces the number of its colors to 65536, that
corresponds to high color. GP_ReduceToHighColor

size

[out] A pointer to long variable that receives the return value of this method. Must not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

ImageModification
IImage::GetPicture

GetPicture Method of the Image Object

This method returns a part of image in the Device Independent Bitmap (DIB) format. The return value of this method may be directly
casted to the HBITMAP type.

Visual Basic Syntax

Method GetPicture(

 modification As ImageModification,

 mode As Long

) As Long

C++ Syntax

HRESULT GetPicture(

 ImageModification* modification,

 long mode,

 long* bitmapHandle

);

Parameters

modification

[in] This parameter of type ImageModification defines modifications that are performed upon image. It may include clipping
rectangles, in which case only specified parts of the image are passed, stretch ratio, painting rectangles for filling up parts of the image
with color and so on. This parameter may be 0, and in this case no modifications will be performed upon the image page and it will be
passed "as is".

 184

ABBYY FineReader Engine 10 API Reference

mode

[in] This parameter may be any combination of GP_ prefixed flags or contain 0.

GP_ flag value Description
GP_ScaleToGray For black�and�white image page and the stretch ratio <1, as defined by the ImageModification

object, a gray bitmap will be created and returned by this method.

For color image page the presence of this flag reduces the number of its colors to 65536, that
corresponds to high color. GP_ReduceToHighColor

bitmapHandle

[out] A pointer to long variable that receives the return value of this method. Must not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The returned bitmap is created via the CreateDIBSection method and passed under client's ownership. Thus after using this bitmap,
it is necessary to call the DeleteObject method for it.

See also

ImageModification
IImage::EstimateBitmapSize

WriteToFile Method of the Image Object

This method saves a copy of the current image plane into an image file in the specified format.

Visual Basic Syntax

Method WriteToFile(

 fileName As String,

 fileFormat As ImageFileFormatEnum,

 modification As ImageModification,

 parameters As Object

)

C++ Syntax

HRESULT WriteToFile(

 BSTR fileName,

 ImageFileFormatEnum fileFormat,

 ImageModification* modification,

 IUnknown* parameters

);

Parameters

fileName

[in] This parameter contains the full path to the image file where the image is saved. For example, "C:\MyPic.bmp". If a file in this path
already exists, it is overwritten without prompt.

fileFormat

[in] A variable of the ImageFileFormatEnum type that specifies the format of the output file. Not all formats defined by this
enumeration are supported for writing.

modification

[in] This parameter of the ImageModification type defines modifications that are performed upon image before writing it into file.
This parameter is optional and may be 0, in which case no modifications are performed upon image.

parameters

[in] This variable may refer to the JpegExtendedParams object that defines parameters for saving the image to JPEG format, or
PdfExtendedParams object that defines parameters for saving the image to PDF format. This parameter is optional and may be 0. In
this case the image is saved with lossless JPEG 2000 compression.

 185

ABBYY FineReader Engine 10 API Reference

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

FREngine::IEnginePtr Engine;

...

// Open the image file

FREngine::IImageDocumentPtr pImageDoc = Engine->PrepareAndOpenImage(

 L"D:\\Demo.tif", 0, 0, 0);

// Extract image dimensions

FREngine::IImagePtr image = pImageDoc->ColorImage;

long width = image->Width;

long height = image->Height;

// Obtain text and background colors

long textColor, backgroundColor;

pImageDoc->GetTextBackgroundColor(0, 0, width, height, 0, &textColor,
&backgroundColor);

...

// Create and initialize the IimageModification object

FREngine::IImageModificationPtr imageModification =

 Engine->CreateImageModification();

...

// Saving the modified image

image->WriteToFile(L"D:\\sample.png",

 FREngine::IFF_PngColorPng, imageModification, 0);

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Open the image file

Dim ImageDoc As FREngine.ImageDocument

Set ImageDoc = Engine.PrepareAndOpenImage("D:\Demo.tif")

' Extract image dimensions

Dim Image As FREngine.Image

Set Image = ImageDoc.ColorImage

Dim Width As Long, Height As Long

Width = Image.Width

Height = Image.Height

...

' Obtain text and background colors

Dim TextColor As Long, BackgroundColor As Long

ImageDoc.GetTextBackgroundColor 0, 0, Width, Height, 0, TextColor, BackgroundColor

' Create and initialize the IimageModification object

Dim ImageModification As FREngine.ImageModification

Set ImageModification = Engine.CreateImageModification

...

' Save the modified image

Image.WriteToFile "D:\sample.png", _

 IFF_PngColorPng, ImageModification

Set Image = Nothing

 186

ABBYY FineReader Engine 10 API Reference

See also

Working with Images
ImageFileFormatEnum
ImageModification

ImageProcessingParams Object (IImageProcessingParams Interface)

This object specifies how an image will be preprocessed before analysis and recognition. Most types of blocks have child objects of the
ImageProcessingParams type that are available through the corresponding properties. Image processing parameters should be set
for each block that is to be recognized, if any non�trivial image preprocessing upon that block is needed. The
ImageProcessingParams object may specify image rotation and its mirroring around the vertical axis. Rotation is the first operation
in sequence of geometrical transformation, and mirroring is the second one. All properties of a newly created object of this type are set
to reasonable defaults. To get info on the default value of this or that property see its description.

The ImageProcessingParams object is a persistent object. This means that it is able to write its current state, indicated by the values
of its properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the
object's state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile,
SaveToMemory, and LoadFromMemory.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Specifies if the image colors are inverted during preprocessing. This property is FALSE by
default. InvertImage Boolean

MirrorImage Boolean Specifies if the image is mirrored around the vertical axis during preprocessing. This
property is FALSE by default.

RotationType RotationTypeEnum Specifies what type of rotation will be performed upon the image during its preprocessing.
This property is RT_NoRotation by default, which means that image is not rotated.

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Related objects

Output parameter

This object is the output parameter of the CreateImageProcessingParams method of the Engine object.

See also

BarcodeBlock
TextBlock
CheckmarkBlock
Tuning Analysis, Recognition, and Synthesis Parameters
Working with Properties

 187

ABBYY FineReader Engine 10 API Reference

PrepareImageMode Object (IPrepareImageMode Interface)

This object contains different attributes specifying how an image will be prepared during conversion to the internal format by the
IEngine::PrepareImage and IEngine::PrepareBitmap methods and other similar methods. All properties of a newly created
object of this type are set to reasonable defaults. To know about the default value of this or that property, see its description. The
sequence of the transformations upon the prepared image is the following: first the rotation is performed, and then the image is
mirrored.

The PrepareImageMode object is a persistent object. This means that it is able to write its current state, indicated by the values of its
properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re–created by reading the object's
state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory,
and LoadFromMemory.

Properties

Name Type Description
Application Engine, read–only Returns the Engine object.

Specifies whether resolution of the prepared image
should be automatically overwritten. The property is
only available, if the value of the
OverwriteResolution property is FALSE. If the
value of the AutoOverwriteResolution property is
TRUE, ABBYY FineReader Engine will automatically
detect and overwrite image resolution. By default,
the value of the property is TRUE.

AutoOverwriteResolution Boolean

This property is obsolete. Use the
CorrectSkewMode property instead. CorrectSkewByBlackSquaresHorizontally Boolean

This property is obsolete. Use the
CorrectSkewMode property instead. CorrectSkewByBlackSquaresVertically Boolean

This property is obsolete. Use the
CorrectSkewMode property instead. CorrectSkewByHorizontalLines Boolean

This property is obsolete. Use the
CorrectSkewMode property instead. CorrectSkewByHorizontalText Boolean

This property is obsolete. Use the
CorrectSkewMode property instead. CorrectSkewByVerticalLines Boolean

This property is obsolete. Use the
CorrectSkewMode property instead. CorrectSkewByVerticalText Boolean

Specifies the mode of skew correction. The value of
this property is an OR superposition of the
CorrectSkewModeEnum enumeration constants
which denote the types of skew correction. 0 means
do not correct skew. By default, this property is set
to CSM_CorrectSkewByHorizontalText |
CSM_CorrectSkewByVerticalText.

CorrectSkewMode Long

This property set to TRUE tells ABBYY FineReader
Engine to create preview page for the prepared
image. By default, this property is set to FALSE.

CreatePreview Boolean

This property set to TRUE tells ABBYY FineReader
Engine to leave only black–and–white planes in the
prepared image. By default, this property is set to
FALSE.

DiscardColorImage Boolean

This property specifies how an image should be
compressed during conversion to the internal
format. By default, this property is set to IC_Auto.

ImageCompression ImageCompressionEnum

InvertImage Boolean This property set to TRUE tells ABBYY FineReader
Engine to invert colors of the prepared image. By
default, this property is set to FALSE.

 188

ABBYY FineReader Engine 10 API Reference

MirrorImage Boolean This property set to TRUE tells ABBYY FineReader
Engine to mirror the prepared image around its
vertical axis. By default, this property is set to FALSE.

Allows you to overwrite resolution of the prepared
image. The resolution is overwritten depending on
the values of the XResolutionToOverwrite and
YResolutionToOverwrite properties. In this case
the new resolution will be used for image
preprocessing (i.e. for binarization, deskewing, etc.).
Image resolution can be automatically overwritten
(see the description of the
AutoOverwriteResolution property). By default,
this property is set to FALSE. See also
IImageDocument::ChangeResolution.

OverwriteResolution Boolean

Specifies the height in pixels of the preview page.
This property is valid only if the CreatePreview
property is TRUE, otherwise it is ignored. By default,
this property is set to 90.

PreviewHeight Long

Specifies the width in pixels of the preview page.
This property is valid only if the CreatePreview
property is TRUE, otherwise it is ignored. By default,
this property is set 64.

PreviewWidth Long

Rotation RotationTypeEnum This property specifies the rotation angle to apply to
the image during preparation. It specifies no
rotation by default.

XResolutionToOverwrite Long Specifies the horizontal resolution of the original
image in dpi. This value is used to overwrite
resolution of the prepared image when resolution of
the original image is not specified or incorrect and
only if the OverwriteResolution property is TRUE.
ABBYY FineReader Engine works with the prepared
image which horizontal and vertical resolutions are
equal, therefore the program stretches the image so
that the horizontal and vertical resolutions of the
prepared image are identical and equal to the
maximum of XResolutionToOverwrite and
YResolutionToOverwrite. By default, this
property is set to 300.

YResolutionToOverwrite Long Specifies the vertical resolution of the original image
in dpi. This value is used to overwrite resolution of
the prepared image when resolution of the original
image is not specified or incorrect and only if the
OverwriteResolution property is TRUE. ABBYY
FineReader Engine works with the prepared image
which horizontal and vertical resolutions are equal,
therefore the program stretches the image so that
the horizontal and vertical resolutions of the
prepared image are identical and equal to the
maximum of XResolutionToOverwrite and
YResolutionToOverwrite. By default, this
property is set to 300.

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object's contents from a file on disk.

LoadFromMemory Restores the object's contents from the global memory.

 189

ABBYY FineReader Engine 10 API Reference

SaveToFile Saves the object's contents into a file on disk.

SaveToMemory Saves the object's contents into the global memory.

Output parameter

This object is the output parameter of the CreatePrepareImageMode method of the Engine object.

Input parameter

This object is the input parameter of the following methods:

• AddImageFile, AddImageFileWithPassword, AddImageFileWithPasswordCallback of the FRDocument object,

• CreateFRDocumentFromImage, PrepareImage, PrepareMemoryImage, PrepareAndOpenImage,
PrepareAndOpenMemoryImage, PrepareBitmap, PrepareAndOpenBitmap, PrepareDib, PrepareAndOpenDib
of the Engine object,

• SaveImageRegionTo of the ImageDocument object.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

FREngine::IEnginePtr Engine;

...

// Create and customize image loading parameters

FREngine::IPrepareImageModePtr prepareImageMode = Engine–>CreatePrepareImageMode();

// Turn on mirroring

prepareImageMode–>MirrorImage = VARIANT_TRUE;

// Open image file

FREngine::IImageDocumentPtr pImageDoc =

 Engine–>PrepareAndOpenImage(Engine–>Path +
"\\..\\Samples\\SampleImages\\Demo.tif",

 prepareImageMode, 0, 0);

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Create and customize image loading parameters

Dim PrepareImageMode As FREngine.PrepareImageMode

Set PrepareImageMode = Engine.CreatePrepareImageMode

' Turn on mirroring

PrepareImageMode.MirrorImage = True

' Open image file

Dim ImageDoc As FREngine.ImageDocument

Set ImageDoc = Engine.PrepareAndOpenImage(_

"D:\Demo.tif", PrepareImageMode)

See also

Working with Images
Working with Properties

JpegExtendedParams Object (IJpegExtendedParams Interface)

This object provides functionality for tuning the parameters of saving an image to JPEG format (IFF_JpegGrayJfif,
IFF_JpegColorJfif, IFF_Jpeg2kGray, IFF_Jpeg2kColor, IFF_TiffGrayJpegJfif and IFF_TiffColorJpegJfif image format types)
using the IImage::WriteToFile function. A pointer to this object is passed into the IImage::WriteToFile function as an input
parameter, and thus affects the size and quality of the resulting image. All properties of a newly created object of this type are set to
reasonable defaults. See the description of particular property for its default value.

 190

ABBYY FineReader Engine 10 API Reference

The JpegExtendedParams object is a persistent object. This means that it is able to write its current state, indicated by the values of
its properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the
object's state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile,
SaveToMemory, and LoadFromMemory.

Properties

Name Type Description
Engine, read�
only Application Returns the Engine object.

UseJpeg6Compression Boolean The property is obsolete. The value of this property is ignored.

Quality Long Stores the value of the JPEG quality in percent. The default value for this property is
50.

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object's contents from a file on disk.

LoadFromMemory Restores the object's contents from the global memory.

SaveToFile Saves the object's contents into a file on disk.

SaveToMemory Saves the object's contents into the global memory.

Output parameter

This object is the output parameter of the CreateJpegExtendedParams method of the Engine object.

Input parameter

This object is the input parameter of the WriteToFile method of the Image object.

See also

ImageFileFormatEnum
Working with Images
Working with Properties

PdfExtendedParams Object (IPdfExtendedParams Interface)

This object provides functionality for tuning the parameters of saving an image to PDF format (IFF_PDF image format type) using the
IImage::WriteToFile function. A pointer to this object is passed into the IImage::WriteToFile function as an input parameter, and
thus affects the size and quality of the resulting image. All properties of a newly created object of this type are set to reasonable
defaults. See the description of particular property for its default value.

Note: The earliest version of the PDF file which matches the specified properties of the PDFEncryptionInfo object is selected as
the version of the PDF file.

• The earliest file version available is the version 1.3.

• If at least one of the PermissionFillFormFields, PermissionExtractTextAndGraphicsExt,
PermissionAssembleDoc, PermissionPrintExt properties of the PDFEncryptionInfo object, or the encryption key
length exceeds 40 bits, the PDF file version will be 1.4.

• If the IPDFEncryptionInfo::UseAES property is TRUE, the version will be 1.6.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Author String Specifies the author of the PDF file. The default value is an empty string.

Creator String Specifies the creator of the PDF file. The default value is "ABBYY FineReader Engine 10".

 191

ABBYY FineReader Engine 10 API Reference

Specifies encryption parameters of the PDF file. The property returns a copy of the
PDFEncryptionInfo object but not a reference to it. To modify the value of the
property, you must assign the value of this property to the PDFEncryptionInfo object,
change the necessary encryption parameters, and then assign this object back to the
property.

EncryptionInfo PDFEncryptionInfo

Keywords String Specifies the keywords of the PDF file. The default value is an empty string.

Specifies the version of the PDF file. The version should not conflict with the specified
export parameters (see the note above for details). The default value for this property is
PVN_Auto which specifies that the version is detected automatically.

PDFVersion PDFVersionEnum

Producer String Specifies the producer of the PDF file. The default value is an empty string.

Subject String Specifies the subject of the PDF file. The default value is an empty string.

Title String Specifies the title of the PDF file. The default value is an empty string.

Related objects

Output parameter

This object is the output parameter of the CreatePdfExtendedParams method of the Engine object

Input parameter

This object is the input parameter of the WriteToFile method of the Image object.

See also

Working with Images
Working with Properties

ImageModification Object (IImageModification Interface)

This object is used to store parameters of image modification. Method IImageDocument::Modify that is used to modify an image,
together with some other methods, takes a reference to this object as an input parameter. The ImageModification allows a wide
range of operations upon an image such as stretching, setting clip regions, inversion regions, paint regions, replace pixels regions, erase
text regions, remove garbage regions. The image is modified as follows:

• The color of text and the size of garbage in regions is determined.

• Image part inside the clipping regions is cut.

• "Paint" regions are filled in with the corresponding color.

• Colors inside the "invert" regions are inverted.

• Black dots inside the "replace black pixels" regions are replaced with the dots of the corresponding color, and the black text
from "erase text" regions is erased at the same time.

• White dots inside the "replace white pixels" regions are replaced with the dots of the corresponding color, and the white
text from "erase text" regions is erased at the same time.

• The garbage inside the "remove garbage" regions is cleaned up. This modification can be applied only to the black�and�white
image plane.

• Image is stretched with the stretch ratio defined by the StretchRatio property.

All regions that are added inside this object should not exceed the bounds of the image rectangle.

The ImageModification object is a persistent object. This means that it is able to write its current state, indicated by the values of its
properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the object's
state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory,
and LoadFromMemory.

 192

ABBYY FineReader Engine 10 API Reference

Properties

Name Type Description
Engine, read�
only Application Returns the Engine object.

StretchRatio Double Specifies the stretch ratio to apply to the image. By default this property is 1.0 that corresponds
to no stretch.

Methods

Name Description
AddClipRegion Adds new clipping region to the internal array of clipping regions.

AddInvertRegion Adds new inversion region to the internal array of inversion regions.

AddPaintRegion Adds new paint region to the internal array of paint regions.

AddRemoveGarbageRegion Adds new "remove garbage" region to the internal array of "remove garbage" regions.

AddReplaceBlackPixelsRegion Adds new "replace black pixels" region to the internal array of "replace black pixels" regions.

AddReplaceWhitePixelsRegion Adds new "replace white pixels" region to the internal array of "replace white pixels" regions.

ClearClipRegions Clears the internal array of clipping regions.

ClearInvertRegions Clears the internal array of inversion regions.

ClearPaintRegions Clears the internal array of paint regions.

ClearRemoveGarbageRegions Clears the internal array of "remove garbage" regions.

ClearReplaceBlackPixelsRegions Clears the internal array of "replace black pixels" regions.

ClearReplaceWhitePixelsRegions Clears the internal array of "replace white pixels" regions.

CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Output parameter

This object is the output parameter of the CreateImageModification method of the Engine object.

Input parameter

This object is the input parameter of the following methods:

• EstimateBitmapSize, GetPicture, WriteToFile of the Image object,

• Modify of the ImageDocument object.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

FREngine::IEnginePtr Engine;

...

// Open image file

FREngine::IImageDocumentPtr pImageDoc =

 Engine->PrepareAndOpenImage(L"D:\\Demo.tif",

 prepareImageMode, 0, 0);

// Extract image dimensions

 193

ABBYY FineReader Engine 10 API Reference

FREngine::IImagePtr image = pImageDoc->ColorImage;

long width = image->Width;

long height = image->Height;

// Create and initialize the ImageModification object

FREngine::IImageModificationPtr imageModification =

 Engine->CreateImageModification();

// Set clipping region (1/12 of image width from left and right

// and 1/6 of image height from top and bottom)

FREngine::IRegionPtr region = Engine->CreateRegion();

region->AddRect(width / 12, height / 6, 11 * width / 12, 5 * height / 6);

FREngine::IRegionPtr region = Engine->CreateRegion

imageModification->AddClipRegion(region);

// Save modified image

image->WriteToFile(L"D:\\sample.png",

 FREngine::IFF_PngColorPng, imageModification, 0);

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Open image file

Dim ImageDoc As FREngine.ImageDocument

Set ImageDoc = Engine.PrepareAndOpenImage(_

 "D:\Demo.tif", PrepareImageMode)

Dim Image As FREngine.Image

Set Image = ImageDoc.ColorImage

Dim Width As Long, Height As Long

Width = Image.Width

Height = Image.Height

' Create and initialize the ImageModification object

Dim ImageModification As FREngine.ImageModification

Set ImageModification = Engine.CreateImageModification

' Set clipping region (1/12 of image width from left and right

' and 1/6 of image height from top and bottom)

Dim Region As FREngine.Region

Set Region = Engine.CreateRegion()

Region.AddRect Width / 12, Height / 6, 11 * Width / 12, 5 * Height / 6

' Clip margins (1/12 of image width from left and right

' and 1/6 of image height from top and bottom)

ImageModification.AddClipRegion Region

' Save modified image

Image.WriteToFile "D:\sample.png", _

 IFF_PngColorPng, ImageModification

Set Image = Nothing

See also

Working with Images
Working with Properties

AddClipRegion Method of the ImageModification Object

This method adds a new clipping region to the internal array of clipping regions of the ImageModification object. To remove all the
clipping regions previously added call the IImageModification::ClearClipRegions method. In case the modification is applied to a
single color plane of the image, coordinates of the region should be specified on this color plane. In case the modification is applied to
the whole ImageModification, the coordinates should be specified on the deskewed black�and�white image plane.

 194

ABBYY FineReader Engine 10 API Reference

Visual Basic Syntax

Method AddClipRegion(

 region As Region

)

C++ Syntax

HRESULT AddClipRegion(

 IRegion* region

);

Parameters

region

[in] This parameter of the Region type specifies the clipping region to be added.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Clipping regions specify what part of the image will be affected during modification. Only part of image inside the bounding region of
the clipping regions is processed, and the part of image inside the bounding region that does not belong to any of the clipping regions,
is filled in with the white color.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

FREngine::IEnginePtr Engine;

...

// Open image file

FREngine::IImageDocumentPtr pImageDoc =

 Engine->PrepareAndOpenImage(L"D:\\Demo.tif",

 prepareImageMode, 0, 0);

// Extract image dimensions

FREngine::IImagePtr image = pImageDoc->ColorImage;

long width = image->Width;

long height = image->Height;

// Create and initialize the ImageModification object

FREngine::IImageModificationPtr imageModification =

 Engine->CreateImageModification();

// Set clip region (1/12 of image width from left and right

// and 1/6 of image height from top and bottom)

FREngine::IRegionPtr region = Engine->CreateRegion();

region->AddRect(width / 12, height / 6, 11 * width / 12, 5 * height / 6);

// Clip margins

imageModification->AddClipRegion(region);

// Save modified image

image->WriteToFile(L"D:\\sample.png",

 FREngine::IFF_PngColorPng, imageModification, 0);

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Open image file

Dim ImageDoc As FREngine.ImageDocument

Set ImageDoc = Engine.PrepareAndOpenImage(_

 195

ABBYY FineReader Engine 10 API Reference

 "D:\Demo.tif", PrepareImageMode)

Dim Image As FREngine.Image

Set Image = ImageDoc.ColorImage

Dim Width As Long, Height As Long

Width = Image.Width

Height = Image.Height

' Create and initialize the ImageModification object

Dim ImageModification As FREngine.ImageModification

Set ImageModification = Engine.CreateImageModification

' Set clip region (1/12 of image width from left and right

' and 1/6 of image height from top and bottom)

Dim Region As FREngine.Region

Set Region = Engine.CreateRegion()

Region.AddRect Width / 12, Height / 6, 11 * Width / 12, 5 * Height / 6

' Clip margins

ImageModification.AddClipRegion Region

' Save modified image

Image.WriteToFile "D:\sample.png", _

 IFF_PngColorPng, ImageModification

Set Image = Nothing

See also

ImageModification
IImageModification::ClearClipRegions

AddInvertRegion Method of the ImageModification Object

This method adds a new inversion region to the internal array of inversion regions of the ImageModification object. To remove all
the inversion regions previously added call the IImageModification::ClearInvertRegions method. In case the modification is
applied to a single color plane of the image, coordinates of the region should be specified on this color plane. In case the modification
is applied to the whole ImageModification, the coordinates should be specified on the deskewed black�and�white image plane.

Visual Basic Syntax

Method AddInvertRegion(

 region As Region

)

C++ Syntax

HRESULT AddInvertRegion(

 IRegion* region

);

Parameters

region

[in] This parameter of the Region type specifies the inversion region to be added.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Colors of the image inside the inversion regions will be inverted when IImageDocument::Modify method is applied.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

FREngine::IEnginePtr Engine;

...

 196

ABBYY FineReader Engine 10 API Reference

// Open image file

FREngine::IImageDocumentPtr pImageDoc =

 Engine->PrepareAndOpenImage(L"D:\\Demo.tif",

 prepareImageMode, 0, 0);

// Extract image dimensions

FREngine::IImagePtr image = pImageDoc->ColorImage;

long width = image->Width;

long height = image->Height;

// Create and initialize the ImageModification object

FREngine::IImageModificationPtr imageModification =

 Engine->CreateImageModification();

// Set invert region

FREngine::IRegionPtr region = Engine->CreateRegion();

region->AddRect(width / 3, height / 3, 2 * width / 3, 2 * height / 3);

imageModification->AddInvertRegion(region);

// Save modified image

image->WriteToFile(L"D:\\sample.png",

 FREngine::IFF_PngColorPng, imageModification, 0);

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Open image file

Dim ImageDoc As FREngine.ImageDocument

Set ImageDoc = Engine.PrepareAndOpenImage(_

 "D:\Demo.tif", PrepareImageMode)

Dim Image As FREngine.Image

Set Image = ImageDoc.ColorImage

Dim Width As Long, Height As Long

Width = Image.Width

Height = Image.Height

' Create and initialize the ImageModification object

Dim ImageModification As FREngine.ImageModification

Set ImageModification = Engine.CreateImageModification

' Set invert region

Dim Region As FREngine.Region

Set Region = Engine.CreateRegion()

Region.AddRect Width / 3, Height / 3, 2 * Width / 3, 2 * Height / 3

ImageModification.AddInvertRegion Region

' Save modified image

Image.WriteToFile "D:\sample.png", _

 IFF_PngColorPng, ImageModification

Set Image = Nothing

See also

ImageModification
IImageModification::ClearInvertRegions

AddPaintRegion Method of the ImageModification Object

This method adds a new paint region to the internal array of paint regions of the ImageModification object. To remove all the paint
regions previously added call the IImageModification::ClearPaintRegions method. In case the modification is applied to a single

 197

ABBYY FineReader Engine 10 API Reference

color plane of the image, coordinates of the region should be specified on this color plane. In case the modification is applied to the
whole ImageModification, the coordinates should be specified on the deskewed black�and�white image plane.

Visual Basic Syntax

Method AddPaintRegion(

 region As Region,

 color As Long

)

C++ Syntax

HRESULT AddPaintRegion(

 IRegion* region,

 long color

);

Parameters

region

[in] This parameter of the Region type specifies the paint region to be added.

color

[in] This variable specifies the color with which the image inside the region is filled in.
Note: The Long value is calculated from the RGB triplet using the formula: (red value) + (256 x green value) + (65536 x blue value),

where red value is the first triplet component, green value is the second triplet component, blue value is the third triplet component.
For example, the Long value of the color white equals 16777215.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Parts of the image inside the paint regions will be filled in with the specified color when IImageDocument::Modify method is
applied.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

FREngine::IEnginePtr Engine;

...

// Open image file

FREngine::IImageDocumentPtr pImageDoc =

 Engine->PrepareAndOpenImage(L"D:\\Demo.tif",

 prepareImageMode, 0, 0);

// Extract image dimensions

FREngine::IImagePtr image = pImageDoc->ColorImage;

long width = image->Width;

long height = image->Height;

// Create and initialize the ImageModification object

FREngine::IImageModificationPtr imageModification =

 Engine->CreateImageModification();

// Paint white box

FREngine::IRegionPtr region = Engine->CreateRegion();

region->AddRect(width / 4, height / 4, 3 * width / 4, 3 * height / 4);

imageModification->AddPaintRegion(region, 16777215);

// Save modified image

image->WriteToFile(L"D:\\sample.png",

 FREngine::IFF_PngColorPng, imageModification, 0);

 198

ABBYY FineReader Engine 10 API Reference

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Open image file

Dim ImageDoc As FREngine.ImageDocument

Set ImageDoc = Engine.PrepareAndOpenImage(_

 "D:\Demo.tif", PrepareImageMode)

Dim Image As FREngine.Image

Set Image = ImageDoc.ColorImage

Dim Width As Long, Height As Long

Width = Image.Width

Height = Image.Height

' Create and initialize the ImageModification object

Dim ImageModification As FREngine.ImageModification

Set ImageModification = Engine.CreateImageModification

' Paint white box

Dim Region As FREngine.Region

Set Region = Engine.CreateRegion()

Region.AddRect Width / 4, Height / 4, 3 * Width / 4, 3 * Height / 4

ImageModification.AddPaintRegion Region, 16777215

' Save modified image

Image.WriteToFile "D:\sample.png", _

 IFF_PngColorPng, ImageModification

Set Image = Nothing

See also

ImageModification
IImageModification::ClearPaintRegions

AddRemoveGarbageRegion Method of the ImageModification Object

This method adds a new "remove garbage" region to the internal array of "remove garbage" regions of the ImageModification object.
To remove all the "remove garbage" regions previously added call the IImageModification::ClearRemoveGarbageRegions
method. The coordinates of the region should be specified on the deskewed black�and�white image plane.

Visual Basic Syntax

Method AddRemoveGarbageRegion(

 region As Region

 attributes As Long,

 [garbageSize As Long = -1]

)

C++ Syntax

HRESULT AddRemoveGarbageRegion(

 IRegion* region

 long attributes,

 long garbageSize = -1

);

Parameters

region

[in] This parameter of the Region type specifies the "remove garbage" region to be added.

attributes

[in] This variable may either contain 0 or RGR_Invert. If RGR_Invert is passed, then white garbage on black background will be
removed.

 199

ABBYY FineReader Engine 10 API Reference

garbageSize

[in] This variable specifies the maximum size of black dots that are to be considered garbage, in pixels. The �1 value for this input
parameter tells ABBYY FineReader Engine to automatically calculate the size of garbage.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The parts of the image inside the "remove garbage" regions will be cleaned up when IImageDocument::Modify method is applied.

See also

ImageModification
IImageModification::ClearRemoveGarbageRegions

AddReplaceBlackPixelsRegion Method of the ImageModification Object

This method adds a new "replace black pixels" region to the internal array of "replace black pixels" regions of the ImageModification
object. To remove all the "replace black pixels" regions previously added call the
IImageModification::ClearReplaceBlackPixelsRegions method. In case the modification is applied to a single color plane of the
image, coordinates of the region should be specified on this color plane. In case the modification is applied to the whole
ImageModification object, the coordinates should be specified on the deskewed black�and�white image plane.

Visual Basic Syntax

Method AddReplaceBlackPixelsRegion(

 region As Region,

 color As Long,

 [strokesExpansion As Long = 0]

)

C++ Syntax

HRESULT AddReplaceBlackPixelsRegion(

 IRegion* region

 long color,

 long strokesExpansion = 0

);

Parameters

region

[in] This parameter of the Region type specifies the "replace black pixels" region to be added.

color

[in] This variable specifies the color with which the black pixels are replaced.
Note: The Long value is calculated from the RGB triplet using the formula: (red value) + (256 x green value) + (65536 x blue value),

where red value is the first triplet component, green value is the second triplet component, blue value is the third triplet component.
For example, the Long value of the color white equals 16777215.

strokesExpansion

[in] This variable specifies the expansion (in pixels) of white areas on the black�and�white image plane before replacing.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Black pixels on the image inside the "replace black pixels" regions will be replaced with the pixels of the specified color when
IImageDocument::Modify method is applied. This operation is performed on the black�and�white image plane rather than color
image plane but results will be applied to the color image plane too.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

 200

ABBYY FineReader Engine 10 API Reference

FREngine::IEnginePtr Engine;

...

// Open image file

FREngine::IImageDocumentPtr pImageDoc =

 Engine->PrepareAndOpenImage(L"D:\\Demo.tif",

 prepareImageMode, 0, 0);

// Extract image dimensions

FREngine::IImagePtr image = pImageDoc->ColorImage;

long width = image->Width;

long height = image->Height;

// Create and initialize the ImageModification object

FREngine::IImageModificationPtr imageModification =

 Engine->CreateImageModification();

// Replace black pixels

FREngine::IRegionPtr region = Engine->CreateRegion();

region->AddRect(width / 3, height / 3, 2 * width / 3, 2 * height / 3);

imageModification->AddReplaceBlackPixelsRegion(region, 16777215, 0);

// Save modified image

image->WriteToFile(L"D:\\sample.png",

 FREngine::IFF_PngColorPng, imageModification, 0);

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Open image file

Dim ImageDoc As FREngine.ImageDocument

Set ImageDoc = Engine.PrepareAndOpenImage(_

 "D:\Demo.tif", PrepareImageMode)

Dim Image As FREngine.Image

Set Image = ImageDoc.ColorImage

Dim Width As Long, Height As Long

Width = Image.Width

Height = Image.Height

' Create and initialize the ImageModification object

Dim ImageModification As FREngine.ImageModification

Set ImageModification = Engine.CreateImageModification

' Replace black pixels

Dim Region As FREngine.Region

Set Region = Engine.CreateRegion()

Region.AddRect Width / 3, Height / 3, 2 * Width / 3, 2 * Height / 3

ImageModification.AddReplaceBlackPixelsRegion Region, 16777215

' Save modified image

Image.WriteToFile "D:\sample.png", _

 IFF_PngColorPng, ImageModification

Set Image = Nothing

See also

ImageModification
IImageModification::ClearReplaceBlackPixelsRegions

 201

ABBYY FineReader Engine 10 API Reference

AddReplaceWhitePixelsRegion Method of the ImageModification Object

This method adds a new "replace white pixels" region to the internal array of "replace white pixels" regions of the
ImageModification object. To remove all the "replace white pixels" regions previously added call the
IImageModification::ClearReplaceWhitePixelsRegions method. In case the modification is applied to a single color plane of the
image, coordinates of the region should be specified on this color plane. In case the modification is applied to the whole
ImageModification, the coordinates should be specified on the deskewed black�and�white image plane.

Visual Basic Syntax

Method AddReplaceWhitePixelsRegion(

 region As Region,

 color As Long,

 [strokesExpansion As Long = 0]

)

C++ Syntax

HRESULT AddReplaceWhitePixelsRegion(

 IRegion* region,

 long color,

 long strokesExpansion

);

Parameters

region

[in] This parameter of the Region type specifies the "replace white pixels" region to be added.

color

[in] This variable specifies the color with which the white pixels are replaced.
Note: The Long value is calculated from the RGB triplet using the formula: (red value) + (256 x green value) + (65536 x blue value),

where red value is the first triplet component, green value is the second triplet component, blue value is the third triplet component.
For example, the Long value of the color white equals 16777215.

strokesExpansion

[in] This variable specifies the expansion (in pixels) of black areas on the image before replacing.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

White pixels on the image inside the "replace white pixels" regions will be replaced with the pixels of the specified color when
IImageDocument::Modify method is applied. This operation is performed on the black�and�white image plane rather than color
image plane but results will be applied to the color image plane too.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

FREngine::IEnginePtr Engine;

...

// Open image file

FREngine::IImageDocumentPtr pImageDoc =

 Engine->PrepareAndOpenImage(L"D:\\Demo.tif",

 prepareImageMode, 0, 0);

// Extract image dimensions

FREngine::IImagePtr image = pImageDoc->ColorImage;

long width = image->Width;

long height = image->Height;

// Create and initialize the ImageModification object

FREngine::IImageModificationPtr imageModification =

 202

ABBYY FineReader Engine 10 API Reference

 Engine->CreateImageModification();

// Replace white pixels

FREngine::IRegionPtr region = Engine->CreateRegion();

region->AddRect(width / 3, height / 3, 2 * width / 3, 2 * height / 3);

imageModification->AddReplaceWhitePixelsRegion(region, 0, 0);

// Save modified image

image->WriteToFile(L"D:\\sample.png",

 FREngine::IFF_PngColorPng, imageModification, 0);

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

...

' Open image file

Dim ImageDoc As FREngine.ImageDocument

Set ImageDoc = Engine.PrepareAndOpenImage(_

 "D:\Demo.tif", PrepareImageMode)

Dim Image As FREngine.Image

Set Image = ImageDoc.ColorImage

Dim Width As Long, Height As Long

Width = Image.Width

Height = Image.Height

' Create and initialize the ImageModification object

Dim ImageModification As FREngine.ImageModification

Set ImageModification = Engine.CreateImageModification

' Replace white pixels

Dim Region As FREngine.Region

Set Region = Engine.CreateRegion()

Region.AddRect Width / 3, Height / 3, 2 * Width / 3, 2 * Height / 3

ImageModification.AddReplaceWhitePixelsRegion Region, 0

' Save modified image

Image.WriteToFile "D:\sample.png", _

 IFF_PngColorPng, ImageModification

Set Image = Nothing

See also

ImageModification
IImageModification::ClearReplaceWhitePixelsRegions

ClearClipRegions Method of the ImageModification Object

This method clears the internal array of clipping regions. By default the internal array of clipping regions is empty. This method may be
called to remove all the clipping regions that were added previously. To add a new region to this internal array call the
IImageModification::AddClipRegion method.

Visual Basic Syntax

Method ClearClipRegions()

C++ Syntax

HRESULT ClearClipRegions();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

 203

ABBYY FineReader Engine 10 API Reference

Remarks

Clipping regions define what part of the image will be affected during modification. Only part of image inside the bounding region of
the clipping regions is processed, and the part of image inside the bounding region that does not belong to any of the clipping regions,
is filled in with the white color.

See also

ImageModification
IImageModification::AddClipRegion

ClearInvertRegions Method of the ImageModification Object

This method clears the internal array of inversion regions. By default the internal array of inversion regions is empty, and this method
may be called to remove all the inversion regions that were added previously. To add a new region to this internal array call the
IImageModification::AddInvertRegion method.

Visual Basic Syntax

Method ClearInvertRegions()

C++ Syntax

HRESULT ClearInvertRegions();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Colors of the image inside the inversion regions will be inverted when IImageDocument::Modify method is applied.

See also

ImageModification
IImageModification::AddInvertRegion

ClearPaintRegions Method of the ImageModification Object

This method clears the internal array of paint regions. By default the internal array of paint regions is empty, and this method may be
called to remove all the paint regions that were added previously. To add a new region to this internal array call the
IImageModification::AddPaintRegion method.

Visual Basic Syntax

Method ClearPaintRegions()

C++ Syntax

HRESULT ClearPaintRegions();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Parts of the image inside the paint regions will be filled up with the specified color when IImageDocument::Modify method is
applied.

See also

ImageModification
IImageModification::AddPaintRegion

ClearRemoveGarbageRegions Method of the ImageModification Object

This method clears the internal array of "remove garbage" regions. By default the internal array of these regions is empty, and this
method may be called to remove all the "remove garbage" regions that were added previously. To add a new region to this internal
array call the IImageModification::AddRemoveGarbageRegion method.

Visual Basic Syntax

Method ClearRemoveGarbageRegions()

C++ Syntax

 204

ABBYY FineReader Engine 10 API Reference

HRESULT ClearRemoveGarbageRegions();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The parts of the image inside the "remove garbage" regions will be cleaned up when IImageDocument::Modify method is applied.

See also

ImageModification
IImageModification::AddRemoveGarbageRegion

ClearReplaceBlackPixelsRegions Method of the ImageModification Object

This method clears the internal array of "replace black pixels" regions. By default the internal array of these regions is empty, and this
method may be called to remove all the "replace black pixels" regions that were added previously. To add a new region to this internal
array, call the IImageModification::AddReplaceBlackPixelsRegion method.

Visual Basic Syntax

Method ClearReplaceBlackPixelsRegions()

C++ Syntax

HRESULT ClearReplaceBlackPixelsRegions();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Black pixels on the image inside the "replace black pixels" regions will be replaced with the pixels of the specified color when
IImageDocument::Modify method is applied. This operation is performed on the black�and�white image plane rather than color
image plane but results will be applied to the color image plane too.

See also

ImageModification
IImageModification::AddReplaceBlackPixelsRegion

ClearReplaceWhitePixelsRegions Method of the ImageModification Object

This method clears the internal array of "replace white pixels" regions. By default the internal array of these regions is empty, and this
method may be called to remove all the "replace white pixels" regions that were added previously. To add a new region to this internal
array call the IImageModification::AddReplaceWhitePixelsRegion method.

Visual Basic Syntax

Method ClearReplaceWhitePixelsRegions()

C++ Syntax

HRESULT ClearReplaceWhitePixelsRegions();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

White pixels on the image inside the "replace white pixels" regions will be replaced with the pixels of the specified color when
IImageDocument::Modify method is applied. This operation is performed on the black�and�white image plane rather than color
image plane but results will be applied to the color image plane too.

See also

ImageModification
IImageModification::AddReplaceWhitePixelsRegion

MultipageImageWriter Object (IMultipageImageWriter Interface)

This object is used for saving several images into a single image file.

 205

ABBYY FineReader Engine 10 API Reference

To write a multipage image file:

1. Create a MultipageImageWriter object using the CreateMultipageImageWriter method of the Engine object.

2. Add images to the end of the multipage image file using the AddPage method of the MultipageImageWriter object. Each
image is added as a single page.

3. Before the newly created image file can be used, all the references to the MultipageImageWriter object must be released.

Note: A MultipageImageWriter object can be created for one�page formats, but in this case only one page can be added to the
file.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Methods

Name Description
AddPage Appends an image to the end of the multipage image file.

Output parameter

This object is the output parameter of the CreateMultipageImageWriter method of the Engine object.

See also

Working with Images

AddPage Method of the MultipageImageWriter Object

This method appends an image to the end of the multipage image file.

Visual Basic Syntax

Method AddPage(

 image As Image

)

C++ Syntax

HRESULT AddPage(

 IImage* image

);

Parameters

image

[in] This variable refers to the Image object corresponding to the image to be appended.

Return Values

This method returns E_INVALIDARG if the saving format is black�and�white while the format of the image being appended is gray or
color. It may also return standard return values of ABBYY FineReader Engine functions.

Remark

If you create the MultipageImageWriter object for an one�page format, you can add no more than one page to the resulting file.

See also

MultipageImageWriter
IEngine::CreateMultipageImageWriter

IImagePasswordCallback Interface

This interface is to be implemented on the client side. It contains a method which can return a password when it is needed to access
the image file. Currently, only files in PDF format can be protected with passwords.

The sequence of usage for this interface is as follows:

 206

ABBYY FineReader Engine 10 API Reference

1. The user of ABBYY FineReader Engine implements an object with the IImagePasswordCallback interface. For C++, this
object should be derived from this interface and implement its raw_GetPassword method. This object should also
implement the methods of the IUnknown interface.

2. The user then passes a pointer to this object's interface into any of the
IFRDocument::AddImageFileWithPasswordCallback, IEngine::GetNumberOfPagesInImageFile,
IEngine::PrepareImage, IEngine::PrepareAndOpenImage, IEngine::RecognizeImageFile,
IEngine::RecognizeImageAsPlainText methods as one of input parameters. ABBYY FineReader Engine will call the
GetPassword method of this object to get the password if necessary.

In the case when the user does not expect to deal with password�protected image files or does not want to handle password requests,
the "Null" (C++) or "Nothing" (Visual Basic) pointer may be passed instead of the pointer to IImagePasswordCallback interface. The
only disadvantage of this approach is that password�protected image files will not be opened with ABBYY FineReader Engine.

Method

Name Description
GetPassword Returns the password.

Input parameter

This object is the input parameter of the following methods:

• PrepareImage, PrepareAndOpenImage, RecognizeImageFile, RecognizeImageAsPlainText,
GetNumberOfPagesInImageFile methods of the Engine object.

• AddImageFileWithPasswordCallback method of the FRDocument object.

See also

Working with Connectable Objects

GetPassword Method of the IImagePasswordCallback Interface

This method is implemented by the user. ABBYY FineReader Engine can use a pointer to the IImagePasswordCallback interface in
methods that open image files to request passwords for protected files, actually PDFs. Typical implementation of this method could
show a dialog box where the user can provide a password necessary to access the image file.

Visual Basic Syntax

Sub IImagePasswordCallback_GetPassword(

 ByVal ownerNeeded As Boolean,

 ByRef isResultValid As Boolean

) As String

C++ Syntax

HRESULT raw_GetPassword(

 VARIANT_BOOL ownerNeeded,

 VARIANT_BOOL* isResultValid,

 BSTR* password

);

Parameters

ownerNeeded

[in] This parameters indicates whether "user" (ownerNeeded=False) or "owner" (ownerNeeded=True) password is requested for the
image file in PDF format. "Owner" password provides highest access level to the document's contents and properties.

isResultValid

[out] This parameter should be set to TRUE if result value in the password should be used by ABBYY FineReader Engine. When it is set
to FALSE, ABBYY FineReader Engine will act as if no password available and will not open the image file. The default value of this
parameter is FALSE.

password

[out] This parameter allows you to return the string to be used as a password for the image file.

 207

ABBYY FineReader Engine 10 API Reference

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

This method may be called by ABBYY FineReader Engine possibly more than once, until the correct password is returned or
isResultValid parameter is set to FALSE, which means "the user cannot (or does not want to) enter the password".

See also

IImagePasswordCallback

TrainingImagesCollection Object (ITrainingImagesCollection Interface)

This object represents a collection of TrainingImage objects. It serves as a storage to pass various sets of parameters into those
ABBYY FineReader Engine functions that require them. It may also be return value of ABBYY FineReader Engine methods.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element TrainingImage Provides access to a single element of the collection.

Methods

Name Description
Add Adds a new element at the end of the collection.

CopyFrom Initializes properties of the current object with values of similar properties of another object.

Insert Inserts a new element into the specified position in the collection.

Item Provides access to a single element of the collection.

Remove Removes an element from the collection.

RemoveAll Removes all the elements from the collection.

Related objects

Output parameter

This collection is the output parameter of the CreateTrainingImagesCollection method of the Engine object.

Input parameter

This collection is the input parameter of the TrainUserPattern method of the Engine object.

See also

Recognizing with Training
Training User Patterns
Working with Properties

TrainingImage Object (ITrainingImage Interface)

This object represents a single training image. It contains character image which can be used during user pattern training.

Important!

• You must specify the values of the Height and Width properties before you call the SetImageData method.

 208

ABBYY FineReader Engine 10 API Reference

• The SmallCharsHeight property must be set to the correct value.

Properties

Name Type Description
Engine,
read�only Application Returns the Engine object.

Contains the distance from the base line to the top edge of the image. The base line is the line
on which the characters are located. The top edge of the image is determined by the character
orientation. By default, the value of this property is 0.

BaseLine Long

Specifies the height of the training image in pixels. By default, the value of this property is 0. Height Long
SmallCharsHeight Long Specifies the height of small characters in pixels on the source image. By default, the value of

this property is 0.
Specifies the width of the training image in pixels. By default, the value of this property is 0. Width Long

Methods

Name Description
Sets the training image data from the buffer in memory. The image should be isotropic (that is its horizontal
resolution should equal the vertical one), black�and�white with 1 bit per pixel encoding. SetImageData

Related objects

Output parameter

This object is the output parameter of the following methods:

• CreateTrainingImage method of the Engine object.

• Item method of the TrainingImagesCollection object.

Input parameter

This object is the input parameter of the Insert, Add method of the TrainingImagesCollection object.

See also

TrainingImagesCollection
Recognizing with Training
Training User Patterns
Working with Properties

SetImageData Method of the TrainingImage Object

This method sets the training image data from the buffer in memory.

The image should be isotropic (that is its horizontal resolution should equal the vertical one), black�and�white with 1 bit per pixel
encoding.

Image is stored in buffer continuously, line�by�line, from top to bottom. One line of black�and�white image is stored as a sequence of at
least N = ceil (ITrainingImage::Width / 8) bytes. Each byte encodes colors of 8 adjacent pixels, most significant bit of the first byte
corresponds to leftmost pixel of the line. Bit value of 0 denotes white pixel, value if 1 denotes black pixel. If ITrainingImage::Width
is not a multiple of 8, least significant bits of N�th byte are ignored.

Visual Basic Syntax

Method SetImageData(

 rawDataPointer As Long

) As ImageDocument

C++ Syntax

HRESULT SetImageData(

 long rawDataPointer

 209

ABBYY FineReader Engine 10 API Reference

);

Parameters

rawDataPointer

[in] This parameter is treated as a pointer to memory buffer containing image data.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The image data should exist while the TrainingImage object received from this method exists.

See also

TrainingImage

Layout�Related Objects
Layout object is at the top of hierarchy of objects that represent ABBYY FineReader Engine blocks. Layout object exposes a collection
of blocks. A block is an object that defines a zone on image and specifies the way in which this zone is recognized. It also contains the
recognized text that corresponds to the image zone the block defines.

This section contains descriptions of the following layout�related objects:

• Layout

• LayoutsCollection

• LayoutBlocks

• Block

• TextBlock

• TextBlockAnalysisParams

• TableBlock

• TableCells

• TableCell

• TableSeparators

• TableSeparator

• BarcodeBlock

• BarcodeText

• BarcodeSymbol

• RasterPictureBlock

• CheckmarkGroup

• CheckmarkBlock

• SeparatorGroup

• SeparatorBlock

 210

ABBYY FineReader Engine 10 API Reference

You can find additional information about how to work with layout and blocks in the Working with Layout and Blocks section.

The layout�related objects hierarchy

For more information about the hierarchy of the ABBYY FineReader Engine objects, please see the Object Diagram.

Layout Object (ILayout Interface)

This object exposes methods and properties for working with the image layout. The Layout object serves as a root for blocks. Its
attributes are width and height. These parameters are set equal to the corresponding parameters of the black�and�white page of the
image for which the Layout object is defined. This is done automatically when the Layout object is analyzed or recognized. It is not
recommended to change the geometrical parameters of the Layout object, as it may unpredictably affect the results of the recognized
text export.

The Layout object is a persistent object. This means that it is able to write its current state, indicated by the values of its properties, to
persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the object's state from
persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory, and
LoadFromMemory.

Properties

Name Type Description
Engine, read�
only Application Returns the Engine object.

Provides access to the collection of separator and separator group blocks of the layout.
This property refers to a valid object independently of whether there are any separator
blocks in the Layout or not. In case there are no separators in the Layout, the
BlackSeparators property is empty.

LayoutBlocks,
read�only BlackSeparators

Provides access to the collection of blocks of the layout. This collection does not contain the
separator and separator group blocks. To access these blocks, use the BlackSeparator
property.
This property refers to a valid object independently of whether there are any blocks in

LayoutBlocks,
read�only Blocks

 211

ABBYY FineReader Engine 10 API Reference

Layout or not. In case there are no blocks in Layout, the Blocks property is empty. See also
Working with read�only object properties in raw C++.

Stores the layout height in pixels. Usually the height of Layout is the same as the height of
the image to which this Layout corresponds, although you may assign it any positive value.
Blocks may exceed the bounds of the layout, but they will be trimmed during recognition.

Height Long

Name String Stores the layout name.

TextAsString String, read�
only

Writes the values of all blocks, except for Picture blocks, to one line. The Cells object
determines the order in which text from table cells is written. So the order may not coincide
with the table cells order as they go in the image.

UserProperty VARIANT Allows you to associate any user�defined information with an object of the Layout type.

Width Long Stores the layout width in pixels. Usually the width of Layout is the same as the width of the
image to which this Layout corresponds, although you may assign it any positive value.
Blocks may exceed the bounds of the layout, but they will be trimmed during recognition.

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

AddBlock Creates the Block object of the type specified and adds it to the collection of the layout blocks.

InsertBlock Creates the Block object of the type specified and inserts it into the specified position in the collection of the
layout blocks.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Related objects

Output parameter

This object is the output parameter of the following methods:

• CreateLayout method of the Engine object.

• Item method of the LayoutsCollection object.

Input parameter

This object is the input parameter of the following methods:

 212

ABBYY FineReader Engine 10 API Reference

• AnalyzeAndRecognizePage, AnalyzePage, ExportPage, RecognizePage, CreateLayoutBlocks methods of the
Engine object.

• AnalyzeAndRecognizePage, AnalyzePage, AnalyzeTable, ExtractBarcodes, RecognizeBlocks, RecognizePage
methods of the DocumentAnalyzer object.

• Add, Insert methods of the LayoutsCollection object.

See also

Working with Layout and Blocks
LayoutBlocks
Working with Properties

See samples: RecognizedTextProcessing, CustomLanguage

AddBlock Method of the Layout Object

This method creates a Block object of the type specified and adds it to the collection of the layout blocks.

Visual Basic Syntax

Method AddBlock(

 blockType As BlockTypeEnum,

 region As Region

) As Block

C++ Syntax

HRESULT AddBlock(

 BlockTypeEnum blockType,

 IRegion* region,

 IBlock** block

);

Parameters

blockType

[in] This variable of the BlockTypeEnum type specifies the type of the newly created block.

region

[in] This variable refers to the Region object that specifies the region of the newly created block. This parameter may be 0, in which
case the region of the new block will be set to the region of the layout.

block

[out, retval] A pointer to IBlock* pointer variable that receives the interface pointer of the created block.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Sample

Visual C++ (COM) code

...

// Create a Layout object

FREngine::ILayoutPtr pLayout = Engine->CreateLayout();

// Set block region

FREngine::IRegionPtr pRegion = Engine->CreateRegion();

pRegion->AddRect(0, 0, 100, 50);

// Create a block of the "checkmark" type and add into the layout

FREngine::IBlockPtr pCheckmark = pLayout->AddBlock(FREngine::BT_Checkmark, pRegion);

...

Visual Basic code

...

 213

ABBYY FineReader Engine 10 API Reference

' Create a Layout object

Dim Layout As FREngine.Layout

Set Layout = Engine.CreateLayout()

' Set block region

Dim Region As FREngine.Region

Set Region = Engine.CreateRegion()

Region.AddRect 0, 0, 100, 50

' Create a block of the "checkmark" type and add it into the layout

Dim Checkmark As FREngine.block

Set Checkmark = Layout.AddBlock(BT_Checkmark, Region)

...

See also

Layout
Block
ILayout::InsertBlock

InsertBlock Method of the Layout Object

This method creates a Block object of the type specified and inserts it into the specified position in the collection of the layout blocks.

Visual Basic Syntax

Method InsertBlock(

 index As Long,

 blockType As BlockTypeEnum,

 region As Region

) As Block

C++ Syntax

HRESULT InsertBlock(

 long index,

 BlockTypeEnum blockType,

 IRegion* region,

 IBlock** block

);

Parameters

index

[in] This parameter specifies the index of the newly inserted block in the collection of the layout blocks. The value of the parameter
must be in range from 0 to the value of the ILayoutBlocks::Count property. If the block with this index already exists in the group,
the elements of the collection are shifted to the right. The element may also be inserted at the end of collection, in which case the
value of this parameter must be equal to the value of the ILayoutBlocks::Count property.

blockType

[in] This variable of the BlockTypeEnum type specifies the type of the newly created block.

region

[in] This variable refers to the Region object that specifies the region of the newly created block. This parameter may be 0, in which
case the region of the new block will be set to the region of the layout.

block

[out, retval] A pointer to IBlock* pointer variable that receives the interface pointer of the created block.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Layout
Block

 214

ABBYY FineReader Engine 10 API Reference

LayoutBlocks
ILayout::AddBlock

LayoutsCollection Object (ILayoutsCollection Interface)

This object represents a collection of Layout objects. It serves as a storage to pass various sets of parameters into those ABBYY
FineReader Engine functions that require them. It may also be return value of ABBYY FineReader Engine methods.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element Layout Provides access to a single element of the collection.

Methods

Name Description
Add Adds a new element at the end of the collection.

CopyFrom Initializes properties of the current object with values of similar properties of another object.

Insert Inserts a new element into the specified position in the collection.

Item Provides access to a single element of the collection.

Remove Removes an element from the collection.

RemoveAll Removes all the elements from the collection.

Related objects

Output parameter

This collection is the output parameter of the CreateLayoutsCollection method of the Engine object.

Input parameter

This collection is the input parameter of the following methods:

• AnalyzeAndRecognizePages, AnalyzePages, ExportPages, RecognizePages, SynthesizePages of the Engine object.

• AnalyzeAndRecognizePages, AnalyzePages, RecognizePages methods of the DocumentAnalyzer object.

• ExportPages method of the Exporter object.

See also

Working with Layout and Blocks
Layout
Working with Properties

LayoutBlocks Object (ILayoutBlocks Interface)

This object represents a collection of layout blocks. It may exist either as independent object or as a sub�object of a Layout object, and
it serves as a mean to pass a collection of blocks to a method or as a storage of Layout blocks respectively.

In the first case, the collection is empty after creating with the IEngine::CreateLayoutBlocks method and blocks can be added to
this collection using the Add and Insert methods, and deleted using the Remove, RemoveAll methods.

 215

ABBYY FineReader Engine 10 API Reference

In the second case, the blocks collection is received using the ILayout::Blocks property and already contains all the blocks of the
layout. You cannot call the Add and Insert methods for such object. To add or insert a block into the collection, use the AddBlock or
InsertBlock methods of the corresponding Layout object, which creates a new block and adds it into the layout. The Remove and
RemoveAll methods delete blocks from the collection and from the layout.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element Provides access to a single element of the collection. Block, read�only

Methods

Name Description
Adds a Block object at the end of the collection. The method is not available for the collection received using the
ILayout::Blocks property. Add

CopyFrom Initializes properties of the current object with values of similar properties of another object.

Inserts a Block object into the specified position in the collection. The method is not available for the collection
received using the ILayout::Blocks property. Insert

Item Provides access to a Block object in a collection.

Remove Removes an element from the collection.

RemoveAll Removes all the elements from the collection.

Related objects

Output parameter

This object is the output parameter of the CreateLayoutBlocks method of the Engine object.

See also

Block
Layout
Working with Layout and Blocks
Working with Properties

See samples: RecognizedTextProcessing, CustomLanguage

Block Object (IBlock Interface)

This object represents a single block. When recognizing a page, ABBYY FineReader Engine first analyzes its layout and detects blocks of
various types on the page. Blocks determine how the image areas are recognized and contain recognized information after recognition.

 216

ABBYY FineReader Engine 10 API Reference

Each block on the page belongs to one of the nine types: text, table, raster picture, vector picture, barcode, checkmark, checkmarks
group, separator, and separators group. The type of the block is defined by the Type property. The Block object exposes methods
which typecast it to the one of its child objects and thereby provide access to the extended attributes of a block of specific type.

The position of the block on an image is defined by its region (the Region property) and the layer to which the block belongs (the
BlockLayerType property).

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Specifies the background color of the block. By default, the value of this property is
white, or RGB(255,255,255). BackgroundColor Long

Specifies the layer of the block: background, foreground, or hidden. Blocks may be
overlaid, for example, a text block may lay over a background picture block. By
default, the value of this property is BLT_Foreground.

BlockLayerType BlockLayerTypeEnum

Stores the description of the block. By default, the value of this property is an
empty string. Description String

Stores the name of the block. It may be an arbitrary string. By default, the value of
this property is an empty string. Name String

Provides access to the block region. A region is a collection of rectangles placed
one under another and having common top/bottom coordinates. That is, the
bottom line of the upper rectangle touches the top line of the lower one. Unlike
other types of blocks, a table block may have no more than one rectangle in its
region, that is why an attempt to assign a region with more that one rectangle to a
table block will result in an error. The region is defined by coordinates of its
rectangles (in pixels) upon the deskewed black�and�white plane of the
corresponding image.

Region Region

Note: The property returns a constant object. To change the block region, you
must first receive an intermediate Region object with the help of the
IEngine::CreateRegion method, change the necessary parameters, and then
assign this object to the property.

ABBYY FineReader Engine uses the following nine types of blocks: text, table,
raster picture, vector picture, barcode, checkmark, checkmarks group, separator,
and separators group. Each type of block has its own specific properties. Block type
is defined at the time of its creation. It can only be changed by the following
procedure:

BlockTypeEnum, read�
only Type 1. Delete this block from layout by calling the ILayoutBlocks::Remove

method.

2. Create a new block of the desired type and add it into the desired layout
by calling the AddBlock or InsertBlock method of the Layout object.

UserProperty VARIANT Allows you to associate some user�defined information of any type with an object
of the Block type.

Methods

Name Description
GetAsBarcodeBlock Returns the block as the BarcodeBlock object. If the block is not a barcode block, NULL is returned.

GetAsCheckmarkBlock Returns the block as the CheckmarkBlock object. If the block is not a checkmark block, NULL is
returned.

GetAsCheckmarkGroup Returns the block as the CheckmarkGroup object. If the block is not a checkmark group block, NULL
is returned.

GetAsRasterPictureBlock Returns the block as the RasterPictureBlock object. If the block is not a raster picture block, NULL is
returned.

GetAsSeparatorBlock Returns the block as the SeparatorBlock object. If the block is not a separator block, NULL is
returned.

 217

ABBYY FineReader Engine 10 API Reference

GetAsSeparatorGroup Returns the block as the SeparatorGroup object. If the block is not a separator group block, NULL is
returned.

GetAsTableBlock Returns the block as the TableBlock object. If the block is not a table block, NULL is returned.

GetAsTextBlock Returns the block as the TextBlock object. If the block is not a text block, NULL is returned.

GetAsVectorPictureBlock Returns the block as the VectorPictureBlock object. If the block is not a vector picture block, NULL
is returned.

Move Offsets block region by some vector.

Related objects

Output parameter

This object is the output parameter of the following methods:

• AddBlock and InsertBlock methods of the Layout object

• Item method of the LayoutBlocks object

Input parameter

This object is the input parameter of the Insert, Add methods of the LayoutBlocks object.

See also

LayoutBlocks
Working with Layout and Blocks
Working with Properties

See samples: RecognizedTextProcessing, CustomLanguage

GetAsBarcodeBlock Method of the Block Object

This method returns the block as the BarcodeBlock object. If the block is not a barcode block, NULL is returned.

Visual Basic Syntax

Method GetAsBarcodeBlock() As BarcodeBlock

C++ Syntax

HRESULT GetAsBarcodeBlock(

 IBarcodeBlock** result

);

Parameters

result

 218

ABBYY FineReader Engine 10 API Reference

[out] A pointer to IBarcodeBlock* pointer variable that receives the interface pointer to the returned BarcodeBlock object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

Block
BarcodeBlock

GetAsCheckmarkBlock Method of the Block Object

This method returns the block as the CheckmarkBlock object. If the block is not a checkmark block, NULL is returned.

Visual Basic Syntax

Method GetAsCheckmarkBlock() As CheckmarkBlock

C++ Syntax

HRESULT GetAsCheckmarkBlock(

 ICheckmarkBlock** result

);

Parameters

result

[out] A pointer to ICheckmarkBlock* pointer variable that receives the interface pointer to the returned CheckmarkBlock object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

Block
CheckmarkBlock

GetAsCheckmarkGroup Method of the Block Object

This method returns the block as the CheckmarkGroup object. If the block is not a checkmark group block, NULL is returned.

Visual Basic Syntax

Method GetAsCheckmarkGroup() As CheckmarkGroup

C++ Syntax

HRESULT GetAsCheckmarkGroup(

 ICheckmarkGroup** result

);

Parameters

result

[out] A pointer to ICheckmarkGroup* pointer variable that receives the interface pointer to the returned CheckmarkGroup object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

Block
CheckmarkGroup

GetAsRasterPictureBlock Method of the Block Object

This method returns the block as the RasterPictureBlock object. If the block is not a raster picture block, NULL is returned.

Visual Basic Syntax

Method GetAsRasterPictureBlock() As RasterPictureBlock

 219

ABBYY FineReader Engine 10 API Reference

C++ Syntax

HRESULT GetAsRasterPictureBlock(

 IRasterPictureBlock** result

);

Parameters

result

[out] A pointer to IRasterPictureBlock* pointer variable that receives the interface pointer to the returned RasterPictureBlock
object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

Block
RasterPictureBlock

GetAsSeparatorBlock Method of the Block Object

This method returns the block as the SeparatorBlock object. If the block is not a separator block, NULL is returned.

Visual Basic Syntax

Method GetAsSeparatorBlock() As SeparatorBlock

C++ Syntax

HRESULT GetAsSeparatorBlock(

 ISeparatorBlock** result

);

Parameters

result

[out] A pointer to ISeparatorBlock* pointer variable that receives the interface pointer to the returned SeparatorBlock object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

Block
SeparatorBlock

GetAsSeparatorGroup Method of the Block Object

This method returns the block as the SeparatorGroup object. If the block is not a separator group block, NULL is returned.

Visual Basic Syntax

Method GetAsSeparatorGroup() As SeparatorGroup

C++ Syntax

HRESULT GetAsSeparatorGroup(

 ISeparatorGroup** result

);

Parameters

result

[out] A pointer to ISeparatorGroup* pointer variable that receives the interface pointer to the returned SeparatorGroup object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

 220

ABBYY FineReader Engine 10 API Reference

See also

Block
SeparatorGroup

GetAsTableBlock Method of the Block Object

This method returns the block as the TableBlock object. If the block is not a table block, NULL is returned.

Visual Basic Syntax

Method GetAsTableBlock() As TableBlock

C++ Syntax

HRESULT GetAsTableBlock(

 ITableBlock** result

);

Parameters

result

[out] A pointer to ITableBlock* pointer variable that receives the interface pointer to the returned TableBlock object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

Block
TableBlock

GetAsTextBlock Method of the Block Object

This method returns the block as the TextBlock object. If the block is not a text block, NULL is returned.

Visual Basic Syntax

Method GetAsTextBlock() As TextBlock

C++ Syntax

HRESULT GetAsTextBlock(

 ITextBlock** result

);

Parameters

result

[out] A pointer to ITextBlock* pointer variable that receives the interface pointer to the returned TextBlock object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

Block
TextBlock

GetAsVectorPictureBlock Method of the Block Object

This method returns the block as the VectorPictureBlock object. If the block is not a vector picture block, NULL is returned.

Visual Basic Syntax

Method GetAsVectorPictureBlock() As VectorPictureBlock

C++ Syntax

HRESULT GetAsVectorPictureBlock(

 IVectorPictureBlock** result

);

 221

ABBYY FineReader Engine 10 API Reference

Parameters

result

[out] A pointer to IVectorPictureBlock* pointer variable that receives the interface pointer to the returned VectorPictureBlock
object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

Block
VectorPictureBlock

Move Method of the Block Object

This method allows you to move the block region. The region is defined by coordinates of its rectangles (in pixels) upon the deskewed
black�and�white plane of the corresponding image.

Visual Basic Syntax

Method Move(

 deltaX As Long,

 deltaY As Long

)

C++ Syntax

HRESULT Move(

 long deltaX,

 long deltaY

);

Parameters

deltaX

[in] Horizontal offset in pixels.

deltaY

[in] Vertical offset in pixels.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Block

DeleteAllWords Method of the Dictionary Object

This method deletes all words from the dictionary.

Visual Basic Syntax

Method DeleteAllWords()

C++ Syntax

HRESULT DeleteAllWords();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

To delete a group of words or a single word from the dictionary, use the IDictionary::DeleteWords or IDictionary::DeleteWord
method, respectively.

 222

ABBYY FineReader Engine 10 API Reference

See also

Dictionary
IDictionary::DeleteWords
IDictionary::DeleteWord

TextBlock Object (ITextBlock Interface)

This object provides access to specific properties of a text block. These blocks correspond to an image zone recognized as formatted
text. The recognized text from the part of the image this block encloses is also accessible via this object. The ITextBlock interface is
derived from the IBlock interface and inherits all its properties.

Properties

Name Type Description
Provides access to the analysis parameters of the text block. AnalysisParams TextBlockAnalysisParams

BlockRole BlockRoleEnum Provides access to the block role of the text block. By default, it is
BR_Unknown.

ImageProcessingParams ImageProcessingParams Provides access to the image preprocessing parameters of the text
block.

RecognizerParams RecognizerParams Provides access to the recognition parameters of the text block.

Provides access to the recognized text of the text block. This text
always has the TR_CompoundText role (IText::TextRole property). Text Text, read�only

TextOrientation TextOrientation Provides access to the parameters of text orientation in the block.

Methods

Name Description
CopyFrom Initializes the properties of the current object with the values of similar properties of another object.

Related objects

Output parameter

This object is the output parameter of the GetAsTextBlock method of the Block object.

See also

Block
Working with Layout and Blocks
Working with Properties

See samples: RecognizedTextProcessing, CustomLanguage

TextBlockAnalysisParams Object (ITextBlockAnalysisParams Interface)

This object specifies how a text block should be analyzed. The object allows you to set analysis parameters for each individual text
block, while the PageAnalysisParams object affects the process of layout analysis of the whole page.

 223

ABBYY FineReader Engine 10 API Reference

Properties

Name Type Description

Application Engine, read�only Returns the Engine object.

AutodetectInversion Boolean Specifies whether the color inversion (white text on black background)
must be automatically detected and normalized during layout analysis.
This property is FALSE by default.

SkewCorrectionMode SkewCorrectionModeEnum Specifies the mode of skew correction during layout analysis. This
property is SCM_Never by default.

Related objects

See also

Tuning Analysis, Recognition and Synthesis Parameters,
Working with Properties

TableBlock Object (ITableBlock Interface)

This object provides access to specific properties of a table block. The ITableBlock interface is derived from the IBlock interface and
inherits all its properties.

The region of blocks of this type may consist of one rectangle only. The structure of the table is described by two collections of table
separators, horizontal and vertical (the HSeparators and VSeparators properties), and a collection of table cells (the Cells
property). Each table cell is treated as a block of some type.

The recognized text is a property of a single cell, not of the entire table. To access the recognized text of a table block, you should do
the following:

1. Receive the collection of table cells using the Cells property.

2. Select the desired cell. Use the methods of the TableCells object.

3. Receive the block object of the cell (the ITableCell::Block property).

4. Check that the block is of the type BT_Text (the IBlock::Type property) and receive the TextBlock object using the
IBlock::GetAsTextBlock method.

5. Use the ITextBlock::Text property.

Properties

Name Type Description
Cells TableCells, read�

only
Provides access to the cells collection of the table block. The collection always contains at
least one cell, in case there are no table separators in the table. The cells in the collection are
arranged in the logical reading order.

TableSeparators,
read�only

Provides access to horizontal separators collection of the table block. This collection always
contains at least two separators corresponding to the table block top and bottom. HSeparators

VSeparators TableSeparators,
read�only

Provides access to vertical separators collection of the table block. This collection always
contains at least two separators corresponding to the table block left and right borders.

Methods

Name Description
FindBaseCellFromPoint Allows you to find cell position in the base grid from the pixel on image.

InitializeGrid Initializes table grid for the table block.

 224

ABBYY FineReader Engine 10 API Reference

Related objects

Output parameter

This object is the output parameter of the GetAsTableBlock method of the Block object.

See also

Block
Working with Layout and Blocks
Working with Text
Working with Properties

See sample: RecognizedTextProcessing

FindBaseCellFromPoint Method of the TableBlock Object

This method allows you to find cell position in the base grid for a given pixel.

Visual Basic Syntax

Method FindBaseCellFromPoint(

 ByVal pointX As Long,

 ByVal pointY As Long,

 ByRef baseX As Long,

 ByRef baseY As Long

)

C++ Syntax

HRESULT FindBaseCellFromPoint(

 long pointX,

 long pointY,

 long* baseX,

 long* baseY

);

Parameters

pointX

[in] This variable contains the horizontal coordinate of the pixel relative to the image.

pointY

[in] This variable contains the vertical coordinate of the pixel relative to the image.

baseX

[in,out] In this variable the horizontal coordinate of the cell in the base grid is returned.

baseY

[in,out] In this variable the vertical coordinate of the cell in the base grid is returned.

 225

ABBYY FineReader Engine 10 API Reference

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Cell coordinates in a base grid are the coordinates of its left top corner in that grid. By the base grid here we assume the grid formed by
table borders and separators. Each vertical separator increments the horizontal coordinate by one, and each horizontal separator
increments the vertical coordinate by one. Coordinate axes are oriented from left to right and from top to bottom. Pixel coordinates
relative to image must lay inside the table block's region otherwise base coordinate value returned will be �1.

See also

TableBlock

InitializeGrid Method of the TableBlock Object

This method initializes table grid for the table block.

Visual Basic Syntax

Method InitializeGrid(

 horzSeparators As LongsCollection,

 vertSeparators As LongsCollection

)

C++ Syntax

HRESULT InitializeGrid(

 ILongsCollection* horzSeparators,

 ILongsCollection* vertSeparators

);

Parameters

horzSeparators

[in] This variable refers to the LongsCollection object that contains coordinates of internal horizontal separators for the table block.

vertSeparators

[in] This variable refers to the LongsCollection object that contains coordinates of internal vertical separators for the table block.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Table separators are initialized anew by a call to this method. Old table structure is destroyed. All coordinates of table separators must
lay between the coordinates of the table borders, otherwise an error code is returned. Note that only coordinates of internal separators
should be passed in LongsCollection objects, that is they should not include coordinates of table borders, although table borders are
always present in collections of table separators of the table block itself. All new table cells that appear as the result of a call to this
method are initialized with the attributes (for example, recognition parameters) of the cell that was in a left top corner of the previous
table structure.

See also

TableBlock

TableCells Object (ITableCells Interface)

All cells of a table block form a single collection represented by TableCells object. Besides the standard collection functionality, this
object contains methods for merging and splitting groups of table cells and method for finding table cell index in collection by its
position in a base table grid. The collection is accessible via the TableBlock object.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

 226

ABBYY FineReader Engine 10 API Reference

Count Stores the number of elements in the collection. Long, read�only

Element Provides access to a single element of the collection. TableCell, read�only

Methods

Name Description
FindCellIndex Returns an index of the cell that corresponds to the specified point in base coordinates.

Item Provides access to a single element of the collection.

Merge Merges a group of cells inside the specified rectangle.

Split Splits a group of cells inside the specified rectangle.

Related objects

See also

TableBlock
TableCell
Working with Layout and Blocks
Working with Text
Working with Properties

See sample: RecognizedTextProcessing

FindCellIndex Method of the TableCells Object

This method returns an index of the cell that corresponds to the specified point in base coordinates of the table grid.

Visual Basic Syntax

Method FindCellIndex(

 x As Long,

 y As Long

) As Long

C++ Syntax

HRESULT FindCellIndex(

 long x,

 long y,

 long* index

);

Parameters

x

[in] This variable specifies horizontal coordinate of the point (defined on vertical separators).

y

[in] This variable specifies vertical coordinate of the point (defined on horizontal separators).

index

[out] A pointer to long variable that receives the return value of this method.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

 227

ABBYY FineReader Engine 10 API Reference

Remarks

The point specified should not exceed the table grid otherwise an error code is returned.

See also

TableCells

Merge Method of the TableCells Object

This method merges a group of cells located in the specified rectangle. This method changes the TableCells object — it affects a
number of cells. During the merge, recognized text in cells, if any, is also merged and assigned to the newly created cell.

Visual Basic Syntax

Method Merge(

 left As Long,

 top As Long,

 right As Long,

 bottom As Long

)

C++ Syntax

HRESULT Merge(

 long left,

 long top,

 long right,

 long bottom

);

Parameters

left

[in] This variable specifies coordinate of the left border of the rectangle in base coordinates.

top

[in] This variable specifies coordinate of the top border of the rectangle in base coordinates.

right

[in] This variable specifies coordinate of the right border of the rectangle in base coordinates.

bottom

[in] This variable specifies coordinate of the bottom border of the rectangle in base coordinates.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The rectangle for merge is specified in base coordinates, not on image. It should not cut existing cells. This means that if table block
already contains merged cells — cells having dimensions more than one base unit, a user should take care and not to specify the
rectangle that would intersect the interior of such cells. This rectangle may only be drawn at cells borders.

See also

ITableCells::Split

Split Method of the TableCells Object

This method splits any merged cells that are located in the specified rectangle. This method changes the TableCells object — it affects
a number of cells. After the split, recognized text from the cells is assigned to the left top cell.

Visual Basic Syntax

Method Split(

 left As Long,

 top As Long,

 228

ABBYY FineReader Engine 10 API Reference

 right As Long,

 bottom As Long

)

C++ Syntax

HRESULT Split(

 long left,

 long top,

 long right,

 long bottom

);

Parameters

left

[in] This variable specifies coordinate of the left border of the rectangle in base coordinates.

top

[in] This variable specifies coordinate of the top border of the rectangle in base coordinates.

right

[in] This variable specifies coordinate of the right border of the rectangle in base coordinates.

bottom

[in] This variable specifies coordinate of the bottom border of the rectangle in base coordinates.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The rectangle for split is specified in base coordinates, not on image. It should not cut existing cells. This means that if table block
contains merged cells — cells having dimensions more than one base unit, a user should take care and not to specify the rectangle that
would intersect the interior of such cells. This rectangle may only be drawn at cells' borders. After this method call a number of new
cells is added in the collection instead of the split cells. These new cells have dimensions of one base unit.

See also

ITableCells::Merge

TableCell Object (ITableCell Interface)

This object represents a single table cell of a table block. This is an element of a TableCells collection. The object provides access to
the name of the cell, its coordinates in a base grid, and contents of the cell.

Each table cell is represented as a separate block. To access contents of the cell you should use the Block property. The type of the
contents (e.g. text, picture) depends on the IBlock::Type property. If the table cell contains text, you can access the text of the table
cell and other text properties using the IBlock::GetAsTextBlock method.

A cell has four coordinates — the indexes of the left, right, top and bottom separators that enclose it. Cell coordinates are the
coordinates in a base grid. By the base grid here we assume the grid formed by table borders and separators. Each vertical separator
increments the horizontal coordinate by one, and each horizontal separator increments the vertical coordinate by one. Coordinate
axes are oriented from left to right and from top to bottom.

Table cell coordinates cannot be changed directly. They are affected by ITableCells::Merge and ITableCells::Split methods. But be
aware that these operations not only change attributes of a single cell, but affect the cells collection as a whole, adding or removing
cells.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Block Provides access to the block of the cell. Block, read�only

Bottom Stores coordinate of the bottom border of the cell in a base grid. Long, read�only

 229

ABBYY FineReader Engine 10 API Reference

Left Stores coordinate of the left border of the cell in a base grid. Long, read�only

Name String Stores the name of the cell. The default value is an empty string.

Right Stores coordinate of the right border of the cell in a base grid. Long, read�only

Top Stores coordinate of the top border of the cell in a base grid. Long, read�only

Methods

Name Description
ChangeBlockType Changes the type of the block, which corresponds to the table cell.

Related objects

Output parameter

This object is the output parameter of the Item method of the TableCells object.

See also

TableBlock
TableCells
Working with Layout and Blocks
Working with Text
Working with Properties

See sample: RecognizedTextProcessing

ChangeBlockType Method of the TableCell Object

This method changes the type of the block, which corresponds to the table cell.

Visual Basic Syntax

Method ChangeBlockType(

 value As BlockTypeEnum

)

C++ Syntax

HRESULT ChangeBlockType(

 BlockTypeEnum value

);

Parameters

value

[in] This variable specifies the new type of the block. See the description of the BlockTypeEnum enumeration constants. The block of
the cell cannot be of the type BT_Table.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

 230

ABBYY FineReader Engine 10 API Reference

See also

TableCell

TableSeparators Object (ITableSeparators Interface)

This object is a collection of table block separators. Each table block comprises two collections of separators: vertical and horizontal.
This object contains methods for getting the number of table separators in collection and accessing a single table separator in
collection. Besides, there are methods for adding/removing separators. The collection is accessible via the TableBlock object.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element TableSeparator, read�only Provides access to a single element of the collection.

Methods

Name Description
Add Adds a new table separator into the collection.

Item Provides access to a single element of the collection.

Remove Removes an element from the collection. The first and the last separators cannot be removed as they correspond to the
table block borders. Table cells are changed as the result of removing table separator. If several table cells containing
recognized text are merged as the result of removing table separator, the new cell will contain merged text from these
cells.

Related objects

See also

TableBlock
TableSeparator
Working with Layout and Blocks
Working with Properties

TableSeparator Object (ITableSeparator Interface)

This object represents a single table separator in a table block. It contains methods for accessing table separator attributes such as
position and type.

The table separators are characterized by their types. A separator type is in fact a property of a separator part lying between its nearest
crossings with other separators, and not of the entire separator. The separators may be of the following types:

• Absent. This type is assigned to the table separators that cross through the merged cells.

• Unknown. This type is assigned by default to every newly added table separator.

• Invisible. This type is assigned to an "imaginary" table separator created as a result of table structure analysis at a place
where the source table did not have one but where it should logically be.

• Explicit. Table separators of this type appear at the place of black lines of the source table.

• Multiple. This type of separator may appear as a result of table editing.

 231

ABBYY FineReader Engine 10 API Reference

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Position Long Stores coordinate of the separator (horizontal or vertical coordinate on the image).
You can set new position for the separator only between the neighboring two
separators. In case new position is out of this range an error code is returned. You
cannot change position of the first and the last separators in collection as they
correspond to the table block's borders and their coordinates should be changed via
Block methods.

Type TableSeparatorTypeEnum Stores separator type.

Methods

Name Description
SetType Sets new type for the separator.

Related objects

Output parameter

This object is the output parameter of the Item method of the TableSeparators object.

See also

TableBlock
TableSeparators
Working with Layout and Blocks
Working with Properties

Type Property of the TableSeparator Object

This property stores separator type. Separators may be of four types as defined by TableSeparatorTypeEnum constants. This
property can only be changed by calling the ITableSeparator::SetType method.

Visual Basic Syntax

Property Type(coord As Long) As TableSeparatorTypeEnum

 read-only

C++ Syntax

 232

ABBYY FineReader Engine 10 API Reference

HRESULT get_Type(

 long coord,

 TableSeparatorTypeEnum* pVal

);

Parameters

coord

[in] A variable of the long type that contains coordinate of the beginning of the separator segment in a base grid.

pVal

[out] A pointer to TableSeparatorTypeEnum variable that receives the value of the property. Must not be NULL.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Separator type is not an attribute of the entire separator but of a single separator segment between the adjacent intersections with
perpendicular separators. Therefore this property is indexed by the coord parameter. Separator type is an attribute of its segment with
coordinates [coord,coord+1] in a base grid. Table separators' types are automatically corrected during operations with groups of table
cells (merging and splitting).

See also

TableSeparator
TableSeparatorTypeEnum
ITableSeparator::SetType
Working with Properties

SetType Method of the TableSeparator Object

This method sets separator type. Separators may be of four types as defined by TableSeparatorTypeEnum enumeration constants.

Visual Basic Syntax

Method SetType(

 coord As Long,

 newType As TableSeparatorTypeEnum,

 [count As Long = 1]

)

C++ Syntax

HRESULT SetType(

 long coord,

 TableSeparatorTypeEnum newType,

 long count

);

Parameters

coord

[in] A variable that contains coordinate of the beginning of the separator segment in a base grid.

newType

[in] A variable of type TableSeparatorTypeEnum that contains the value for the new separator type.

count

[in] A variable that contains a number of segments for which to set the new type. This is optional parameter. Default value for it is 1.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

 233

ABBYY FineReader Engine 10 API Reference

Remarks

Separator type is not an attribute of the whole separator but of a single separator segment between the adjacent intersections with
perpendicular separators. Therefore one of the input parameters for this method is coord parameter. Separator type is set for the
segment with coordinates [coord,coord+count] in a base grid. It is prohibited to change the type of separator inside a merged cells (it
should be TST_Absent), and it is prohibited to set the type of separator to the TST_Absent value.

See also

TableSeparatorTypeEnum
ITableSeparator::Type

BarcodeBlock Object (IBarcodeBlock Interface)

This object provides access to specific properties of the barcode block: parameters of image preprocessing and recognition in the
block, type of the barcode, and recognized text of the barcode. The IBarcodeBlock interface is derived from the IBlock interface and
inherits all its properties.

Properties

Name Type Description
Provides access to the set of properties affecting the process of
barcode recognition. BarcodeParams BarcodeParams

Provides access to the recognized text of the barcode. The
recognized text is represented as a collection of characters. BarcodeText BarcodeText

Stores the barcode type detected during the recognition
process. BarcodeType BarcodeTypeEnum, read�only

ImageProcessingParams ImageProcessingParams Provides access to the set of properties affecting image
preprocessing inside the barcode block.

Stores the barcode supplement type detected during the
recognition process. This property is only useful for barcodes of
type EAN 8, 13, UPC�A, and UPC�E.

BarcodeSupplementTypeEnum,
read�only SupplementType

SupplementValue String, read�only Stores the barcode supplement value detected during the
recognition process. If the supplement was detected, this
property contains 2 or 5 last digits of the recognized text of the
barcode. The property is only useful for barcodes of type EAN 8,
13, UPC�A, and UPC�E. To change the value of this property,
edit the recognized text in the BarcodeText property.

Text String, read�only Provides access to the recognized text of the barcode. The
recognized text is represented as a string. To change the value
of this property, edit the recognized text in the BarcodeText
property.

Methods

Name Description
CopyFrom Initializes the properties of the current object with the values of similar properties of another object.

Related objects

 234

ABBYY FineReader Engine 10 API Reference

Output parameter

This object is the output parameter of the GetAsBarcodeBlock method of the Block object.

See also

Working with Layout and Blocks
Working with Text
Working with Properties

BarcodeText Object (IBarcodeText Interface)

This object represents a text of a recognized barcode as a collection of characters. The object exists as a sub�object of a BarcodeBlock
object. This object exposes the standard collection functionality and allows you to create the BarcodeSymbol object.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

BarcodeSymbol, read�
only

Provides access to a single element of the collection. The property returns a constant
object. Element

Methods

Name Description
Add Adds a new element at the end of the collection.

CreateBarcodeSymbol Creates the BarcodeSymbol object.

Item Provides access to a single element of the collection.

RemoveAll Removes all the elements from the collection.

Related objects

See also

BarcodeSymbol
BarcodeBlock
Working with Text
Working with Properties

CreateBarcodeSymbol Method of the BarcodeText Object

This method creates the BarcodeSymbol object.

Visual Basic Syntax

Method CreateBarcodeSymbol(

) As BarcodeSymbol

C++ Syntax

HRESULT CreateBarcodeSymbol(

 IBarcodeSymbol** result

);

 235

ABBYY FineReader Engine 10 API Reference

Parameters

result

[out, retval] A pointer to IBarcodeSymbol* pointer variable that receives the interface pointer of the created object. result must not
be NULL. *result is guaranteed to be non�NULL after successful method call.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

BarcodeText
BarcodeSymbol

BarcodeSymbol Object (IBarcodeSymbol Interface)

This object provides access to the properties of one character of a recognized barcode: character itself, rectangle of the character,
character confidence and other attributes. The object is an element of the collection of barcode characters represented by the
BarcodeText object.

Properties

Name Type Description
Engine,
read�only Application Returns the Engine object.

Stores the coordinate of the bottom border of the character rectangle. This rectangle is defined
on the deskewed black�and�white plane of the image, not accounting for the barcode
orientation. It may be undefined in which case all four of its coordinates are zeros.

Bottom Long

Character String Stores the character. The default value of this property is an empty string.

Stores the value of the character confidence. It is in the range from 0 to 100. It represents an
estimate of recognition confidence of a character in percentage points. The greater its value, the
greater the confidence. Character confidence can be undefined, for example, for characters
which were added during barcode editing. In this case, the value of this property is �1. To
calculate character confidence more accurately, set the
IRecognizerParams::ExactConfidenceCalculation property to TRUE.

CharConfidence Long

Specifies whether the character represents binary data in hexadecimal mode. The default value
of this property is FALSE. IsBinaryData Boolean

Specifies whether the character is the barcode start/stop symbol. The property makes sense for
barcodes of the Code 39 type (the start/stop symbol is the asterisk "*") and Codabar type (the
start/stop symbols are Latin letters "A", "B", "C", "D"). The default value of this property is FALSE.

IsStartStopSymbol Boolean

Stores the coordinate of the left border of the character rectangle. This rectangle is defined on
the deskewed black�and�white plane of the image, not accounting for the barcode orientation. It
may be undefined in which case all four of its coordinates are zeros.

Left Long

Stores the coordinate of the right border of the character rectangle. This rectangle is defined on
the deskewed black�and�white plane of the image, not accounting for the barcode orientation. It
may be undefined in which case all four of its coordinates are zeros.

Right Long

Stores the coordinate of the top border of the character rectangle. This rectangle is defined on
the deskewed black�and�white plane of the image, not accounting for the barcode orientation. It
may be undefined in which case all four of its coordinates are zeros.

Top Long

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

 236

ABBYY FineReader Engine 10 API Reference

Related objects

Output parameter

This object is the output parameter of the Item, CreateBarcodeSymbol methods the BarcodeText object.

Input parameter

This object is the input parameter of the Add method of the BarcodeText object.

See also

BarcodeText
Working with Text
Working with Properties

RasterPictureBlock Object (IRasterPictureBlock Interface)

This object provides access to specific properties of a raster picture block. The part of the image that this block encloses is not
recognized, and the block is exported "as is". The IRasterPictureBlock interface is derived from the IBlock interface and inherits all
its properties.

Properties

Name Type Description
Specifies the color type for the whole image as the maximum of the corresponding values
for its color planes (black�and�white, gray, color). ColorType ImageColorTypeEnum

Methods

Name Description
CopyFrom Initializes the properties of the current object with the values of similar properties of another object.

Related objects

Output parameter

This object is the output parameter of the GetAsRasterPictureBlock method of the Block object.

See also

Block
Working with Layout and Blocks
Working with Properties

VectorPictureBlock Object (IVectorPictureBlock Interface)

The object represents a vector picture block. The IVectorPictureBlock interface is derived from the IBlock interface and inherits all
its properties. This object does not provide any specific properties or methods for working with a vector picture block.

 237

ABBYY FineReader Engine 10 API Reference

Blocks of this type may appear in the layout only if a page has been analyzed with the
IPageAnalysisParams::DetectVectorGraphics property set to TRUE.

Related objects

Output parameter

This object is the output parameter of the GetAsVectorPictureBlock method of the Block object.

See also

Block
Working with Layout and Blocks

CheckmarkGroup Object (ICheckmarkGroup Interface)

This object represents a group of checkmark blocks. The ICheckmarkGroup interface is derived from the IBlock interface and
inherits all its properties. Besides the standard collection functionality the CheckmarkGroup object allows you to set the maximum
and minimum number of selected checkmarks in the group.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Count Stores the number of elements in the group. Long, read�only

CheckmarkBlock,
read�only Element Provides access to a single element of the group.

Specifies the maximum number of selected checkmark blocks in the group.
The default value is �1, which means that all checkmark blocks in the group
can be selected.

MaximumCheckedInGroup Long

Specifies the minimum number of selected checkmark blocks in the group.
The default value is 0. MinimumCheckedInGroup Long

Methods

Name Description
AddCheckmark Creates a checkmark block and adds it into the group.

CopyFrom Initializes the properties of the current object with the values of similar properties of another object.

InsertCheckmark Creates a checkmark block and inserts it into the specified position in the group.

Item Provides access to a single element of the group of checkmark blocks.

Remove Removes an element from the group.

RemoveAll Removes all the elements from the group.

 238

ABBYY FineReader Engine 10 API Reference

Related objects

Output parameter

This object is the output parameter of the GetAsCheckmarkGroup method of the Block object.

See also

Block
CheckmarkBlock
Working with Layout and Blocks
Recognizing Checkmarks
Working with Properties

AddCheckmark Method of the CheckmarkGroup Object

This method creates a checkmark block and adds it into the group.

Visual Basic Syntax

Method AddCheckmark(

 region As Region

) As CheckmarkBlock

C++ Syntax

HRESULT AddCheckmark(

 IRegion* region,

 ICheckmarkBlock** result

);

Parameters

region

[in] This variable refers to the Region object that specifies the region of the newly created checkmark block. This parameter may be 0,
in which case the region of the new block will be set to the region of the checkmark group.

result

[out, retval] A pointer to ICheckmarkBlock* pointer variable that receives the interface pointer of the new checkmark block.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Sample

Visual C++ (COM) code

...

// Create a Layout object

FREngine::ILayoutPtr pLayout = Engine->CreateLayout();

// Set block region

FREngine::IRegionPtr pRegion = Engine->CreateRegion();

pRegion->AddRect(0, 0, 100, 50);

// Create a block of the "checkmark group" type and add into the layout

 239

ABBYY FineReader Engine 10 API Reference

FREngine::IBlockPtr pCheckmarkGroup = pLayout->AddBlock(FREngine::BT_CheckmarkGroup,
pRegion);

// Create blocks of the "checkmark" type

// and add them to the checkmark group

for(int i = 0; i < 5; i++) {

 FREngine::IRegionPtr pCheckmarkRegion = Engine->CreateRegion();

 pRegion->AddRect(10, 10 + i * 20, 90, 10 + (i + 1) * 20);

 FREngine::ICheckmarkBlockPtr pCheckmark = pCheckmarkGroup->GetAsCheckmarkGroup()-
>AddCheckmark(pCheckmarkRegion);

}

...

Visual Basic code

...

' Create a Layout object

Dim Layout As FREngine.Layout

Set Layout = Engine.CreateLayout()

' Set block region

Dim Region As FREngine.Region

Set Region = Engine.CreateRegion()

Region.AddRect 0, 0, 100, 50

' Create a block of the "checkmark group" type and add it into the layout

Dim CheckmarkGroup As FREngine.block

Set CheckmarkGroup = Layout.AddBlock(BT_CheckmarkGroup, Region)

' Create blocks of the "checkmark" type

' and add them to the checkmark group

Dim i As Integer

For i = 0 To 4

Dim CheckmarkRegion As FREngine.Region

Set CheckmarkRegion = Engine.CreateRegion()

CheckmarkRegion.AddRect 10, 10 + i * 20, 90, 10 + (i + 1) * 20

Dim Checkmark As FREngine.block

Set Checkmark = CheckmarkGroup.GetAsCheckmarkGroup.AddCheckmark(CheckmarkRegion)

Next i

...

See also

CheckmarkBlock
CheckmarkGroup

InsertCheckmark Method of the CheckmarkGroup Object

This method creates a checkmark block and inserts it into the specified position in the group.

Visual Basic Syntax

Method InsertCheckmark(

 index As Long,

 region As Region

) As CheckmarkBlock

C++ Syntax

HRESULT InsertCheckmark(

 long index,

 IRegion* region,

 240

ABBYY FineReader Engine 10 API Reference

 ICheckmarkBlock** result

);

Parameters

index

[in] This parameter specifies the index of the newly inserted block in the checkmark group. The value of the parameter must be in
range from 0 to the value of the ICheckmarkGroup::Count property. If the block with this index already exists in the group, the
elements of the collection are shifted to the right. The element may also be inserted at the end of collection, in which case the value of
this parameter must be equal to the value of the ICheckmarkGroup::Count property.

region

[in] This variable refers to the Region object that specifies the region of the newly created checkmark block. This parameter may be 0,
in which case the region of the new block will be set to the region of the checkmark group.

result

[out, retval] A pointer to ICheckmarkBlock* pointer variable that receives the interface pointer of the new checkmark block.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

CheckmarkBlock
CheckmarkGroup

CheckmarkBlock Object (ICheckmarkBlock Interface)

This object provides access to specific properties of a checkmark block. The ICheckmarkBlock interface is derived from the IBlock
interface and inherits all its properties. This object may be an element of the CheckmarkGroup collection.

Properties

Name Type Description
Returns the coordinate of the bottom border of the checkmark
rectangle in pixels. The rectangle is defined upon the deskewed
black�and�white plane of the corresponding image.

Bottom Long, read�only

CheckmarkState Specifies the state of the checkmark block. CheckmarkCheckStateEnum

Specifies the checkmark type used for recognition. The default value
is CMT_Empty.

CheckmarkType CheckmarkTypeEnum Note: This property must be identical for all checkmarks
belonging to a single group.

Provides access to the set of properties affecting image
preprocessing inside the checkmark block. ImageProcessingParams ImageProcessingParams

This property set to TRUE means that checkmark block can be
selected and then corrected. The default value is FALSE.

IsCorrectionEnabled Boolean Note: This property must be identical for all checkmarks
belonging to a single group.

This property set TRUE means that the checkmark was recognized
uncertainly. IsSuspicious Boolean

Returns the coordinate of the left border of the checkmark
rectangle in pixels. The rectangle is defined upon the deskewed
black�and�white plane of the corresponding image.

Left Long, read�only

Returns the coordinate of the right border of the checkmark
rectangle in pixels. The rectangle is defined upon the deskewed
black�and�white plane of the corresponding image.

Right Long, read�only

Returns the coordinate of the top border of the checkmark
rectangle in pixels. The rectangle is defined upon the deskewed
black�and�white plane of the corresponding image.

Top Long, read�only

 241

ABBYY FineReader Engine 10 API Reference

Methods

Name Description
CopyFrom Initializes the properties of the current object with the values of similar properties of another object.

SetRect Sets the new rectangle for the checkmark.

Related objects

Output parameter

This object is the output parameter of the following methods and properties:

• GetAsCheckmarkBlock method of the Block object

• Item, AddCheckmark and InsertCheckmark methods of the CheckmarkGroup object

See also

Block
CheckmarkGroup
Working with Layout and Blocks
Recognizing Checkmarks
Working with Properties

SetRect Method of the CheckmarkBlock Object

This method allows you to set a rectangle for the checkmark block. It affects its Left, Top, Right, and Bottom properties. The
rectangle is defined using pixel coordinates upon the deskewed black�and�white plane of the corresponding image.

Visual Basic Syntax

Method SetRect(

 left As Long,

 top As Long,

 right As Long,

 bottom As Long

)

C++ Syntax

HRESULT SetRect(

 long left,

 long top,

 long right,

 long bottom

);

Parameters

left

[in] The coordinate of the left border of the rectangle.

top

 242

ABBYY FineReader Engine 10 API Reference

[in] The coordinate of the top border of the rectangle.

right

[in] The coordinate of the right border of the rectangle.

bottom

[in] The coordinate of the bottom border of the rectangle.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

CheckmarkBlock

SeparatorGroup Object (ISeparatorGroup Interface)

This object represents a group of separator blocks. A group of separators usually includes four separators, which form a rectangle. For
example, four lines of a table border are recognized as a separators group. The ISeparatorGroup interface is derived from the IBlock
interface and inherits all its properties.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Count Stores the number of elements in the group. Long, read�only

Element SeparatorBlock, read�only Provides access to a single element of the group.

Methods

Name Description
AddSeparator Creates a separator block and adds it into the group.

InsertSeparator Creates a separator block and inserts it into the specified position in the group.

Item Provides access to a single element of the group of separator blocks.

Remove Removes an element from the group.

RemoveAll Removes all the elements from the group.

Methods

Name Description
CopyFrom Initializes the properties of the current object with the values of similar properties of another object.

Related objects

Output parameter

This object is the output parameter of the GetAsSeparatorGroup method of the Block object.

 243

ABBYY FineReader Engine 10 API Reference

See also

Block
SeparatorBlock
Working with Layout and Blocks
Working with Properties

Language�Related Objects
A recognition language for text is represented by the TextLanguage object. During the recognition the text is separated into words,
and one or several recognition languages correspond to each word. One recognition language is assigned to each character in a word.
This recognition language is represented by the BaseLanguage objects. Besides, this group of objects includes a collection of
predefined languages — the recognition languages that ABBYY FineReader Engine supports by default. These are represented by the
PredefinedLanguages object. A single predefined language is represented by the PredefinedLanguage object, and gives access to
the corresponding TextLanguage object.

This section contains descriptions of the following language�related objects:

• TextLanguage

• BaseLanguages

• BaseLanguage

• PredefinedLanguages

• PredefinedLanguage

• LanguageDatabase

• Dictionary

• EnumDictionaryWords

• DictionaryDescriptions

• DictionaryDescription

• StandardDictionaryDescription

• UserDictionaryDescription

• RegExpDictionaryDescription

• ExternalDictionaryDescription

• ExternalDictionaryCallback

• IExternalDictionary

• FuzzyStringsCollection

• FuzzyString

You can find additional information in the Working with Languages and Working with Dictionaries sections.

 244

ABBYY FineReader Engine 10 API Reference

The language�related objects hierarchy

For more information about the hierarchy of the ABBYY FineReader Engine objects, please see the Object Diagram.

TextLanguage Object (ITextLanguage Interface)

This object represents the language of recognition for a text. The text language in general case is a set of base languages or languages of
a single word. Access to the collection of base languages of a text is provided through the BaseLanguages property. Besides, this
object exposes methods for accessing different text language attributes such as its internal name, groups of letter sets, etc.

The TextLanguage object is a persistent object. This means that it is able to write its current state, indicated by the values of its
properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the object's
state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory,
and LoadFromMemory.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Returns a reference to the collection of base languages of the current
text language. This collection always exists though contains no
elements by default.

BaseLanguages BaseLanguages, read�only

Specifies the category of text for which the current text language is
designed. By default this property contains the TC_Unknown value,
which means that the text language can be used for recognition of all
types of text.

ImpliedTextCategory TextCategoryEnum

Stores the internal name of the text language. As the internal name may
be used to identify the language, it is better be unique. After a new
object of the TextLanguage type is created, this property stores empty
string. You may assign it some unique value to identify your text
language among others.

InternalName String

LetterSet String Sets additional letter sets for the text language.

DictionaryDescriptions,
read�only ProhibitingDictionaries Returns a reference to the collection of prohibiting dictionaries.

Allows you to associate any user�defined information with an object of
the TextLanguage type. UserProperty VARIANT

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

 245

ABBYY FineReader Engine 10 API Reference

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Related objects

Output parameter

This object is the output parameter of the following methods:

• CreateTextLanguage, CreateCompoundTextLanguage methods of the LanguageDatabase object,

• CreateTextLanguage method of the Engine object.

Sample

Visual C++ (COM) code

FREngine::ITextLanguagePtr MakeTextLanguage()
 {
 // Create new dictionary
 _bstr_t dictionaryFile = L"D:\\sample.amd";

 FREngine::IDictionaryPtr pDictionary =
 Engine->CreateNewDictionary(dictionaryFile, FREngine::LI_EnglishUnitedStates);
 pDictionary->Name = "Sample";

 // Add words to dictionary
 pDictionary->AddWord("the", 100);
 pDictionary->AddWord("a", 100);
 pDictionary->AddWord("an", 100);

 // Create new TextLanguage object
 FREngine::ITextLanguagePtr pTextLanguage = Engine->CreateTextLanguage();

 // Copy all attributes from predefined English language
 FREngine::ITextLanguagePtr pEnglishLanguage =
 Engine->PredefinedLanguages->FindLanguage("English")->TextLanguage;
 pTextLanguage->CopyFrom(pEnglishLanguage);
 pTextLanguage->InternalName = "SampleTL";

 // Bind new dictionary to first (and single) BaseLanguage object within TextLanguage
 FREngine::IBaseLanguagePtr pBaseLanguage = pTextLanguage->BaseLanguages->Item(0);

 246

ABBYY FineReader Engine 10 API Reference

 // Change internal dictionary name to user-defined
 pBaseLanguage->InternalName = "SampleBL";

 // Get collection of dictionary descriptions and remove all items
 FREngine::IDictionaryDescriptionsPtr pDictionaryDescriptions =
 pBaseLanguage->DictionaryDescriptions;
 pDictionaryDescriptions->RemoveAll();

 // Create user dictionary description and add it to the collection
 FREngine::IUserDictionaryDescriptionPtr userDic =
 Engine->CreateUserDictionaryDesc();

 userDic->FileName = dictionaryFile;

 pDictionaryDescriptions->Add(userDic);

 return pTextLanguage;
 }

Visual Basic code

Private Sub MakeTextLanguage(TextLanguage As FREngine.TextLanguage)
 ' Create new dictionary
 Dim DictionaryFile As String
 DictionaryFile = "D:\sample.amd"

 Dim Dictionary As FREngine.Dictionary
 Set Dictionary = Engine.CreateNewDictionary(DictionaryFile, LI_EnglishUnitedStates)
 Dictionary.Name = "Sample"

 ' Add words to dictionary
 Dictionary.AddWord "the"
 Dictionary.AddWord "a"
 Dictionary.AddWord "an"

 ' Create new TextLanguage object
 Set TextLanguage = Engine.CreateTextLanguage

 ' Copy all attributes from predefined English language
 TextLanguage.CopyFrom _
 Engine.PredefinedLanguages.FindLanguage("English").TextLanguage
 TextLanguage.InternalName = "SampleTL"
 TextLanguage.BaseLanguages(0).InternalName = "SampleBL"

 ' Create new user dictionary description
 Dim UserDic As FREngine.UserDictionaryDescription
 Set UserDic = Engine.CreateUserDictionaryDesc
 UserDic.FileName = DictionaryFile

 ' Bind new dictionary to first and single BaseLanguage object within TextLanguage
 TextLanguage.BaseLanguages(0).DictionaryDescriptions.RemoveAll
 TextLanguage.BaseLanguages(0).DictionaryDescriptions.Add UserDic

 End Sub

See also

Working with Languages
Working with Properties

See sample: CustomLanguage

LetterSet Property of the TextLanguage Object

This property sets up additional letter sets for the text language. Every base language included in the collection of base languages of the
text language provides its own letter sets. Each word in the text is recognized using a single base language, and thus its letter sets are
applied to this word. This property specifies the number of letter sets that are applied to every recognized word irrespectively of the
base language assigned to it.

Visual Basic Syntax

Property LetterSet(

 247

ABBYY FineReader Engine 10 API Reference

 type As TextLanguageLetterSetEnum

)As String

C++ Syntax

HRESULT get_LetterSet(

 TextLanguageLetterSetEnum type,

 BSTR* pVal

);

HRESULT put_LetterSet(

 TextLanguageLetterSetEnum type,

 BSTR newVal

);

Parameters

type

[in] A variable of the TextLanguageLetterSetEnum type that describes the type of the letter set that you want to get or set.

pVal

[out] A pointer to BSTR variable that receives the value of this property. Must not be NULL.

newVal

[in] A variable of type BSTR that contains the new value for the property.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

See the description of TextLanguageLetterSetEnum type for the list of available types of letters sets for the text language. By default
letter sets of each type are empty.

See also

TextLanguage
TextLanguageLetterSetEnum
Working with Properties

BaseLanguages Object (IBaseLanguages Interface)

This object is a collection of base languages. It contains methods for getting the number of languages in collection, accessing a single
element in collection and iterating through a collection. The collection is accessible via the TextLanguage object.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element BaseLanguage, read�only Provides access to a single element of the collection.

Methods

Name Description
Add Adds a new base language into the collection.

Item Provides access to a single element of the collection.

Remove Removes an element from the collection.

RemoveAll Removes all the elements from the collection.

 248

ABBYY FineReader Engine 10 API Reference

Related objects

See also

TextLanguage
BaseLanguage
Working with Languages
Working with Properties

See sample: CustomLanguage

BaseLanguage Object (IBaseLanguage Interface)

This object represents a base recognition language. The TextLanguage object — a recognition language for a text — contains a
collection of base languages. For example English or French languages may be represented by base languages. This object provides
access to a base language attributes and allows you to get/set its internal name, letter sets, dictionary type, etc.

The BaseLanguage object is a persistent object. This means that it is able to write its current state, indicated by the values of its
properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the object's
state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory,
and LoadFromMemory.

Properties

Name Type Description
Specifies if only the dictionary words are allowed during
recognition in this base language. If this property is TRUE, a word
that is not found in the dictionary of the base language can
appear in the recognized text only if ABBYY FineReader Engine
found no dictionary variants. If no dictionary is associated with
the base language, the language will not be used for recognition.

AllowWordsFromDictionaryOnly Boolean

Application Engine, read�only Returns the Engine object.

DictionaryDescriptions,
read�only DictionaryDescriptions Returns a reference to the dictionary collection.

Specifies the internal name of the base language. This name
appears as an attribute of a character in the recognized text, so it
is recommended that it were unique.

InternalName String

Specifies if this base language is a natural language. Natural
languages are designed for recognizing common texts. Formal
languages are not natural ones.

IsNaturalLanguage Boolean

Defines the ID of the language. To convert it to Win32 LCID use
the IEngine::ConvertLanguageIdToLCID method. LanguageId LanguageIdEnum

LetterSet String Provides access to the specified letter set of the base language.

UserProperty VARIANT Allows you to associate some user�defined information of any type
with the BaseLanguage object.

Methods

Name Description
CopyFrom Initializes the properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

 249

ABBYY FineReader Engine 10 API Reference

SaveToMemory Saves the object contents into the global memory.

Related objects

Output parameter

This object is the output parameter of following methods:

• CreateBaseLanguage method of the Engine object

• Item method of the BaseLanguages object

Input parameter

This object is the input parameter of the Add method of the BaseLanguages object.

Sample

Visual C++ (COM) code

FREngine::ITextLanguagePtr MakeTextLanguage()
 {
 // Create new dictionary
 _bstr_t dictionaryFile = L"D:\\sample.amd";

 FREngine::IDictionaryPtr pDictionary =
 Engine->CreateNewDictionary(dictionaryFile, FREngine::LI_EnglishUnitedStates);
 pDictionary->Name = "Sample";

 // Add words to dictionary
 pDictionary->AddWord("the", 100);
 pDictionary->AddWord("a", 100);
 pDictionary->AddWord("an", 100);

 // Create new TextLanguage object
 FREngine::ITextLanguagePtr pTextLanguage = Engine->CreateTextLanguage();

 // Copy all attributes from predefined English language
 FREngine::ITextLanguagePtr pEnglishLanguage =
 Engine->PredefinedLanguages->FindLanguage("English")->TextLanguage;
 pTextLanguage->CopyFrom(pEnglishLanguage);
 pTextLanguage->InternalName = "SampleTL";

 // Bind new dictionary to first (and single) BaseLanguage object within TextLanguage
 FREngine::IBaseLanguagePtr pBaseLanguage = pTextLanguage->BaseLanguages->Item(0);

 // Change internal dictionary name to user-defined
 pBaseLanguage->InternalName = "SampleBL";

 // Get collection of dictionary descriptions and remove all items
 FREngine::IDictionaryDescriptionsPtr pDictionaryDescriptions =
 pBaseLanguage->DictionaryDescriptions;
 pDictionaryDescriptions->RemoveAll();

 // Create user dictionary description and add it to the collection
 FREngine::IUserDictionaryDescriptionPtr userDic =
 Engine->CreateUserDictionaryDesc();

 userDic->FileName = dictionaryFile;

 pDictionaryDescriptions->Add(userDic);

 250

ABBYY FineReader Engine 10 API Reference

 return pTextLanguage;
 }

Visual Basic code

Private Sub MakeTextLanguage(TextLanguage As FREngine.TextLanguage)
 ' Create a new dictionary
 Dim DictionaryFile As String
 DictionaryFile = "D:\sample.amd"

 Dim Dictionary As FREngine.Dictionary
 Set Dictionary = Engine.CreateNewDictionary(DictionaryFile, LI_EnglishUnitedStates)
 Dictionary.Name = "Sample"

 ' Add words to the dictionary
 Dictionary.AddWord "the"
 Dictionary.AddWord "a"
 Dictionary.AddWord "an"

 ' Create a new TextLanguage object
 Set TextLanguage = Engine.CreateTextLanguage

 ' Copy all attributes from the predefined English language
 TextLanguage.CopyFrom _
 Engine.PredefinedLanguages.FindLanguage("English").TextLanguage
 TextLanguage.InternalName = "SampleTL"
 TextLanguage.BaseLanguages(0).InternalName = "SampleBL"

 ' Create a new user dictionary description
 Dim UserDic As FREngine.UserDictionaryDescription
 Set UserDic = Engine.CreateUserDictionaryDesc
 UserDic.FileName = DictionaryFile

 ' Bind the new dictionary to the first and single BaseLanguage object within
TextLanguage
 TextLanguage.BaseLanguages(0).DictionaryDescriptions.RemoveAll
 TextLanguage.BaseLanguages(0).DictionaryDescriptions.Add UserDic
 End Sub

See also

BaseLanguages
Working with Languages
Working with Dictionaries
Working with Properties

See sample: CustomLanguage

LetterSet Property of the BaseLanguage Object

Every base language is characterized by a number of letter sets. These types are described by the BaseLanguageLetterSetEnum
enumeration constants values. This property provides access to these letter sets. It allows you to get and set a specified letter set in a
form of a string containing the letter set characters.

Visual Basic Syntax

Property LetterSet(

 type As BaseLanguageLetterSetEnum

)As String

C++ Syntax

HRESULT get_LetterSet(

 BaseLanguageLetterSetEnum type,

 BSTR* pVal

);

HRESULT put_LetterSet(

 BaseLanguageLetterSetEnum type,

 BSTR newVal

);

 251

ABBYY FineReader Engine 10 API Reference

Parameters

type

[in] A variable of BaseLanguageLetterSetEnum type that describes the type of the letter set that you want to get or set.

pVal

[out, retval] A pointer to BSTR variable that receives the value of this property. Must not be NULL.

newVal

[in] A variable of BSTR type that contains the new value of the property.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

BaseLanguage
BaseLanguageLetterSetEnum
Working with Properties

PredefinedLanguages Object (IPredefinedLanguages Interface)

This object represents a collection of ABBYY FineReader Engine predefined languages. Predefined languages are languages supported
by default. The collection of predefined languages is created upon ABBYY FineReader Engine initialization and exists until it is
deinitialized. Besides standard collection functionality, this object exposes the FindLanguage method that allows you to get a
PredefinedLanguage object by its internal name. The collection is accessible via the Engine object.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element PredefinedLanguage, read�only Provides access to a single element of the collection.

Methods

Name Description
FindLanguage Finds an element of the collection by its internal name.

Item Provides access to a single element of the collection.

Related objects

See also

PredefinedLanguage
Working with Languages
List of ABBYY FineReader Engine predefined languages
Working with Properties

See sample: CustomLanguage

 252

ABBYY FineReader Engine 10 API Reference

FindLanguage Method of the PredefinedLanguages Object

This method finds an element of the PredefinedLanguages collection by its internal name and returns a pointer to its interface.

Visual Basic Syntax

Method FindLanguage(

 internalName As String

) As PredefinedLanguage

C++ Syntax

HRESULT FindLanguage(

 BSTR internalName,

 IPredefinedLanguage** result

);

Parameters

internalName

[in] This variable specifies the internal name of the predefined language. For the list of available predefined languages see the List of
ABBYY FineReader Engine predefined languages.

result

[out] A pointer to IPredefinedLanguage* pointer variable that receives the interface pointer of the PredefinedLanguage object
with the specified internal name.

Return Values

If the specified predefined language is not available, this method returns E_INVALIDARG error code and NULL pointer to the
predefined language. It may also return standard return values of ABBYY FineReader Engine functions.

Remarks

Availability of this or that predefined language depends on the availability of the corresponding module in the set of distributed
components of ABBYY FineReader Engine.

Sample

Visual C++ (COM) code

FREngine::ITextLanguagePtr MakeTextLanguage()
 {
 // Create new dictionary
 _bstr_t dictionaryFile = L"D:\\sample.amd";

 FREngine::IDictionaryPtr pDictionary =
 Engine->CreateNewDictionary(dictionaryFile, FREngine::LI_EnglishUnitedStates);
 pDictionary->Name = "Sample";

 // Add words to dictionary
 pDictionary->AddWord("the", 100);
 pDictionary->AddWord("a", 100);
 pDictionary->AddWord("an", 100);

 // Create new TextLanguage object
 FREngine::ITextLanguagePtr pTextLanguage = Engine->CreateTextLanguage();

 // Copy all attributes from predefined English language
 FREngine::ITextLanguagePtr pEnglishLanguage =
 Engine->PredefinedLanguages->FindLanguage("English")->TextLanguage;
 pTextLanguage->CopyFrom(pEnglishLanguage);
 pTextLanguage->InternalName = "SampleTL";

 // Bind new dictionary to first (and single) BaseLanguage object within TextLanguage
 FREngine::IBaseLanguagePtr pBaseLanguage = pTextLanguage->BaseLanguages->Item(0);

 // Change internal dictionary name to user-defined
 pBaseLanguage->InternalName = "SampleBL";

 // Get collection of dictionary descriptions and remove all items

 253

ABBYY FineReader Engine 10 API Reference

 FREngine::IDictionaryDescriptionsPtr pDictionaryDescriptions =
 pBaseLanguage->DictionaryDescriptions;
 pDictionaryDescriptions->RemoveAll();

 // Create user dictionary description and add it to the collection
 FREngine::IUserDictionaryDescriptionPtr userDic =
 Engine->CreateUserDictionaryDesc();

 userDic->FileName = dictionaryFile;

 pDictionaryDescriptions->Add(userDic);

 return pTextLanguage;
 }

Visual Basic code

Private Sub MakeTextLanguage(TextLanguage As FREngine.TextLanguage)
 ' Create new dictionary
 Dim DictionaryFile As String
 DictionaryFile = "D:\sample.amd"

 Dim Dictionary As FREngine.Dictionary
 Set Dictionary = Engine.CreateNewDictionary(DictionaryFile, LI_EnglishUnitedStates)
 Dictionary.Name = "Sample"

 ' Add words to dictionary
 Dictionary.AddWord "the"
 Dictionary.AddWord "a"
 Dictionary.AddWord "an"

 ' Create new TextLanguage object
 Set TextLanguage = Engine.CreateTextLanguage

 ' Copy all attributes from predefined English language
 TextLanguage.CopyFrom _
 Engine.PredefinedLanguages.FindLanguage("English").TextLanguage
 TextLanguage.InternalName = "SampleTL"
 TextLanguage.BaseLanguages(0).InternalName = "SampleBL"

 ' Create new user dictionary description
 Dim UserDic As FREngine.UserDictionaryDescription
 Set UserDic = Engine.CreateUserDictionaryDesc
 UserDic.FileName = DictionaryFile

 ' Bind new dictionary to first and single BaseLanguage object within TextLanguage
 TextLanguage.BaseLanguages(0).DictionaryDescriptions.RemoveAll
 TextLanguage.BaseLanguages(0).DictionaryDescriptions.Add UserDic

 End Sub

See also

PredefinedLanguage

See sample: CustomLanguage

PredefinedLanguage Object (IPredefinedLanguage Interface)

This object represents a single predefined language from a collection of ABBYY FineReader Engine predefined languages. Predefined
languages are languages that are supported by default. This object contains properties reflecting predefined language attributes, such as
its external name, components and category. Property TextLanguage contains the corresponding text language.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Stores the external name of the predefined language. This name is localized
and may be used in user interface. The value of this property depends on the
current messages language (IEngine::MessagesLanguage property). For

ExternalName String, read�only

 254

ABBYY FineReader Engine 10 API Reference

example if the messages language is English, then the name of the predefined
language corresponding to the French, will be "French". If the messages
language is French, then the name of the same predefined language will be
"Français".

Stores the internal name of the predefined language. It is this name that
should be passed to the IPredefinedLanguages::FindLanguage method.
For the list of available internal names of the predefined languages see List of
ABBYY FineReader Engine predefined languages.

InternalName String, read�only

LanguageCategoryEnum,
read�only

Indicates the category to which the current predefined language belongs. You
may use this property to organize languages in your user interface. LanguageCategory

TextLanguage TextLanguage, read�only Provides access to the TextLanguage object corresponding to the current
predefined language. The TextLanguage object returned by this property is
read�only (its modification methods return E_FAIL). Whenever you need to
create an editable text language corresponding to a predefined recognition
language, do the following two steps:

1. Create an empty TextLanguage object.

2. Call its CopyFrom method with a pointer to a predefined
TextLanguage object's interface as its input parameter. A pointer
to a predefined text language object's interface may be got from
this property.

You may want to use this property to initialize the
IRecognizerParams::TextLanguage property with the value
corresponding to the predefined language. The alternative way is to call the
IRecognizerParams::SetPredefinedTextLanguage method.

Related objects

Output parameter

This object is the output parameter of the Item, FindLanguage methods of the PredefinedLanguages object.

See also

PredefinedLanguages
TextLanguage
List of ABBYY FineReader Engine predefined languages
Working with Languages
Working with Properties

See sample: CustomLanguage

LanguageDatabase Object (ILanguageDatabase Interface)

This object provides means for performing advanced operations with recognition languages. It allows you to work with the whole set
of ABBYY FineReader Engine predefined languages, and also to import custom languages created with the use of ABBYY FineReader
for using them by ABBYY FineReader Engine. This object allows you to create compound recognition language of several predefined
languages and/or imported custom languages.

ABBYY FineReader with its user interface provides relatively simple way to create custom recognition languages (see details in the
ABBYY FineReader help file). The procedure of creating and importing recognition languages is as follows:

1. Follow the instruction provided with ABBYY FineReader to create a custom language with the required parameters. The
textlang.dat, *.amd files will be created. You may then redistribute them with your custom ABBYY FineReader Engine�based
application.

2. Load the created languages with the use of the ILanguageDatabase::LoadFrom method.

 255

ABBYY FineReader Engine 10 API Reference

After doing that, you may combine the loaded custom languages with each other and with predefined languages and use them for text
recognition. You may choose not to load any custom languages into the language database. In this case only the predefined languages
will be available.

When the languages are in use by ABBYY FineReader Engine, the files from which they were loaded should not be modified from
outside (e.g. from ABBYY FineReader application), that is why we recommend unloading of ABBYY FineReader after the language
database was created.

You may purchase additional language support applications and fonts at www.paratype.com/shop.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Methods

Name Description
Creates the TextLanguage object of several predefined and/or custom languages included in
the language database. CreateCompoundTextLanguage

Creates the TextLanguage object of one or more predefined and/or custom languages
included in the language database. CreateTextLanguage

LoadFrom Loads custom languages into the language database.

Output parameter

This object is the output parameter of the CreateLanguageDatabase method of the Engine object.

See also

Working with Languages

CreateCompoundTextLanguage Method of the LanguageDatabase Object

This method creates the TextLanguage object of several custom and/or predefined languages included in the LanguageDatabase. It
is the TextLanguage object that specifies the recognition language for a text.

Visual Basic Syntax

Method CreateCompoundTextLanguage(

 languageNames As StringsCollection

) As TextLanguage

C++ Syntax

HRESULT CreateCompoundTextLanguage(

 IStringsCollection* languageNames,

 ITextLanguage** pVal

);

Parameters

languageNames

[in] This parameter of the StringsCollection type specifies the names of the languages that are included into the language database.
When creating custom languages in ABBYY FineReader, please give them names consisting of letters and digits and do not use names
that include punctuation makrs (!@#$%^&*(), etc.). In case a language was given a name consisting of letters and digits, it appears for
the LanguageDatabase object prefixed with the @ symbol. For example, to retrieve the TextLanguage object for a user�defined
language named "MyLanguage1", you should pass its name as "@MyLanguage1". Predefined internal languages' names are passed "as is",
for example "English", "Russian".

pVal

[out] A pointer to the ITextLanguage* pointer variable that receives the interface pointer of the TextLanguage object. pVal should
not be NULL. pVal is guaranteed to be non�NULL after successful method call.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

 256

ABBYY FineReader Engine 10 API Reference

Remarks

The language database must contain languages with all internal names that you pass to this function, otherwise an error code is
returned. The resulting TextLanguage object will have attributes of all the custom languages put together.

See also

LanguageDatabase
ILanguageDatabase::CreateTextLanguage

CreateTextLanguage Method of the LanguageDatabase Object

This method creates the TextLanguage object of one or more custom languages included in the LanguageDatabase. It is the
TextLanguage that specifies the recognition language for a text.

Visual Basic Syntax

Method CreateTextLanguage(

 languageName As String

) As TextLanguage

C++ Syntax

HRESULT CreateTextLanguage(

 BSTR languageName,

 ITextLanguage** pVal

);

Parameters

languageName

[in] This parameter specifies the name of the language that is included in the language database. When creating custom languages in
ABBYY FineReader please give them names consisting of letters and digits and do not use names that include punctuation marks
(!@#$%^&*(), etc.). In case a language was given a name consisting of letters and digits, it appears for the LanguageDatabase object
prefixed with the @ symbol. For example, to retrieve the TextLanguage for a user�defined language named "MyLanguage1", you
should pass here the string "@MyLanguage1". This parameter may contain several languages names divided by commas, for example
"@MyLanguage1,@MyLanguage2,English".

pVal

[out] A pointer to the ITextLanguage* pointer variable that receives the interface pointer of the TextLanguage object. pVal should
not be NULL. pVal is guaranteed to be non�NULL after successful method call.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The language database must contain languages with all internal names that you pass to this function, otherwise an error code is
returned. If several languages are passed to this method, the resulting TextLanguage object will have attributes of all the custom
languages put together.

See also

LanguageDatabase
ILanguageDatabase::CreateCompoundTextLanguage

LoadFrom Method of the LanguageDatabase Object

This method loads custom languages that you created in ABBYY FineReader into the LanguageDatabase object.

Visual Basic Syntax

Method LoadFrom(

 folderPath As String

)

C++ Syntax

HRESULT LoadFrom(

 BSTR folderPath

 257

ABBYY FineReader Engine 10 API Reference

);

Parameters

folderPath

[in] This parameter specifies the full path to folder where the necessary files are stored. These files are textlang.dat and *.amd.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

You may initialize the LanguageDatabase object before using it, otherwise only predefined languages will be available through it.

See also

LanguageDatabase

Dictionary Object (IDictionary Interface)

This object is designed for working with user dictionaries. It cannot be applied to ABBYY FineReader Engine standard dictionary files.
User dictionaries are dictionaries that contain word forms of words of a certain language. Each word form in the dictionary has its own
weight that defines its priority when there appear several variants for a word during recognition. The weight is a number that may have
four discrete values: 25, 50, 100 and 200. User dictionaries may be connected to the BaseLanguage object — object representing one
base recognition language.

A pointer to the Dictionary object interface may be got either from the IEngine::CreateNewDictionary or
IEngine::OpenExistingDictionary methods. The IEngine::OpenExistingDictionary method can open dictionaries created with
the help of the IEngine::CreateNewDictionary method, as well as user dictionaries (*.amd) created in ABBYY FineReader. These
dictionaries are created together with user languages and are saved in the folder of the current batch. For more details on the creation
of user languages and dictionaries, see the ABBYY FineReader Help file.

The Edit method displays the Dictionary dialog box that allows a user to edit the dictionary and to import any text file in Windows
ANSI� and Unicode�encoding (the only requirement is that words must be separated by spaces or other non�alphabetic characters).

Properties

Name Type Description
Engine,
read�only Application Returns the Engine object.

Name String Stores the name of the dictionary. It is this name that is displayed at the caption of the Dictionary
dialog box that is displayed when calling the Edit method. After creation of the Dictionary object this
property stores the name of the dictionary file (without path and extension). You may assign it any
other value. This property is not saved into the file associated with the dictionary, and should be
initialized every time the dictionary is edited.

WordsCount Returns the number of words in the dictionary. Long,
read�only

Methods

Name Description
AddWord Adds a word to the dictionary.

AddWords Adds a group of words to the dictionary.

DeleteAllWords Deletes all words from the dictionary.

DeleteWord Deletes a word from the dictionary.

DeleteWords Deletes a group of words from the dictionary.

Edit Displays the Dictionary dialog box that allows a user to edit the dictionary.

EnumWords Returns an object of the EnumDictionaryWords type that allows you to iterate through the words in the
dictionary.

 258

ABBYY FineReader Engine 10 API Reference

Output parameter

This object is the output parameter of the CreateNewDictionary and OpenExistingDictionary methods of the Engine object.

Sample

Visual C++ (COM) code

FREngine::ITextLanguagePtr MakeTextLanguage()
 {
 // Create new dictionary
 _bstr_t dictionaryFile = L"D:\\sample.amd";

 FREngine::IDictionaryPtr pDictionary =
 Engine->CreateNewDictionary(dictionaryFile, FREngine::LI_EnglishUnitedStates);
 pDictionary->Name = "Sample";

 // Add words to dictionary
 pDictionary->AddWord("the", 100);
 pDictionary->AddWord("a", 100);
 pDictionary->AddWord("an", 100);

 // Create new TextLanguage object
 FREngine::ITextLanguagePtr pTextLanguage = Engine->CreateTextLanguage();

 // Copy all attributes from predefined English language
 FREngine::ITextLanguagePtr pEnglishLanguage =
 Engine->PredefinedLanguages->FindLanguage("English")->TextLanguage;
 pTextLanguage->CopyFrom(pEnglishLanguage);
 pTextLanguage->InternalName = "SampleTL";

 // Bind new dictionary to first (and single) BaseLanguage object within TextLanguage
 FREngine::IBaseLanguagePtr pBaseLanguage = pTextLanguage->BaseLanguages->Item(0);

 // Change internal dictionary name to user-defined
 pBaseLanguage->InternalName = "SampleBL";

 // Get collection of dictionary descriptions and remove all items
 FREngine::IDictionaryDescriptionsPtr pDictionaryDescriptions =
 pBaseLanguage->DictionaryDescriptions;
 pDictionaryDescriptions->RemoveAll();

 // Create user dictionary description and add it to the collection
 FREngine::IUserDictionaryDescriptionPtr userDic =
 Engine->CreateUserDictionaryDesc();

 userDic->FileName = dictionaryFile;

 pDictionaryDescriptions->Add(userDic);

 return pTextLanguage;
 }

Visual Basic code

Private Sub MakeTextLanguage(TextLanguage As FREngine.TextLanguage)
 ' Create new dictionary
 Dim DictionaryFile As String
 DictionaryFile = "D:\sample.amd"

 Dim Dictionary As FREngine.Dictionary
 Set Dictionary = Engine.CreateNewDictionary(DictionaryFile, LI_EnglishUnitedStates)
 Dictionary.Name = "Sample"

 ' Add words to dictionary
 Dictionary.AddWord "the"
 Dictionary.AddWord "a"
 Dictionary.AddWord "an"

 ' Create new TextLanguage object
 Set TextLanguage = Engine.CreateTextLanguage

 259

ABBYY FineReader Engine 10 API Reference

 ' Copy all attributes from predefined English language
 TextLanguage.CopyFrom _
 Engine.PredefinedLanguages.FindLanguage("English").TextLanguage
 TextLanguage.InternalName = "SampleTL"
 TextLanguage.BaseLanguages(0).InternalName = "SampleBL"

 ' Create new user dictionary description
 Dim UserDic As FREngine.UserDictionaryDescription
 Set UserDic = Engine.CreateUserDictionaryDesc
 UserDic.FileName = DictionaryFile

 ' Bind new dictionary to first and single BaseLanguage object within TextLanguage
 TextLanguage.BaseLanguages(0).DictionaryDescriptions.RemoveAll
 TextLanguage.BaseLanguages(0).DictionaryDescriptions.Add UserDic

 End Sub

See also

UserDictionaryDescription
Working with Dictionaries
Working with Properties

See sample: CustomLanguage

AddWord Method of the Dictionary Object

This method adds a new word to the dictionary.

Visual Basic Syntax

Method AddWord(

 word As String,

 weight As Long

)

C++ Syntax

HRESULT AddWord(

 BSTR word,

 long weight

);

Parameters

word

[in] This parameter contains the newly added word.

weight

[in] The weight assigned to the word in the dictionary. Must be in the range from 1 to 200. The higher the weight for a word is, the
more likely this word will be taken as a variant during recognition. The normal value for this parameter is 100. Visual Basic users see
this parameter as having default value of 100. The weight assigned to the word in the dictionary may have a set of discrete values only.
These values are 25, 50, 100, 200. The value passed in this parameter is rounded to the nearest of the discrete set of values.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

It is not recommended to use this method for adding a large number of words to the dictionary, because after adding each word the
dictionary is rebuilt, and thus the operation takes a rather long time. For adding a group of words into the dictionary, use the
IDictionary::AddWords method instead.

Sample

Visual C++ (COM) code

// Global FineReader Engine object.

FREngine::IEnginePtr Engine;

// Create new dictionary

 260

ABBYY FineReader Engine 10 API Reference

_bstr_t dictionaryFile = Engine->

 Path + "\\..\\Samples\\SampleImages\\sample.amd";

FREngine::IDictionaryPtr pDictionary =

Engine->CreateNewDictionary(dictionaryFile, FREngine::LI_EnglishUnitedStates);

pDictionary->Name = "Sample";

// Add words to dictionary

pDictionary->AddWord("the", 100);

pDictionary->AddWord("a", 100);

pDictionary->AddWord("an", 100);

Visual Basic code

Public Engine As FREngine.Engine

' Create new dictionary

Dim DictionaryFile As String

DictionaryFile = Engine.Path & "\..\Samples\SampleImages\sample.amd"

Dim Dictionary As FREngine.Dictionary

Set Dictionary = Engine.CreateNewDictionary(DictionaryFile, LI_EnglishUnitedStates)

Dictionary.Name = "Sample"

' Add words to dictionary

Dictionary.AddWord "the"

Dictionary.AddWord "a"

Dictionary.AddWord "an"

See also

Dictionary
IDictionary::AddWords

See sample: CustomLanguage

AddWords Method of the Dictionary Object

This method adds a group of words to the dictionary.

Visual Basic Syntax

Method AddWords(

 words As StringsCollection,

 weights As LongsCollection

)

C++ Syntax

HRESULT AddWords(

 IStringsCollection* words,

 ILongsCollection* weights

);

Parameters

words

[in] This parameter of the StringsCollection type contains the collection of the newly added words.

weights

[in] This parameter of the LongsCollection type that must have the same size as the collection of words, is used to pass information
about the weights for the newly added words. The weights for the words must be in the range from 1 to 200. You may pass 0 for this
parameter in which case all the words will be included in the dictionary with default weights of 100. The weight assigned to the word
in the dictionary may have a set of discrete values only. These values are 25, 50, 100, 200. The value passed in this parameter is rounded
to the nearest of the discrete set of values.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

 261

ABBYY FineReader Engine 10 API Reference

Remarks

For more efficient operation it is recommended to pre�sort the added words in alphabetical order.

For adding one word into the dictionary, you can use the IDictionary::AddWord method.

See also

Dictionary
IDictionary::AddWord

DeleteWord Method of the Dictionary Object

This method deletes a word from the dictionary.

Visual Basic Syntax

Method DeleteWord(

 word As String

)

C++ Syntax

HRESULT DeleteWord(

 BSTR word

);

Parameters

word

[in] This parameter contains the word that is to be deleted. If the deleted word is not present in the dictionary, no error occurs.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

To delete a group of words or all words from the dictionary, use the IDictionary::DeleteWords or IDictionary::DeleteAllWords
method, respectively.

See also

Dictionary
IDictionary::DeleteWords
IDictionary::DeleteAllWords

DeleteWords Method of the Dictionary Object

This method deletes a group of words from the dictionary.

Visual Basic Syntax

Method DeleteWords(

 words As StringsCollection

)

C++ Syntax

HRESULT DeleteWords(

 IStringCollection* words

);

Parameters

words

[in] This parameter of the StringsCollection type contains the collection of words to be deleted. If any of the deleted words is not
present in the dictionary, no error will occur.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

 262

ABBYY FineReader Engine 10 API Reference

Remarks

To delete a single word or all words from the dictionary, use the IDictionary::DeleteWord or IDictionary::DeleteAllWords
method, respectively.

See also

Dictionary
IDictionary::DeleteWord
IDictionary::DeleteAllWords

Edit Method of the Dictionary Object

This method displays the Dictionary dialog box that allows a user to edit the dictionary. This dialog box allows a user to import any
text file in Windows ANSI� and Unicode�encoding (the only requirement is that words must be separated by spaces or other non�
alphabetic characters).

Visual Basic Syntax

Method Edit()

C++ Syntax

HRESULT Edit();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The dialog box that this methods displays will have the value of the IDictionary::Name property as its caption. For correct operation
of this method it is necessary to assign a correct value to the IEngine::ParentWindow property.

See also

Dictionary
Engine

The Dictionary Dialog Box

Option Option Description
The top dialog
box field Enter the word you want to add to the dictionary here.

Word list Displays all user dictionary words. Select the word you want to delete.

Add
(button) Adds the word you typed in the top line to the dictionary.

View
(button) Displays the paradigm of the selected word. Note: Not available now.

Delete
(button) Deletes the selected word from the dictionary.

Import
(button)

Imports an already existing dictionary (for example, any text file in Windows ANSI� and Unicode�encoding (the
only requirement is that words must be separated by spaces or other non�alphabetic characters).

Export
(button) Exports your ABBYY FineReader user dictionary.

See also

Dictionary
IDictionary::Edit

EnumWords Method of the Dictionary Object

This method returns an object of the EnumDictionaryWords type that allows you to iterate through the words in the dictionary.
This method makes a copy of the dictionary, and thus all the modifications that are performed upon the dictionary after getting the
EnumDictionaryWords object do not affect the latter. That is, if a word is added to the dictionary after the
EnumDictionaryWords object was received for it, this word will not be included into iteration.

 263

ABBYY FineReader Engine 10 API Reference

Visual Basic Syntax

Method EnumWords(

 result As EnumDictionaryWords

)

C++ Syntax

HRESULT EnumWords(

 IEnumDictionaryWords** result

);

Parameters

result

[out, retval] A pointer to IEnumDictionaryWords* pointer variable that receives the interface pointer to the returned
EnumDictionaryWords object. Must not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Dictionary

EnumDictionaryWords Object (IEnumDictionaryWords Interface)

This object serves for iterating words included in a user�defined dictionary. The user�defined dictionary is represented by the
Dictionary object. The EnumDictionaryWords object is got from the IDictionary::EnumWords method. All modifications to the
parent Dictionary object after receiving its enumerator object do not affect the latter. That is, if a new word is added to the
dictionary, it will not appear in the iteration.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Dictionary Dictionary, read�
only

Refers to the parent object of Dictionary type. It is the IDictionary::EnumWords method of
this object that generated the current one.

Methods

Name Description
Next Retrieves the next word from the iteration sequence.

Reset Restarts the iteration.

Output parameter

This object is the output parameter of the IDictionary::EnumWords method.

See also

Dictionary
Working with Dictionaries
Working with Properties

Next Method of the EnumDictionaryWords Object

This method retrieves the next word from the iteration sequence together with the word's weight in the dictionary.

Visual Basic Syntax

Method Next(

 confidence As Long

) As String

C++ Syntax

HRESULT Next(

 264

ABBYY FineReader Engine 10 API Reference

 long* confidence,

 BSTR* result

);

Parameters

confidence

[out] This parameter serves for passing out the confidence of the word. Confidence or weight of the word in the dictionary defines the
priority level for a word; this value is used to choose among word variants during text recognition. The higher this value is, the more
preferable is this variant for the recognized word. When the iteration is over, 0 will be assigned to this parameter.

result

[out, retval] A pointer to the BSTR variable that receives the return value of this method — word from the dictionary. When the
iteration is over, 0 is returned.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

EnumDictionaryWords

Reset Method of the EnumDictionaryWords Object

This method restarts the iteration. This method may be called any time during iteration to reset the iteration.

Visual Basic Syntax

Method Reset()

C++ Syntax

HRESULT Reset();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

EnumDictionaryWords

DictionaryDescriptions Object (IDictionaryDescriptions Interface)

This object is a collection of dictionary descriptions. It contains methods for getting the number of dictionaries in a collection,
accessing a single element in a collection and iterating through a collection. The collection can include
StandardDictionaryDescription, UserDictionaryDescription, RegExpDictionaryDescription, and
ExternalDictionaryDescription objects, which are the descriptions of different dictionary types. These objects are child objects of
the DictionaryDescription object. You can add any of these objects to a collection with the help of the Add method. If you use the
Item method, you will only be able to get the DictionaryDescription object which can later be cast to any of the abovementioned
types.

The IBaseLanguage::DictionaryDescriptions property provides access to the dictionary descriptions collection. The collection of
prohibiting dictionaries is accessible via the TextLanguage object.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element DictionaryDescription, read�only Provides access to a single element of the collection.

Methods

Name Description
Add Adds a new dictionary to the collection.

 265

ABBYY FineReader Engine 10 API Reference

Item Provides access to a single element of the collection.

Remove Removes an element from the collection.

RemoveAll Removes all the elements from the collection.

Related objects

Sample

Visual C++ (COM) code

FREngine::ITextLanguagePtr MakeTextLanguage()
 {
 // Create new dictionary
 _bstr_t dictionaryFile = L"D:\\sample.amd";

 FREngine::IDictionaryPtr pDictionary =
 Engine->CreateNewDictionary(dictionaryFile, FREngine::LI_EnglishUnitedStates);
 pDictionary->Name = "Sample";

 // Add words to dictionary
 pDictionary->AddWord("the", 100);
 pDictionary->AddWord("a", 100);
 pDictionary->AddWord("an", 100);

 // Create new TextLanguage object
 FREngine::ITextLanguagePtr pTextLanguage = Engine->CreateTextLanguage();

 // Copy all attributes from predefined English language
 FREngine::ITextLanguagePtr pEnglishLanguage =
 Engine->PredefinedLanguages->FindLanguage("English")->TextLanguage;
 pTextLanguage->CopyFrom(pEnglishLanguage);
 pTextLanguage->InternalName = "SampleTL";

 // Bind new dictionary to first (and single) BaseLanguage object within TextLanguage
 FREngine::IBaseLanguagePtr pBaseLanguage = pTextLanguage->BaseLanguages->Item(0);

 // Change internal dictionary name to user-defined
 pBaseLanguage->InternalName = "SampleBL";

 // Get collection of dictionary descriptions and remove all items
 FREngine::IDictionaryDescriptionsPtr pDictionaryDescriptions =
 pBaseLanguage->DictionaryDescriptions;
 pDictionaryDescriptions->RemoveAll();

 // Create user dictionary description and add it to the collection
 FREngine::IUserDictionaryDescriptionPtr userDic =
 Engine->CreateUserDictionaryDesc();

 userDic->FileName = dictionaryFile;

 pDictionaryDescriptions->Add(userDic);

 return pTextLanguage;
 }

Visual Basic code

 266

ABBYY FineReader Engine 10 API Reference

Private Sub MakeTextLanguage(TextLanguage As FREngine.TextLanguage)
 ' Create new dictionary
 Dim DictionaryFile As String
 DictionaryFile = "D:\sample.amd"

 Dim Dictionary As FREngine.Dictionary
 Set Dictionary = Engine.CreateNewDictionary(DictionaryFile, LI_EnglishUnitedStates)
 Dictionary.Name = "Sample"

 ' Add words to dictionary
 Dictionary.AddWord "the"
 Dictionary.AddWord "a"
 Dictionary.AddWord "an"

 ' Create new TextLanguage object
 Set TextLanguage = Engine.CreateTextLanguage

 ' Copy all attributes from predefined English language
 TextLanguage.CopyFrom _
 Engine.PredefinedLanguages.FindLanguage("English").TextLanguage
 TextLanguage.InternalName = "SampleTL"
 TextLanguage.BaseLanguages(0).InternalName = "SampleBL"

 ' Create new user dictionary description
 Dim UserDic As FREngine.UserDictionaryDescription
 Set UserDic = Engine.CreateUserDictionaryDesc
 UserDic.FileName = DictionaryFile

 ' Bind new dictionary to first and single BaseLanguage object within TextLanguage
 TextLanguage.BaseLanguages(0).DictionaryDescriptions.RemoveAll
 TextLanguage.BaseLanguages(0).DictionaryDescriptions.Add UserDic

 End Sub

See also

Working with Dictionaries
DictionaryDescription
StandardDictionaryDescription
UserDictionaryDescription
RegExpDictionaryDescription
ExternalDictionaryDescription
Working with Properties

See sample: CustomLanguage

Add Method of the DictionaryDescriptions Object

This method adds a new dictionary description into the collection.

Visual Basic Syntax

Method Add(

 description As DictionaryDescription

)

C++ Syntax

HRESULT Add(

 IDictionaryDescription* description

);

Parameters

description

[in] This parameter refers to the object representing the newly added dictionary description, it may be a
StandardDictionaryDescription, UserDictionaryDescription, RegExpDictionaryDescription, or DictionaryDescription
object.

 267

ABBYY FineReader Engine 10 API Reference

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Sample

Visual C++ (COM) code

FREngine::ITextLanguagePtr MakeTextLanguage()
 {
 // Create new dictionary
 _bstr_t dictionaryFile = L"D:\\sample.amd";

 FREngine::IDictionaryPtr pDictionary =
 Engine->CreateNewDictionary(dictionaryFile, FREngine::LI_EnglishUnitedStates);
 pDictionary->Name = "Sample";

 // Add words to dictionary
 pDictionary->AddWord("the", 100);
 pDictionary->AddWord("a", 100);
 pDictionary->AddWord("an", 100);

 // Create new TextLanguage object
 FREngine::ITextLanguagePtr pTextLanguage = Engine->CreateTextLanguage();

 // Copy all attributes from predefined English language
 FREngine::ITextLanguagePtr pEnglishLanguage =
 Engine->PredefinedLanguages->FindLanguage("English")->TextLanguage;
 pTextLanguage->CopyFrom(pEnglishLanguage);
 pTextLanguage->InternalName = "SampleTL";

 // Bind new dictionary to first (and single) BaseLanguage object within TextLanguage
 FREngine::IBaseLanguagePtr pBaseLanguage = pTextLanguage->BaseLanguages->Item(0);

 // Change internal dictionary name to user-defined
 pBaseLanguage->InternalName = "SampleBL";

 // Get collection of dictionary descriptions and remove all items
 FREngine::IDictionaryDescriptionsPtr pDictionaryDescriptions =
 pBaseLanguage->DictionaryDescriptions;
 pDictionaryDescriptions->RemoveAll();

 // Create user dictionary description and add it to the collection
 FREngine::IUserDictionaryDescriptionPtr userDic =
 Engine->CreateUserDictionaryDesc();

 userDic->FileName = dictionaryFile;

 pDictionaryDescriptions->Add(userDic);

 return pTextLanguage;
 }

Visual Basic code

Private Sub MakeTextLanguage(TextLanguage As FREngine.TextLanguage)
 ' Create new dictionary
 Dim DictionaryFile As String
 DictionaryFile = "D:\sample.amd"

 Dim Dictionary As FREngine.Dictionary
 Set Dictionary = Engine.CreateNewDictionary(DictionaryFile, LI_EnglishUnitedStates)
 Dictionary.Name = "Sample"

 ' Add words to dictionary
 Dictionary.AddWord "the"
 Dictionary.AddWord "a"
 Dictionary.AddWord "an"

 ' Create new TextLanguage object
 Set TextLanguage = Engine.CreateTextLanguage

 268

ABBYY FineReader Engine 10 API Reference

 ' Copy all attributes from predefined English language
 TextLanguage.CopyFrom _
 Engine.PredefinedLanguages.FindLanguage("English").TextLanguage
 TextLanguage.InternalName = "SampleTL"
 TextLanguage.BaseLanguages(0).InternalName = "SampleBL"

 ' Create new user dictionary description
 Dim UserDic As FREngine.UserDictionaryDescription
 Set UserDic = Engine.CreateUserDictionaryDesc
 UserDic.FileName = DictionaryFile

 ' Bind new dictionary to first and single BaseLanguage object within TextLanguage
 TextLanguage.BaseLanguages(0).DictionaryDescriptions.RemoveAll
 TextLanguage.BaseLanguages(0).DictionaryDescriptions.Add UserDic

 End Sub

See also

DictionaryDescriptions

See sample: CustomLanguage

DictionaryDescription Object (IDictionaryDescription Interface)

This object is a dictionary description which may be typecast to one of its child objects: StandardDictionaryDescription,
UserDictionaryDescription, RegExpDictionaryDescription, or ExternalDictionaryDescription. These objects provide access
to descriptions of four different dictionary types and inherit all the properties of the DictionaryDescription object. They are also
elements of the DictionaryDescriptions collection.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

DictionaryTypeEnum, read�
only Type Returns the type of the dictionary.

Weight Long Stores the dictionary weight in percentage points. This value must be non�negative. By
default, this property is set to 100%.

Related objects

Output parameter

This object is the output parameter of the Item method of the DictionaryDescriptions object.

See also

Working with Dictionaries
DictionaryDescriptions
StandardDictionaryDescription
UserDictionaryDescription
RegExpDictionaryDescription
ExternalDictionaryDescription
Working with Properties

 269

ABBYY FineReader Engine 10 API Reference

StandardDictionaryDescription Object (IStandardDictionaryDescription Interface)

This object provides access to a standard dictionary. The IStandardDictionaryDescription interface is a child object of the
IDictionaryDescription interface and inherits all its properties.

Properties

Name Type Description
CanUseTrigrams Boolean Allows or forbids the use of dictionary�based trigrams. By default, the value is TRUE.

LanguageId LanguageIdEnum Defines the ID of the language. To convert it to Win32 LCID, use the
IEngine::ConvertLanguageIdToLCID method.

Related objects

Output parameter

This object is the output parameter of the IEngine::CreateStandardDictionaryDesc and IDictionaryDescriptions::Item methods.

Input parameter

This object is the input parameter of the IDictionaryDescriptions::Add method.

See also

Working with Dictionaries
DictionaryDescription
DictionaryDescriptions
Working with Properties

UserDictionaryDescription Object (IUserDictionaryDescription Interface)

This object provides access to a user dictionary. The IUserDictionaryDescription interface is a child object of the
IDictionaryDescription interface and inherits all its properties. A user dictionary can be a dictionary created by the user with the
help of the Dictionary object or a user dictionary (*.amd) created in ABBYY FineReader (see the ABBYY FineReader help file for more
details).

Properties

Name Type Description
The path to the user dictionary file. This parameter does not check the validity of the dictionary, which will be
done later when the dictionary is used. FileName String

Related objects

Output parameter

This object is the output parameter of the IEngine::CreateUserDictionaryDesc and IDictionaryDescriptions::Item methods.

Input parameter

This object is the input parameter of the IDictionaryDescriptions::Add method.

 270

ABBYY FineReader Engine 10 API Reference

Sample

Visual C++ (COM) code

FREngine::ITextLanguagePtr MakeTextLanguage()
 {
 // Create new dictionary
 _bstr_t dictionaryFile = L"D:\\sample.amd";

 FREngine::IDictionaryPtr pDictionary =
 Engine->CreateNewDictionary(dictionaryFile, FREngine::LI_EnglishUnitedStates);
 pDictionary->Name = "Sample";

 // Add words to dictionary
 pDictionary->AddWord("the", 100);
 pDictionary->AddWord("a", 100);
 pDictionary->AddWord("an", 100);

 // Create new TextLanguage object
 FREngine::ITextLanguagePtr pTextLanguage = Engine->CreateTextLanguage();

 // Copy all attributes from predefined English language
 FREngine::ITextLanguagePtr pEnglishLanguage =
 Engine->PredefinedLanguages->FindLanguage("English")->TextLanguage;
 pTextLanguage->CopyFrom(pEnglishLanguage);
 pTextLanguage->InternalName = "SampleTL";

 // Bind new dictionary to first (and single) BaseLanguage object within TextLanguage
 FREngine::IBaseLanguagePtr pBaseLanguage = pTextLanguage->BaseLanguages->Item(0);

 // Change internal dictionary name to user-defined
 pBaseLanguage->InternalName = "SampleBL";

 // Get collection of dictionary descriptions and remove all items
 FREngine::IDictionaryDescriptionsPtr pDictionaryDescriptions =
 pBaseLanguage->DictionaryDescriptions;
 pDictionaryDescriptions->RemoveAll();

 // Create user dictionary description and add it to the collection
 FREngine::IUserDictionaryDescriptionPtr userDic =
 Engine->CreateUserDictionaryDesc();

 userDic->FileName = dictionaryFile;

 pDictionaryDescriptions->Add(userDic);

 return pTextLanguage;
 }

Visual Basic code

Private Sub MakeTextLanguage(TextLanguage As FREngine.TextLanguage)
 ' Create new dictionary
 Dim DictionaryFile As String
 DictionaryFile = "D:\sample.amd"

 Dim Dictionary As FREngine.Dictionary
 Set Dictionary = Engine.CreateNewDictionary(DictionaryFile, LI_EnglishUnitedStates)
 Dictionary.Name = "Sample"

 ' Add words to dictionary
 Dictionary.AddWord "the"
 Dictionary.AddWord "a"
 Dictionary.AddWord "an"

 ' Create new TextLanguage object
 Set TextLanguage = Engine.CreateTextLanguage

 ' Copy all attributes from predefined English language
 TextLanguage.CopyFrom _
 Engine.PredefinedLanguages.FindLanguage("English").TextLanguage
 TextLanguage.InternalName = "SampleTL"

 271

ABBYY FineReader Engine 10 API Reference

 TextLanguage.BaseLanguages(0).InternalName = "SampleBL"

 ' Create new user dictionary description
 Dim UserDic As FREngine.UserDictionaryDescription
 Set UserDic = Engine.CreateUserDictionaryDesc
 UserDic.FileName = DictionaryFile

 ' Bind new dictionary to first and single BaseLanguage object within TextLanguage
 TextLanguage.BaseLanguages(0).DictionaryDescriptions.RemoveAll
 TextLanguage.BaseLanguages(0).DictionaryDescriptions.Add UserDic

 End Sub

See also

Working with Dictionaries
Dictionary
DictionaryDescription
DictionaryDescriptions
Working with Properties

See sample: CustomLanguage

RegExpDictionaryDescription Object (IRegExpDictionaryDescription Interface)

This object provides access to a regular�expression�based dictionary. The IRegExpDictionaryDescription interface is a child object
of the IDictionaryDescription interface and inherits all its properties.

Methods

Name Description
SetText Sets a regular expression. See for details Working with ABBYY FineReader Engine Regular Expressions.

Related objects

Output parameter

This object is the output parameter of the IEngine::CreateRegExpDictionaryDesc and IDictionaryDescriptions::Item methods.

Input parameter

This object is the input parameter of the IDictionaryDescriptions::Add method.

See also

Working with ABBYY FineReader Engine Regular Expressions
Working with Dictionaries
DictionaryDescription
DictionaryDescriptions
Working with Properties

SetText Method of the RegExpDictionaryDescription Object

This method sets regular expression. The regular expression is passed as an input parameter to this method, then its semantics is
checked.

Visual Basic Syntax

Method SetText(

 newVal As String

)

 272

ABBYY FineReader Engine 10 API Reference

C++ Syntax

HRESULT SetText(

 BSTR newVal

);

Parameters

newVal

[in] This variable contains the regular expression. For example, the regular expression [0�9]+ specifies that the dictionary accepts the
"words" made up of one or more digits.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

RegExpDictionaryDescription
Working with ABBYY FineReader Engine Regular Expressions

ExternalDictionaryDescription Object (IExternalDictionaryDescription Interface)

This object provides access to an external dictionary. The IExternalDictionaryDescription interface is a child object of the
IDictionaryDescription interface and inherits all its properties. The external dictionary is represented as the IExternalDictionary
interface which is implemented on the client side. This interface allows you to implement your own type of dictionary. You can attach
a dictionary with the help of the SetDictionary method of the ExternalDictionaryDescription object.

Properties

Name Type Description
If this property is FALSE, the external dictionary will not be used for prefixes check, and the
CheckPrefix method of the IExternalDictionary interface will not be called. The default value
is TRUE.

CheckPrefixes Boolean

If this property is FALSE, the fuzzy string will contain only capital letters as the recognition variant.
The default value is TRUE. FullFuzzySupport Boolean

Methods

Name Description
SetDictionary Attaches an external dictionary.

Related objects

Output parameter

This object is the output parameter of the IEngine::CreateExternalDictionaryDesc and IDictionaryDescriptions::Item methods.

Input parameter

This object is the input parameter of the IDictionaryDescriptions::Add method.

 273

ABBYY FineReader Engine 10 API Reference

See also

Working with Dictionaries
DictionaryDescription
DictionaryDescriptions
Working with Properties

SetDictionary Method of the ExternalDictionaryDescription Object

This method attaches an external dictionary.

Visual Basic Syntax

Method SetDictionary(

 Dictionary As ExternalDictionary

)

C++ Syntax

HRESULT SetDictionary(

 IExternalDictionary* Dictionary

);

Parameters

Dictionary

[in] This parameter contains a pointer to the IExternalDictionary interface which represents an external dictionary.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

ExternalDictionaryDescription

ExternalDictionaryCallback Object (IExternalDictionaryCallback Interface)

This is a callback interface which is used to deliver information about dictionary words to the recognizer.

Methods

Name Description
Delivers information about dictionary words to the recognizer. It is called from the
IExternalDictionary::CheckWords method which is implemented on the client side. ExternalDictionaryResult

Input parameter

This object is the input parameter of the IExternalDictionary::CheckWords method.

See also

IExternalDictionary

ExternalDictionaryResult Method of the ExternalDictionaryCallback Object

This method delivers information about dictionary words to the recognizer. It is called from the IExternalDictionary::CheckWords
method which is implemented on the client side. The input parameters of this method are: the dictionary word, the word confidence
in percentage, and the index of the word in the collection which is passed from the CheckWords method of the
IExternalDictionary interface. The dictionary word must be composed from characters of the corresponding fuzzy string.

Visual Basic Syntax

Method ExternalDictionaryResult(

 Word As String,

 Confidence As Long,

 RequestIndex As Long

)

C++ Syntax

 274

ABBYY FineReader Engine 10 API Reference

HRESULT ExternalDictionaryResult(

 BSTR Word,

 long Confidence,

 long RequestIndex

);

Parameters

Word

[in] This parameter contains the word from an external dictionary.

Confidence

[in] This parameter contains the word confidence in percentage.

RequestIndex

[in] This parameter contains the index of the word in the FuzzyStringsCollection collection

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

ExternalDictionaryCallback

IExternalDictionary Interface

This is the interface for an external dictionary. This interface and all its methods are implemented on the client side. As it derives from
the IUnknown interface, the client object should also implement the IUnknown methods.

ABBYY FineReader Engine objects allow working with the following dictionary types: standard, user, and regular�expression�based. If
these dictionary types are not convenient for you, the IExternalDictionary interface allows you to implement your own dictionary
type. You can attach your dictionary with the help of the SetDictionary method of the ExternalDictionaryDescription object. See
the Working with Dictionaries section for details.

Methods

Name Description
CheckPrefix Determines if the dictionary contains a word with the specified prefix.

Delivers to the recognizer the information about strings in the collection which contains the dictionary words, with
the help of the ExternalDictionaryResult method of the ExternalDictionaryCallback object. CheckWords

Input parameter

The ExternalDictionary object is the input parameter of the IExternalDictionaryDescription::SetDictionary method.

See also

IExternalDictionaryCallback
ExternalDictionaryDescription
Working with Dictionaries

CheckPrefix Method of the IExternalDictionary Interface

This method is implemented on the client side. This method determines if the dictionary contains a word with the specified prefix. It
must return TRUE, if the dictionary contains at least one word with the prefix which is specified as a fuzzy string. This method is called
during recognition of difficult cases, if the CheckPrefixes property of the ExternalDictionaryDescription object is set to TRUE.

Visual Basic Syntax

Sub CheckPrefix(

 ByRef Prefix As FuzzyString,

 ByRef Result As Boolean

)

C++ Syntax

HRESULT CheckPrefix(

 275

ABBYY FineReader Engine 10 API Reference

 IFuzzyString* Prefix,

 VARIANT_BOOL* Result

);

Parameters

Prefix

[in] This parameter contains the fuzzy string.

Result

[out, retval] This parameter is TRUE if the dictionary contains at least one word with the prefix which is specified in the Prefix
parameter as a fuzzy string.

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side.

Remarks

• The pointer to the FuzzyString object which was used as the Prefix parameter is released automatically after the end of the
CheckPrefix method execution, therefore you do not need to call the Release method for this object in the CheckPrefix
method implementation.

• The client implementation of this method must assure that all exceptions thrown inside the method are caught and handled
and no exceptions are propagated outside the method. Propagation of an exception outside the method may lead to
unpredictable results (such as program termination).

See also

IExternalDictionary

CheckWords Method of the IExternalDictionary Interface

This method is implemented on the client side. It is called during recognition, and it is received as a collection of fuzzy strings. The
number of fuzzy strings in the collection may vary, depending on the recognized variants of the word. This method delivers to the
recognizer information about strings in the collection which contains the dictionary words, with the help of the
ExternalDictionaryResult method of the ExternalDictionaryCallback object. If the ExternalDictionaryResult method is not
called for a fuzzy string, the recognizer assumes that proper words have not been found in the dictionary.

Visual Basic Syntax

Sub CheckWords(

 ByRef Request As FuzzyStringsCollection,

 ByRef Callback As ExternalDictionaryCallback

)

C++ Syntax

HRESULT CheckWords(

 IFuzzyStringsCollection* Request,

 IExternalDictionaryCallback* Callback

);

Parameters

Request

[in] This variable refers to the FuzzyStringsCollection object corresponding to the fuzzy strings collection.

Callback

[in] This variable refers to the ExternalDictionaryCallback object. The recognizer receives information about dictionary words from
this object.

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side.

 276

ABBYY FineReader Engine 10 API Reference

Remarks

• The pointers to the FuzzyStringsCollection and ExternalDictionaryCallback objects which were used as the Request
and Callback parameters are released automatically after the end of the CheckWords method execution, therefore you do
not need to call the Release method for these objects in the CheckPrefix method implementation.

• The client implementation of this method must assure that all exceptions thrown inside the method are caught and handled
and no exceptions are propagated outside the method. Propagation of an exception outside the method may lead to
unpredictable results (such as program termination).

See also

IExternalDictionary

FuzzyStringsCollection Object (IFuzzyStringsCollection Interface)

This object represents a collection of FuzzyString objects. It is a supplementary interface for external dictionaries.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element FuzzyString Provides access to a single element of the collection.

Methods

Name Description
Add Adds a new element at the end of the collection.

CopyFrom Initializes properties of the current object with values of similar properties of another object.

Insert Inserts a new element into the specified position in the collection.

Item Provides access to a single element of the collection.

Remove Removes an element from the collection.

RemoveAll Removes all the elements from the collection.

Input parameter

This collection is the input parameter of the CheckWords method of the IExternalDictionary interface.

See also

IExternalDictionary
Working with Dictionaries
Working with Properties

FuzzyString Object (IFuzzyString Interface)

This object represents a fuzzy string. A fuzzy string contains recognition variants for each character of a word. One or several fuzzy
strings correspond to each recognized word. For example, the following fuzzy strings can correspond to the "hello" word:

 Fuzzy Strings
(each cell is a value of the CharacterVariants property) Word Position

h 1 hn h h h

e 2 ec e e e

l 3 li | I 1

l 4 li | b 1

o 5 oc oO 0

 277

ABBYY FineReader Engine 10 API Reference

Length of fuzzy string
(the value of the Length property): 5 5 4 5

All fuzzy strings which correspond to one word are grouped into a collection (the FuzzyStringsCollection object).

Properties

Name Type Description
CharacterVariants Stores the recognition variants of a character in the specified position in the word. String, read�only

Length Stores the length of the fuzzy string. Long, read�only

Input parameter

This object is the input parameter of the following methods and properties:

• Add, Insert methods and Element property of the FuzzyStringsCollection object.

• CheckPrefix method of the IExternalDictionary interface.

Output parameter

This object is the output parameter of the Item method and Element property of the FuzzyStringsCollection object.

See also

IExternalDictionary
FuzzyStringsCollection
Working with Dictionaries
Working with Properties

CharacterVariants Property of the FuzzyString Object

This property returns a reference to the string which contains the recognition variants of a character in the specified position of a
word.

Visual Basic Syntax

Property CharacterVariants(Position As Long) As String

 read-only

C++ Syntax

HRESULT get_CharacterVariants(

 long Position,

 BSTR* Result

);

Parameters

Position

[in] This variable contains the position of the character in the word.

Result

[out, retval] A pointer to the string variable which contains a string with the recognition variants.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remark

If the returned string contains the U+FFFD symbol, any symbol may be used in the specified position in the word.

See also

FuzzyString
Working with Properties

 278

ABBYY FineReader Engine 10 API Reference

Text�Related Objects Text�Related Objects
Text object represents the recognized text. The Text object exposes a collection of paragraphs represented by the Paragraph objects.
The ParagraphParams and CharParams objects comprise paragraph and single character properties respectively. Geometrical
information on the recognized text lines is stored in the ParagraphLine object.

Text object represents the recognized text. The Text object exposes a collection of paragraphs represented by the Paragraph objects.
The ParagraphParams and CharParams objects comprise paragraph and single character properties respectively. Geometrical
information on the recognized text lines is stored in the ParagraphLine object.

This section contains descriptions of the following text�related objects: This section contains descriptions of the following text�related objects:

• Text • Text

• Paragraphs • Paragraphs

• Paragraph • Paragraph

• ParagraphLines • ParagraphLines

• ParagraphLine • ParagraphLine

• ParagraphParams • ParagraphParams

• CharParams • CharParams

• WordRecognitionVariants • WordRecognitionVariants

• WordRecognitionVariant • WordRecognitionVariant

• CharacterRecognitionVariants • CharacterRecognitionVariants

• CharacterRecognitionVariant • CharacterRecognitionVariant

• Words • Words

• Word • Word

• Hyperlink • Hyperlink

• TabPositions • TabPositions

• TabPosition • TabPosition

• TextOrientation • TextOrientation

• PlainText • PlainText

You can find additional information in the Working with Text section. You can find additional information in the Working with Text section.

The text�related objects hierarchy The text�related objects hierarchy

For more information about the hierarchy of the ABBYY FineReader Engine objects, please see the Object Diagram. For more information about the hierarchy of the ABBYY FineReader Engine objects, please see the Object Diagram.

Text Object (IText Interface) Text Object (IText Interface)

This object represents recognized text. The recognized text is a collection of paragraphs. Access to this collection is provided through
the Paragraphs property. Besides, this object exposes properties for accessing different text attributes and methods allowing
operations upon it, such as vertical and horizontal splitting, range removal etc. The Text object may exist either independently or be a
subobject of some other object representing a unit of layout (text block, table cell etc.). A position in text is defined by the "coordinate
pair" (paragraph;symbol). There exists the so called "special position" or theSpecialPos, for which paragraph=<the number of
paragraphs>, symbol=0.

This object represents recognized text. The recognized text is a collection of paragraphs. Access to this collection is provided through
the Paragraphs property. Besides, this object exposes properties for accessing different text attributes and methods allowing
operations upon it, such as vertical and horizontal splitting, range removal etc. The Text object may exist either independently or be a
subobject of some other object representing a unit of layout (text block, table cell etc.). A position in text is defined by the "coordinate
pair" (paragraph;symbol). There exists the so called "special position" or theSpecialPos, for which paragraph=<the number of
paragraphs>, symbol=0.

Properties Properties

Name Name Type Type Description Description
Application Engine, read�only Returns the Engine object.

Specifies if the colors of the whole text are inverted. This attribute is set to TRUE if the
recognized text belongs to a block or table cell that also has the inverted attribute. It may

IsInverted Boolean

 279

ABBYY FineReader Engine 10 API Reference

be used in user interface to display the text with white font against the black background.
Note: The property is available for writing only if, the Text object is received via the

ITextBlock::Text property. Otherwise the property is read�only.

Paragraphs Paragraphs, read�
only

Provides access to the collection of paragraphs of the Text object. Every Text object, even
an empty one, contains a valid subobject of the Paragraphs type. This object is a
collection of the Paragraph objects and may not contain any elements. The Paragraph
object represents a paragraph in the recognized text. It is through this object that the
content of the recognized text may be obtained.

Stores the orientation of the text. It is used internally by the ABBYY FineReader Engine
when exporting the recognized text. This property only matters after the recognition. If
you want to specify the text orientation before the recognition, you must use the
RotationType property of the ImageProcessingParams object.

TextOrientation TextOrientation Note: The property returns a constant object. To change the text orientation, you must
first receive an intermediate TextOrientation object with the help of the
IEngine::CreateTextOrientation method, change the necessary parameters, and then
assign this object to the property. The property is available for writing only if, the Text
object is received via the ITextBlock::Text property. Otherwise the property is read�only.

TextRole TextRoleEnum Stores the role of the text.

Methods

Name Description
AppendEmptyParagraph Appends empty paragraph to the end of the current text.

GetRange Returns a copy of the range of text.

Remove Removes a range from the current text.

RemoveAll Removes all paragraphs from the current text.

Related objects

Output parameter

This object is the output parameter of the GetAsText method of the PageElement object.

Input parameter

This object is the input parameter of the InsertText method of the Paragraph object.

See also

Working with Text
Working with Properties

See samples: RecognizedTextProcessing, CustomLanguage

AppendEmptyParagraph Method of the Text Object

This method appends an empty paragraph at the end of the current text. Parameters of the new paragraph are initialized with default
values.

Visual Basic Syntax

 280

ABBYY FineReader Engine 10 API Reference

Method AppendEmptyParagraph()

C++ Syntax

HRESULT AppendEmptyParagraph();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Text

GetRange Method of the Text Object

This method allows you to get a copy of the range of text. You can insert the resulting text into the text of a paragraph (the
IParagraph::InsertText method).

Visual Basic Syntax

Method GetRange(

 fromParagraph As Long,

 fromPos As Long,

 toParagraph As Long,

 toPos As Long

) As Text

C++ Syntax

HRESULT GetRange(

 long fromParagraph,

 long fromPos,

 long toParagraph,

 long toPos,

 IText** text

);

Parameters

fromParagraph

[in] Variable specifying the index of the paragraph for the starting point of the range to be copied.

fromPos

[in] Variable defining the index of character in the starting paragraph, for the starting point of the range to be copied.

toParagraph

[in] Variable defining the index of the paragraph for the ending point of the range to be copied.

toPos

[in] Variable defining the index of character in the ending paragraph, for the ending point of the range to be copied. This character
itself is not included in the copied text.

text

[out, retval] A pointer to the IText* pointer variable that receives the interface pointer of the Text object representing the range. text
should not be NULL. *text must be NULL, otherwise an error code is returned.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The ending position of the range should be farther in the text than the starting one, otherwise an error code is returned. The symbol in
(fromParagraph;fromSymbol) position is included in the range, while the character in (toParagraph;toSymbol) position is not included.
To get a copy of the whole text, pass the (0;0) coordinates for the beginning of the range, and the theSpecialPos coordinates for the
end of the range.

 281

ABBYY FineReader Engine 10 API Reference

See also

Text

Remove Method of the Text Object

This method removes a range of text specified by the positions of paragraphs and symbols.

Visual Basic Syntax

Method Remove(

 fromParagraph As Long,

 fromSymbol As Long,

 toParagraph As Long,

 toSymbol As Long

)

C++ Syntax

HRESULT Remove(

 long fromParagraph,

 long fromSymbol,

 long toParagraph,

 long toSymbol

);

Parameters

fromParagraph

[in] Variable specifying the index of the paragraph for the starting point of the range to be removed.

fromSymbol

[in] Variable specifying the index of character in the starting paragraph, for the starting point of the range to be removed.

toParagraph

[in] Variable specifying the index of the paragraph for the ending point of the range to be removed.

toSymbol

[in] Variable specifying the index of character in the ending paragraph, for the ending point of the range to be removed. This character
itself is not removed from the text.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The ending position for the text to be removed should be farther in the text than the starting one, otherwise an error code is returned.
The symbol in (fromParagraph;fromSymbol) position is removed from the text, while the character in (toParagraph;toSymbol)
position is not removed.

See also

Text
IText::RemoveAll

RemoveAll Method of the Text Object

This method empties the collection of paragraphs of the Text object.

Visual Basic Syntax

Method RemoveAll()

C++ Syntax

HRESULT RemoveAll();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

 282

ABBYY FineReader Engine 10 API Reference

See also

Text
IText::Remove

Paragraphs Object (IParagraphs Interface)

This object provides access to the collection of recognized text paragraphs. Besides standard collection methods and properties, it
contains the GetIndex method that allows you to find paragraph index in the collection given a pointer to Paragraph object. The
collection is accessible via the Text object.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element Provides access to a single element of the collection. Paragraph, read�only

Methods

Name Description
Finds the index of a paragraph in the collection of paragraphs. GetIndex

Item Provides access to a single element of the collection.

Related objects

See also

Text
Paragraph
Working with Text
Working with Properties

See samples: RecognizedTextProcessing, CustomLanguage

GetIndex Method of the Paragraphs Object

This method finds the index of a paragraph in the collection of paragraphs. If there is no such paragraph in the collection, �1 is
returned.

Visual Basic Syntax

Method Find(

 paragraph As Paragraph

) As Long

C++ Syntax

HRESULT Find(

 IParagraph* paragraph,

 long* index

);

Parameters

paragraph

[in] This parameter refers to the interface of the Paragraph object.

 283

ABBYY FineReader Engine 10 API Reference

index

[out] A pointer to long variable that receives the return value of this method. Must not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraphs

Paragraph Object (IParagraph Interface)

This object exposes methods and properties for working with a single paragraph of the recognized text.

A paragraph in the ABBYY FineReader Engine object model is an elementary text unit. It is through this object that a user can get:

• the recognized text (use Text property for this purpose)

• different paragraph parameters (ExtendedParams, ListParams, ParagraphStyle properties)

• collections of paragraph lines and words (Lines and Words properties)

• a single character parameters (GetCharParams, SetCharParams and GetDropCapCharParams methods)

Note: The coordinates of the paragraph borders (Left, Top, Right, Bottom properties) are not available for the paragraphs of
barcodes.

Properties
Name Type Description
Application Engine, read�only Returns the Engine object.

Provides access to the bookmark by its index in the internal collection of the
paragraph's bookmarks. Bookmark String, read�only

Specifies the number of bookmarks in the paragraph. BookmarkCount Long, read�only
Stores the coordinate of the bottom border of the paragraph as it is positioned on
the image. Bottom Long, read�only

Stores the number of the column to which the character in the position belongs. ColumnNumber Long, read�only
Provides access to the number of characters in the dropped capital of a paragraph.
The first DropCapCharsCount symbols of the paragraph are assumed to be
dropped capital. This property is not changed when paragraph is edited, so it may
be greater than the length of the paragraph.

DropCapCharsCount Long

Provides access to the parameters of the Paragraph object exposed by the
ParagraphParams object. ExtendedParams ParagraphParams

Specifies if the paragraph is a part of another paragraph located on several pages,
and has the beginning on another page. This property makes sense only after
document synthesis with the
IDocumentStructureDetectionParams::DetectOverflowingParagraphs
property set to TRUE.

HasOverflowedHead Boolean, read�only

Specifies if the paragraph is a part of another paragraph located on several pages,
and has the end on another page. This property makes sense only after document
synthesis with the
IDocumentStructureDetectionParams::DetectOverflowingParagraphs
property set to TRUE.

HasOverflowedTail Boolean, read�only

Hyperlink, read�
only

Returns a reference to the Hyperlink object which describes the hyperlink in the
position. If there is no hyperlink, this property is set to 0. Hyperlink

Returns the ID of the PageElement object which describes the embedded picture
in the position. InlinePictureID String, read�only

Stores the coordinate of the left border of the paragraph as it is positioned on the
image. Left Long, read�only

This property contains the number of characters in paragraph. This value is the
same as the number of characters in the string received through the Text property. Length Long, read�only

 284

ABBYY FineReader Engine 10 API Reference

ParagraphLines,
read�only

Provides access to the collection of the paragraph lines. The property returns a
constant object. Lines

ListParams, read�
only

Provides access to the parameters of the list to which the paragraph belongs. If the
paragraph is not in the list, the IListParams::List property returns NULL. ListParams

Provides access to the parameters of the paragraph style. These parameters become
accessible only after document synthesis.

Note: The property returns a constant object. To change the paragraph style, you
must first receive an intermediate ParagraphStyle object with the help of the
IGlobalStyleStorage::CreateParagraphStyle method, change the necessary
parameters, and then assign this object to the property.

ParagraphStyle ParagraphStyle

Stores the coordinate of the right border of the paragraph as it is positioned on the
image. Right Long, read�only

TabPositions,
read�only

Returns a collection of tab leaders of the paragraph. If there is no tab leader, this
property is set to 0. TabPositions

Provides access to the recognized text of the paragraph. It is through this property
that you get the recognized text. Text String, read�only

Top Long, read�only Stores the coordinate of the top border of the paragraph as it is positioned on the
image.
Provides access to the collection of the paragraph words. Words Words, read�only

Methods
Name Description

Deletes the specified bookmark from the paragraph. DeleteBookmark
Detects the index of the initial character and the length of the string that forms the bookmark by
its name. GetBookmarkRange

Provides access to parameters of a single character. GetCharParams
Provides access to the parameters of a paragraph's dropped capital. GetDropCapCharParams
Analyzes a single hyperlink character and detects the index of the initial character and the length
of the string that forms the hyperlink. GetHyperlinkRange

Returns a collection of variants of a word's recognition in the current position inside the text of a
paragraph. GetWordRecognitionVariants

Inserts a string into the text of the paragraph. Insert
Divides the paragraph into two parts. InsertParagraphBreak
Inserts the specified text into the text of the paragraph. InsertText
Finds the next character in the paragraph, which has the selected parameters different from such
parameters of the character specified. This method can be used to find all bold or italic words in
the paragraph, all uncertainly recognized characters, etc.

NextGroup
 Note: This method is obsolete and is intended to be removed in the next version of ABBYY

FineReader Engine.
Returns a substring from the text of the paragraph. Range
Deletes a range from the text of the paragraph. Remove
Sets a bookmark to a string within a paragraph. SetBookmark
Sets parameters for a group of characters. SetCharParams
Sets a hyperlink to a string within a paragraph. SetHyperlink

 285

ABBYY FineReader Engine 10 API Reference

Related objects

Output parameter

This object is the output parameter of the following methods:

• Item method of the Paragraphs object

• GetAsParagraph method of the DocumentElement object

Input parameter

This object is the input parameter of the GetIndex method of the Paragraphs object.

See also

Paragraphs
Working with Text
Working with Properties

See samples: RecognizedTextProcessing, CustomLanguage

Bookmark Property of the Paragraph Object

This property provides access to the bookmark by its index in the internal collection of the paragraph's bookmarks.

Visual Basic Syntax

Property Bookmark(pos As Long) As String

 read-only

C++ Syntax

HRESULT get_Bookmark(

 long pos,

 BSTR* result

);

Parameters

pos

[in] This variable contains the index of the bookmark in the internal collection of the paragraph's bookmarks. The value of this
property must be in range from 0 to IParagraph::BookmarkCount �1.

result

 286

ABBYY FineReader Engine 10 API Reference

[out, retval] A pointer to BSTR variable that receives the bookmark.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraph
Working with Properties

ColumnNumber Property of the Paragraph Object

This property provides access to the number of the column to which the character in the position belongs.

Visual Basic Syntax

Property ColumnNumber(pos As Long) As Long

 read-only

C++ Syntax

HRESULT get_ColumnNumber(

 long pos,

 long* result

);

Parameters

pos

[in] This variable contains the index of a character inside the paragraph.

result

[out, retval] A pointer to long variable that receives the number of the column.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remark

The property returns �1, if the text, to which the paragraph belongs, has the TR_AbstractText role (IText::TextRole property).

See also

Paragraph
Working with Properties

Hyperlink Property of the Paragraph Object

This property returns a reference to the Hyperlink object which describes the hyperlink in the position. If there are no hyperlinks,
this property is set to 0.

Visual Basic Syntax

Property Hyperlink(pos As Long) As Hyperlink

 read-only

C++ Syntax

HRESULT get_Hyperlink(

 long pos,

 IHyperlink** result

);

Parameters

pos

[in] This variable contains the index of a character inside the paragraph.

result

 287

ABBYY FineReader Engine 10 API Reference

[out, retval] A pointer to IHyperlink* pointer variable that receives the interface pointer of the Hyperlink output object. This object
exposes properties of the hyperlink. If there is no hyperlink, this property is set to 0.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraph
Hyperlink
Working with Properties

InlinePictureID Property of the Paragraph Object

This property returns the ID of the PageElement object which describes the embedded picture in the position. If there is no
embedded image in the specified position, an empty string is returned.

Note: You can receive positions of embedded pictures in the paragraph using the IParagraph::NextGroup method with the
CFL_Picture constant as a mask.

You can then access the properties of an inline picture:

1. Use the IParagraph::InlinePictureID property to receive the ID of the PageElement object which describes the
embedded image.

2. Find the corresponding PageElement object by its ID.

3. Receive its TextPicture object using the GetAsPicture method and work with its properties.

Visual Basic Syntax

Property InlineElementId(position As Long) As String

 read-only

C++ Syntax

HRESULT get_InlineElementId(

 long position,

 BSTR* result

);

Parameters

position

[in] This variable contains the index of a character inside the paragraph.

result

[out, retval] A pointer to BSTR variable that receives the ID of the PageElement object which describes the embedded image in the
position. If there is no embedded image in the specified position, an empty string is returned.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraph
Working with Properties

DeleteBookmark Method of the Paragraph Object

This method deletes the specified bookmark from the paragraph.

Visual Basic Syntax

Method DeleteBookmark(

 bookmark As String

)

C++ Syntax

HRESULT DeleteBookmark(

 288

ABBYY FineReader Engine 10 API Reference

 BSTR bookmark

);

Parameters

bookmark

[in] This variable specifies the bookmark to be deleted.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraph

GetBookmarkRange Method of the Paragraph Object

This method detects the index of the initial character and the length of the string that forms the bookmark by its name.

Visual Basic Syntax

Method GetBookmarkRange(

 bookmark As String,

 startPos As Long,

 count As Long

)

C++ Syntax

HRESULT GetBookmarkRange(

 BSTR bookmark,

 long* startPos,

 long* count

);

Parameters

bookmark

[in] The name of the bookmark.

startPos

[in, out] The index of the initial character of the bookmark.

count

[in, out] The length of the string that forms the bookmark.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraph

GetCharParams Method of the Paragraph Object

This method provides access to parameters of a single character. A character is indexed with its position inside the text of paragraph.
This index must be in the range from zero to the length of paragraph. The length of paragraph may be obtained from the
IParagraph::Length property. When the length of paragraph is passed into this method, this property refers to the parameters that
would have received a character if it was inserted at the end of paragraph.

Visual Basic Syntax

Method GetCharParams(

 pos As Long,

 params As CharParams

)

C++ Syntax

 289

ABBYY FineReader Engine 10 API Reference

HRESULT GetCharParams(

 long pos,

 ICharParams* params

);

Parameters

pos

[in] This variable contains the index of the character inside the paragraph.

params

[in] This variable refers to a CharParams object. This object properties are initialized with values corresponding to parameters of the
character. A valid object should be passed as this parameter.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraph
CharParams

See sample: RecognizedTextProcessing

GetDropCapCharParams Method of the Paragraph Object

This method provides access to parameters of a character with the specified position in a paragraph's dropped capital.

Visual Basic Syntax

Method GetDropCapCharParams(

 Pos As Long

) As CharParams

C++ Syntax

HRESULT GetDropCapCharParams(

 long Pos,

 ICharParams** params

);

Parameters

Pos

[in] This variable contains the index of the character inside the paragraph dropped capital.

params

[out] A pointer to the ICharParams* pointer variable that receives the interface pointer of the CharParams object representing the
parameters of the dropped capital. param must not be NULL, otherwise an error code is returned.

Return Values

This function has no specific return values. It returns the standard return values of the ABBYY FineReader Engine functions.

See also

Paragraph
CharParams

GetHyperlinkRange Method of the Paragraph Object

This method analyzes a single hyperlink character and detects the index of the initial character and the length of the string that forms
the hyperlink. The analyzed character must have a non�null value of the IParagraph::Hyperlink property.

Visual Basic Syntax

Method GetHyperlinkRange(

 pos As Long,

 startPos As Long,

 290

ABBYY FineReader Engine 10 API Reference

 count As Long

)

C++ Syntax

HRESULT GetHyperlinkRange(

 long pos,

 long* startPos,

 long* count

);

Parameters

pos

[in] The index of the analyzed character. The analyzed character in this position must have a non�null value of the
IParagraph::Hyperlink property.

startPos

[in, out] The index of the initial character of the hyperlink.

count

[in, out] The length of the string that forms the hyperlink.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraph

GetWordRecognitionVariants Method of the Paragraph Object

This method returns a collection of variants of a word's recognition in the current position inside the text of a paragraph. This index
must be in the range from zero to the length of the paragraph. The length of the paragraph may be obtained from the
IParagraph::Length property. When the length of the paragraph is passed into this method, this property refers to the parameters
that would have received the character if it were inserted at the end of the paragraph. The method returns zero for non�printable
characters (spaces, carriage returns, etc.) and characters that were not recognized but added to the text during explicit editing. Zero is
also returned if the text was recognized by one of the previous ABBYY FineReader Engine versions. If the
IRecognizerParams::SaveWordRecognitionVariants property is set to FALSE the return collection contains one element,
otherwise the collection contains no less than one element and the variants are ordered from the best to the worst.

Visual Basic Syntax

Method GetWordRecognitionVariants(

 pos As Long

) As WordRecognitionVariants

C++ Syntax

HRESULT GetWordRecognitionVariants(

 long pos,

 IWordRecognitionVariants** result

);

Parameters

pos

[in] This variable contains the index of the character inside the paragraph.

result

[out] A pointer to IWordRecognitionVariants* pointer variable that receives the interface pointer to the
WordRecognitionVariants output object.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

 291

ABBYY FineReader Engine 10 API Reference

See also

Paragraph
ICharParams::WordRecognitionVariants
Voting API

Insert Method of the Paragraph Object

This method inserts a string into the text of the paragraph.

Visual Basic Syntax

Method Insert(

 pos As Long,

 st As String,

 params As CharParams

)

C++ Syntax

HRESULT Insert(

 long pos,

 BSTR st,

 ICharParams* params

);

Parameters

pos

[in] Position where the string is inserted. Must be not less than 0 and not greater than the length of paragraph.

st

[in] This string may contain the object replacement characters (Unicode 0xFFFC). The object replacement character denotes an
embedded picture.

params

[in] This variable refers to the CharParams object that contains attributes for all characters of the newly inserted string. This
parameter may be 0, in which case the default character parameters are used.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraph
CharParams

InsertParagraphBreak Method of the Paragraph Object

This method divides the paragraph into two parts.

Visual Basic Syntax

Method InsertParagraphBreak(

 position As Long,

 charParams As CharParams

)

C++ Syntax

HRESULT InsertParagraphBreak(

 long position,

 ICharParams* charParams

);

Parameters

position

 292

ABBYY FineReader Engine 10 API Reference

[in] Position where the paragraph is to be divided. Must be not less than 0 and not greater than the length of the paragraph.

charParams

[in] This variable refers to the CharParams object that contains attributes for all characters of the newly created paragraph. This
parameter may be 0, in which case the default character parameters are used.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraph
CharParams

InsertText Method of the Paragraph Object

This method inserts the specified text into the text of the paragraph.

Visual Basic Syntax

Method InsertText(

 pos As Long,

 text As Text

)

C++ Syntax

HRESULT InsertText(

 long pos,

 IText* text

);

Parameters

pos

[in] Position where the text is inserted. Must be not less than 0 and not greater than the length of paragraph.

text

[in] This variable must refer to a valid Text object that contains the newly inserted text.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraph

NextGroup Method of the Paragraph Object
This method returns the index of the next character in the paragraph, which has the selected parameters different from such
parameters of the character specified.

For example, if you set the value of the styleFlagMask parameter to SF_Bold (which means that the ICharParams::IsBold property
should be taken into account) and the character with the position index is not bold, the method will return the index of the next bold
character, and vice versa if the character with the position index is bold, the method will return the index of the next character, which
is not bold.

Visual Basic Syntax

Method NextGroup(

 position As Long,

 charFlagMask As Long,

 styleFlagMask As Long

) As Long

C++ Syntax

HRESULT NextGroup(

 long position,

 293

ABBYY FineReader Engine 10 API Reference

 long charFlagMask,

 long styleFlagMask

 long* result

);

Parameters
position

[in] This variable contains the index of the character, which defines parameters of the search for the next character.

charFlagMask

[in] This variable contains any OR combination of the CFL_ prefixed flags. It defines what character parameters are taken into account
when searching for the next character.

styleFlagMask

[in] This variable contains any OR combination of the StyleParamsEnum constants. It defines what style parameters are taken into
account when searching for the next character.

result

[out, retval] A pointer to a long variable that receives the position of the next character, which has the selected parameters different
from such parameters of the character with the position index. If the next character is not found, the length of the paragraph is
returned.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

• This method can be used to find all bold or italic words in the paragraph, all uncertainly recognized characters, etc.

• This method is intended to be removed in the next version of ABBYY FineReader Engine.

 See also

Paragraph
CFL_flags

CFL_ prefixed flags

The CFL_ prefixed flags are used as a mask in some methods of the Paragraph object. The mask is an OR combination of these flags'

values and define what properties of the CharParams object should be taken into account in these methods. The CFL_Picture is a

special constant for inline pictures in a paragraph.

For the IParagraph::SetCharParams method the constants define what character properties should be set, and for the

IParagraph::NextGroup method they define parameters separating a group of symbols.

module CharacterFlags

{

 const long CFL_Subscript = 0x00000001;

 const long CFL_Superscript = 0x00000002;

 const long CFL_Suspicious = 0x00000100;

 const long CFL_Proofed = 0x00000800;

 const long CFL_LanguageID = 0x00010000;

 const long CFL_LanguageName = 0x00020000;

 const long CFL_Picture = 0x00040000;

};

Elements

Flag name Description
CFL_Subscript The ICharParams::IsSubscript property should be taken into account.

CFL_Superscript The ICharParams::IsSuperscript property should be taken into account.

CFL_Suspicious The ICharParams::IsSuspicious property should be taken into account.

CFL_Proofed The ICharParams::IsProofed property should be taken into account.

 294

ABBYY FineReader Engine 10 API Reference

CFL_LanguageID The ICharParams::LanguageId property should be taken into account.

CFL_LanguageName The ICharParams::LanguageName property should be taken into account.

CFL_Picture The IParagraph::InlinePictureID property should be taken into account.

See also

IParagraph::SetCharParams
IParagraph::NextGroup
CharParams

Range Method of the Paragraph Object

This method returns a substring from the text of the paragraph.

Visual Basic Syntax

Method Range(

 fromPos As Long,

 toPos As Long

) As String

C++ Syntax

HRESULT Range(

 long fromPos,

 long toPos,

 BSTR* st

);

Parameters

fromPos

[in] Position where the substring is started. Must be not less than 0 and not greater than the length of paragraph.

toPos

[in] Position where the substring is ended. Must be not less than variable fromPos and 0 and not greater than the length of paragraph.

st

[out] A pointer to BSTR variable that receives the substring that is started at fromPos position and is ended to toPos position. Must not
be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraph
CharParams

Remove Method of the Paragraph Object

This method deletes a range from the text of the paragraph.

Visual Basic Syntax

Method Remove(

 fromPos As Long,

 toPos As Long

)

C++ Syntax

HRESULT Remove(

 long fromPos,

 long toPos

);

 295

ABBYY FineReader Engine 10 API Reference

Parameters

fromPos

[in] Position where the range is started. Must be not less than 0 and not greater than the length of paragraph.

toPos

[in] Position where the range is ended. Must be not less than variable fromPos and 0 and not greater than the length of paragraph. By
default this variable is set to �1. If this variable is not set or is set to �1 one character will be removed only.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraph
CharParams

SetBookmark Method of the Paragraph Object

This method sets a bookmark to a string within a paragraph.

Visual Basic Syntax

Method SetBookmark(

 pos As Long,

 count As Long,

 bookmark As String

)

C++ Syntax

HRESULT SetBookmark(

 long pos,

 long count,

 BSTR bookmark

);

Parameters

pos

[in] The index of the initial character of the bookmark.

count

[in] The length of the string that forms the bookmark.

bookmark

[in] This variable specifies the bookmark to be set.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraph

SetCharParams Method of the Paragraph Object

This method sets parameters for a group of characters.

Visual Basic Syntax

Method SetCharParams(

 position As Long,

 count As Long,

 params As CharParams,

 charFlagMask As Long,

 styleFlagMask As Long

 296

ABBYY FineReader Engine 10 API Reference

)

C++ Syntax

HRESULT SetCharParams(

 long position,

 long count,

 ICharParams* params,

 long charFlagMask,

 long styleFlagMask

);

Parameters

position

[in] Position of character in paragraph that starts the group of characters for which the parameters are set. It should be in the range
from 0 to the length of paragraph.

count

[in] A number of characters for which the parameters are set. It should be no less than 0 and meet the following requirement: position
+ count <= paragraph length + 1

params

[in] This variable refers to the CharParams object that contains the new parameters for the group of characters. It must refer to a
valid object.

charFlagMask

[in] This variable may contain any OR combination of the CFL_prefixed flags. It specifies what character parameters are to be copied
from the params object.

styleFlagMask

[in] This variable may contain any OR combination of the StyleParamsEnum constants. It specifies what style parameters are to be
copied from the params object.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraph
CFL_prefixed flags
CharParams

SetHyperlink Method of the Paragraph Object

This method sets a hyperlink to a string within a paragraph.

Visual Basic Syntax

Method SetHyperlink(

 pos As Long,

 count As Long,

 hyperlink As Hyperlink

)

C++ Syntax

HRESULT SetHyperlink(

 long pos,

 long count,

 IHyperlink* hyperlink

);

Parameters

pos

 297

ABBYY FineReader Engine 10 API Reference

[in] The index of the initial character of the hyperlink.

count

[in] The length of the string that forms the hyperlink.

hyperlink

[in] This variable specifies the Hyperlink to be set.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Paragraph

ParagraphLines Object (IParagraphLines Interface)

This object represents a collection of paragraph lines. It contains methods for getting the number of paragraph lines in collection,
accessing a single element of this collection and iterating through the elements of the collection. The collection is accessible via the
Paragraph object.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element ParagraphLine, read�only Provides access to a single element of the collection.

Methods

Name Description
Item Provides access to a single element of the collection.

Output parameter

This object is the output parameter of the Lines property of the Paragraph object.

See also

Paragraph
ParagraphLine
Working with Text
Working with Properties

ParagraphLine Object (IParagraphLine Interface)

This object represents a single line in the paragraph of a recognized text. Its properties provide access to the line's geometrical
attributes and allow you to find out where the line starts and where it ends in terms of characters.

The rectangle occupied by the line is defined by the Left, Top, Right, Bottom properties. In case it is undefined, all the four
properties contain 0.

Note: The coordinates of the rectangle are not available for the paragraphs of barcodes.

This object is an element of a collection of paragraph lines (ParagraphLines object).

Properties

Name Type Description
Engine,
read�only Application Returns the Engine object.

Contains the distance from the base line to the top edge of the page. The base line is the line on
which the characters are located. The top edge of the page is determined by the characters
orientation (as shown in the figure below).

Long,
read�only BaseLine

 298

ABBYY FineReader Engine 10 API Reference

It may have undefined value that corresponds to INT_MAX or 0x7FFFFFFF.

Contains the coordinate of the bottom border of a surrounding rectangle. The surrounding
rectangle is a minimal rectangle containing all the characters of the line. If this rectangle is
undefined, this property contains 0. It is given "as is" regardless of the text orientation.

Long,
read�only Bottom

Long,
read�only CharactersCount Contains the number of characters in the current paragraph line.

Contains the index of the first character of the current line. The index of the character is a
sequence number of the character within the recognized text of the paragraph. The recognized
text of the line is stored in the Text property of the Paragraph object.

Long,
read�only FirstCharIndex

Left Long,
read�only

Contains the coordinate of the left border of a surrounding rectangle. The surrounding rectangle is
a minimal rectangle containing all the characters of the line. If this rectangle is undefined, this
property contains 0. It is given "as is" regardless of the text orientation.

Contains the coordinate of the right border of a surrounding rectangle. The surrounding rectangle
is a minimal rectangle containing all the characters of the line. If this rectangle is undefined, this
property contains 0. It is given "as is" regardless of the text orientation.

Long,
read�only Right

Top Long,
read�only

Contains the coordinate of the top border of a surrounding rectangle. The surrounding rectangle is
a minimal rectangle containing all the characters of the line. If this rectangle is undefined, this
property contains 0. It is given "as is" regardless of the text orientation.

Output parameter

This object is the output parameter of the Item method and Element property of the ParagraphLines object.

See also

ParagraphLines
Working with Text
Working with Properties

ParagraphParams Object (IParagraphParams Interface)

This object exposes extended properties of a single paragraph.

Important! If you wish to work with the properties of a single paragraph, you must first call any of the functions that perform
synthesis (e.g. the Process or Synthesize method of the FRDocument object), as these properties become meaningful only after
synthesis.

The ParagraphParams object is a persistent object. This means that it is able to write its current state, indicated by the values of its
properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the object's
state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory,
and LoadFromMemory.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

BackgroundColor Long Stores the background color of the text. By default the background color

 299

ABBYY FineReader Engine 10 API Reference

is white or RGB(255,255,255).
Note: The Long value is calculated from the RGB triplet using the

formula: (red value) + (256 x green value) + (65536 x blue value), where
red value is the first triplet component, green value is the second triplet
component, blue value is the third triplet component. Hence the Long
value of the color white equals 16777215.

Contains and allows you to set the indent of the first line of the
paragraph from the left border of the paragraph. By default this value is 0.
The value of this property affects the results of export.

FirstLineIndent Long

IsRightToLeft Boolean Indicates if the paragraph has right�to�left writing direction (like for
Hebrew). By default the value of this property is FALSE.

LeftIndent Long Contains and allows you to set the left indent for the paragraph. The
value of indent is the distance in pixels from the left border of the block
to the left border of the paragraph. By default this value is 0. The value of
this property affects the results of export.

Contains and allows you to set the line spacing for the paragraph. The
value of line spacing is the average distance in pixels between base lines
of paragraph strings. By default this value is 0. The zero value of this
property means that the line spacing is undefined or does not have a
sense (for example for a text in barcode block). If the value of this
property is zero, it is ignored during recognized text export.

LineSpacing Long

Stores and allows you to change the horizontal paragraph alignment. By
default this value is PA_Left. ParagraphAlignment ParagraphAlignmentEnum

Contains and allows you to set the right indent for the paragraph. The
value of indent is the distance in pixels from the right border of the block
to the right border of the paragraph. By default this value is 0. The value
of this property affects the results of export.

RightIndent Long

Contains and allows you to set the value of space after the paragraph. The
space after the paragraph is the distance in pixels from the bottom
border of block or top border of the next paragraph to the bottom
border of the paragraph itself. By default this value is 0. The value of this
property affects the results of export.

SpaceAfter Long

Contains and allows you to set the value of space before the paragraph.
The space before the paragraph is the distance in pixels from the top
border of block or bottom border of previous paragraph to the top
border of the paragraph itself. By default this value is 0. The value of this
property affects the results of export.

SpaceBefore Long

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Output parameter

This object is the output parameter of the following methods and properties:

• CreateParagraphParams method of the Engine object

• Params property of the ParagraphStyle object

• Params property of the Paragraph object

 300

ABBYY FineReader Engine 10 API Reference

Input parameter

This object is the output parameter of the Params property of the Paragraph object

See also

Paragraph
ParagraphStyle
Working with Properties

CharParams Object (ICharParams Interface)

This object allows you to access different parameters of a single character in recognized text: its formatting, rectangle on the image,
recognition language, and hypotheses of recognition. All the Boolean properties of a newly created object of this type are set to FALSE.

Important! If you wish to work with the parameters of a certain character in the recognized text, you must first call any of the
functions that perform synthesis (e.g. the Process or Synthesize method of the FRDocument object), as these parameters become
meaningful only after synthesis.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Sets the shift of a character from the base line of the string in
pixels. The base line of the string is defined by the
IParagraphLine::BaseLine property. This property is mainly
used for the pictures embedded in text.

BaseLine Long

Stores the coordinate of the bottom border of the character
rectangle. This rectangle is defined on image, not accounting
for the text orientation. It may be undefined in which case all
four of its coordinate are zeros. This property cannot be
changed directly but through the SetRect method.

Bottom Long, read�only

Stores the index of the selected variant of character
recognition in the CharacterRecognitionVariants
collection.

CharacterRecognitionVariantIndex Long, read�only

Returns a collection of variants of character recognition.
The property contains zero for non�printable characters
(spaces, carriage returns, etc.) and characters that were not
recognized but added to the text during explicit editing. Zero
is also returned if the text was recognized by one of the
previous ABBYY FineReader Engine versions.
If the
IRecognizerParams::SaveCharacterRecognitionVariants
property is set to FALSE the return collection contains one
element, otherwise the collection contains no less than one
element and the variants are ordered from the best to the
worst.

CharacterRecognitionVariants,
read�only CharacterRecognitionVariants

Specifies the character exact region. The region may not be
rectangular and initially is contained in the rectangle defined
by the Left, Top, Right, and Bottom properties. If you change
the character exact region, the Left, Top, Right, and Bottom
properties are not changed. The property is only available after
recognition with the
IRecognizerParams::SaveCharacterRegions property set
to TRUE.

CharacterRegion Region

Note: The property returns a constant object. To change the
character exact region, you must first receive an intermediate
Region object with the help of the IEngine::CreateRegion
method, change the necessary parameters, and then assign this
object to the property.

Sets the RGB value of the color for the symbol. Its background
color is defined for the whole paragraph by the
IParagraphParams::BackgroundColor property. By default

Color Long

 301

ABBYY FineReader Engine 10 API Reference

the text color is black or RGB(0,0,0).
Note: The Long value is calculated from the RGB triplet

using the formula: (red value) + (256 x green value) + (65536
x blue value), where red value is the first triplet component,
green value is the second triplet component, blue value is the
third triplet component. Hence the Long value of the color
black equals 0.

Stores the name of the font for a character. By default this
value is "Times New Roman". This property cannot be changed
directly but via the SetFont method.

FontName String, read�only

Specifies the height of the font of the character in twips. Twip
is 1/20 of point, and point is 1/72". Default value of this
property corresponds to 10 points or 200 twips.

FontSize Long

FontStyle FontStyle Provides access to the font style of the character.

Stores the type of the font for a character. By default this value
is FT_Serif. This property cannot be changed directly but via
the SetFont method.

FontType FontTypeEnum, read�only

Stores horizontal scaling for a character in 1/1000. Default for
this property is 1000, which corresponds to no scaling. HorizontalScale Long

IsBold Boolean Specifies whether the character is bold.

IsItalic Boolean Specifies whether the character is italic.

Specifies whether a spell�checking was performed upon this
character. It is not used or set internally by ABBYY FineReader
Engine and just provides you a framework for spelling.

IsProofed Boolean

Specifies whether the character has "small caps" style. This
means that the small characters are displayed as small capitals. IsSmallCaps Boolean

IsStrikeout Boolean Specifies whether the character is strikeout.

IsSubscript Boolean Specifies whether the character is subscript. It cannot be set to
TRUE simultaneously with the IsSuperscript property, as this
will lead to errors during recognized text export.

IsSuperscript Boolean Specifies whether the character is superscript. It cannot be set
to TRUE simultaneously with the IsSubscript property, as this
will lead to errors during recognized text export.

IsSuspicious Boolean This property set to TRUE means that the character was
recognized uncertainly. More detailed information about
recognition confidence may be obtained for the certain
recognition variant from the CharacterRecognitionVariant
object. In ABBYY FineReader uncertainly recognized
characters are highlighted with background color in the
recognized text. See also What is the difference between the
CharConfidence and the IsSuspicious properties?

IsUnderlined Boolean Specifies whether the character is underlined.

IsWordStart Boolean Specifies whether the character is the first character in a word.

LanguageId LanguageIdEnum Specifies the ID of the language of the character. To convert it
to Win32 LCID use the
IEngine::ConvertLanguageIdToLCID method. By default
this property is initialized with system default language ID.

LanguageName String Stores and allows you to set internal name of the language for
a character.

Note: If one base recognition language corresponds to one
recognized word, the LanguageName property for each
character in this word is set to the internal name of the base
language after recognition. If several base recognition
languages correspond to one word (e.g. for bilingual

 302

ABBYY FineReader Engine 10 API Reference

compound words), the LanguageName property for the
characters in this word is empty. While the LanguageId
property contains the identifier of the base language no matter
what the recognized word is.

Stores the coordinate of the left border of the character
rectangle. This rectangle is defined on image, not accounting
for the text orientation. It may be undefined in which case all
four of its coordinate are zeros. This property cannot be
changed directly but through the SetRect method.

Left Long, read�only

Stores the coordinate of the right border of the character
rectangle. This rectangle is defined on image, not accounting
for the text orientation. It may be undefined in which case all
four of its coordinate are zeros. This property cannot be
changed directly but through the SetRect method.

Right Long, read�only

SelectedCharacterRecognitionVariant CharacterRecognitionVariant,
read�only

Stores the selected variant of character recognition. It is the
element with the index
CharacterRecognitionVariantIndex in the collection of
character recognition variants (the
CharacterRecognitionVariants property).

Spacing Long Specifies additional spacing between characters in twips. Twip
is 1/20 of point, and point is 1/72". Default value of this
property is 0.

Stores the coordinate of the top border of the character
rectangle. This rectangle is defined on image, not accounting
for the text orientation. It may be undefined in which case all
four of its coordinate are zeros. This property cannot be
changed directly but through the SetRect method.

Top Long, read�only

Returns a collection of recognition variants for the word to
which the character belongs.
The property contains zero for non�printable characters
(spaces, carriage returns, etc.) and characters that were not
recognized but added to the text during explicit editing. Zero
is also returned if the text was recognized by one of the
previous ABBYY FineReader Engine versions.
If the
IRecognizerParams::SaveWordRecognitionVariants
property is set to FALSE the return collection contains one
element, otherwise the collection contains no less than one
element and the variants are ordered from the best to the
worst.

WordRecognitionVariants,
read�only WordRecognitionVariants

Methods

Name Description
CopyFrom Initializes properties of the current object with the values of similar properties of another object.

SetFont Sets the new font for the symbol.

SetRect Sets the new rectangle for the symbol.

Output parameter

This object is the output parameter of the following methods:

• CreateCharParams of the Engine object,

• GetDropCapCharParams of the Paragraph object.

Input parameter

This object is the input parameter of the following methods:

• GetCharParams, SetCharParams, Insert, InsertParagraphBreak of the Paragraph object,

 303

ABBYY FineReader Engine 10 API Reference

• GetCharParams of the WordRecognitionVariant object.

See also

Paragraph
Working with Text
Working with Properties

See sample: RecognizedTextProcessing

SetFont Method of the CharParams Object

This method allows you to set a new font for the symbol. It simultaneously specifies the name of the font and its type, as these are
interdependent parameters. This method affects the ICharParams::FontName and ICharParams::FontType properties.

Visual Basic Syntax

Method SetFont(

 fontName As String,

 fontType As FontTypeEnum

)

C++ Syntax

HRESULT SetFont(

 BSTR fontName,

 FontTypeEnum fontType

);

Parameters

fontName

[in] This variable specifies the name of the new font.

fontType

[in] This variable specifies the type of the new font. It may be set to one of the constants from the FontTypeEnum enumeration.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

CharParams
FontTypeEnum

SetRect Method of the CharParams Object

This method allows you to set the rectangle for the symbol. It affects its Left, Top, Right, Bottom properties, and does not affect the
CharacterRegion property. The rectangle is defined in pixel coordinates on image.

Visual Basic Syntax

Method SetRect(

 left As Long,

 top As Long,

 right As Long,

 bottom As Long

)

C++ Syntax

HRESULT SetRect(

 long left,

 long top,

 long right,

 long bottom

);

 304

ABBYY FineReader Engine 10 API Reference

Parameters

left

[in] Coordinate for the left border of the rectangle.

top

[in] Coordinate for the top border of the rectangle.

right

[in] Coordinate for the right border of the rectangle.

bottom

[in] Coordinate for the bottom border of the rectangle.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

CharParams

WordRecognitionVariants Object (IWordRecognitionVariants Interface)

This object is a collection of variants of a word's recognition. The collection contains recognition variants ranked from best to worst.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element WordRecognitionVariant, read�only Provides access to a single element of the collection.

Methods

Name Description
Item Provides access to a single element of the collection.

Output parameter

This object is the output parameter of the following methods and properties:

• GetWordRecognitionVariants method of the Paragraph object

• GetRecognitionVariants method of the Word object

• WordRecognitionVariants property of the CharParams object

See also

WordRecognitionVariant
CharacterRecognitionVariants
Voting API
Working with Properties

WordRecognitionVariant Object (IWordRecognitionVariant Interface)

This object represents a variant of a word recognition. It is an element of WordRecognitionVariants collection.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

 305

ABBYY FineReader Engine 10 API Reference

IsWordFromDictionary Specifies whether the word was found in the dictionary. Boolean, read�only

Returns the mean width of stroke in the RLE representation of a word
image, expressed in pixels. MeanStrokeWidth Double, read�only

WordModelTypeEnum,
read�only ModelType Returns type of model used while composing the word.

Text Returns the word. String, read�only
Stores the value of word confidence. It is in the range from 0 to 100. It
represents an estimate of recognition confidence of the word in
percentage points. The greater its value, the greater the confidence. To
calculate confidence more accurately, set the
IRecognizerParams::ExactConfidenceCalculation property to TRUE.

WordConfidence Long, read�only

Methods

Name Description
GetCharParams Provides access to parameters of a single character.

Related objects

Output parameter

This object is the output parameter of the Item method of the WordRecognitionVariants object.

See also

WordRecognitionVariants
CharacterRecognitionVariant
Voting API
Working with Properties

GetCharParams Method of the WordRecognitionVariant Object

This method provides access to parameters of a single character. A character is indexed with its position inside the word. This index
must be in the range from zero to the length of word.

Visual Basic Syntax

Method GetCharParams(

 pos As Long,

 params As CharParams

)

C++ Syntax

HRESULT GetCharParams(

 long pos,

 ICharParams* params

);

Parameters

pos

[in] This variable contains the index of the character inside the word.

params

[in] This variable refers to a CharParams object. This object's properties are initialized with values corresponding to parameters of the
character. A valid object should be passed as this parameter.

 306

ABBYY FineReader Engine 10 API Reference

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

WordRecognitionVariant
CharParams
Voting API

CharacterRecognitionVariants Object (ICharacterRecognitionVariants Interface)

This object is a collection of recognition variants for a single character. The collection contains recognition variants ranked from the
best to the worst. You can select the best recognition variant for a character by voting between the variants. See for details Using
Voting API. The collection is accessible via the CharParams object.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element CharacterRecognitionVariant, read�only Provides access to a single element of the collection.

Methods

Name Description
Item Provides access to a single element of the collection.

Related objects

See also

CharParams
CharacterRecognitionVariant
WordRecognitionVariants
Using Voting API
Working with Properties

CharacterRecognitionVariant Object (ICharacterRecognitionVariant Interface)

This object represents the variant of a character recognition. The object provides access to the variant itself and its confidence,
probability that a character is written with a Serif font, and the information whether the character is superscript or subscript. It is an
element of the CharacterRecognitionVariants collection. You can select the best recognition variant for a character by voting
between the variants. See for details Using Voting API.

Properties

Name Type Description
Engine,
read�only Application Returns the Engine object.

String,
read�only Character Returns the variant of a character recognition.

Stores the value of character confidence. It is in the range from 0 to 100, and 255 corresponds to
the fact that confidence is undefined. It represents an estimate of recognition confidence of a
character in percentage points. The greater its value, the greater the confidence. Character

Long,
read�only CharConfidence

 307

ABBYY FineReader Engine 10 API Reference

confidence can be undefined, for example, for characters which were added during text editing. In
this case, the value of this property is �1. To calculate character confidence more accurately, set the
IRecognizerParams::ExactConfidenceCalculation property to TRUE. See also What is the
difference between the CharConfidence and the IsSuspicious properties?

Boolean,
read�only IsSubscript Specifies whether the character is subscript.

Boolean,
read�only IsSuperscript Specifies whether the character is superscript.

Long,
read�only

The value of this property specifies probability that a character is written with a Serif font. It is in
the range from 0 to 100, and 255 corresponds to the fact that this probability is undefined. SerifProbability

Related objects

Output parameter

This object is the output parameter of the Item method of the CharacterRecognitionVariants object.

See also

CharacterRecognitionVariants
WordRecognitionVariant
Using Voting API
Working with Properties

Words Object (IWords Interface)

This object represents a collection of words. The collection is accessible via the Paragraph object.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element Provides access to a single element of the collection. Word, read�only

Methods

Name Description
Item Provides access to a single element of the collection.

Output parameter

This object is the output parameter of the Words property of the Paragraph object.

See also

Word
Paragraph
Working with Properties

See samples: RecognizedTextProcessing, CustomLanguage

Word Object (IWord Interface)

This object represents a word. It is an element of the collection of words (Words object).

 308

ABBYY FineReader Engine 10 API Reference

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Returns the index of the first character in the word. The index is the
character position in the paragraph, it may be in the range of 0 to the value
of the IParagraph::Length property minus 1.

FirstSymbolPosition Long, read�only

IsWordFromDictionary Specifies whether the word was found in the dictionary. Boolean, read�only

WordModelTypeEnum,
read�only ModelType Returns type of model used while composing the word.

Text Returns the word. String, read�only

Methods

Name Description
GetRecognitionVariants Returns a collection of variants of a word's recognition.

Output parameter

This object is the output parameter of the Item method and Element property of the Words object.

See also

Words
Working with Properties

See sample: RecognizedTextProcessing

GetRecognitionVariants Method of the Word Object

This method returns a collection of variants of a word recognition. The method returns zero for non�printable characters (spaces,
carriage returns, etc.) and characters that were not recognized but added to the text during explicit editing. Zero is also returned if the
text was recognized by one of the previous ABBYY FineReader Engine versions. If the
IRecognizerParams::SaveWordRecognitionVariants property is set to FALSE the return collection contains one element,
otherwise the collection contains no less than one element and the variants are ordered from the best to the worst.

Visual Basic Syntax

Method GetRecognitionVariants(

) As WordRecognitionVariants

C++ Syntax

HRESULT GetRecognitionVariants(

 IWordRecognitionVariants** result

);

Parameters

result

[out] A pointer to IWordRecognitionVariants* pointer variable that receives the interface pointer to the
WordRecognitionVariants output object.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Word

Hyperlink Object (IHyperlink Interface)

This object exposes method and properties of a hyperlink.

 309

ABBYY FineReader Engine 10 API Reference

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Stores the hyperlink type which is detected automatically when the Target property is
assigned a hyperlink address. If the value of the IHyperlink::Scheme property is
HS_Unknown, the type of the hyperlink assigned to the Target property will be
detected automatically.

Scheme HyperlinkSchemeEnum

Stores the hyperlink address. If the link is local (i.e. to a text fragment in the same Text
object), this property must be assigned the same text as the
IParagraph::SetBookmark method, and the Scheme property must be specified for
the HS_Local value.

Target String

Methods

Name Description
ParseTarget Brings the Target property to the canonical form, according to the types described in HyperlinkSchemeEnum.

Input parameter

This object is the input parameter of the IParagraph::SetHyperlink method.

Output parameter

This object is the output parameter of the following methods and properties:

• CreateHyperlink method of the Engine object

• Hyperlink property of the Paragraph object

See also

Working with Text
Working with Properties

ParseTarget Method of the Hyperlink Object

This method brings the IHyperlink::Target property to the canonical form, according to the types described in
HyperlinkSchemeEnum. In particular, for all non�local hyperlinks, this method substitutes escape characters (white space,
backslash, etc.) with corresponding escape sequences. Besides, for example, the e�mail address "engine_support@abbyy.com" is
changed to "mailto:engine_support@abbyy.com", or the web�site address "www.abbyy.com" is changed to "http://www.abbyy.com".

Visual Basic Syntax

Method ParseTarget() As HyperlinkSchemeEnum

C++ Syntax

HRESULT ParseTarget(

 HyperlinkSchemeEnum* result

);

Parameters

result

[out] Refer to the HyperlinkSchemeEnum denoting the type of hyperlink.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Hyperlink

 310

ABBYY FineReader Engine 10 API Reference

TabPositions Object (ITabPositions Interface)

This object provides access to all the tab stops in a single paragraph. It allows you to access parameters of a single tab stop, add a new
tab stop and remove tab stops. The TabPositions object is accessed via the IParagraph::TabPositions property.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

TabPosition, read�
only

Provides access to a single element of the collection. The property returns a constant
object. Element

Methods

Name Description
Add Adds a new element at the end of the collection.

CopyFrom Initializes the properties of the current object with the values of similar properties of another object.

CreateTabPosition Creates the TabPosition object.

Item Provides access to a single element of the collection.

Remove Removes an element from the collection.

RemoveAll Removes all the elements from the collection.

Related objects

See also

TabPosition
Working with Properties

CreateTabPosition Method of the TabPositions Object

This method creates the TabPosition object. The newly created object has default values.

Visual Basic Syntax

Method CreateTabPosition(

) As TabPosition

C++ Syntax

HRESULT CreateTabPosition(

 ITabPosition** result

);

Parameters

result

[out] A pointer to ITabPosition* pointer variable that receives the interface pointer of the created object. result must not be NULL.
*result is guaranteed to be non�NULL after successful method call.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

 311

ABBYY FineReader Engine 10 API Reference

See also

TabPositions

TabPosition Object (ITabPosition Interface)

This object provides access to a single tab stop: the tab symbol, its alignment, and position in the paragraph.

Properties

Name Type Description
Specifies the alignment of the tab stop. By default the value of this property
is PTA_Left. Alignment ParagraphTabAlignmentEnum

Application Engine, read�only Returns the Engine object.

Specifies the position of the tab stop, counted from the left border of the
paragraph in hundredth parts of point. By default the value of this property
is �1, which means that the position is undefined.

Position Long

TabLeaderType TabLeaderTypeEnum Specifies the type of tab symbol. The value of this property is TLT_None by
default.

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

Related objects

Output parameter

This object is the output parameter of the following methods:

• CreateTabPosition method of the Engine object

• Item method of the TabPositions object

Input parameter

This object is the input parameter of the Add method of the TabPositions object.

See also

TabPositions
Working with Properties

TextOrientation Object (ITextOrientation Interface)

This object represents a text orientation.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Specifies if the image is mirrored around the vertical axis during preprocessing. The
recognized text receives this attribute if it belongs to a block or table cell that is also
mirrored. This property is FALSE by default.

IsVerticalMirrored Boolean

Specifies if the text on the page is divided into several columns or it is written in one
column. This property is TRT_Unknown by default.

ReadingType ReadingTypeEnum

 312

ABBYY FineReader Engine 10 API Reference

Specifies the orientation of a text. This property is RT_NoRotation by default, which
means that the orientation is normal. RotationType RotationTypeEnum

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

IsEqualTo Checks if the text orientation is equal to the specified orientation.

Related objects

Output parameter

This object is the output parameter of the following methods:

• CreateTextOrientation of the Engine object

• DetectOrientation of the FRPage object

See also

DocumentStream,
TextBlock
Working with Properties

IsEqualTo Method of the TextOrientation Object

This method allows you to check if the orientation is equal to the specified orientation.

Visual Basic Syntax

Method IsEqualTo(

 orientation As TextOrientation

) As Boolean

C++ Syntax

HRESULT IsEqualTo(

 ITextOrientation* orientation,

 VARIANT_BOOL* result

);

Parameters

orientation

[in] This variable refers to the TextOrientation object that is to be compared with the current object.

result

[out, retval] This variable contains the result of comparison. It returns TRUE, if the orientations are equal.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

TextOrientation

 313

ABBYY FineReader Engine 10 API Reference

PlainText Object (IPlainText Interface)

This object represents recognized text in a special "plain text" format. It provides information only about the recognized text symbols,
their recognition confidence and positions as relative to the source image. You can receive this information either for certain character
or for all the characters in the text.

Properties

Name Type Description
Engine,
read�
only

Application Returns the Engine object.

Long,
read�
only

This property is indexed by the index of a symbol in the recognized text. It returns the coordinate of
the bottom border of the symbol's rectangle as relative to the deskewed black�and�white plane of
the source image.

Bottom

This property is indexed by the index of a symbol in the recognized text. It returns the character
confidence. It is in the range from 0 to 100, and 255 corresponds to the fact that confidence is
undefined. It represents an estimate of recognition confidence of a character in percentage points.
The greater its value, the greater the confidence. Character confidence can be undefined, for
example, for characters which were added during text editing. In this case, the value of this property
is �1. To calculate character confidence more accurately, set the
IRecognizerParams::ExactConfidenceCalculation property to TRUE. See also What is the
difference between the CharConfidence and the IsSuspicious properties?

Long,
read�
only

CharConfidence

Long,
read�
only

This property is indexed by the index of a symbol in the recognized text. It returns the coordinate of
the left border of the character's rectangle as relative to the deskewed black�and�white plane of the
source image.

Left

Long,
read�
only

This property is indexed by the index of a symbol in the recognized text. It returns the number of
the page on which the specified symbol is located. PageNumber

Long,
read�
only

This property is indexed by the index of a symbol in the recognized text. It returns the coordinate of
the right border of the symbol's rectangle as relative to the deskewed black�and�white plane of the
source image.

Right

SymbolsCount Returns the number of symbols in the text, including the special characters. Long,
read�
only

Provides access to the whole recognized text in a form of Unicode string. This string may contain
the following special characters:

• 0x2028 — Line break symbol

• 0x2029 — Paragraph break symbol

String,
read�
only

• 0xFFFC — Object replacement character Text

• 0x0009 — Tabulation

• 0x005E — Circumflex accent

Note: If the image has tables, text from the table cells will be stored in the logical reading order
(left�to�right and top�down).

Top Long,
read�
only

This property is indexed by the index of a symbol in the recognized text. It returns the coordinate of
the top border of the symbol's rectangle as relative to the deskewed black�and�white plane of the
source image.

Methods

Name Description
Returns the information about all characters in the text as a set of arrays: the page numbers on which the
characters are located, the coordinates of characters' rectangles, and characters' confidences. GetCharacterData

 314

ABBYY FineReader Engine 10 API Reference

SaveToAsciiXMLFile Saves the recognized text into an XML file.

SaveToTextFile Saves the recognized text into a text file with the specified encoding.

Output parameter

This object is the output parameter of the following methods:

• RecognizeImageDocumentAsPlainText, RecognizeImageAsPlainText method of the Engine object.

• RecognizeImageDocumentAsPlainText method of the DocumentAnalyzer object.

• PlainText property of the FRDocument object.

• PlainText property of the FRPage object.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.
 FREngine::IEnginePtr Engine;
 ...
 // Analyze and recognize the image
 FREngine::IPlainTextPtr text = Engine->RecognizeImageAsPlainText(L"D:\\Demo.tif", 0,
0, 0);

 // Save results
 text->SaveToTextFile(L"D:\\sample.txt", FREngine::TET_Simple, FREngine::CP_Latin);

Visual Basic code

' Global ABBYY FineReader Engine object.
 Public Engine As FREngine.Engine
 ...
 ' Analyze and recognize the image
 Dim Text As FREngine.PlainText
 Set Text = Engine.RecognizeImageAsPlainText("D:\Demo.tif")

 ' Save results
 Text.SaveToTextFile "D:\sample.txt", TET_Simple, CP_Latin

See also

Working with Text
Working with Properties

GetCharacterData Method of the PlainText Object

This method returns the information about all characters in the text as a set of arrays: the page numbers on which the characters are
located, the coordinates of characters' rectangles, and characters' confidences.

Visual Basic Syntax

Method GetCharacterData(

 pageNumbers As SAFEARRAY,

 leftBorders As SAFEARRAY,

 topBorders As SAFEARRAY,

 rightBorders As SAFEARRAY,

 bottomBorders As SAFEARRAY,

 confidences As SAFEARRAY

)

C++ Syntax

HRESULT GetCharacterData(

 SAFEARRAY* pageNumbers,

 SAFEARRAY* leftBorders,

 SAFEARRAY* topBorders,

 SAFEARRAY* rightBorders,

 315

ABBYY FineReader Engine 10 API Reference

 SAFEARRAY* bottomBorders,

 SAFEARRAY* confidences

);

Parameters

pageNumbers

[out] An array of page numbers on which the characters are located.

leftBorders

[out] An array of coordinates of left borders of characters' rectangles as relative to the deskewed black�and�white plane of the source
image.

topBorders

[out] An array of coordinates of top borders of characters' rectangles as relative to the deskewed black�and�white plane of the source
image.

rightBorders

[out] An array of coordinates of right borders of characters' rectangles as relative to the deskewed black�and�white plane of the source
image.

bottomBorders

[out] An array of coordinates of bottom borders of characters' rectangles as relative to the deskewed black�and�white plane of the
source image.

confidences

[out] An array of characters' confidences.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

PlainText

SaveToAsciiXMLFile Method of the PlainText Object

This method saves the recognized text from the PlainText object into a XML file, including characters positions and recognition
confidence information. The format of this XML file is the same as when exporting to XML format with
IXMLExportParams::WriteCharAttributes property set to XCA_Ascii.

Visual Basic Syntax

Method SaveToAsciiXMLFile(

 path As String

)

C++ Syntax

HRESULT SaveToAsciiXMLFile(

 BSTR path

);

Parameters

path

[in] A string containing the full path to the file where the text should be saved. If this file does not exist, it will be created. If it does
exist, it will be overwritten without prompt.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

PlainText

 316

ABBYY FineReader Engine 10 API Reference

SaveToTextFile Method of the PlainText Object

This method saves the recognized text from the PlainText object into a text file with the specified encoding.

Visual Basic Syntax

Method SaveToTextFile(

 path As String,

 encodingType As TextEncodingTypeEnum,

 codePageEnum As CodePageEnum

)

C++ Syntax

HRESULT SaveToTextFile(

 BSTR path,

 TextEncodingTypeEnum encodingType,

 CodePageEnum codePageEnum

);

Parameters

path

[in] A string containing the full path to the file where the text should be saved. If this file does not exist, it will be created. If it exists, it
will be overwritten without prompt.

encodingType

[in] Specifies the text encoding type. It may be set to one of the constants from the TextEncodingTypeEnum enumeration.

codePageEnum

[in] Specifies the code page. It may be set to one of the constants from the CodePageEnum enumeration. The value of this parameter
is taken into account only when the encodingType parameter has value TET_Simple (exported text is not Unicode). If this property
does not specify any code page (CP_Null), the code page is selected automatically.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.
 FREngine::IEnginePtr Engine;
 ...
 // Analyze and recognize the image
 FREngine::IPlainTextPtr text = Engine->RecognizeImageAsPlainText(L"D:\\Demo.tif", 0,
0, 0);

 // Save results
 text->SaveToTextFile(L"D:\\sample.txt", FREngine::TET_Simple, FREngine::CP_Latin);

Visual Basic code

' Global ABBYY FineReader Engine object.
 Public Engine As FREngine.Engine
 ...
 ' Analyze and recognize the image
 Dim Text As FREngine.PlainText
 Set Text = Engine.RecognizeImageAsPlainText("D:\Demo.tif")

 ' Save results
 Text.SaveToTextFile "D:\sample.txt", TET_Simple, CP_Latin

See also

PlainText

 317

ABBYY FineReader Engine 10 API Reference

Document�Related Objects
These objects can be divided into the following three groups:

• Document Organization Objects
Document organization is represented by the document itself and its pages. ABBYY FineReader Engine provides the
FRDocument, FRPages and FRPage objects for working with the document and its pages.

• Document Synthesis Objects
Document synthesis is performed after recognition and allows the program to recreate the logical structure of a document
and formatting attributes including headers, footers, page numbers, fonts and styles and more. ABBYY FineReader Engine
provides the DocumentStructure and PageStructure objects and a set of their subobjects to access the results of
document and page synthesis.

• Supplementary Objects
Some additional information which is stored in the document, such as information about the author, keywords, subject, title
of the document, can be accessed using these objects.

 318

ABBYY FineReader Engine 10 API Reference

The document�related objects hierarchy

For more information about the hierarchy of the ABBYY FineReader Engine objects, please see the Object Diagram.

 319

ABBYY FineReader Engine 10 API Reference

Document Organization Objects
Document organization is represented by the document itself and its pages. ABBYY FineReader Engine provides the FRDocument,
FRPages and FRPage objects for working with the document and its pages. The FRDocument object is at the top of the document
organization object's hierarchy. It exposes a set of analysis, recognition, synthesis and export methods. The FRPage object provides a
set of methods for working with a certain page. The FRPages object contains the collection of document pages.

This section contains the descriptions of the following document organization objects and callback interfaces:

• FRDocument

• FRPages

• FRPage

• IFRDocumentEvents

• IFRPagesEvents

• IFRPageEvents

The document organization objects hierarchy

For more information about the hierarchy of the ABBYY FineReader Engine objects, please see the Object Diagram.

FRDocument Object (IFRDocument Interface)

This object corresponds to a processing document which may contain several pages. The FRDocument object is a root for a
collection of document pages. Each page represents an open image file and image layout. The object contains properties for accessing
different document attributes such as its author, keywords, subject, and title, which are obtainable via the DocumentContentInfo
property, and provides a set of properties and methods for document processing.

It is not recommended to recognize more than one document with the use of a single instance of the FRDocument object, as it may
lead to unpredictable effects. Create a new instance of the FRDocument object for each new document.

After you have finished your work with the FRDocument object, release all the resources that were used by this object (use the Close
method).

Important! Pointers to child object's interfaces are valid until the FRDocument object exists. An attempt to access a child object
after its parent object has been destroyed may result in error. Please, see for details Working with Properties.

The FRDocument object is a so�called "connectable object." It may be declared WithEvents in Visual Basic. For a C++ user, this means
that it supports the IConnectionPointContainer interface. To receive notification events during recognition, a C++ user should
create an object derived from the IFRDocumentEvents interface, then set up the connection between it and the events source
implemented in the FRDocument object by standard COM means.

The methods of the FRDocument object report information about document processing progress through special outgoing
interfaces. These interfaces are IFRDocumentEvents (for C++) and dispinterface DIFRDocumentEvents (for Visual Basic). It
should be noted that Visual Basic users should not care for details of implementing event interfaces, as this development platform
provides easy means for handling them.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Returns a reference to the DocumentContentInfo object, which
contains information about the author, keywords, subject, and title of
the document and stores the document information dictionary.

DocumentContentInfo DocumentContentInfo

DocumentStructure, read�
only

Provides access to the logical structure and styles of the document. This
property becomes meaningful only after document synthesis. DocumentStructure

 320

ABBYY FineReader Engine 10 API Reference

Specifies if the ImageDocument and the Layout objects for
corresponding pages should be unloaded and saved to disk if there are
no references to these objects. This property is PFP_Auto by default.

PageFlushingPolicy PageFlushingPolicyEnum Note: To unload and save to disk the ImageDocument and the
Layout objects for separate pages of the document, use the
IFRPage::Flush method for the corresponding pages.

Pages Returns a collection of pages of a document. FRPages, read�only

PlainText Returns the text of the document in a special "plain text" format. PlainText, read�only

Specifies the path to the folder where the temporary image files in the
ABBYY FineReader Engine internal format are stored. TempDir String

Methods
Name Description
AddImage Adds one open image, represented by the ImageDocument object, to the document.

Opens an image file and adds the pages corresponding to the opened file to the
document. AddImageFile

Opens a password�protected image file and adds the pages corresponding to the opened
file to the document. AddImageFileWithPassword

Opens an image file using the IImagePasswordCallback interface and adds the pages
corresponding to the opened file to the document. AddImageFileWithPasswordCallback

Performs layout analysis of all pages in the document. Analyze
Performs layout analysis, recognition, and page synthesis of all pages in the document. AnalyzeAndRecognize
Performs layout analysis, recognition, and page synthesis of the specified pages in the
document. AnalyzeAndRecognizePages

Performs layout analysis of specified pages in a document. AnalyzePages
Releases all the resources that were used by the FRDocument object and returns the
object into the initial state (as after its creation with the IEngine::CreateFRDocument
method).

Close

Saves the document into a file in an external format. Export
Saves the specified pages into a file in an external format. ExportPages
Performs layout analysis, recognition, and synthesis of all pages in the document. Process
Performs recognition and page synthesis of all pages in the document. Recognize
Performs recognition and page synthesis of the specified pages in the document. RecognizePages
Performs document synthesis of all pages in the document. Synthesize
Performs document synthesis of the specified pages in the document. SynthesizePages

Related objects

Output parameter

The FRDocument object is the output parameter of the CreateFRDocument and CreateFRDocumentFromImage methods of
the Engine object.

 321

ABBYY FineReader Engine 10 API Reference

See also

FRPage
IFRDocumentEvents
Working with Connectable Objects
Working with Properties

See samples: Hello, RecognizedTextProcessing, CustomLanguage, EventsHandling

AddImage Method of the FRDocument Object

This method adds one open image, represented by the ImageDocument object, to a document.

This method does not report any events to the listeners attached to the IConnectionPointContainer interface of the FRDocument
object.

Visual Basic Syntax

Method AddImage(

 image As ImageDocument

)

C++ Syntax

HRESULT AddImage(

 IImageDocument* image

);

Parameters

image

[in] This variable refers to the ImageDocument object corresponding to the image that is to be added.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

FRDocument
Working with Images

AddImageFile Method of the FRDocument Object

This method opens a specified image file and adds the pages corresponding to the opened file to a document. This method may report
events to the listeners attached to the IConnectionPointContainer interface of the FRDocument object.

Visual Basic Syntax

Method AddImageFile(

 imageFileName As String,

 prepareMode As PrepareImageMode,

 pageIndices As LongsCollection

)

C++ Syntax

HRESULT AddImageFile(

 BSTR imageFileName,

 IPrepareImageMode* prepareMode,

 ILongsCollection* pageIndices

);

Parameters

imageFileName

[in] This variable contains a full path to the image file to open. For example, "C:\MyPictures\MyPic.bmp".

prepareMode

[in] This parameter refers to the PrepareImageMode object which specifies how an image will be preprocessed during opening.

 322

ABBYY FineReader Engine 10 API Reference

pageIndices

[in] This parameter refers to the LongsCollection object which specifies the indices of the pages which have to be added to a
document. This parameter is optional and may be 0, in which case all the pages corresponding to the opened file will be added to the
document.

Return Values

This method has no specific return values. It returns the standard return values of the ABBYY FineReader Engine functions.

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

FREngine::IEnginePtr Engine;

// Create FRDocument object

FREngine::IFRDocumentPtr frDocument = Engine–>CreateFRDocument();

// Add image file

frDocument–>AddImageFile(L"D:\\Demo.tif", 0, 0);

Visual Basic code

' Global ABBYY FineReader Engine object.

Public Engine As FREngine.Engine

' Create FRDocument object

Dim frDocument As FREngine.FRDocument

Set frDocument = Engine.CreateFRDocument

' Add image file

frDocument.AddImageFile "D:\Demo.tif"

See also

FRDocument
IFRDocument::AddImageFileWithPassword
IFRDocument::AddImageFileWithPasswordCallback
IFRDocument::AddImage
Working with Images

See sample: EventsHandling

AddImageFileWithPassword Method of the FRDocument Object

This method opens a password�protected image file and adds the pages corresponding to the opened file to a document.

This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRDocument object.

Visual Basic Syntax

Method AddImageFileWithPassword(

 imageFileName As String,

 password As String,

 prepareMode As PrepareImageMode,

 pageIndices As LongsCollection

)

C++ Syntax

HRESULT AddImageFileWithPassword(

 BSTR imageFileName,

 BSTR password,

 IPrepareImageMode* prepareMode,

 ILongsCollection* pageIndices

);

Parameters

imageFileName

[in] This variable contains the full path to the image file to be opened. For example, "C:\MyPictures\MyPic.bmp".

 323

ABBYY FineReader Engine 10 API Reference

password

[in] This variable contains a password for accessing images in PDF format.

prepareMode

[in] This parameter refers to the PrepareImageMode object which specifies how an image will be preprocessed during opening.

pageIndices

[in] This parameter refers to the LongsCollection object which specifies the indices of the pages which have to be added to a
document. This parameter is optional and may be 0, in which case all the pages corresponding to the opened file will be added to the
document.

Return Values

This method has no specific return values. It returns the standard return values of the ABBYY FineReader Engine functions.

See also

FRDocument
IFRDocument::AddImageFileWithPasswordCallback
IFRDocument::AddImageFile
Working with Images

AddImageFileWithPasswordCallback Method of the FRDocument Object

This method opens an image file using the IImagePasswordCallback interface and adds the pages corresponding to the opened file
to a document.

This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRDocument object.

Visual Basic Syntax

Method AddImageFileWithPasswordCallback(

 imageFileName As String,

 callback As ImagePasswordCallback,

 prepareMode As PrepareImageMode,

 pageIndices As LongsCollection

)

C++ Syntax

HRESULT AddImageFileWithPasswordCallback(

 BSTR imageFileName,

 IImagePasswordCallback* callback,

 IPrepareImageMode* prepareMode,

 ILongsCollection* pageIndices

);

Parameters

imageFileName

[in] This variable contains the full path to the image file to be opened. For example, "C:\MyPictures\MyPic.pdf".

callback

[in] This variable refers to the interface of the user�implemented object of the type ImagePasswordCallback which is used to handle
possible password requests for accessing images in PDF format. This parameter is optional and may be 0, in which case password�
protected files cannot be processed.

prepareMode

[in] This parameter refers to the PrepareImageMode object which specifies how an image will be preprocessed during opening.

pageIndices

[in] This parameter refers to the LongsCollection object which specifies the indices of the pages which have to be added to a
document. This parameter is optional and may be 0, in which case all the pages corresponding to the opened file will be added to the
document.

 324

ABBYY FineReader Engine 10 API Reference

Return Values

This method has no specific return values. It returns the standard return values of the ABBYY FineReader Engine functions.

See also

FRDocument
IFRDocument::AddImageFileWithPassword
IFRDocument::AddImageFile
Working with Images

Analyze Method of the FRDocument Object

This method performs the layout analysis of all pages in a document.

This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRDocument object.

Visual Basic Syntax

Method Analyze(

 pageProcessingParams As PageProcessingParams

)

C++ Syntax

HRESULT Analyze(

 IPageProcessingParams* pageProcessingParams

);

Parameters

pageProcessingParams

[in] The PageProcessingParams object that stores parameters of layout analysis. This parameter may be 0. In this case the page is
analyzed with default parameters (all page processing parameters are set to default values), or, if a profile has been loaded, the
parameters set by this profile are used.

Return Values

If layout analysis is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

Remarks

Depending on the value of the IEngine::MultiProcessingParams property, ABBYY FineReader Engine can distribute analysis and
recognition of multi�page documents to CPU cores.

See also

FRDocument
Working with Profiles

AnalyzeAndRecognize Method of the FRDocument Object

This method performs the layout analysis, recognition, and page synthesis of all pages in the document.

Visual Basic Syntax

Method AnalyzeAndRecognize(

 pageProcessingParams As PageProcessingParams,

 synthesisParamsForPage As SynthesisParamsForPage

)

C++ Syntax

HRESULT AnalyzeAndRecognize(

 IPageProcessingParams* pageProcessingParams,

 ISynthesisParamsForPage* synthesisParamsForPage

);

Parameters
pageProcessingParams

 325

ABBYY FineReader Engine 10 API Reference

[in] The PageProcessingParams object that stores parameters of layout analysis and recognition. This parameter may be 0. In this
case the page is analyzed and recognized with default parameters (all page processing parameters are set to default values), or, if a
profile has been loaded, the parameters set by this profile are used.

synthesisParamsForPage

[in] The SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In this case each page is
synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

Return Values

If layout analysis or recognition is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes
of the ABBYY FineReader Engine functions.

Remarks

• This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRDocument
object.

• Depending on the value of the IEngine::MultiProcessingParams property, ABBYY FineReader Engine can distribute analysis
and recognition of multi�page documents to CPU cores.

See also

FRDocument

AnalyzeAndRecognizePages Method of the FRDocument Object

This method performs layout analysis, recognition, and page synthesis of the specified pages in the document.

Visual Basic Syntax

Method AnalyzeAndRecognizePages(

 pageIndices As LongsCollection,

 pageProcessingParams As PageProcessingParams,

 synthesisParamsForPage As SynthesisParamsForPage

)

C++ Syntax

HRESULT AnalyzeAndRecognizePages(

 ILongsCollection* pageIndices,

 IPageProcessingParams* pageProcessingParams,

 ISynthesisParamsForPage* synthesisParamsForPage

);

Parameters
pageIndices

[in] This parameter refers to the LongsCollection object that contains the numbers of pages to be processed.

pageProcessingParams

[in] The PageProcessingParams object that stores parameters of layout analysis and recognition. This parameter may be 0. In this
case the page is analyzed and recognized with default parameters (all page processing parameters are set to default values), or, if a
profile has been loaded, the parameters set by this profile are used.

synthesisParamsForPage

[in] The SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In this case each page is
synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

Return Values

If layout analysis or recognition is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes
of the ABBYY FineReader Engine functions.

Remarks

• This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRDocument
object.

• Depending on the value of the IEngine::MultiProcessingParams property, ABBYY FineReader Engine can distribute analysis
and recognition of multi�page documents to CPU cores.

 326

ABBYY FineReader Engine 10 API Reference

See also

FRDocument
Working with Profiles

AnalyzePages Method of the FRDocument Object

This method performs the layout analysis of specified pages in a document.

This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRDocument object.

Visual Basic Syntax

Method AnalyzePages(

 pageIndices As LongsCollection,

 pageProcessingParams As PageProcessingParams

)

C++ Syntax

HRESULT AnalyzePages(

 ILongsCollection* pageIndices,

 IPageProcessingParams* pageProcessingParams

);

Parameters

pageIndices

[in] This parameter refers to the LongsCollection object that contains the numbers of pages to be analyzed.

pageProcessingParams

[in] The PageProcessingParams object that stores parameters of layout analysis. This parameter may be 0. In this case the page is
analyzed with default parameters — all page processing parameters are set to default values, or, if a profile has been loaded, the
parameters set by this profile are used.

Return Values

If layout analysis is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

Remarks

Depending on the value of the IEngine::MultiProcessingParams property, ABBYY FineReader Engine can distribute analysis and
recognition of multi�page documents to CPU cores.

See also

FRDocument
Working with Profiles

Close Method of the FRDocument Object

This method releases all the resources that were used by the FRDocument object (frees the memory, removes temporary files). The
FRDocument object is returned to the initial state — the state of the object after its creation with the IEngine::CreateFRDocument
method.

Visual Basic Syntax

Method Close()

C++ Syntax

HRESULT Close();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

• We recommend that you use this method each time you have finished to work with the current FRDocument object. After
the method is called, the object can be reused.

 327

ABBYY FineReader Engine 10 API Reference

• For .NET calling of this method is required. We recommend using it in finally blocks.

See also

FRDocument
Engine

Export Method of the FRDocument Object

This method saves document into a file in an external format. Available file formats are represented by the FileExportFormatEnum
enumeration constants. This method may report events to the listeners attached to the IConnectionPointContainer interface of the
FRDocument object.

Visual Basic Syntax

Method Export(

 exportFileName As String,

 format As FileExportFormatEnum,

 exportParams As Unknown

)

C++ Syntax

HRESULT Export(

 BSTR exportFileName,

 FileExportFormatEnum format,

 IUnknown* exportParams

);

Parameters

exportFileName

[in] This variable contains the full path to the output file. If this file already exists, it is overwritten without prompt.

format

[in] This variable specifies the format of the output file. See the FileExportFormatEnum description for the supported file formats.

exportParams

[in] Pass the export parameters object of the type corresponding to your file format through this input parameter. For example, if you
are saving the text into an RTF file, create an RTFExportParams object, set the necessary parameters in it, and pass it to this method
as the exportParams input parameter. This parameter may be 0, in which case the default values for the export parameters are used.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

FRDocument
IEngine::ExportPages
IExporter::ExportPages

See samples: Hello, EventsHandling

ExportPages Method of the FRDocument Object

This method saves specified pages into a file in an external format. Available file formats are represented by the
FileExportFormatEnum enumeration constants. This method may report events to the listeners attached to the
IConnectionPointContainer interface of the FRDocument object.

Visual Basic Syntax

Method ExportPages(

 exportFileName As String,

 format As FileExportFormatEnum,

 exportParams As Unknown,

 pageIndices As LongsCollection

)

 328

ABBYY FineReader Engine 10 API Reference

C++ Syntax

HRESULT ExportPages(

 BSTR exportFileName,

 FileExportFormatEnum format,

 IUnknown* exportParams,

 ILongsCollection* pageIndices

);

Parameters

exportFileName

[in] This variable contains the full path to the output file. If this file already exists, it is overwritten without prompt.

format

[in] This variable specifies the format of the output file. See the FileExportFormatEnum description for the supported file formats.

exportParams

[in] Pass the export parameters object of the type corresponding to your file format through this input parameter. For example, if you
are saving the text into an RTF file, create an RTFExportParams object, set the necessary parameters in it, and pass it to this method
as the exportParams input parameter. This parameter may be 0, in which case the default values for the export parameters are used.

pageIndices

[in] This parameter refers to the LongsCollection object that contains the numbers of pages to be exported. Must not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

FRDocument
IEngine::ExportPages
IExporter::ExportPages

Process Method of the FRDocument Object

This method performs the layout analysis, recognition, and synthesis of all pages in a document. This method may report events to the
listeners attached to the IConnectionPointContainer interface of the FRDocument object.

Visual Basic Syntax

Method Process(

 pageProcessingParams As PageProcessingParams,

 synthesisParamsForPage As SynthesisParamsForPage,

 synthesisParamsForDocument As SynthesisParamsForDocument

)

C++ Syntax

HRESULT Process(

 IPageProcessingParams* pageProcessingParams,

 ISynthesisParamsForPage* synthesisParamsForPage,

 ISynthesisParamsForDocument* synthesisParamsForDocument

);

Parameters

pageProcessingParams

[in] The PageProcessingParams object that stores parameters of analysis and recognition. This parameter may be 0. In this case the
page is analyzed and recognized with default parameters (all page processing parameters are set to default values), or, if a profile has
been loaded, the parameters set by this profile are used.

synthesisParamsForPage

[in] The SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In this case each page is
synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

 329

ABBYY FineReader Engine 10 API Reference

synthesisParamsForDocument

[in] The SynthesisParamsForDocument object that stores parameters of document synthesis. This parameter may be 0. In this case
the document is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

Return Values

If the layout analysis, recognition, or synthesis is interrupted by the user, this method will return E_ABORT. It also returns the standard
return codes of the ABBYY FineReader Engine functions.

Remarks

Depending on the value of the IEngine::MultiProcessingParams property, ABBYY FineReader Engine can distribute analysis and
recognition of multi�page documents to CPU cores.

See also

FRDocument
Working with Profiles

See samples: Hello, RecognizedTextProcessing, CustomLanguage, EventsHandling

Recognize Method of the FRDocument Object

This method performs recognition and page synthesis of all pages in the document.

Visual Basic Syntax

Method Recognize(

 synthesisParamsForPage As SynthesisParamsForPage,

 extractionParams As ObjectsExtractionParams

)

C++ Syntax

HRESULT Recognize(

 ISynthesisParamsForPage* synthesisParamsForPage,

 IObjectsExtractionParams* extractionParams

);

Parameters

synthesisParamsForPage

[in] The SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In this case the page is
synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

extractionParams

[in] The ObjectsExtractionParams object that stores parameters of objects extraction. This parameter may be 0. In this case the
objects are extracted with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

Return Values

If recognition is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

Remarks

• This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRDocument
object.

• Depending on the value of the IEngine::MultiProcessingParams property, ABBYY FineReader Engine can distribute analysis
and recognition of multi�page documents to CPU cores.

See also

FRDocument
Working with Profiles

RecognizePages Method of the FRDocument Object

This method performs recognition and page synthesis of the specified pages in the document.

 330

ABBYY FineReader Engine 10 API Reference

Visual Basic Syntax

Method RecognizePages(

 pageIndices As LongsCollection,

 synthesisParamsForPage As SynthesisParamsForPage,

 extractionParams As ObjectsExtractionParams

)

C++ Syntax

HRESULT RecognizePages(

 ILongsCollection* pageIndices,

 ISynthesisParamsForPage* synthesisParamsForPage,

 IObjectsExtractionParams* extractionParams

);

Parameters

pageIndices

[in] This parameter refers to the LongsCollection object that contains the numbers of pages to be recognized.

synthesisParamsForPage

[in] The SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In this case the page is
synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

extractionParams

[in] The ObjectsExtractionParams object that stores parameters of objects extraction. This parameter may be 0. In this case the
objects are extracted with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

Return Values

If recognition is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

Remarks

• This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRDocument
object.

• Depending on the value of the IEngine::MultiProcessingParams property, ABBYY FineReader Engine can distribute analysis
and recognition of multi�page documents to CPU cores.

See also

FRDocument
Working with Profiles

Synthesize Method of the FRDocument Object

This method performs document synthesis of all pages in the document.

Visual Basic Syntax

Method Synthesize(

 synthesisParamsForDocument As SynthesisParamsForDocument

)

C++ Syntax

HRESULT Synthesize(

 ISynthesisParamsForDocument* synthesisParamsForDocument

);

Parameters

synthesisParamsForDocument

[in] The SynthesisParamsForDocument object that stores parameters of document synthesis. This parameter may be 0. In this case
the document is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

 331

ABBYY FineReader Engine 10 API Reference

Return Values

If synthesis is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

Remarks

This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRDocument object.

See also

FRDocument
IFRDocument::SynthesizePages
Working with Profiles

SynthesizePages Method of the FRDocument Object

This method performs document synthesis of the specified pages in the document.

Visual Basic Syntax

Method SynthesizePages(

 pageIndices As LongsCollection,

 synthesisParamsForDocument As SynthesisParamsForDocument

)

C++ Syntax

HRESULT SynthesizePages(

 ILongsCollection* pageIndices,

 ISynthesisParamsForDocument* synthesisParamsForDocument

);

Parameters

pageIndices

[in] This parameter refers to the LongsCollection object that contains the indexes of pages to be synthesized.

synthesisParamsForDocument

[in] The SynthesisParamsForDocument object that stores parameters of document synthesis. This parameter may be 0. In this case,
the pages are synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

Return Values

If synthesis is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

Remarks

This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRDocument object.

See also

FRDocument
IFRDocument::Synthesize
Working with Profiles

FRPages Object (IFRPages Interface)

This object is a collection of document pages. The collection is accessible via the FRDocument object.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

The FRPages object is a so�called "connectable object". It may be declared WithEvents in Visual Basic. For C++ user this fact means that
it supports the IConnectionPointContainer interface. To receive notification events during recognition, a C++ user should create
an object derived from the IFRPagesEvents interface, then set up the connection between it and events source implemented in
FRPages object by standard COM means.

The methods of the FRPages object report the information about document processing progress through a special outgoing interfaces.
These interfaces are IFRPagesEvents (for C++) and a dispinterface DIFRPagesEvents (for Visual Basic). It's worth noting that Visual

 332

ABBYY FineReader Engine 10 API Reference

Basic users should not care for details of event interfaces implementation as this development platform provides easy means for
handling them.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element Provides access to one page of the collection. FRPage, read�only

Methods

Name Description
Find Returns index of specified page in collection.

Item Provides access to a single element of the collection.

Remove Removes an element from the collection.

Renumber Renumbers elements of collection.

Swap Exchanges the contents of two elements.

See also

FRDocument
FRPage
Working with Connectable Objects
Working with Properties

See sample: RecognizedTextProcessing

Find Method of the FRPages Object

This method returns index of specified page in collection. If there is no such page in the collection, �1 is returned. This method does
not report any events to the listeners attached to the IConnectionPointContainer interface of the FRPages object.

Visual Basic Syntax

Method Find(

 page As FRPage

)As Long

C++ Syntax

HRESULT Find(

 IFRPage* page,

 long* index

);

Parameters

page

[in] The FRPage object contains a page that must be find.

index

[out] This parameter contains the index of element which corresponds to specified page.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

FRPages
FRDocument
FRPage

 333

ABBYY FineReader Engine 10 API Reference

Renumber Method of the FRPages Object

This method renumbers elements of collection. This method may report events to the listeners attached to the
IConnectionPointContainer interface of the FRPages object.

Visual Basic Syntax

Method Renumber(

 newOrder As LongsCollection

)

C++ Syntax

HRESULT Renumber(

 ILongsCollection* newOrder

);

Parameters

newOrder

[in] This parameter refers to the LongsCollection object that contains a new order of the pages in collection.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

FRPages
FRDocument

Swap Method of the FRPages Object

This method exchanges the contents of two elements. This method may report events to the listeners attached to the
IConnectionPointContainer interface of the FRPages object.

Visual Basic Syntax

Method Swap(

 firstIndex As Long,

 secondIndex As Long

)

C++ Syntax

HRESULT Swap(

 long firstIndex,

 long secondIndex

);

Parameters

firstIndex

[in] This parameter contains the index of first element in collection for exchange.

secondIndex

[in] This parameter contains the index of second element in collection for exchange.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

FRPages
FRDocument

FRPage Object (IFRPage Interface)

This object corresponds to a page of a document. It provides a set of page processing methods. This object is an element of the
FRPages collection.

 334

ABBYY FineReader Engine 10 API Reference

The FRPage object is a so�called "connectable object." It may be declared WithEvents in Visual Basic. For a C++ user, this means that it
supports the IConnectionPointContainer interface. To receive notification events during recognition, a C++ user should create an
object derived from the IFRPageEvents interface, then set up the connection between it and the events source implemented in the
FRPage object by standard COM means.

The methods of the FRPage object report information about page processing progress through special outgoing interfaces. These
interfaces are IFRPageEvents (for C++) and the dispinterface IFRPageEvents (for Visual Basic). It should be noted that Visual Basic
users should not care for details of implementing event interfaces, as this development platform provides easy means for handling
them.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Specifies whether the Redo method can be executed for the latest undone command
which was called with the help of methods of the FRPage object. CanRedo Boolean, read�only

Specifies whether the Undo method can be executed for the latest command which was
called with the help of methods of the FRPage object. CanUndo Boolean, read�only

FRDocument,
read�only Document Returns the FRDocument object which contains the specified page.

ImageDocument,
read�only ImageDocument Returns the ImageDocument object for the specified page.

Provides access to the Layout object for the specified page.
Note: When you assign a Layout object to this property (for example, when

transferring data from one page to another), the logical structure of the corresponding
document becomes invalid. It is necessary to restore the document structure by calling
one of the synthesis methods. However, you do not need to perform synthesis for the
whole document, it is only necessary to synthesize changed pages, e.g. using the
IFRDocument::SynthesizePages method.

Layout Layout

PageStructure,
read�only

Provides access to the logical structure and styles of the page. This property becomes
meaningful only after document synthesis. PageStructure

PlainText, read�
only PlainText Returns the text of the page in a special "plain text" format.

Specifies whether the Undo and Redo methods are allowed. If the value of this property
is TRUE, all the commands, which were called with the help of methods of the FRPage
object, can be added to an undo stack. To add to the stack the commands, which were
called with the help of the methods of the FRPage object, use the Update method.

UndoSupport Boolean

Methods
Name Description

Analyzes the page. Analyze
Performs layout analysis, recognition, and page synthesis of the page. AnalyzeAndRecognize
Analyzes layout of the image inside the specified region. AnalyzeRegion
Replaces a specified block with a table block and analyzes the structure of the table. AnalyzeTable
Cleans recognizer session. CleanRecognizerSession
Detects page orientation. DetectOrientation
Saves a page into a file in an external format. Export
Finds and recognizes all barcode blocks.

ExtractBarcodes Note: This method is obsolete and is intended to be removed in the next version of ABBYY
FineReader Engine.
Detects the direction of text on image and finds the position of splitting it on pages. FindPageSplitPosition
Unloads and saves to disk the ImageDocument and the Layout objects corresponding to the
FRPage object if there are no references to them. Flush

Recognizes the page and performs page synthesis. Recognize
Recognizes text and performs page synthesis in an explicitly specified set of blocks. RecognizeBlocks

 335

ABBYY FineReader Engine 10 API Reference

Redoes the latest undone command which was called with the help of methods of the FRPage
object. Redo

Straightens out distorted lines on an image. Distorted lines may occur close to the binding
when scanning/photographing thick books. RemoveGeometricalDistortions

Undo Undoes the latest command which was called with the help of methods of the FRPage object.
Saves the latest changes in the FRPage object to the undo stack, in order these changes can be
undone. This method has to be called for the changes, which were made with the help of the
methods of the FRPage object, to add them to the stack.

Update

Related objects

Output parameter

This object is the output parameter of the Item method of the FRPages object.

Input parameter

This object is the input parameter of the following methods:

• FindFirstObjectOnPage method of the DocumentStream object

• Find method of the FRPages object

• OnProgress, OnRecognizerTip, OnRegionProcessed, OnPageProcessed methods of the IFRPageEvents interface

• PageRemoved method of the IFRPagesEvents interface

• AddPage, DeletePage methods of the RunningTitleSeries object

See also

FRPages
Working with Connectable Objects
Working with Properties

See sample: RecognizedTextProcessing

Analyze Method of the FRPage Object

This method performs the layout analysis of the page.

 This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRPage object.

Visual Basic Syntax

Method Analyze(

 pageProcessingParams As PageProcessingParams

)

C++ Syntax

HRESULT Analyze(

 IPageProcessingParams* pageProcessingParams

);

 336

ABBYY FineReader Engine 10 API Reference

Parameters

pageProcessingParams

[in] The PageProcessingParams object that stores parameters of layout analysis. This parameter may be 0. In this case the page is
analyzed with default parameters (all page processing parameters are set to default values), or, if a profile has been loaded, the
parameters set by this profile are used.

Return Values

If layout analysis is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

See also

FRPage
Working with Profiles

AnalyzeAndRecognize Method of the FRPage Object

This method performs layout analysis, recognition, and page synthesis of the page.

Visual Basic Syntax

Method AnalyzeAndRecognize(

 pageProcessingParams As PageProcessingParams,

 synthesisParamsForPage As SynthesisParamsForPage

)

C++ Syntax

HRESULT AnalyzeAndRecognize(

 IPageProcessingParams* pageProcessingParams,

 ISynthesisParamsForPage* synthesisParamsForPage

);

Parameters

pageProcessingParams

[in] The PageProcessingParams object that stores parameters of layout analysis and recognition. This parameter may be 0. In this
case the page is processed with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

synthesisParamsForPage

[in] The SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In this case the page is
synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

Return Values

If layout analysis or recognition is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes
of the ABBYY FineReader Engine functions.

Remarks
This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRPage object.

See also

FRPage
Working with Profiles

AnalyzeRegion Method of the FRPage Object

This function analyzes the layout of the image inside the specified region.

It does not report any events to the listeners attached to the IConnectionPointContainer interface of the FRPage object.

Visual Basic Syntax

Method AnalyzeRegion(

 region As Region,

 processingParams As PageProcessingParams

)

 337

ABBYY FineReader Engine 10 API Reference

C++ Syntax

HRESULT AnalyzeRegion(

 IRegion* region,

 IPageProcessingParams* processingParams

);

Parameters

region

[in] This variable refers to the Region object that specifies the area on image that is to be analyzed. It should be set in coordinates of
the deskewed black�and�white plane of the ImageDocument.

processingParams

[in] The PageProcessingParams object that stores parameters of layout analysis. This parameter may be 0. In this case the region is
analyzed with default parameters (all page processing parameters are set to default values), or, if a profile has been loaded, the
parameters set by this profile are used.

Return Values

If layout analysis is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

Remarks

• If the sizes and resolutions of the image and layout do not match, this method sets these parameters for layout to be equal to
those of the deskewed black�and�white page of the ImageDocument.

• During the process of analysis of layout in region all the blocks that lay entirely inside the region are deleted from the
IFRPage::Layout subobject. Zero or more new blocks may be added to the Layout as the result of this method call.

See also

FRPage
IDocumentAnalyzer::AnalyzeRegion
Working with Profiles

AnalyzeTable Method of the FRPage Object

This method replaces the specified block with the table block and analyzes the structure of table.

This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRPage object.

Visual Basic Syntax

Method AnalyzeTable(

 blockIndex As Long,

 params As PageProcessingParams

)

C++ Syntax

HRESULT AnalyzeTable(

 long blockIndex,

 IPageProcessingParams* params

);

Parameters

blockIndex

[in] This variable specifies the index of block in the collection of blocks which must be analyzed as table.

params

[in] The PageProcessingParams object that stores parameters of table layout analysis. This parameter may be 0. In this case the table
is analyzed with default parameters (all page processing parameters are set to default values), or, if a profile has been loaded, the
parameters set by this profile are used.

 338

ABBYY FineReader Engine 10 API Reference

Return Values

If layout analysis is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

Remarks

• Table blocks always have rectangular regions; if the block was not rectangular, the new table block receives the region
corresponding to bounding rectangle of the initial block.

• If the table structure cannot be analyzed, the IFRPage::Layout subobject is not changed.

See also

FRPage
Working with Profiles

CleanRecognizerSession Method of the FRPage Object

This method cleans recognizer session.

Recognizer session is created for recognition of each page. During this session recognizer performs a kind of self�teaching, and thus
tunes itself for recognition of texts of a certain type. That is why it is good to use single recognizer instance for recognition of a
number of blocks on a single page, as these blocks usually have text of similar type and therefore this improves speed and quality of
recognition.

When you call this method, all the information that was received by the recognizer during this self�teaching is removed. Generally
there is no need to use this method. However, you may find it useful, for example, if a page consists of two parts with extremely
different types of text, then you may call this method after recognition of the first part and before the recognition of the second. This
method also frees some memory.

Visual Basic Syntax

Method CleanRecognizerSession()

C++ Syntax

HRESULT CleanRecognizerSession();

Return Values

If layout analysis is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

Remarks
This method does not report events to the listeners attached to the IConnectionPointContainer interface of the FRPage object.

See also

FRPage

DetectOrientation Method of the FRPage Object

This method detects text orientation on the image. The method returns TextOrientation object, if orientation has been detected
successfully, and NULL, if the program failed to detect orientation.

Visual Basic Syntax

Method DetectOrientation(

 orientationParams As OrientationDetectionParams

 extractionParams As ObjectsExtractionParams,

 recognizerParams As RecognizerParams

) As TextOrientation

C++ Syntax

HRESULT DetectOrientation(

 IOrientationDetectionParams* orientationParams,

 IObjectsExtractionParams* extractionParams,

 IRecognizerParams* recognizerParams,

 ITextOrientation** result

);

 339

ABBYY FineReader Engine 10 API Reference

Parameters

orientationParams

[in] This variable refers to the OrientationDetectionParams object that stores parameters of orientation detection. This parameter
may be 0. In this case the default parameters are used, or, if a profile has been loaded, the parameters set by this profile are used.

extractionParams

[in] This variable refers to the ObjectsExtractionParams object that stores parameters of objects extraction. This parameter may be
0. In this case the objects are extracted with default parameters, or, if a profile has been loaded, the parameters set by this profile are
used.

recognizerParams

[in] This variable refers to the RecognizerParams object that stores parameters of page recognition. This parameter may be 0. In this
case the default parameters are used, or, if a profile has been loaded, the parameters set by this profile are used.

result

[out, retval] A pointer to ITextOrientation* pointer variable that receives the interface pointer of the TextOrientation output
object. This object provides access to the text orientation on the page. If orientation detection failed, NULL is returned.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Calling this method is equivalent to the call to IFRPage::Analyze method with the following parameters of the input
PageProcessingParams object: DetectOrientation = true, PerformPageAnalysis = false, RemoveGeometricalDictortions = false,
DetectBarcodes = false, DetectInvertedImage = false.

See also

FRPage
IPageProcessingParams::DetectOrientation
IDocumentAnalyzer::DetectOrientation
Working with Profiles

Export Method of the FRPage Object

This method saves page into a file in an external format. Available file formats are represented by the FileExportFormatEnum
enumeration constants.

This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRPage object.

Visual Basic Syntax

Method Export(

 exportFileName As String,

 format As FileExportFormatEnum,

 exportParams As Unknown

)

C++ Syntax

HRESULT Export(

 BSTR exportFileName,

 FileExportFormatEnum format,

 IUnknown* exportParams

);

Parameters

exportFileName

[in] This variable contains the full path to the output file. If this file already exists, it is overwritten without prompt.

format

[in] This variable specifies the format of the output file. See the FileExportFormatEnum description for the supported file formats.

exportParams

 340

ABBYY FineReader Engine 10 API Reference

[in] Pass the export parameters object of the type corresponding to your file format through this input parameter. For example, if you
are saving the text into an RTF file, create an RTFExportParams object, set the necessary parameters in it, and pass it to this method
as the exportParams input parameter. This parameter may be 0, in which case the default values for the export parameters are used.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

FRPage
IEngine::ExportPages
IExporter::ExportPages

ExtractBarcodes Method of the FRPage Object

This method finds and recognizes all barcode blocks on an image, no other blocks are processed.

Visual Basic Syntax

Method ExtractBarcodes(

 barcodeParams As BarcodeParams,

 extractionParams As ObjectsExtractionParams

)

C++ Syntax

HRESULT ExtractBarcodes(

 IBarcodeParams* barcodeParams,

 IObjectsExtractionParams* extractionParams

);

Parameters

barcodeParams

[in] The BarcodeParams object that stores parameters of barcode recognition. This parameter may be 0. In this case the page is
analyzed with default parameters (all barcode recognition parameters are set to default values), or, if a profile has been loaded, the
parameters set by this profile are used.

extractionParams

[in] The ObjectsExtractionParams object that stores parameters of objects extraction. This parameter may be 0. In this case the
objects are extracted with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

Return Values

If recognition is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

Remarks

• All existing blocks are deleted from the page.

• Calling this method is equivalent to the call to IFRPage::AnalyzeAndRecognize method with the following parameters of
the input PageProcessingParams object: DetectBarcodes = true, PerformPageAnalysis = false,
RemoveGeometricalDictortions = false, DetectOrientation = false, DetectInvertedImage = false.

• The method does not report any events to the listeners attached to the IConnectionPointContainer interface of the
FRPage.

• This method is obsolete and is intended to be removed in the next version of ABBYY FineReader Engine.

See also

FRPage
IPageProcessingParams::DetectBarcodes
IDocumentAnalyzer::ExtractBarcodes
Working with Profiles

 341

ABBYY FineReader Engine 10 API Reference

FindPageSplitPosition Method of the FRPage Object

This method detects the direction of text on image and finds the position of splitting it on pages, if it exists. It is used to detect the
ability to split dual pages in a book.

The split position is defined by two lines, which coordinates are returned in the startSplitPosition and endSplitPosition parameters. The
image area between these two lines should be removed when splitting image on pages. This area usually contains some garbage.

Visual Basic Syntax

Method FindPageSplitPosition(

 extractionParams As ObjectsExtractionParams,

 splitDirection As PageSplitDirectionEnum,

 startSplitPosition As Long,

 endSplitPosition As Long

)

C++ Syntax

HRESULT FindPageSplitPosition(

 IObjectsExtractionParams* extractionParams,

 PageSplitDirectionEnum* splitDirection,

 long* startSplitPosition,

 long* endSplitPosition

);

Parameters
extractionParams

[in] The ObjectsExtractionParams object that stores parameters of objects extraction. This parameter may be 0. In this case the
objects are extracted with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

splitDirection

[out] This variable receives the type of possible split: vertical split, horizontal split, or no split. Refer to the PageSplitDirectionEnum
description for details.

startSplitPosition

[out] The coordinate of the first line, which defines split position (if a split is possible). The meaning of this value depends on the value
of the splitDirection variable. If the possibility of vertical split is detected, it contains the horizontal coordinate of the split line. If the
possibility of horizontal split is detected, it contains the vertical coordinate of the split line. Coordinate is given against the deskewed
black�and�white page of the image.

endSplitPosition

[out] The coordinate of the second line, which defines split position (if a split is possible). The meaning of this value depends on the
value of the splitDirection variable. If the possibility of vertical split is detected, it contains the horizontal coordinate of the split line. If
the possibility of horizontal split is detected, it contains the vertical coordinate of the split line. Coordinate is given against the
deskewed black�and�white page of the image.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

FRPage
PageSplitDirectionEnum
Working with Profiles

Flush Method of the FRPage Object

This method unloads and saves to disk the ImageDocument and the Layout objects corresponding to the FRPage object if there are
no references to them. The method is useful when processing documents of large sizes, in which case it decreases memory usage but
may slow down document processing. After the operation on a separate document page is complete, free all references to the
ImageDocument and the Layout objects corresponding to the page and call the Flush method to decrease memory usage.

Visual Basic Syntax

Method Flush() As Boolean

C++ Syntax

HRESULT Flush(

 342

ABBYY FineReader Engine 10 API Reference

 VARIANT_BOOL* result

);

Parameters

result

[out] The variable receives the result of the unloading. The value of this parameter is TRUE if the objects were unloaded successfully.
Otherwise the value is FALSE.

Return Values

This method has no specific return values. It returns the standard return codes of the ABBYY FineReader Engine functions.

See also

FRPage
IFRDocument::PageFlushingPolicy

Recognize Method of the FRPage Object

This method recognizes a page and performs page synthesis.

Visual Basic Syntax

Method Recognize(
 synthesisParamsForPage As SynthesisParamsForPage,
 extractionParams As ObjectsExtractionParams
)

C++ Syntax

HRESULT Recognize(
 ISynthesisParamsForPage* synthesisParamsForPage,
 IObjectsExtractionParams* extractionParams
);

Parameters
synthesisParamsForPage

[in] The SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In this case the page is
synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

extractionParams

[in] The ObjectsExtractionParams object that stores parameters of objects extraction. This parameter may be 0. In this case the
objects are extracted with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

Return Values

If recognition is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

Remarks
This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRPage object.

See also

FRPage
Working with Profiles

RecognizeBlocks Method of the FRPage Object

This method recognizes text and performs page synthesis in an explicitly specified set of blocks.

Visual Basic Syntax

Method RecognizeBlocks(
 BlockIndices As LongsCollection,
 synthesisParamsForPage As SynthesisParamsForPage,
 extractionParams As ObjectsExtractionParams
)

C++ Syntax

 343

ABBYY FineReader Engine 10 API Reference

HRESULT RecognizeBlocks(
 ILongsCollection* BlockIndices,
 ISynthesisParamsForPage* synthesisParamsForPage,
 IObjectsExtractionParams* extractionParams
);

Parameters
BlockIndices

[in] This parameter refers to the LongsCollection object that contains the indices of blocks to be recognized.

synthesisParamsForPage

[in] The SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In this case the page is
synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

extractionParams

[in] The ObjectsExtractionParams object that stores parameters of objects extraction. This parameter may be 0. In this case the
objects are extracted with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

Return Values

If recognition is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

Remarks

This method may report events to the listeners attached to the IConnectionPointContainer interface of the FRPage object.

See also

FRPage
Working with Profiles

RemoveGeometricalDistortions Method of the FRPage Object

This method straightens out distorted lines on an image. Distorted lines may occur close to the binding when scanning/photographing
thick books.

We recommend calling this method after the page orientation has been corrected and a double�page spread has been split into two
separate pages, if necessary. This method should be called after layout analysis, for example after the IFRPage::Analyze method. We
recommend setting the correct recognition language before analysis, especially for texts in Chinese, Japanese and Korean.

This method may report events to the listeners attached to the IConnectionPointContainer interface of FRPage.

Visual Basic Syntax

Method RemoveGeometricalDistortions(

 extractionParams As ObjectsExtractionParams

)

C++ Syntax

HRESULT RemoveGeometricalDistortions(

 IObjectsExtractionParams* extractionParams

);

Parameters

extractionParams

[in] This variable refers to the ObjectsExtractionParams object corresponding to the parameters used for straightening out distorted
lines on an image. This parameter may be 0, in which case the default parameters are used, or, if a profile has been loaded, the
parameters set by this profile are used.

Return Values

If straightening is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
FineReader Engine functions.

Remarks

Calling this method is equivalent to the call to IFRPage::Analyze method with the following parameters of the input
PageProcessingParams object: RemoveGeometricalDictortions = true, PerformPageAnalysis = false, DetectOrientation = false,
DetectBarcodes = false, DetectInvertedImage = false.

 344

ABBYY FineReader Engine 10 API Reference

See also

FRPage
IPageProcessingParams::RemoveGeometricalDistortions
IDocumentAnalyzer::RemoveGeometricalDistortions
Working with Profiles

Redo Method of the FRPage Object

This method redoes the latest undone command which was called with the help of the methods of the FRPage object. The command
which was called with the help of the methods of the FRPage object can be redone only if it was previously added to the undo stack
with the help of the IFRPage::Update method. The method can be executed if the value of the IFRPage::CanRedo property is TRUE.

Visual Basic Syntax

Method Redo()

C++ Syntax

HRESULT Redo();

Return Values

This method has no specific return values. It returns the standard return values of the ABBYY FineReader Engine functions.

See also

FRPage
IFRPage::Undo
IFRPage::Update

Undo Method of the FRPage Object

This method undoes the latest command which was called with the help of methods of the FRPage object. The command which was
called with the help of the methods of the FRPage object can be undone only if it was previously added to the undo stack with the
help of the IFRPage::Update method. The method can be executed if the value of the IFRPage::CanUndo property is TRUE.

Visual Basic Syntax

Method Undo()

C++ Syntax

HRESULT Undo();

Return Values

This method has no specific return values. It returns the standard return values of the ABBYY FineReader Engine functions.

See also

FRPage
IFRPage::Redo,
IFRPage::Update

Update Method of the FRPage Object

This method saves the latest changes in the FRPage object to the undo stack, in order these changes can be undone. This method has
to be called for the changes, which were made with the help of the methods of the FRPage object, to add them to the stack.

Visual Basic Syntax

Method Update()

C++ Syntax

HRESULT Update();

Return Values

This method has no specific return values. It returns the standard return values of the ABBYY FineReader Engine functions.

See also

FRPage
IFRPage::Undo
IFRPage::Redo

 345

ABBYY FineReader Engine 10 API Reference

IFRDocumentEvents Interface

This is callback interface that is used for reporting events from the FRDocument object to the listeners. This interface is implemented
on the client side. As it derives from the IUnknown interface, the client object should also implement the IUnknown methods. This
interface is designed primarily for using in C++. Visual Basic users that want to receive notifications from the FRDocument object
should declare it WithEvents and implement the following Sub's:

Public WithEvents doc As FREngine.FRDocument

Private Sub doc_OnPageProcessed(ByRef sender As FRDocument,

 ByVal index As Long,

 ByVal stage As PageProcessingStageEnum)

...

End Sub

Private Sub doc_OnProgress(ByRef sender As FRDocument,

 ByVal percentage As Long,

 ByRef cancel As Boolean)

...

End Sub

Private Sub doc_OnRecognizerTip(ByRef sender As FRDocument,

 ByVal tip As String,

 ByRef cancel As Boolean)

...

End Sub

An object receiving notifications through this interface's methods may do the following inside the methods' implementation:

• Process any Windows messages, which is useful in applications having User Interface, to avoid an effect that the application
"is not responding" during long operations.

• Report percentage of image loading, document analysis, recognition, synthesis, and export performed.

• Report an information about document analysis, recognition, synthesis, and export completed.

Methods

Name Description
OnPageProcessed Delivers to the client an information about page processing completed.

Delivers to the client an information about approximate percentage of the current operation (image loading,
analysis, recognition, and etc.). OnProgress

OnRecognizerTip Delivers to the client recognizer tips.

See also

FRDocument
Working with Connectable Objects

See sample: EventsHandling

OnPageProcessed Method of the IFRDocumentEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for some of the methods of the FRDocument
object. It delivers to the client information about page processing completed. It may process any Windows messages to avoid an effect
that the application "is not responding" during long operations.

Visual Basic Syntax

Sub OnPageProcessed(

 ByRef sender As FRDocument,

 ByVal index As Long,

 ByVal stage As PageProcessingStageEnum

)

C++ Syntax

HRESULT OnPageProcessed(

 346

ABBYY FineReader Engine 10 API Reference

 IFRDocument* sender,

 long index,

 PageProcessingStageEnum stage

);

Parameters

sender

[in] This parameter refers to the FRDocument object which sends notifications.

index

[in] This parameter contains the index of the processed page.

stage

[in] This variable of the PageProcessingStageEnum type specifies the stage of processing.

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side.

Remarks

The client implementation of this method must assure that all exceptions thrown inside the method are caught and handled and no
exceptions are propagated outside the method. Propagation of an exception outside the method may lead to unpredictable results
(such as program termination).

See also

IFRDocumentEvents
FRDocument

OnProgress Method of the IFRDocumentEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for some of the methods of the FRDocument
object. It delivers to the client an information about approximate percentage of the current operation (image loading, analysis,
recognition, and etc.). Its implementation may show a progress indicator, as it is done in ABBYY FineReader. It may also process any
Windows messages to avoid an effect that the application "is not responding" during long operations.

Visual Basic Syntax

Sub OnProgress(

 ByRef sender As FRDocument,

 ByVal percentage As Long,

 ByRef cancel As Boolean

)

C++ Syntax

HRESULT OnProgress(

 IFRDocument* sender,

 long percentage,

 VARIANT_BOOL* cancel

);

Parameters

sender

[in] This parameter refers to the FRDocument object which sends notifications.

percentage

[in] This parameter contains the percent of the work currently done. It is in the range from 0 to 100.

cancel

[in, out] You may set this variable to TRUE (VARIANT_TRUE) to indicate that the process should be terminated. In this case the
processing function returns E_ABORT.

 347

ABBYY FineReader Engine 10 API Reference

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side, and in this case the
value of the cancel parameter is not taken into account.

Remarks

The client implementation of this method must assure that all exceptions thrown inside the method are caught and handled and no
exceptions are propagated outside the method. Propagation of an exception outside the method may lead to unpredictable results
(such as program termination).

See also

IFRDocumentEvents
FRDocument

See sample: EventsHandling

OnRecognizerTip Method of the IFRDocumentEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for some of the methods of the FRDocument
object. It delivers to the client recognizer tips. It may also process any Windows messages to avoid an effect that the application "is not
responding" during long operations.

Visual Basic Syntax

Sub OnRecognizerTip(

 ByRef sender As FRDocument,

 ByVal tip As String,

 ByRef cancel As Boolean

)

C++ Syntax

HRESULT OnRecognizerTip(

 IFRDocument* sender,

 BSTR tip,

 VARIANT_BOOL* cancel

);

Parameters

sender

[in] This parameter refers to the FRDocument object which sends notifications.

tip

[in] This parameter contains the recognizer tip.

cancel

[in, out] You may set this variable to TRUE (VARIANT_TRUE) to indicate that the process should be terminated. In this case the
processing function, that reports the tip, returns E_ABORT.

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side, and in this case the
value of the cancel parameter is not taken into account.

Remarks

The client implementation of this method must assure that all exceptions thrown inside the method are caught and handled and no
exceptions are propagated outside the method. Propagation of an exception outside the method may lead to unpredictable results
(such as program termination).

See also

IFRDocumentEvents
FRDocument

 348

ABBYY FineReader Engine 10 API Reference

IFRPagesEvents Interface

This is callback interface that is used for reporting events from the FRPages object to the listeners. This interface is implemented on
the client side. As it derives from the IUnknown interface, the client object should also implement the IUnknown methods. This
interface is designed primarily for using in C++. Visual Basic users that want to receive notifications from the FRPages object should
declare it WithEvents and implement the following Sub's:

Public WithEvents pages As FREngine.FRDocument

Private Sub pages_PageRemoved(ByRef sender As FRPages,

 ByRef page As FRPage,

 ByVal index As Long)

...

End Sub

Private Sub pages_PageAdded(ByRef sender As FRPages,

 ByVal index As Long)

...

End Sub

Private Sub pages_PagesRenumbered(ByRef sender As FRPages)

...

End Sub

An object receiving notifications through this interface's methods may do the following inside the methods' implementation:

• Process any Windows messages, which is useful in applications having User Interface, to avoid an effect that the application
"is not responding" during long operations.

• Report an information about page removing and adding completed

• Report information about pages renumbering completed.

Methods

Name Description
PageAdded Delivers to the client information about page adding completed.

PageRemoved Delivers to the client information about page removing completed.

PagesRenumbered Delivers to the client information about pages renumbering completed.

See also

FRPages
Working with Connectable Objects

PageAdded Method of the IFRPagesEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for some of the methods of the FRPages
object. It delivers to the client information about page adding completed. It may also process any Windows messages to avoid an effect
that the application "is not responding" during long operations.

Visual Basic Syntax

Sub PageAdded(

 ByRef sender As FRPages,

 ByVal index As Long

)

C++ Syntax

HRESULT PageAdded(

 IFRPages* sender,

 long index

);

Parameters

sender

 349

ABBYY FineReader Engine 10 API Reference

[in] This parameter refers to the FRPages object which sends notifications.

index

[in] This parameter contains index of added page.

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side.

Remarks

The client implementation of this method must assure that no exceptions are thrown inside it, as it may lead to unpredictable results.

See also

IFRPagesEvents
FRPages

PageRemoved Method of the IFRPagesEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for some of the methods of the FRPages
object. It delivers to the client information about page removing completed.

Visual Basic Syntax

Sub PageRemoved(

 ByRef sender As FRPages,

 ByRef page As FRPage,

 ByVal index As Long

)

C++ Syntax

HRESULT PageRemoved(

 IFRPages* sender,

 IFRPage* page,

 long index

);

Parameters

sender

[in] This parameter refers to the FRPages object which sends notifications.

page

[in] This parameter refers to the FRPage object which is removed.

index

[in] This parameter contains the index of removed page.

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side.

Remarks

The client implementation of this method must assure that no exceptions are thrown inside it, as it may lead to unpredictable results.

See also

IFRPagesEvents
FRPages

PagesRenumbered Method of the IFRPagesEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for some of the methods of the FRPages
object. It delivers to the client an information about pages renumbering completed. It may also process any Windows messages to
avoid an effect that the application "is not responding" during long operations.

Visual Basic Syntax

 350

ABBYY FineReader Engine 10 API Reference

Sub PagesRenumbered(

 ByRef sender As FRPages

)

C++ Syntax

HRESULT PagesRenumbered(

 IFRPages* sender

);

Parameters

sender

[in] This parameter refers to the FRPages object which sends notifications.

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side.

Remarks

The client implementation of this method must assure that no exceptions are thrown inside it, as it may lead to unpredictable results.

See also

IFRPagesEvents
FRPages

IFRPageEvents Interface

This is callback interface that is used for reporting events from the FRPage object to the listeners. This interface is implemented on the
client side. As it derives from the IUnknown interface, the client object should also implement the IUnknown methods. This
interface is designed primarily for using in C++. Visual Basic users that want to receive notifications from the FRPage object should
declare it WithEvents and implement the following Sub's:

Public WithEvents page As FREngine.FRPage

Private Sub page_OnPageProcessed(ByRef sender As FRPage,

 ByVal stage As PageProcessingStageEnum)

...

End Sub

Private Sub page_OnProgress(ByRef sender As FRPage,

 ByVal percentage As Long,

 ByRef cancel As Boolean)

...

End Sub

Private Sub page_OnRecognizerTip(ByRef sender As FRPage,

 ByVal tip As String,

 ByRef cancel As Boolean)

...

End Sub

Private Sub page_OnRegionProcessed(ByRef sender As FRPage,

 ByVal recognizerPassNumber As Long,

 ByRef region As Region,

 ByRef cancel As Boolean

...

End Sub

An object receiving notifications through this interface's methods may do the following inside the methods' implementation:

• Process any Windows messages, which is useful in applications having User Interface, to avoid an effect that the application
"is not responding" during long operations.

• Report percentage of document analysis, recognition, and export.

• Report recognizer tips to the user.

 351

ABBYY FineReader Engine 10 API Reference

• Report information about document analysis, recognition, and export completed.

Methods

Name Description
OnPageProcessed Delivers to the client an information about page processing completed.

Delivers to the client information about approximate percentage of the current operation (analysis,
recognition, and export). OnProgress

OnRecognizerTip Delivers to the client recognizer tips.

OnRegionProcessed Delivers to the client an information about region which is processed.

See also

FRPage
Working with Connectable Objects

OnPageProcessed Method of the IFRPageEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for some of the methods of the FRPage
object. It delivers to the client information about page processing completed. It may also process any Windows messages to avoid an
effect that the application "is not responding" during long operations.

Visual Basic Syntax

Sub OnPageProcessed(

 ByRef sender As FRPage,

 ByVal stage As PageProcessingStageEnum

)

C++ Syntax

HRESULT OnPageProcessed(

 IFRPage* sender,

 PageProcessingStageEnum stage

);

Parameters

sender

[in] This parameter refers to the FRPage object which sends notifications.

stage

[in] This variable of the PageProcessingStageEnum type specifies the stage of processing.

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side.

Remarks

The client implementation of this method must assure that all exceptions thrown inside the method are caught and handled and no
exceptions are propagated outside the method. Propagation of an exception outside the method may lead to unpredictable results
(such as program termination).

See also

IFRPageEvents
FRPage

OnProgress Method of the IFRPageEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for some of the methods of the FRPage
object. It delivers to the client information about approximate percentage of the current operation (analysis, recognition, and export).
Its implementation may show a progress indicator, as it is done in ABBYY FineReader. It may also process any Windows messages to
avoid an effect that the application "is not responding" during long operations.

Visual Basic Syntax

 352

ABBYY FineReader Engine 10 API Reference

Sub OnProgress(

 ByRef sender As FRPage,

 ByVal percentage As Long,

 ByRef cancel As Boolean

)

C++ Syntax

HRESULT OnProgress(

 IFRPage* sender,

 long percentage,

 VARIANT_BOOL* cancel

);

Parameters

sender

[in] This parameter refers to the FRPage object which sends notifications.

percentage

[in] This parameter contains the percent of the work currently done. It is in the range from 0 to 100.

cancel

[in, out] You may set this variable to TRUE (VARIANT_TRUE) to indicate that the process should be terminated. In this case the
processing function, that reports the percentage, returns E_ABORT.

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side, and in this case the
value of the cancel parameter is not taken into account.

Remarks

The client implementation of this method must assure that all exceptions thrown inside the method are caught and handled and no
exceptions are propagated outside the method. Propagation of an exception outside the method may lead to unpredictable results
(such as program termination).

See also

IFRPageEvents
FRPage

OnRecognizerTip Method of the IFRPageEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for some of the methods of the FRPage
object. Its Its implementation may report recognizer tips to the user. It may also process any Windows messages to avoid an effect that
the application "is not responding" during long operations.

Visual Basic Syntax

Sub OnRecognizerTip(

 ByRef sender As FRPage,

 ByVal tip As String,

 ByRef cancel As Boolean

)

C++ Syntax

HRESULT OnRecognizerTip(

 IFRPage* sender,

 BSTR tip,

 VARIANT_BOOL* cancel

);

Parameters

sender

[in] This parameter refers to the FRPage object which sends notifications.

 353

ABBYY FineReader Engine 10 API Reference

tip

[in] This parameter contains the recognizer tip.

cancel

[in, out] You may set this variable to TRUE (VARIANT_TRUE) to indicate that the process should be terminated. In this case the
processing function, that reports the tip, returns E_ABORT.

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side, and in this case the
value of the cancel parameter is not taken into account.

Remarks

The client implementation of this method must assure that all exceptions thrown inside the method are caught and handled and no
exceptions are propagated outside the method. Propagation of an exception outside the method may lead to unpredictable results
(such as program termination).

See also

IFRPageEvents
FRPage

OnRegionProcessed Method of the IFRPageEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for some of the methods of the FRPage
object. It delivers to the client information about processing region. It may also process any Windows messages to avoid an effect that
the application "is not responding" during long operations.

Visual Basic Syntax

Sub OnRegionProcessed(

 ByRef sender As FRPage,

 ByVal recognizerPassNumber As Long,

 ByRef region As Region,

 ByRef cancel As Boolean

)

C++ Syntax

HRESULT OnRegionProcessed(

 IFRPage* sender,

 long recognizerPassNumber,

 IRegion* region,

 VARIANT_BOOL* cancel

);

Parameters

sender

[in] This parameter refers to the FRPage object which sends notifications.

recognizerPassNumber

[in] This parameter reports the number of the recognition pass. It may be 0, 1 or 2. Rectangles from different passes may be filled up
with different colors as it is done in ABBYY FineReader.

region

[in] This parameter refers to the Region object which corresponds to the region which is processed.

cancel

[in, out] You may set this variable to TRUE (VARIANT_TRUE) to indicate that the process should be terminated. In this case the
processing function returns E_ABORT.

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side, and in this case the
value of the cancel parameter is not taken into account.

 354

ABBYY FineReader Engine 10 API Reference

Remarks

The client implementation of this method must assure that all exceptions thrown inside the method are caught and handled and no
exceptions are propagated outside the method. Propagation of an exception outside the method may lead to unpredictable results
(such as program termination).

See also

IFRPageEvents
FRPage

Document Synthesis Objects
Document synthesis is performed after recognition and allows the program to recreate the logical structure of a document and
formatting attributes including headers, footers, page numbers, fonts and styles and more. ABBYY FineReader Engine provides the
DocumentStructure and PageStructure objects and a set of their subobjects to access the results of document and page synthesis.

This section contains descriptions of the following document synthesis objects:

• DocumentStructure

• DocumentSection

• DocumentStream

• DocumentElement

• PageStructure

• PageSections

• PageSection

• PageStreams

• PageStream

• PageElements

• PageElement

• StreamElementLocationParams

• MainText

• FootnoteSeriesArray

• FootnoteSeries

• Footnote

• Incut

• Artefact

• TextPicture

• TextTable

• TextTableCell

• Captions

• Caption

 355

ABBYY FineReader Engine 10 API Reference

• RunningTitleSeriesArray

• RunningTitleSeries

• RunningTitle

• RunningTitleSeriesText

• PageBlackSeparator

• BackgroundLayer

• GlobalStyleStorage

• ParagraphStyle

• FontStyle

 356

ABBYY FineReader Engine 10 API Reference

The document synthesis objects hierarchy

For more information about the hierarchy of the ABBYY FineReader Engine objects, please see the Object Diagram.

DocumentStructure Object (IDocumentStructure Interface)

This object provides access to the logical structure of a document. Document structure is detected during document synthesis and is
used for re�creation of the logical structure of a document and formatting attributes during export. The object exposes a set of
methods and properties for working with logical sections and styles of the document.

Important! Pointers to child object's interfaces are valid until the parent object exists. An attempt to access a child object after its
parent object has been destroyed may result in error. Please, see for details Working with Properties.

 357

ABBYY FineReader Engine 10 API Reference

Note: Document structure may cause high memory usage, e.g. when iterating through the document structure. Therefore we
recommend unloading the pages of the document structure each time you have finished to work with them. Use the
UnloadUnusedPages method for it.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Provides access to the document section with the specified
index. DocumentSection DocumentSection, read�only

DocumentSectionsCount Stores the number of sections in the document. Long, read�only

Provides access to the array of footnote series of the
document. FootnoteSeriesArray FootnoteSeriesArray, read�only

GlobalStyleStorage Provides access to the global style storage of the document. GlobalStyleStorage, read�only

RunningTitleSeriesArray, read�
only

Provides access to the array of running titles series of the
document. RunningTitleSeriesArray

Methods

Name Description
FindFirstSectionOnPage Finds the first document section on the specified page.

FindFootnoteByHyperlinkTarget Finds the footnote by the hyperlink target refers to this footnote.

GetAllFootnoteTargets Returns the collection of hyperlink targets of the document.

UnloadAllPages Unloads all pages of the logical structure of the document.

UnloadUnusedPages Unloads the pages of the document structure which are not in use at the moment.

Related objects

See also

Working with the Logical Structure of a Document
FRDocument
Working with Properties

 358

ABBYY FineReader Engine 10 API Reference

DocumentSection Property of the DocumentStructure Object

This property provides access to the document section with the specified index.

Visual Basic Syntax

Property DocumentSection(sectionIndex As Long) As DocumentSection

 read-only

C++ Syntax

HRESULT get_DocumentSection(

 long sectionIndex,

 IDocumentSection** result

);

Parameters

sectionIndex

[in] This variable specifies the index of the section in the internal collection of sections of the document structure. Must be in range
from 0 to IDocumentStructure::DocumentSectionsCount �1.

result

[out, retval] A pointer to IDocumentSection* pointer variable that receives the interface pointer of the returned DocumentSection
object.

Return Values

This property has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentStructure
Working with Properties

FindFirstSectionOnPage Method of the DocumentStructure Object

This method allows you to find the first document section on the specified page. The returned section may start from some previous
page of the document and continue on the current page and following pages. If there is no section on the page, the first section found
in the document after this page will be returned. If there is no such section, NULL is returned.

Visual Basic Syntax

Method FindFirstSectionOnPage(

 pageIndex As Long

) As DocumentSection

C++ Syntax

HRESULT FindFirstSectionOnPage(

 long pageIndex,

 IDocumentSection** result

);

Parameters

pageIndex

[in] This variable specifies the index of the page in the collection of document pages.

result

[out, retval] A pointer to IDocumentSection* pointer variable that receives the interface pointer of the returned DocumentSection
object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentStructure

 359

ABBYY FineReader Engine 10 API Reference

FindFootnoteByHyperlinkTarget Method of the DocumentStructure Object

This method allows you to find the footnote by the hyperlink target refers to this footnote.

Visual Basic Syntax

Method FindFootnoteByHyperlinkTarget(

 target As String

) As DocumentStream

C++ Syntax

HRESULT FindFootnoteByHyperlinkTarget(

 BSTR target,

 IDocumentStream** result

);

Parameters

target

[in] This variable specifies the hyperlink target.

result

[out, retval] A pointer to IDocumentStream* pointer variable that receives the interface pointer to the returned DocumentStream
object which contains the footnote. If the footnote is not found, NULL is returned.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

Remarks

The method returns the DocumentStream object of the type ST_Footnote. You can receive then the Footnote object with the
IDocumentStream::GetAsFootnote method.

See also

DocumentStructure

GetAllFootnoteTargets Method of the DocumentStructure Object

This method allows you to receive the collection of hyperlink targets of the document.

Visual Basic Syntax

Method GetAllFootnoteTargets() As StringsCollection

C++ Syntax

HRESULT GetAllFootnoteTargets(

 IStringsCollection** result

);

Parameters

result

[out, retval] A pointer to IStringsCollection* pointer variable that receives the interface pointer of the returned StringsCollection
object, which contains the collection of hyperlink targets.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentStructure

UnloadUnusedPages Method of the DocumentStructure Object

This method allows you to free the memory, which was used by the logical pages of the document. It unloads the pages, which are not
in use at the moment. We recommend to use this method when working with big documents and iterating thorough the document
structure. Unload the pages each time you have finished to work with them.

 360

ABBYY FineReader Engine 10 API Reference

Visual Basic Syntax

Method UnloadUnusedPages()

C++ Syntax

HRESULT UnloadUnusedPages();

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentStructure

UnloadAllPages Method of the DocumentStructure Object

This method allows you to free the memory which was used by the logical pages of the document. It unloads all pages of the logical
structure of the document.

Important! After this method call all the elements of the document structure become invalid.

Visual Basic Syntax

Method UnloadAllPages()

C++ Syntax

HRESULT UnloadAllPages();

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentStructure

DocumentSection Object (IDocumentSection Interface)

This object represents one logical section of the document. For example, a book may have several parts, a magazine may include
several articles. Such parts of the book, or articles of the magazine, will be detected as document sections.

A section usually contains several pages. The first and the last pages of the section can be accessed using the FirstPage and LastPage
properties.

Each section consists of one or several document streams: main text, incuts, footnotes, and artefacts. The document section can have
only one stream of the main text type. All the streams of the section are to be located on the pages of the section inside the page
margins (Margins property).

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

AreMarginsMirroredOnEvenPages Boolean Specifies whether the page margins are mirrored on even pages.

DocumentStream,
read�only DocumentStream Provides access to one document stream by its index.

DocumentStreamsCount Stores the number of streams in the document section. Long, read�only

FirstPage Provides access to the first page of the document section. FRPage, read�only

LastPage Provides access to the last page of the document section. FRPage, read�only

DocumentStream,
read�only MainTextStream Provides access to the main text stream of the section.

Specifies the rectangle of page margins in the document
section. Margins are measured in hundredth parts of point. Margins FRRectangle

Specifies the page height in the section in hundredth parts of
point. PageHeight Long

PageWidth Long Specifies the page width in the section in hundredth parts of

 361

ABBYY FineReader Engine 10 API Reference

point.

Methods

Name Description
AddNewStream Adds a new stream into the document section.

Related objects

Output parameter

This object is the output parameter of the FindFirstSectionOnPage method of the DocumentStructure object.

See also

DocumentStream
DocumentStructure
Working with Properties

DocumentStream Property of the DocumentSection Object

This property provides access to the document stream with the specified index.

Visual Basic Syntax

Property DocumentStream(streamIndex As Long) As DocumentStream

 read-only

C++ Syntax

HRESULT get_DocumentStream(

 long streamIndex,

 IDocumentStream** result

);

Parameters

streamIndex

[in] This variable specifies the index of the stream in the collection of document streams. Must be in range from 0 to
IDocumentSection::DocumentStreamsCount �1.

result

[out, retval] A pointer to IDocumentStream* pointer variable that receives the interface pointer to the returned DocumentStream
object.

Return Values

This property has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentSection

 362

ABBYY FineReader Engine 10 API Reference

AddNewStream Method of the DocumentSection Object

This method adds a new stream of the specified type into the document section.

Note: The document section may have only one stream of the main text type. Artefacts cannot be added to the document section.

Visual Basic Syntax

Method AddNewStream(

 streamType As StreamTypeEnum

) As DocumentStream

C++ Syntax

HRESULT AddNewStream(

 StreamTypeEnum streamType,

 IDocumentStream** result

);

Parameters

streamType

[in] This variable specifies the type of the new stream. Use the StreamTypeEnum enumeration constants to specify the type of the
stream. The ST_Artefact constant must not be used as the value of this parameter.

result

[out, retval] A pointer to IDocumentStream* pointer variable that receives the interface pointer to the returned DocumentStream
object which contains the new stream.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentSection

DocumentStream Object (IDocumentStream Interface)

This object provides access to one document stream. Document stream is an element of the logical structure of a document. Document
streams can be of several types (the Type property): main text, incut, and footnote. They are parts of the document section. Each
document section may have only one main text stream and several incuts and footnotes. Running titles are not document streams. The
DocumentStream object exposes a set of methods which provide access to the extended attributes of a stream of specific type.

Document stream consists of document elements: paragraphs, tables, pictures, or barcodes. You can navigate through the elements
using the FirstElement, LastElement, NextElement, PrevElement properties.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

DocumentElement, read�
only Returns the first element in the document stream. FirstElement

FirstPage Provides access to the first page of the document stream. FRPage, read�only

IsEmpty Specifies whether the stream does not contain any elements. Boolean, read�only

DocumentElement, read�
only Returns the last element in the document stream. LastElement

LastPage Provides access to the last page of the document stream. FRPage, read�only

DocumentElement, read�
only Returns the next element in the document stream. NextElement

DocumentElement, read�
only Returns the previous element in the document stream. PrevElement

TextOrientation Returns text orientation in the stream. The property returns a constant object. TextOrientation, read�only

 363

ABBYY FineReader Engine 10 API Reference

StreamTypeEnum, read�
only

Stores the type of the stream: main text, incut, or footnote. Document stream
cannot be an artefact. Type

Methods

Name Description
FindFirstObjectOnPage Finds the first document element of the stream on the specified page.

GetAllPageElements Returns all page elements of the document stream.

Returns the document stream as the Footnote object. If the document stream is not a footnote, NULL is
returned. GetAsFootnote

Returns the document stream as the Incut object. If the document stream is not an incut, NULL is
returned. GetAsIncut

Returns the document stream as the MainText object. If the document stream is not a main text, NULL
is returned. GetAsMainText

Related objects

Output parameter

This object is the output parameter of the following methods:

• FindFootnoteByHyperlinkTarget method of the DocumentStructure object

• AddNewStream methods of the DocumentSection object

See also

Working with the Logical Structure of a Document
DocumentSection
DocumentStructure
Working with Properties

NextElement Property of the DocumentStream Object

This property retrieves the next element of the document stream. If there is no next element, NULL is returned.

Visual Basic Syntax

Property NextElement(

 element As DocumentElement

) As DocumentElement

C++ Syntax

HRESULT NextElement(

 364

ABBYY FineReader Engine 10 API Reference

 IDocumentElement* element,

 IDocumentElement** result

);

Parameters

element

[in] This parameter refers to the DocumentElement object which next element is to be found.

result

[out, retval] A variable of type IDocumentElement* that receives a pointer to the interface of the DocumentElement object which
contains the next element.

Return Values

This property has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

DocumentStream
IDocumentStream::PrevElement
Working with Properties

PrevElement Property of the DocumentStream Object

This property retrieves the previous element of the document stream. If there is no previous element, NULL is returned.

Visual Basic Syntax

Property PrevElement(

 element As DocumentElement

) As DocumentElement

C++ Syntax

HRESULT PrevElement(

 IDocumentElement* element,

 IDocumentElement** result

);

Parameters

element

[in] This parameter refers to the DocumentElement object which previous element is to be found.

result

[out, retval] A variable of type IDocumentElement* that receives a pointer to the interface of the DocumentElement object which
contains the previous element.

Return Values

This property has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

DocumentStream
IDocumentStream::NextElement
Working with Properties

FindFirstObjectOnPage Method of the DocumentStream Object

This method allows you to find the first document element of the stream on the specified page. The returned element may start from
some previous page of the document and continue on the current page and following pages. If there are no elements of this stream on
the page, the first element of the stream found in the document after this page will be returned. If there is no such element, NULL is
returned.

Visual Basic Syntax

Method FindFirstObjectOnPage(

 page As FRPage

 365

ABBYY FineReader Engine 10 API Reference

) As DocumentElement

C++ Syntax

HRESULT FindFirstObjectOnPage(

 IFRPage* page,

 IDocumentElement** result

);

Parameters

page

[in] This variable refers to the FRPage object which contains the page to find element on.

result

[out, retval] A pointer to IDocumentElement* pointer variable that receives the interface pointer to the returned
DocumentElement object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentStream

GetAllPageElements Method of the DocumentStream Object

This method returns a collection of page elements presented in the stream.

Visual Basic Syntax

Method GetAllPageElements() As PageElements

C++ Syntax

HRESULT GetAllPageElements(

 IPageElements** result

);

Parameters

result

[out, retval] A pointer to IPageElements* pointer variable that receives the interface pointer to the returned PageElements object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentStream

GetAsFootnote Method of the DocumentStream Object

This method returns the document stream as the Footnote object. If the document stream is not a footnote, NULL is returned.

Visual Basic Syntax

Method GetAsFootnote() As Footnote

C++ Syntax

HRESULT GetAsFootnote(

 IFootnote** result

);

Parameters

result

[out, retval] A pointer to IFootnote* pointer variable that receives the interface pointer to the returned Footnote object.

 366

ABBYY FineReader Engine 10 API Reference

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentStream
Footnote

GetAsIncut Method of the DocumentStream Object

This method returns the document stream as the Incut object. If the document stream is not an incut, NULL is returned.

Visual Basic Syntax

Method GetAsIncut() As Incut

C++ Syntax

HRESULT GetAsIncut(

 IIncut** result

);

Parameters

result

[out, retval] A pointer to IIncut* pointer variable that receives the interface pointer to the returned Incut object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentStream
Incut

GetAsMainText Method of the DocumentStream Object

This method returns the document stream as the MainText object. If the document stream is not a main text, NULL is returned.

Visual Basic Syntax

Method GetAsMainText() As MainText

C++ Syntax

HRESULT GetAsMainText(

 IMainText** result

);

Parameters

result

[out, retval] A pointer to IMainText* pointer variable that receives the interface pointer to the returned MainText object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentStream
MainText

DocumentElement Object (IDocumentElement Interface)

This object provides access to one element of the document stream. Document element is the minimal unit of the logical structure of a
document. Document elements are paragraphs, barcodes, tables, and pictures. The type of the element is defined by the Type property.
The object exposes the set of methods, which provides access to the properties of the document element of specific type.

 367

ABBYY FineReader Engine 10 API Reference

Location of the document element in the document is specified by the number of pages, which contains the element (the
OccupiedPagesCount property), and the pages itself (the OccupiedPage property). Usually a document element is located on one
page, but multi�page tables or paragraphs which start on one page and continue till the other are located on several pages.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Returns the page with the specified number from the collection of
pages on which the current element is located. OccupiedPage FRPage, read�only

Stores the number of pages on which the current element is
located. In most cases, the value of this property is 1. But for multi�
page tables or paragraphs which are located on several pages the
value of this property may be more than 1.

OccupiedPagesCount Long, read�only

DocumentElementTypeEnum,
read�only Type Stores the type of the element: paragraph, barcode, table, or picture.

Methods

Name Description
Returns the document element as the TextBarcode object. If the document element is not a barcode, NULL is
returned. GetAsBarcode

Returns the document element as the Paragraph object. If the document element is not a paragraph, NULL is
returned. GetAsParagraph

Returns the document element as the TextPicture object. If the document element is not a picture, NULL is
returned. GetAsPicture

Returns the document element as the TextTable object. If the document element is not a text table, NULL is
returned. GetAsTable

Related objects

Output parameter

This object is the output parameter of the FindFirstObjectOnPage method of the DocumentStream object

See also

Working with the Logical Structure of a Document
DocumentStream
Working with Properties

OccupiedPage Property of the DocumentElement Object

This property returns the page with the specified number from the collection of the element's pages.

Visual Basic Syntax

 368

ABBYY FineReader Engine 10 API Reference

Property OccupiedPage(pageNumber As Long) As FRPage

C++ Syntax

HRESULT get_OccupiedPage(

 long pageNumber,

 IFRPage** result

);

Parameters

pageNumber

[in] This variable specifies the number of the page in the collection. The value of this parameter must be in range from 0 to
IDocumentElement:: OccupiedPagesCount –1.

result

[out, retval] A pointer to IFRPage* pointer variable that receives the interface pointer to the returned FRPage object.

Return Values

This property has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentElement
FRPage
Working with Properties

GetAsBarcode Method of the DocumentElement Object

This method returns the document element as the TextBarcode object. If the document element is not a barcode, NULL is returned.

Visual Basic Syntax

Method GetAsBarcode() As TextBarcode

C++ Syntax

HRESULT GetAsBarcode(

 ITextBarcode** result

);

Parameters

result

[out] A pointer to ITextBarcode* pointer variable that receives the interface pointer to the returned TextBarcode object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentElement
TextBarcode

GetAsParagraph Method of the DocumentElement Object

This method returns the document element as the Paragraph object. If the document element is not a paragraph, NULL is returned.

Visual Basic Syntax

Method GetAsParagraph() As Paragraph

C++ Syntax

HRESULT GetAsParagraph(

 IParagraph** result

);

Parameters

result

 369

ABBYY FineReader Engine 10 API Reference

[out] A pointer to IParagraph* pointer variable that receives the interface pointer to the returned Paragraph object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentElement
Paragraph

GetAsPicture Method of the DocumentElement Object

This method returns the document element as the TextPicture object. If the document element is not a picture, NULL is returned.

Visual Basic Syntax

Method GetAsPicture() As TextPicture

C++ Syntax

HRESULT GetAsPicture(

 ITextPicture** result

);

Parameters

result

[out] A pointer to ITextPicture* pointer variable that receives the interface pointer to the returned TextPicture object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentElement
TextPicture

GetAsTable Method of the DocumentElement Object

This method returns the document element as the TextTable object. If the document element is not a text table, NULL is returned.

Visual Basic Syntax

Method GetAsTable() As TextTable

C++ Syntax

HRESULT GetAsTable(

 ITextTable** result

);

Parameters

result

[out] A pointer to ITextTable* pointer variable that receives the interface pointer to the returned TextTable object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

DocumentElement
TextTable

PageStructure Object (IPageStructure Interface)

This object provides access to the logical structure of the page. Page structure is detected during document synthesis and is used for re�
creation of page logical structure and formatting attributes during export. The object exposes a set of methods and properties for
working with logical sections and styles of the page.

 370

ABBYY FineReader Engine 10 API Reference

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Artefact Artefact, read�only Returns the artefact with the specified index.

ArtefactsCount Long, read�only Stores the number of artefacts on the page.

BackgroundLayer BackgroundLayer,
read�only

Returns the background layer with the specified index.

BackgroundLayersCount Long, read�only Stores the number of background layers on the page.

BlackSeparator PageBlackSeparator,
read�only

Returns the black separator with the specified index.

BlackSeparatorsCount Stores the number of black separators on the page. Long, read�only

Footer RunningTitle, read�
only

Stores the footer of the page.

Header RunningTitle, read�
only

Stores the header of the page.

IsPageOdd Specifies if the page is odd or even. Boolean, read�only

Margins Specifies the rectangle of the page with margins.
Note: The property returns a constant object. To change the rectangle,

you must first receive an intermediate FRRectangle object with the help
of the IEngine::CreateRectangle method, change the necessary
parameters, and then assign this object to the property.

FRRectangle

PageRect Specifies the rectangle of the page which contains text.
Note. The property returns a constant object. To change the rectangle,

you must first receive an intermediate FRRectangle object with the help
of the IEngine::CreateRectangle method, change the necessary
parameters, and then assign this object to the property.

FRRectangle

PageSections PageSections, read�
only

Provides access to the page sections.

Methods

Name Description
AddArtefact Creates an artefact on the page.

AddBackgroundLayer Creates a background layer on the page.

AddBlackSeparator Creates a black separator on the page.

CreateRunningTitle Creates a header or a footer on the page.

DeleteRunningTitles Deletes running titles from this page.

RemoveBackgroundLayer Deletes the specified background layer from the page.

RemoveBlackSeparator Deletes the specified black separator from the page.

 371

ABBYY FineReader Engine 10 API Reference

Related objects

See also

Working with the Logical Structure of a Document
PageStream
Working with Properties

Artefact Property of the PageStructure Object

This property returns the artefact with the specified index.

Visual Basic Syntax

Property Artefact(position As Long) As PageStream

 read-only

C++ Syntax

HRESULT get_Artefact(

 long position,

 IPageStream** result

);

Parameters

position

[in] Specifies the index of the artefact in the collection of the page artefacts.

result

[out, retval] A pointer to IPageStream* pointer variable that receives the interface pointer to the returned PageStream object which
contains the specified artefact.

Return Values

This property has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

 372

ABBYY FineReader Engine 10 API Reference

See also

PageStructure
PageStream
Working with Properties

BackgroundLayer Property of the PageStructure Object

This property returns the background layer with the specified index.

Visual Basic Syntax

Property BackgroundLayer(position As Long) As BackgroundLayer

 read-only

C++ Syntax

HRESULT get_BackgroundLayer(

 long position,

 IBackgroundLayer** result

);

Parameters

position

[in] Specifies the index of the background layer in the collection of the page background layers. It must be in range from 0 to
IPageStructure::BackgroundLayersCount �1.

result

[out, retval] A pointer to IBackgroundLayer* pointer variable that receives the interface pointer to the returned BackgroundLayer
object which contains the specified background layer.

Return Values

This property has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

PageStructure
BackgroundLayer
Working with Properties

BlackSeparator Property of the PageStructure Object

This property returns the black separator with the specified index.

Visual Basic Syntax

Property BlackSeparator(position As Long) As PageBlackSeparator

 read-only

C++ Syntax

HRESULT get_BlackSeparator(

 long position,

 IPageBlackSeparator** result

);

Parameters

position

[in] Specifies the index of the black separator in the collection of the page black separators. It must be in range from 0 to
IPageStructure::BlackSeparatorsCount �1.

result

[out, retval] A pointer to IPageBlackSeparator* pointer variable that receives the interface pointer to the returned
PageBlackSeparator object which contains the specified artefact.

Return Values

This property has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

 373

ABBYY FineReader Engine 10 API Reference

See also

PageStructure
PageBlackSeparator
Working with Properties

AddArtefact Method of the PageStructure Object

This method creates an artefact on the page and adds it into the internal array of artefacts of the PageStructure object.

Visual Basic Syntax

Method AddArtefact() As PageStream

C++ Syntax

HRESULT AddArtefact(

 IPageStream** result

);

Parameters

result

[out, retval] A pointer to IPageStream* pointer variable that receives the interface pointer to the returned PageStream object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

Remarks

The method returns the PageStream object of the type ST_Artefact. You can receive then the Artefact object with the
IPageStream::GetAsArtefact method. The newly created object will be accessible via the IPageStructure::Artefact property
either. The method increases the value of the IPageStructure::ArtefactsCount property.

See also

PageStructure
PageStream

AddBackgroundLayer Method of the PageStructure Object

This method creates a background layer on the page and adds it into the internal array of background layers of the PageStructure
object.

Visual Basic Syntax

Method AddBackgroundLayer() As BackgroundLayer

C++ Syntax

HRESULT AddBackgroundLayer(

 IBackgroundLayer** result

);

Parameters

result

[out, retval] A pointer to IBackgroundLayer* pointer variable that receives the interface pointer to the returned BackgroundLayer
object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

Remarks

The newly created object will be accessible via the IPageStructure::BackgroundLayer property either. The method increases the
value of the IPageStructure::BackgroundLayersCount property.

 374

ABBYY FineReader Engine 10 API Reference

See also

PageStructure
BackgroundLayer

AddBlackSeparator Method of the PageStructure Object

This method creates a black separator on the page and adds it into the internal array of page black separators of the PageStructure
object.

Visual Basic Syntax

Method AddBlackSeparator() As PageBlackSeparator

C++ Syntax

HRESULT AddBlackSeparator(

 IPageBlackSeparator** result

);

Parameters

result

[out, retval] A pointer to IPageBlackSeparator* pointer variable that receives the interface pointer to the returned
PageBlackSeparator object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

Remarks

The newly created object will be accessible via the IPageStructure::BlackSeparator property either. The method increases the value
of the IPageStructure::BlackSeparatorsCount property.

See also

PageStructure
PageBlackSeparator

DeleteRunningTitles Method of the PageStructure Object

This method deletes running titles from this page.

Visual Basic Syntax

Method DeleteRunningTitles()

C++ Syntax

HRESULT DeleteRunningTitles();

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

PageStructure

RemoveBackgroundLayer Method of the PageStructure Object

This method deletes the specified background layer from the page.

Visual Basic Syntax

Method RemoveBackgroundLayer(

 position As Long

)

C++ Syntax

HRESULT RemoveBackgroundLayer(

 long position

);

 375

ABBYY FineReader Engine 10 API Reference

Parameters

position

[in] Specifies the index of the background layer in the collection of the page background layers. It must be in range from 0 to
IPageStructure::BackgroundLayersCount �1.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

PageStructure
BackgroundLayer

RemoveBlackSeparator Method of the PageStructure Object

This method deletes the specified black separator from the page.

Visual Basic Syntax

Method RemoveBlackSeparator(

 position As Long

)

C++ Syntax

HRESULT RemoveBlackSeparator(

 long position

);

Parameters

position

[in] Specifies the index of the black separator in the collection of the page black separators. It must be in range from 0 to
IPageStructure::BlackSeparatorsCount �1.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

PageStructure

PageSections Object (IPageSections Interface)

This object represents a collection of page sections.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element Provides access to a single element of the collection. PageSection, read�only

Methods

Name Description
Add Adds a PageSection object at the end of the collection.

Item Provides access to a PageSection object in the collection.

RemoveAll Removes all the elements from the collection.

 376

ABBYY FineReader Engine 10 API Reference

Related objects

See also

Working with the Logical Structure of a Document
PageSection
PageStructure
Working with Properties

Add Method of the PageSections Object

This method adds a new element at the end of the collection of page sections.

Visual Basic Syntax

Method Add() As PageSection

C++ Syntax

HRESULT Add(

 IPageSection** result

);

Parameters

result

[out, retval] A pointer to IPageSection* pointer variable that receives the interface pointer to the returned PageSection object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

PageSections
PageSection

PageSection Object (IPageSection Interface)

This object represents one page section. It is an element of the PageSections collection.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

IsFirstOnPage Specifies if the section is the first section on page. Boolean, read�only

IsLastOnPage Specifies if the section is the last section on page. Boolean, read�only

MainStream Provides access to the main stream of this text section. PageStream, read�only

Page Provides access to the page that contains this section. FRPage, read�only

PageStreams Provides access to the page streams of the section. PageStreams, read�only

PageStructure Provides access to the page structure, which includes this page section. PageStructure, read�only

 377

ABBYY FineReader Engine 10 API Reference

Methods

Name Description
AddFootnote Creates a footnote in the section.

AddIncut Creates an incut in the section.

CreateMainStream Creates the main text stream in the section.

RemoveMainStream Removes main text stream.

Related objects

Output parameter

This object is the output parameter of the Item, Add methods of the PageSections object.

See also

Working with the Logical Structure of a Document
PageSections
Working with Properties

AddFootnote Method of the PageSection Object

This method creates a footnote in the section and adds it into the IPageSection::PageStreams collection.

Visual Basic Syntax

Method AddFootnote() As PageStream

C++ Syntax

HRESULT AddFootnote(

 IPageStream** result

);

Parameters

result

[out, retval] A pointer to IPageStream* pointer variable that receives the interface pointer to the returned PageStream object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

Remarks

The method returns the PageStream object of the type ST_Footnote. You can receive then the Footnote object with the
IPageStream::GetAsFootnote method.

 378

ABBYY FineReader Engine 10 API Reference

See also

PageSection

AddIncut Method of the PageSection Object

This method creates an incut in the section and adds it into the IPageSection::PageStreams collection.

Visual Basic Syntax

Method AddIncut() As PageStream

C++ Syntax

HRESULT AddIncut(

 IPageStream** result

);

Parameters

result

[out, retval] A pointer to IPageStream* pointer variable that receives the interface pointer to the returned PageStream object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

Remarks

The method returns the PageStream object of the type ST_Incut. You can receive then the Incut object with the
IPageStream::GetAsIncut method.

See also

PageSection

CreateMainStream Method of the PageSection Object

This method creates the main text stream in the section.

Visual Basic Syntax

Method CreateMainStream() As PageStream

C++ Syntax

HRESULT CreateMainStream(

 IPageStream** result

);

Parameters

result

[out] A pointer to IPageStream* pointer variable that receives the interface pointer to the returned PageStream object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

PageSection

RemoveMainStream Method of the PageSection Object

This method removes main text stream.

Visual Basic Syntax

Method RemoveMainStream()

C++ Syntax

HRESULT RemoveMainStream();

 379

ABBYY FineReader Engine 10 API Reference

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

PageSection

PageStreams Object (IPageStreams Interface)

This object provides access to the collection of page streams.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element Provides access to a single element of the collection. PageStream, read�only

Methods

Name Description
Item Provides access to a single element of the collection.

Related objects

See also

Working with the Logical Structure of a Document
PageStream
Working with Properties

PageStream Object (IPageStream Interface)

This object represents a page stream. It is an element of the PageStreams collection. There are 4 types of page streams. Three of them
are meaningful components of page logical structure (main text, incut, and footnote), and the excess one is artefact, which contains
some garbage.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Page Provides access to the page which contains this page stream. FRPage, read�only

PageElements, read�
only PageElements Provides access to the page elements of this stream.

PageSection Stores the page section, which contains this stream. PageSection, read�

 380

ABBYY FineReader Engine 10 API Reference

only

PageStructure, read�
only PageStructure Stores the page structure, which contains this stream.

Stores the orientation of the text in the stream.
Note: The property returns a constant object. To change the text orientation, you

must first receive an intermediate TextOrientation object with the help of the
IEngine::CreateTextOrientation method, change the necessary parameters, and
then assign this object to the property.

TextOrientation TextOrientation

StreamTypeEnum,
read�only Type Specifies the type of the page stream.

Methods

Name Description
GetAsArtefact Returns the page stream as the Artefact object. If the page stream is not an artefact, NULL is returned.

GetAsFootnote Returns the page stream as the Footnote object. If the page stream is not a footnote, NULL is returned.

GetAsIncut Returns the page stream as the Incut object. If the page stream is not an incut, NULL is returned.

Returns the page stream as the MainText object. If the page stream is not the main text of the page, NULL is
returned. GetAsMainText

Related objects

Output parameter

This object is the output parameter of the following methods and properties:

• AddArtefact, GetArtefact methods of the PageStructure object

• CreateMainStream, AddIncut, AddFootnote methods of the PageSection object

See also

Working with the Logical Structure of a Document
PageStreams
Working with Properties

GetAsArtefact Method of the PageStream Object

This method returns the page stream as the Artefact object. If the page stream is not an artefact, NULL is returned.

Visual Basic Syntax

Method GetAsArtefact() As Artefact

 381

ABBYY FineReader Engine 10 API Reference

C++ Syntax

HRESULT GetAsArtefact(

 IArtefact** result

);

Parameters

result

[out] A pointer to IArtefact* pointer variable that receives the interface pointer to the returned Artefact object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

PageStream
Artefact

GetAsFootnote Method of the PageStream Object

This method returns the page stream as the Footnote object. If the page stream is not a footnote, NULL is returned.

Visual Basic Syntax

Method GetAsFootnote() As Footnote

C++ Syntax

HRESULT GetAsFootnote(

 IFootnote** result

);

Parameters

result

[out] A pointer to IFootnote* pointer variable that receives the interface pointer to the returned Footnote object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

PageStream
Footnote

GetAsIncut Method of the PageStream Object

This method returns the page stream as the Incut object. If the page stream is not an incut, NULL is returned.

Visual Basic Syntax

Method GetAsIncut() As Incut

C++ Syntax

HRESULT GetAsIncut(

 IIncut** result

);

Parameters

result

[out] A pointer to IIncut* pointer variable that receives the interface pointer to the returned Incut object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

 382

ABBYY FineReader Engine 10 API Reference

See also

PageStream
Incut

GetAsMainText Method of the PageStream Object

This method returns the page stream as the MainText object. If the page stream is not the main text of the page, NULL is returned.

Visual Basic Syntax

Method GetAsMainText() As MainText

C++ Syntax

HRESULT GetAsMainText(

 IMainText** result

);

Parameters

result

[out] A pointer to IMainText* pointer variable that receives the interface pointer to the returned MainText object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

PageStream
MainText

PageElements Object (IPageElements Interface)

This object provides access to the collection of page elements.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element Provides access to a single element of the collection. PageElement, read�only

Methods

Name Description
Item Provides access to a PageElement object in the collection.

Related objects

 383

ABBYY FineReader Engine 10 API Reference

Output parameter

This object is the output parameter of the PageElements property of the PageStream object.

See also

Working with the Logical Structure of a Document
PageElement
Working with Properties

PageElement Object (IPageElement Interface)

This object represents an element of a recognized page. A page may contain several elements of different types: text, table, picture, and
barcode. The type of the element is defined by the Type property. The PageElement object exposes properties for accessing extended
attributes of an element of specific type. The object is an element of the PageElements collection.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Block Provides access to the block which contains this page element. Block, read�only

Id Provides access to the ID of the page element. String, read�only

Page Provides access to the page which contains this page element. FRPage, read�only

Stores the region of the block or of the part of block which contains this page
element. For the text page element which is located in several blocks, 0 is returned.
Coordinates of the region are defined in pixels and counted from the left top corner
of the page image. The coordinates can be out of the block region, if the page
element is a part of column.

Region Region, read�only

PageElementTypeEnum,
read�only Type Specifies the type of the page element.

Methods

Name Description
GetAsBarcode Returns the page element as the TextBarcode object. If the page element is not a barcode, NULL is returned.

GetAsPicture Returns the page element as the TextPicture object. If the page element is not a picture, NULL is returned.

GetAsTable Returns the page element as the TextTable object. If the page element is not a table, NULL is returned.

GetAsText Returns the page element as the Text object. If the page element is not a text, NULL is returned.

Related objects

Output parameter

This object is the output parameter of the Item method of the PageElements object.

 384

ABBYY FineReader Engine 10 API Reference

See also

Working with the Logical Structure of a Document
PageElements
Working with Properties

GetAsBarcode Method of the PageElement Object

This method returns the page element as the TextBarcode object. If the page element is not a barcode, NULL is returned.

Visual Basic Syntax

Method GetAsBarcode() As TextBarcode

C++ Syntax

HRESULT GetAsBarcode(

 ITextBarcode** result

);

Parameters

result

[out] A pointer to ITextBarcode* pointer variable that receives the interface pointer to the returned TextBarcode object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

Working with the Logical Structure of a Document
PageElement
TextBarcode

GetAsPicture Method of the PageElement Object

This method returns the page element as the TextPicture object. If the page element is not a picture, NULL is returned.

Visual Basic Syntax

Method GetAsPicture() As TextPicture

C++ Syntax

HRESULT GetAsPicture(

 ITextPicture** result

);

Parameters

result

[out] A pointer to ITextPicture* pointer variable that receives the interface pointer to the returned TextPicture object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

Working with the Logical Structure of a Document
PageElement
TextPicture

GetAsTable Method of the PageElement Object

This method returns the page element as the TextTable object. If the page element is not a table, NULL is returned.

Visual Basic Syntax

Method GetAsTable() As TextTable

C++ Syntax

HRESULT GetAsTable(

 385

ABBYY FineReader Engine 10 API Reference

 ITextTable** result

);

Parameters

result

[out] A pointer to ITextTable* pointer variable that receives the interface pointer to the returned TextTable object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

Working with the Logical Structure of a Document
PageElement
TextTable

GetAsText Method of the PageElement Object

This method returns the page element as the Text object. If the page element is not a text, NULL is returned.

Visual Basic Syntax

Method GetAsText() As Text

C++ Syntax

HRESULT GetAsText(

 IText** result

);

Parameters

result

[out] A pointer to IText* pointer variable that receives the interface pointer to the returned Text object.

Return Values

This method has no specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

See also

Working with the Logical Structure of a Document
PageElement
Text

StreamElementLocationParams Object (IStreamElementLocationParams Interface)

This object allows you to locate a document element or a page element in a column. The parameters are only applied to table, picture,
or barcode elements. For text elements (the document elements of the type DET_Paragraph and page elements of the type PET_Text)
use the ParagraphParams object for corresponding paragraphs.

Positioning of an element (table, picture, or barcode) is performed as follows:

1. First, width and height of the element and element's horizontal position relative to the column are defined.

2. Then positions of all the captions for this element are defined.

3. The surrounding rectangle for the element and all its captions is defined.

4. Finally, the horizontal position of the surrounding rectangle is defined.

Properties

Name Type Description
Specifies alignment of a table, picture, or barcode in the column. By default,
the value of this property is SEA_None. If the value of this property is not
SEA_None, the LeftIndent and RightIndent properties are set to 0.

Alignment StreamElementAlignmentEnum

Application Engine, read�only Returns the Engine object.

 386

ABBYY FineReader Engine 10 API Reference

Specifies the indent from the left side of the column to the left side of the
element in hundredth parts of point. The value of this property may be
negative. By default, the value of this property is 0. If you set the value of this
property to nonzero value, the Alignment property is set to SEA_None.

LeftIndent Long

Specifies the indent from the right side of the column to the right side of the
element in hundredth parts of point. The value of this property may be
negative. By default, the value of this property is 0. If you set the value of this
property to nonzero value, the Alignment property is set to SEA_None.

RightIndent Long

Specifies the space from the bottom border of the surrounding rectangle of
the current element (which includes the element and all its captions) to the
top border of the surrounding rectangle of the next element in the stream.
The space is measured in hundredth parts of point and must be non�negative.
By default, the value of this property is 0.

SpaceAfter Long

Specifies the space from the bottom border of the surrounding rectangle of
the previous element (which includes the object and all its captions) in the
stream to the top border of the surrounding rectangle of the current element.
The space is measured in hundredth parts of point and must be non�negative.
By default, the value of this property is 0.

SpaceBefore Long

Related objects

See also

TextTable
TextPicture
TextBarcode
Working with Properties

MainText Object (IMainText Interface)

This object exposes method and properties of a main text.

Properties

Name Type Description
Engine,
read�only Application Returns the Engine object.

Long, read�
only

The number of columns in the main text. By default the value of the property is
0. ColumnsCount

Specifies if there is a separators before the main text. By default the value of the
property is FALSE. HasSeparatorBefore Boolean

Specifies if there are separators between columns. The property makes sense
only if the number of columns (the ColumnsCount property) is above zero. By
default the value of the property is FALSE.

HasSeparatorsBetweenColumns Boolean

IsRightToLeft Boolean Specifies if the main text has right�to�left writing direction (like for Hebrew).

Specifies the coordinate of the left bound of the specified column in the main
text. LeftColumnBound Long

Specifies the coordinate of the right bound of the specified column in the main
text. RightColumnBound Long

Specifies the distance from the top bound of this main text to the bottom
bound of the main text of the previous section. The property makes sense only
if the section is not the first on the page. By default the value of this property is
0.

WhiteGapBefore Long

 387

ABBYY FineReader Engine 10 API Reference

Methods

Name Description
AddColumn Adds a column into the main text.

RemoveColumn Removes a column with the specified index.

Output parameter

This object is the output parameter of the following methods:

• GetAsMainText method of the DocumentStream object

• GetAsMainText method of the PageStream object

See also

Working with the Logical Structure of a Document

AddColumn Method of the MainText Object

This method adds a column into the main text.

Visual Basic Syntax

Method AddColumn(

 Long left,

 Long right

)

C++ Syntax

HRESULT AddColumn(

 long left,

 long right

);

Parameters

left

[in] This parameter contains the coordinate of the left bound of the newly added column.

right

[in] This parameter contains the coordinate of the right bound of the newly added column.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remark

The coordinates are measured in hundredth parts of point from the left border of the page (see IPageStructure::PageRect) — for
the main text of a page section, or from the left margin of the document (see IDocumentSection::Margins) — for the main text of a
document section.

The coordinates of the column borders should lay between left and right borders of the page rectangle (for the main text of a page
section) and between left and right margins of the document (for the main text of a page section).

See also

MainText
IMainText::RemoveColumn

RemoveColumn Method of the MainText Object

This method removes a column with the specified index.

Visual Basic Syntax

Method RemoveColumn(

 Long index

 388

ABBYY FineReader Engine 10 API Reference

)

C++ Syntax

HRESULT RemoveColumn(

 long index

);

Parameters

index

[in] This parameter contains the index of the column. It must be in range from 0 to IMainText::ColumnsCount �1.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

MainText
IMainText::AddColumn

FootnoteSeriesArray Object (IFootnoteSeriesArray Interface)

This object represents a collection of footnote series.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of series in the array. Long, read�only

Element Provides access to one footnote series by its index. FootnoteSeries, read�only

Methods

Name Description
CreateFootnoteSeries Creates the FootnoteSeries object.

DeleteEmptySeries Removes all empty footnote series from the array.

DeleteAll Removes all the elements from the footnote series array.

Item Provides access to a single element of the collection.

Related objects

See also

FootnoteSeries
DocumentStructure
Working with Properties

CreateFootnoteSeries Method of the FootnoteSeriesArray Object

This method allows you to create the FootnoteSeries object.

Visual Basic Syntax

Method CreateFootnoteSeries() As FootnoteSeries

 389

ABBYY FineReader Engine 10 API Reference

C++ Syntax

HRESULT CreateFootnoteSeries(

 IFootnoteSeries** result

);

Parameters

r to the created FootnoteSeries object. result
*result is guaranteed to be non�NULL after successful method call.

 has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

FootnoteSeriesArray

bject

This met elements from the footnote series array.

result

[out] A pointer to IFootnoteSeries* pointer variable that receives the interface pointe
must not be NULL.

Return Values

This method

See also

DeleteAll Method of the FootnoteSeriesArray O

hod removes all the

Visual Basic Syntax

Method DeleteAll()

C++ Syntax

HRESULT DeleteAll();

d has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

te::Series property for such page
incorrect value. You should receive a reference to such page again after the method call.

IFootnoteSeriesArray::DeleteEmptySeries

SeriesArray Object

This met ty footnote series from the array.

Return Values

This metho

Remark

If you receive a reference to one of the objects which contain the results of a page syntheses (e.g. one of the subobjects of the
PageStructure object) and then call the IFootnoteSeriesArray::DeleteAll method, the IFootno
will return

See also

FootnoteSeriesArray

DeleteEmptySeries Method of the Footnote

hod removes all emp

Visual Basic Syntax

Method DeleteEmptySeries()

C++ Syntax

HRESULT DeleteEmptySeries();

 has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

IFootnoteSeries::DeleteAll

terface)

res the parameters of one series of footnotes.

ties

Return Values

This method

See also

FootnoteSeriesArray

FootnoteSeries Object (IFootnoteSeries In

This object sto

Proper

Name Type Description

 390

ABBYY FineReader Engine 10 API Reference

Application Engine, read�only Returns the Engine object.

HasSeparator Boolean ed Specifies whether the footnotes are separat
from the text with a horizontal line.

IsContinuousNumbering Boolean ue of
If the value of this property is TRUE, the
continuous numbering is used. If the val
this property is FALSE, the footnotes
numbering starts from 1 on each page.

IsNumberingWithSuperscript
acters are Specifies whether superscript char

Boolean
used for the footnote numbering.

NumberingType FootnoteNumberingTypeEnum Specifies the type of the footnote numbering.

Returns the position of the footnote in the
PositionInDocument onInDocumentTypeEnum,

read�only
FootnotePositi

document. To change the footnote position,
use the SetPosition method.

PositionOnPage Enum, read�
only ote position, use the SetPosition

method.

Returns the position of the footnote relative
to the column with the anchor. To change
the footn

FootnotePositionOnPageType

Methods

Name Description
CopyFrom ith values of similar properties of another object. Initializes properties of the current object w

SetPosition Sets the position of the footnote.

Related objects

Output parameter

This object is the output parameter of the CreateFootnoteSeries methods of the FootnoteSeriesArray object.

e. The method affects the values of the PositionInDocument and PositionOnPage
propert ies object.

See also

FootnoteSeriesArray
Working with Properties

SetPosition Method of the FootnoteSeries Object

This method sets the position of the footnot
ies of the FootnoteSer

Visual Basic Syntax

Method SetPosition(
, position As FootnotePositionInDocumentTypeEnum

 columnPosition As FootnotePositionOnPageTypeEnum
)

C++ Syntax

HRESULT SetPosition(
 FootnotePositionInDocumentTypeE positionnum ,
 FootnotePositionOnPageTypeEnum columnPosition
);

Parameters
position

 391

ABBYY FineReader Engine 10 API Reference

[in] This variable contains the position of the footnote in the document. See description of the
FootnotePositionInDocumentTypeEnum.

he position of the footnote relative to the column with the anchor. See description of the

alues

Remark
Not all combinations of the ocumentTypeEnum and FootnotePositionOnPageTypeEnum
cons t are prohibited:

• FPDT_DocumentEnd and FPPT_LastColumn

ocumentEnd and FPPT_CurrentColumn

bject (IFootnote Interface)

expo erties of a fo

Name Type Description

columnPosition

[in] This variable contains t
FootnotePositionOnPageTypeEnum.

Return V

This method has no specific return values. It returns the standard return values of the ABBYY FineReader Engine functions.

FootnotePositionInD
tan s are allowed. The following combinations

• FPDT_PageEnd and FPPT_CurrentColumn

• FPDT_SectionEnd and FPPT_CurrentColumn

• FPDT_D

See also

FootnoteSeries

Footnote O

This object ses prop otnote.

Properties

n ad�
only
Engine, re

Returns the Engine object. Applicatio

HasHead is
FALSE.

Specifies if the footnote is a part of another footnote located on several pages, and has the
beginning on another page. The property makes sense only for a page stream. The default valueBoolean

HasTail
SE.

Specifies if the footnote is a part of another footnote located on several pages, and has the end
on another page. The property makes sense only for a page stream. The default value is FAL

Boolean

LeftBound

 coordinates

e page
with margins (see IDocumentSection::Margins) — for the document stream.

Specifies the coordinate of the left bound of the column where the footnote is located. By default
the value of the property is �1, which means that the coordinate is undefined. The

Long are measured in hundredth parts of point from the left top corner of the page region (see
IPageStructure::PageRect) — for the page stream, or left top corner of the region of th

Specifies the number of the footnote in the corresponding series. Footnote numbering star
1. By default the value of the property is �1, which means that the number is undefined.

ts with Number Long

RightBound Long
he

ner of the page region
(s

Specifies the coordinate of the right bound of the column where the footnote is located. By
default the value of the property is �1, which means that the coordinate is undefined. T
coordinates are measured in hundredth parts of point from the left top cor

ee IPageStructure::PageRect) — for the page stream, or left top corner of the region of the
page with margins (see IDocumentSection::Margins) — for the document stream.

Provides access to the footnote series which corresponds to this footnote.
Note: The property returns a constant object. To change the footnote series which

corresponds to this footnote, you must first receive an intermediate FootnoteSeries object with
the help of the IFootnoteSeriesArray::CreateFootnoteSeries method, change the necessary
parameters, and then assign this object to the property.

Series FootnoteSeries

 392

ABBYY FineReader Engine 10 API Reference

Related objects

Output parameter

 method of the DocumentStream object

geStream object

Worki e Logical St
operti

This object exposes method and properties of an

Name Type

This object is the output parameter of the following methods:

• GetAsFootnote

• GetAsFootnote method of the Pa

See also

ng with th
Working with Pr

ructure of a Document
es

Incut Object (IIncut Interface)

incut.

Description
Properties

Application Engine, read�only Returns the Engine object.

r

ckground color. By default the value of this property is 0xFEFFFFFF, Specifies the ba
which means that the color is transparent.

Note: The Long value is calculated from the RGB triplet using the formula: (red
value) + (256 x green value) + (65536 x blue value), where red value is the first
triplet compo

Long BackgroundColo

nent, green value is the second triplet component, blue value is the
third triplet component.

Describes the borders of the incut frame as a bitwise OR combination of the BF_
prefixed flags. Borders Long

BottomMargin Long
argin from the bottom border of the incut frame to the text of the Specifies the m

column below the incut (if the incut intersects a column). By default the value is
LONG_MIN.

talOffset Stores the horizontal offset of the incut frame from some object on the page. Long, read�only Horizon

LeftMargin Long
rgin from the left border of the incut frame to the text of the column Specifies the ma

to the left of the incut (if the incut intersects a column). By default the value is
LONG_MIN.

Stores the region of the incut. The region is specified in coordinates measured in
hundredth parts of point from the left top corner of the page region (see

Region Region, read�only IPageStructure::PageRect) — for the page stream, or left top corner of the region
of the page with margins (see IDocumentSection::Margins) — for the document
stream.

Specifies the margin from the right border of the incut frame to the text of
column to the right of the incut (if the incut intersects a column). By default the

the

value is LONG_MIN.
RightMargin Long

apping TextWrappingEnum Spec rapping around the incut. By default the value is TW_Undefined. TextWr ifies the text w

Spec e text of the column
above th e is LONG_MIN.

ifies the margin from the top border of the incut frame to th
e incut (if the incut intersects a column). By default the valu

TopMargin Long

VerticalOffset Long, read�only Stores the v page. ertical offset of the incut frame from some object on the

Methods

Name Description

 393

ABBYY FineReader Engine 10 API Reference

omSectionTop Sets the vertical offset of the incut frame from the section. SetVerticalOffsetFr

SetVerticalOffsetFromParagraph Sets the vertical offset of the incut frame from the paragraph.

Related objects

Output parameter

This ec s:

 method of the DocumentStream object

This pro rizontal offset of the incut frame from different objects on the page. The type of the object is defined by
f the object for texts
details in the

 constants.

yntax

obj t is the output parameter of the following method

• GetAsIncut

• GetAsIncut method of the PageStream object

See also

Working with the Logical Structure of a Document
Working with Properties

HorizontalOffset Property of the Incut Object

perty returns the ho
the FrameHorizontalReferenceEnum constant. Horizontal offset is generally measured from the left border o
with left�to�right writing direction, and from the right border — for texts with right�to�left writing direction. See
description of the FrameHorizontalReferenceEnum

Visual Basic S

Property HorizontalOffset(type As FrameHorizontalReferenceEnum) As Long

 read-only

C++ Syntax

HRESULT get_HorizontalOffset(

 FrameHorizontalReferenceEnum type,

 long* result

);

Parameters

type

[in] This parameter specifies the object on the page to measure offset from. See the description of the
 constants.

[out, retval] A pointer to long variable that receives the value of this property.

ues

fic return values. It returns standard return values of ABBYY FineReader Engine functions.

Vertic erty of the Incut Object

he object is defined by the
erenceEnum constant.

yntax

FrameHorizontalReferenceEnum

result

Return Val

This function has no speci

See also

Incut
Working with Properties

alOffset Prop

This property returns the vertical offset of the incut frame from different objects on the page. The type of t
FrameVerticalRef

Visual Basic S

Property VerticalOffset(type As FrameVerticalReferenceEnum) As Long

 394

ABBYY FineReader Engine 10 API Reference

 read-only

C++ Syntax

HRESULT get_VerticalOffset(

 FrameVerticalReferenceEnum type,

 long* result

);

Parameters

type

[in] This parameter specifies the object on the page to measure offset from. See the description of the
ferenceEnum constants.

 pointer to long variable that receives the value of the offset.

 Values

return values. It returns standard return values of ABBYY FineReader Engine functions.

Workin

 of the Incut Object

 method sets the vertical offset of the incut frame from the paragraph.

yntax

FrameVerticalRe

result

[out, retval] A

Return

This function has no specific

See also

Incut
g with Properties

SetVerticalOffsetFromParagraph Method

This

Visual Basic S

Method SetVerticalOffsetFromParagraph(

 value As Long

)

C++ Syntax

HRESULT SetVerticalOffsetFromParagraph(

 long value

);

Parameters

value

[in] This parameter specifies the vertical offset of the incut frame from the paragraph.

 Values

ader Engine functions.

Incut

f the Incut Object

 method sets the vertical offset of the incut frame from the section top.

yntax

Return

This method has no specific return values. It returns standard return values of ABBYY FineRe

See also

SetVerticalOffsetFromSectionTop Method o

This

Visual Basic S

Method SetVerticalOffsetFromSectionTop(

 value As Long

)

C++ Syntax

HRESULT SetVerticalOffsetFromSectionTop(

 long value

);

 395

ABBYY FineReader Engine 10 API Reference

Parameters

value

[in] This parameter specifies the vertical offset of the incut frame from the section top.

 Values

ndard return values of ABBYY FineReader Engine functions.

bject (IArtefact Interface)

expo perties of a act is an object on page which contains some garbage. Artefact is a type of page
Usually a tream is ass ct type, if this stream is unnecessary in page logical structure and cannot be assigned

any other me

Properties

Return

This method has no specific return values. It returns sta

See also

Incut

Artefact O

This object
stream.

ses pro
 page s

n artefact. Artef
igned the artefa

aningful type.

Name Type Description

Application Eng
only

ine, read�
 Returns the Engine object.

Region Region, read�
only

Stores the region of the artefact in hundredth parts of point. The region is specified in coordinates
relative to the left top corner of the page region.

Related objects

Output parameter

This object is the output parameter of GetAsArtefact method of the PageStream object.

operties

icture Object ture Interface)

vides access s of a picture in a log

s

Name Type

See also

Working with Pr

TextP (ITextPic

This object pro to specific propertie ic structure of a document.

Propertie

Description
Application Engine, read�only Returns the Engine object.
Captions Captions, read�only Returns the collection of captions of the picture. If the picture has

no captions, the property returns 0.

ColumnNumber Long, read�only
is returned.

Specifies the number of the column which contains this picture.
For the picture located in several columns, �1

Specifies if the picture has captions. ead�only HasCaptions Boolean, r

IsBackgroundPicture Boolean Specifies if the picture is a background picture. If this property is

 396

ABBYY FineReader Engine 10 API Reference

TRUE, actually the picture does not exist, and the object is only
used as a stub for some background picture.
Indicates that the picture is embedded in text. This property m
be set to TRUE during recognition of the image. It in

ay
dicates that

cter"
nicode for

d in
Editor window of ABBYY FineReader in this way.

the picture is inline and need not to be displayed as a separate
block. In this case the so called "Object replacement charaIsInlinePicture Boolean
appears in the recognized text instead of this picture. U
this character is 0xFFFC. Embedded pictures are displaye

nParams StreamElementLocationParams,
read�only

Stores the parameters which define the position of the picture
relative to the column (the ColumnNumber property). Locatio

FRPage, read�only ce to the page that contains picture. Page Returns a referen

Methods

Name Description
DeleteCaptions Deletes all the captions of the picture.

Related objects

Out t

s the output parameter of the following methods:

• object

re method of the PageElement object

See also

Workin

 the TextPicture Object

e picture.

c Syntax

pu parameter

This object i

 GetAsPicture method of the DocumentElement

• GetAsPictu

Working with the Logical Structure of a Document
PageElement
DocumentElement

g with Properties

Delete d ofCaptions Metho

This method deletes all the captions of th

Visual Basi

Method DeleteCaptions()

C++ Syntax

HRESULT DeleteCaptions();

es

 values of ABBYY FineReader Engine functions.

Return Valu

This function has no specific return values. It returns standard return

See also

TextPicture

 397

ABBYY FineReader Engine 10 API Reference

TextBarcode O rcode Interfac

of a barcode in

Properties

bject (ITextBa e)

This object provides access to specific properties a logic structure of a document.

Name Type Description
Application Engine, read�only Returns the Engine object.

ColumnNumber Long, read�only umn which contains this barcode. For
th
Specifies the number of the col

e barcode located in several columns, �1 is returned.

LocationParams s,
read�only

lative StreamElementLocationParam Stores the parameters which define the position of the barcode re
to the column (the ColumnNumber property).

Page FRPage, read�only Returns a reference to the page that contains the barcode.

Text Text, read�only

Stores the text of the barcode.
Note: We recommend working with text of barcodes via the layout

(the IBarcodeBlock::BarcodeText or IBarcodeBlock::Text
property) as this way is more suitable for barcodes and does not
require synthesis.

Related objects

Output parameter

 is the output parameter of the following methods:

ent object

de method of the DocumentElement object

 Obje Interface)

provides ac ies of a table in a log

Properties

This object

• GetAsBarcode method of the PageElem

• GetAsBarco

See also

Working with the Logical Structure of a Document
PageElement
DocumentElement

TextTable ct (ITextTable

This object cess to specific propert ic structure of a document.

Type Description Name

Application Engine, read�only Returns the Engine object.

Captions nly le. If the table has no Captions, read�o Returns the collection of captions of the tab
captions, the property returns 0.

Cell TextTableCell, read�only Provides access to the cell by its index.

CellsCount ble. Long, read�only Stores the number of cells in the ta

ColumnsCount Stores the number of columns in the table. Long, read�only
Specifies the number of the text column which contains this table.
For the table located in several columns, �1 is returned. Long, read�only ColumnNumber

HasCaptions Specifies if the table has captions. Boolean, read�only

 398

ABBYY FineReader Engine 10 API Reference

Height �only Stores the height of the table in in hundredth parts of point. Long, read

Returns the position of the specified horizontal separator. The

int.
HSeparatorPos Long, read�only position is a distance from the upper border of the table to the

specified separator measured in hundredth parts of po

HSeparatorType rTypeEnum,
r. TextTableSeparato

Returns the type of the specified horizontal separato
read�only

h Returns the width of the specified horizontal separator. Long, read�only HSeparatorWidt

LocationParams StreamElementLocationParams,
read�only

lative
ty).

Stores the parameters which define the position of the table re
to the text column (the ColumnNumber proper

Page Returns a reference to the page that contains table. FRPage, read�only

RowsCount Stores the number of rows in the table. Long, read�only

VSeparatorPos Long, read�only Returns the position of the specified vertical separator. The position

separator measured in hundredth parts of point.
is a distance from the left border of the table to the specified

Type TextTableSeparatorTypeEnum,
re

Returns the type of the specified vertical separator. VSeparator
ad�only

idth Lo e width of the specified vertical separator. ng, read�only Returns thVSeparatorW

Width Lo Stores the width of the table in in hundredth parts of point. ng, read�only

Methods

Name Description
CreateCell Returns a reference to the TextTableCell object.

DeleteCaptions Deletes all the captions of the table.

DeleteHSeparator Deletes the specified horizontal separator.

DeleteVSeparator Deletes the specified vertical separator.

GetCellByPos oordinates of the table grid. Returns a cell that corresponds to the specified point in base c

GetCellIndexByPos Returns an index of the cell that corresponds to the specified point in base coordinates of the table grid.

InsertHSeparator into two rows. Adds a new horizontal separator and splits the specified row

InsertVSeparator column into two columns. Adds a new vertical separator and splits the specified

SetHSeparator Sets the width and type of the specified horizontal separator.

SetHSeparatorPos Sets the position of the specified horizontal separator.

SetVSeparator Sets the width and type of the specified vertical separator.

SetVSeparatorPos Sets the position of the specified vertical separator.

Related objects

 399

ABBYY FineReader Engine 10 API Reference

Output parameter

hod of the DocumentElement object

ject

See als

ies

xtTable Object

This object is the output parameter of the following methods:

• GetAsTable met

• GetAsTable method of the PageElement ob

o

Working with the Logical Structure of a Document
ertWorking with Prop

Cell P f the Teroperty o

This property provides access to the cell by its index.

Visual Basic Syntax

Property Cell(num As Long) As TextTableCell

 read-only

C++ Syntax

HRESULT get_Cell(

 long num,

 ITextTableCell** result

);

Parameters

num

[in] This variable contains the number of the cell in the table. Cells are numbered in the order of creation. Must be in range from 0 to
ITextTable::CellsCount�1.

extTableCell* pointer variable that receives the interface pointer of the output TextTableCell object.

TextTa

erty of the TextTable Object

s the position of the specified horizontal separator. The position is a distance from the upper border of the table to
the spec r measured in hundredth parts of point.

result

[out, retval] A pointer to IT

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

ble
Working with Properties

HSeparatorPos Prop

This property return
ified separato

Visual Basic Syntax

Property HSeparatorPos(

 row As Long

) As Long

 read-only

C++ Syntax

HRESULT get_HSeparatorPos(

 long row,

 long result

);

Parameters

row

 400

ABBYY FineReader Engine 10 API Reference

[in] This variable specifies the index of the row which upper border separator position is requested. Must be in range from 0 to

result

s variable returns the distance from the upper border of the table to the specified separator measured in hundredth
t.

Return Values

 of ABBYY FineReader Engine functions.

perty of the TextTable Object

zontal separator.

ITextTable::RowsCount.

[out, retval] Thi
parts of poin

This function has no specific return values. It returns standard return values

See also

TextTa
Working with Properties

ble

HSeparatorType Pro

This property returns the type of the specified hori

Visual Basic Syntax

Property HSeparatorType(

 As Long, column

 As Long, row

) As TextTableSeparatorTypeEnum

 read-only

C++ Syntax

HRESULT get_HSeparatorType(

 long column,

 long row,

 TextTableSeparatorTy resultpeEnum

);

Parameters

column

[in] This variable specifies the index of the column which contains the separator. Must be in range from 0 to

ecifies the index of the row which upper border separator is requested. Must be in range from 0 to

result

s variable returns the type of the separator. It may be one of the constants from the TextTableSeparatorTypeEnum
.

Return Values

f ABBYY FineReader Engine functions.

roperty of the TextTable Object

e width of the specified horizontal separator.

ITextTable::ColumnsCount�1.

row

[in] This variable sp
ITextTable::RowsCount.

[out, retval] Thi
enumeration

This function has no specific return values. It returns standard return values o

See also

TextTa
Working with Properties

ble

HSeparatorWidth P

This property returns th

Visual Basic Syntax

Property HSeparatorWidth(

 As Loncolumn g,

 As Lrow ong,

) As Long

 401

ABBYY FineReader Engine 10 API Reference

 read-only

C++ Syntax

HRESULT get_HSeparatorWidth(

 long column,

 long row,

 long result

);

Parameters

column

[in] Th
ITextTable::ColumnsCount

is variable specifies the index of the column which contains the separator. Must be in range from 0 to
�1.

ecifies the index of the row which upper border separator is requested. Must be in range from 0 to

s variable returns the width of the separator.

es of ABBYY FineReader Engine functions.

Workin

 of the TextTable Object

turns the position of the specified vertical separator. The position is a distance from the left border of the table to the
measured in hundredth parts of point.

yntax

row

[in] This variable sp
ITextTable::RowsCount.

result

[out, retval] Thi

Return Values

This function has no specific return values. It returns standard return valu

See also

TextTable
g with Properties

VSeparatorPos Property

This property re
specified separator

Visual Basic S

Property VSeparatorPos(

 column As Long

) As Long

 read-only

taxC++ Syn

HRESULT get_VSeparatorPos(

 long column,

 long result

);

Parameters

column

[in] This variable sp
ITextTable::Colum

ecifies the index of the column which left border separator position is requested. Must be in range from 0 to
nsCount.

s variable returns the distance from the left border of the table to the specified separator measured in hundredth parts

 of ABBYY FineReader Engine functions.

TextTa

result

[out, retval] Thi
of point.

Return Values

This function has no specific return values. It returns standard return values

See also

ble
Working with Properties

 402

ABBYY FineReader Engine 10 API Reference

VSeparatorType Property of the TextTable Object

ical separator. This property returns the type of the specified vert

 SyntaxVisual Basic

Property VSeparatorType(

 column As Long,

 row As Long,

) As TextTableSeparatorTypeEnum

 read-only

C++ Syntax

HRESULT get_VSeparatorType(

 long column,

 long row,

 TextTableSeparatorTypeEnum result

);

Parameters

ex of the column which left border separator is to be set. Must be in range from 0 to
able::ColumnsCount.

e specifies the index of the row which contains the separator to be set. Must be in range from 0 to
Count�1.

s variable returns the type of the separator. It may be one of the constants from the TextTableSeparatorTypeEnum
n.

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

TextTab

roperty of the TextTable Object

th of the specified vertical separator.

 Syntax

column

[in] This variable specifies the ind
ITextT

row

[in] This variabl
ITextTable::Rows

result

[out, retval] Thi
enumeratio

Return Values

See also

le
g with Properties Workin

VSeparatorWidth P

This property returns the wid

Visual Basic

Property VSeparatorWidth(

 column As Long,

 row As Long,

) As Long

 read-only

C++ Syntax

HRESULT get_VSeparatorWidth(

 long column,

 long row,

 long result

);

Parameters

[in] This variable specifies the index of the column which left border separator is to be set. Must be in range from 0 to
able::ColumnsCount.

column

ITextT

 403

ABBYY FineReader Engine 10 API Reference

row

[in] This variable sp
ITextTable::RowsCount

ecifies the index of the row which contains the separator to be set. Must be in range from 0 to
�1.

s variable returns the width of the separator.

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

TextTable
Workin

able Object

TableCell object.

result

[out, retval] Thi

Return Values

See also

g with Properties

CreateCell Method of the TextT

This method returns a reference to the Text

Visual Basic Syntax

Method CreateCell(

 As FRRectangle, position

 As TextTableCell result

)

C++ Syntax

HRESULT SeparateHorz(

 IFRRectangle* position,

 ITextTableCell** result

);

position

rs to FRRectangle object which contains the rectangle of a newly created table cell in a base grid.

 pointer to the ITextTableCell* pointer variable that receives the interface pointer to the TextTableCell object.

Remarks

Cell coordinates in a base grid are the coordinates of its left top corner in that grid. By the base grid here we assume the grid formed by
 separators. Each vertical separator increments the horizontal coordinate by one, and each horizontal separator

increments the vertical coordinate by one. Coordinate axes are oriented from left to right and from top to bottom. Pixel coordinates
oordinate value returned will be �1.

TextTa

Delet s Method of the TextTable Object

e table.

c Syntax

Parameters

[in] This variable refe

result

[out, retval] A

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

table borders and

relative to image must lay inside the table block's region otherwise base c

See also

ble

eCaption

This method deletes all the captions of th

Visual Basi

Method DeleteCaptions()

C++ Syntax

HRESULT DeleteCaptions();

ues

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Return Val

 404

ABBYY FineReader Engine 10 API Reference

See also

TextTable

Delet ethod of the TextTable Object

ntal separator. All the segments of the separator must have the TTST_CellSeparator type, i.e.
rged with the corresponding cell under the separator.

eHSeparator M

This method deletes the specified horizo
 must be meeach cell above the separator

Visual Basic Syntax

Method DeleteHSeparator(

 row ng, As Lo

 result As Boolean

)

C++ Syntax

HRESULT DeleteHSeparator(

 long row,

 VARIANT_BOOL* result

);

Parameters

row

[in] This variable specifies the index of the row which upper border separator is to be deleted. Must be in range from 1 to
ITextTable::RowsCount.

result

[out, retval] This variable returns TRUE, if the separator successfully deleted. It returns FALSE, if not all the segments of t
have the TTST_CellSeparator type, and therefore the separator cannot be deleted.

he separator

alues

 has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Delet ethod of the TextTable Object

al separator. All the segments of the separator must have the TTST_CellSeparator type, i.e. each
erged with the corresponding cell to the right of the separator.

Return V

This function

See also

TextTable

eVSeparator M

This method deletes the specified vertic
r must be mcell to the left of the separato

Visual Basic Syntax

Method DeleteVSeparator(

 col ng, umn As Lo

 result As Boolean

)

C++ Syntax

HRESULT DeleteVSeparator(

 long column,

 VARIANT_BOOL* result

);

Parameters

column

he separator

[in] This variable specifies the index of the column which left border separator is to be deleted. Must be in range from 1 to
ITextTable::ColumnsCount.

result

[out, retval] This variable returns TRUE, if the separator successfully deleted. It returns FALSE, if not all the segments of t
have the TTST_CellSeparator type, and therefore the separator cannot be deleted.

 405

ABBYY FineReader Engine 10 API Reference

Return Values

 has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

GetCe Method of the TextTable Object

e cell that corresponds to the specified point in base coordinates of the table grid.

yntax

This function

See also

TextTable

llIndexByPos

This method returns a

 S

n index of th

Visual Basic

Method FindCellIndex(

 As Long, x

 y As Long

) As Long

aC++ Synt x

HRESULT FindCellIndex(

 long x,

 long , y

 long* result

);

izontal separators).

lues

 base grid here we assume the grid formed by
table borders and separators. Each vertical separator increments the horizontal coordinate by one, and each horizontal separator

 the vertical coordinate by one. Coordinate axes are oriented from left to right and from top to bottom.

ecified should not exceed the table grid otherwise an error code is returned.

GetCe od of the TextTable Object

rresponds to the specified point in base coordinates of the table grid.

 Syntax

Parameters

x

[in] This variable specifies horizontal coordinate of the point (defined on vertical separators).

y

[in] This variable specifies vertical coordinate of the point (defined on hor

result

[out, retval] A pointer to long variable that receives the index of the cell.

Return Va

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Cell coordinates in a base grid are the coordinates of its left top corner in that grid. By the

increments

The point sp

See also

TextTable

llByPos Meth

This method returns a cell that co

Visual Basic

Method GetCellByPos(

 As Long, x

 y As Long

) As TextTableCell

C++ Syntax

HRESULT GetCellByPos(

 long , x

 long y,

 ITextTableCell** result

 406

ABBYY FineReader Engine 10 API Reference

);

Parameters

] This variable specifies horizontal coordinate of the point (defined on vertical separators).

is variable specifies vertical coordinate of the point (defined on horizontal separators).

er to the ITextTableCell* pointer variable that receives the interface pointer to the output TextTableCell object.

 has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

y

nates
eturned will be �1.

ed should not exceed the table grid otherwise an error code is returned.

This method adds a new horizontal separator into the collection of horizontal separators and splits the specified row into two rows.
The newly added separator has the TTST_CellSeparator type. Positions of the cells in the base grid are recalculated.

x

[in

y

[in] Th

result

[out, retval] A point

Return Values

This method

Remarks

Cell coordinates in a base grid are the coordinates of its left top corner in that grid. By the base grid here we assume the grid formed b
table borders and separators. Each vertical separator increments the horizontal coordinate by one, and each horizontal separator
increments the vertical coordinate by one. Coordinate axes are oriented from left to right and from top to bottom. Pixel coordi
relative to image must lay inside the table block's region otherwise base coordinate value r

The point specifi

See also

TextTable

InsertHSeparator Method of the TextTable Object

Visual Basic Syntax

Method InsertHSeparator(

 row As Long,

 pos As Long

)

C++ Syntax

HRESULT InsertHSeparator(

 long row,

 long pos

);

Parameters

his variable specifies the index of the row which is to be split. Must be in range from 0 to ITextTable::RowsCount � 1.

of point. The distance must be above than ITextTable::HSeparatorPos(row) and less than ITextTable::HSeparatorPos(row + 1

n has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

row

[in] T

pos

[in] This variable specifies the distance from the upper border of the table to the newly added separator measured in hundredth parts

).

Return Values

This functio

See also

TextTable

 407

ABBYY FineReader Engine 10 API Reference

Insert ethod of the TextTable Object

tor into the collection of vertical separators and splits the specified column into two columns.
 has the TTST_CellSeparator type. Positions of the cells in the base grid are recalculated.

VSeparator M

This method adds a new ve
The newly added separator

rtical separa

Visual Basic Syntax

Method InsertVSeparator(

 ng column As Lo

 pos As Long

)

C++ Syntax

HRESULT InsertVSeparator(

 long column,

 long pos

);

Parameters

pos

ecifies the distance from the left border of the table to the newly added separator measured in hundredth parts of
torPos(column

+ 1).

ues

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

f the TextTable Object

ified horizontal separator.

column

[in] This variable specifies the index of the column which is to be split. Must be in range from 0 to ITextTable::ColumnsCount � 1.

[in] This variable sp
point. The distance must be above than ITextTable::VSeparatorPos(column) and less than ITextTable::VSepara

Return Val

See also

TextTable

SetHSeparator Method o

This method allows you to set the width and type of the spec

Visual Basic Syntax

Method SetHSeparator(

 column As Integer,

 row As Integer,

 As TextTableSeparatorTypeEnum, type

 separatorWidth As Long

)

C++ Syntax

HRESULT SetHSeparator(

 int column,

 int row,

 TextTableSeparatorTypeEnum type,

 long separatorWidth

);

Parameters

column

nt�1.

o

[in] This variable specifies the index of the column which contains the separator to be set. Must be in range from 0 to
ITextTable::ColumnsCou

row

[in] This variable specifies the index of the row which upper border separator is to be set. Must be in range from 0 t
ITextTable::RowsCount.

 408

ABBYY FineReader Engine 10 API Reference

type

[in] This variable specifies the new type of the separator. It may be set to one of the constants from the
TextTableSeparatorTypeEnum enumeration.

ues

 has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

SetHS ethod of the TextTable Object

cified horizontal separator. The position is a distance from the upper border of the table to the
ured in hundredth parts of point.

ntax

separatorWidth

[in] This variable specifies the new width of the separator.

Return Val

This method

See also

TextTable

eparatorPos M

This method sets the position of the spe
specified separator meas

Visual Basic Sy

Method SetHSeparatorPos(

 row As Long,

 pos As Long

)

C++ Syntax

HRESULT SetHSeparatorPos(

 long row,

 long pos

);

s

ecifies the distance from the upper border of the table to the specified separator measured in hundredth parts of
torPos(row + 1

ues

has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

f the TextTable Object

ified vertical separator.

Parameters

row

[in] This variable specifies the index of the row which upper border separator position is set. Must be in range from 1 to
ITextTable::RowsCount�1.

po

[in] This variable sp
point. The distance must be above than ITextTable::HSeparatorPos(row � 1) and less than ITextTable::HSepara
).

Return Val

This function

See also

TextTable

SetVSeparator Method o

This method allows you to set the width and type of the spec

Visual Basic Syntax

Method SetVSeparator(

 column As Integer,

 row As Integer,

 typ As TextTableSeparatorTypeEnum, e

 separatorWidth As Long

)

C++ Syntax

HRESULT SetVSeparator(

 int column,

 409

ABBYY FineReader Engine 10 API Reference

 int row,

 TextTableSeparatorTypeEnum type,

 long separatorWidth

);

Parameters

column

 to

from 0 to

may be set to one of the constants from the

alues

 has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

SetVSe thod of the TextTable Object

cified vertical separator. The position is a distance from the left border of the table to the
th parts of point.

[in] This variable specifies the index of the column which left border separator is to be set. Must be in range from 0
ITextTable::ColumnsCount.

row

[in] This variable specifies the index of the row which contains the separator to be set. Must be in range
ITextTable::RowsCount�1.

type

[in] This variable specifies the new type of the separator. It
TextTableSeparatorTypeEnum enumeration.

separatorWidth

[in] This variable specifies the new width of the separator.

Return V

This method

See also

TextTable

paratorPos Me

This method sets the position of the spe
ed in hundredspecified separator measur

Visual Basic Syntax

Method SetVSeparatorPos(

 col ng umn As Lo

 pos As Long

)

C++ Syntax

HRESULT SetVSeparatorPos(

 long column,

 long pos

);

Parameters

column

ecifies the distance from the left border of the table to the specified separator measured in hundredth parts of
ITextTable::VSeparatorPos(column � 1) and less than ITextTable::VSeparatorPos(

alues

 has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

[in] This variable specifies the index of the column which left border separator position is requested. Must be in range from 1 to
ITextTable::ColumnsCount � 1.

pos

[in] This variable sp
point. The distance must be above than
column + 1).

Return V

This function

See also

TextTable

 410

ABBYY FineReader Engine 10 API Reference

TextTableCell Object (ITextTableCell Interface)

ect provides access ific properties of a table cell in re of a document.

Name Type

This obj to spec a logic structu

Properties

Description
Application Engine, read�only Returns the Engine object.

Specifies the background color of the cell.
Note: The Long value is calculated from the RGB triplet using the

dColor Long Backgroun formula: (red value) + (256 x green value) + (65536 x blue value),
where red value is the first triplet component, green value is the
second triplet component, blue value is the third triplet component.

Element PageElement t which is contained in the cell. Provides access to the page elemen

Stores the number of the last column, which contains the cell. If the
cell is not merged, this property is equal to the EndColumnNumber Long, read�only
StartColumnNumber property.
Stores the number of the last row, which contains the cell. If the cell is
not merged

EndRowNumber Long, read�only
, this property is equal to the StartRowNumber property.

er mber
Stores the number of the first column, which contains the cell. If the
cell is not merged, this property is equal to the EndColumnNu
property.

Long, read�only StartColumnNumb

StartRowNumber Long, read�only
s the cell. If the cell

is not merged, this property is equal to the EndRowNumber
property.

Stores the number of the first row, which contain

VertAlignment TableCellVertAlignmentEnum Specifies the vertical alignment of the table cell.

Related objects

Output parameter

r of the CreateCell, GetCellByPos methods of the TextTable object.

See also

Captions O

This object provides access to the collection of captions of a table or picture. Besides standard collection methods and properties, it
reateCaption method that allows you to create a new caption to the object.

This object is the output paramete

Working with Layout and Blocks
Working with Properties

bject (ICaptions Interface)

contains the C

Important! The ind ABBYY FineReader Engin arts with 0. exing of e collections st

Properties

Name Type Description
n Engine, read�only Returns the Engine object. Applicatio

Count Long, read�only Stores the number of elements in the collection.

t Caption, re Provides access to a single element of the collection. ad�only Elemen

Methods

Name Description

 411

ABBYY FineReader Engine 10 API Reference

CreateCaption Creates a new caption to the object.

DeleteAll Deletes all the captions from the collection.

Item Provides access to a single element of the collection.

Related objects

See also

Working with the Logical Structure of a Document
Caption
TextTable
TextPicture

bject

ect (table or picture).

yntax

g with Properties Workin

CreateCaption Method of the Captions O

This method creates a new caption to the obj

Visual Basic S

Method CreateCaption(

 position As CaptionPositionEnum,

 text As PageElement,

) As Caption

C++ Syntax

HRESULT CreateCaption(

 CaptionPositionEnum position,

 IPageElement* text,

 ICaption** result

);

Parameters

position

[in] This variable of CaptionPositionEnum type specifies the position of the new caption relative to the object.

fers to the PageElement object which contains the text of the new caption. The type of the page element must be

result

 pointer to ICaption* pointer variable that receives the interface pointer of the newly created Caption object.

alues

 return values of ABBYY FineReader Engine functions.

Captions

text

[in] This variable re
PET_Text.

[out, retval] A

Return V

This method has no specific return values. It returns standard

See also

Caption

 412

ABBYY FineReader Engine 10 API Reference

DeleteAll Method of the Captions Object

ns from the collection.

c Syntax

This method deletes all the captio

Visual Basi

Method DeleteAll()

C++ Syntax

HRESULT DeleteAll();

Return Values

tandard return values of ABBYY FineReader Engine functions.

s

on Ob ICaption Interf

v c proper on. It is an element of the collection of captions (Captions
object).

Properties

This method has no specific return values. It returns s

See also

Caption
Caption

Capti ject (ace)

This object pro ides access to specifi ties of a table or picture capti

Name Type Description
Application Engine, read�only Returns the Engine object.

Element �only pe PageElement, read Provides access to the text of the caption. The text is stored as the page element of ty
PET_Text.

Position Capt
read

ionPositionEnum,
�only Stores the position of the caption relative to the table or picture which has this caption.

Region Region, read�only
Stores the region of the caption in hundredth parts of point. The region is specified in
coordinates relative to the left top corner of the surrounding rectangle of the object
which has this caption. Surrounding rectangle includes the object and all its captions.

Related objects

Output p

This object is the output parameter of the

arameter

Item, CreateCaption methods of the Captions object.

Ca
Working with Properties

ingTitleSeriesArray Object (IRunningTitleSeriesA Interface)

resents a co g title series.

See also

Working with the Logical Structure of a Document
ptions

Runn rray

This object rep llection of runnin

Important! The indexin eader Engine collectiong of ABBYY FineR s starts with 0.

 413

ABBYY FineReader Engine 10 API Reference

Properties

Type Description Name
Application Engine, read�only ect. Returns the Engine obj

Count Long, read�only ay. Stores the number of series in the arr

Element RunningTitleSeries, read y its index. �only Provides access to one running title series b

Methods

Description Name
CreateRunningTitlesSeries Creates the RunningTitleSeries object.

DeleteEmptySeries Removes all empty running title series from the array.

DeleteAll Removes all the elements from the running title series array.

Item Provides access to a single element of the collection.

Related objects

See also

Workin

d of the RunningTitleSeriesArray Object

ethod allows you to create the RunningTitleSeries object.

asic Syntax

g with the Logical Structure of a Document
RunningTitleSeries
DocumentStructure
Workin ties g with Proper

CreateRunningTitleSeries Metho

This m

Visual B

Method CreateRunningTitleSeries() As RunningTitleSeries

C++ Syntax

HRESULT CreateRunningTitleSeries(

 IRunningTitleSeries** result

);

Parameters

pointer variable that receives the interface pointer to the created RunningTitleSeries
 method call.

This met return values. It returns standard return values of ABBYY FineReader Engine functions.

thod of the RunningTitleSeriesArray Object

Visual Basic Syntax

result

[out] A pointer to IRunningTitleSeries*
object. result must not be NULL. *result is guaranteed to be non�NULL after successful

Return Values

hod has no specific

See also

RunningTitleSeriesArray

DeleteAll Me

This method removes all the elements from the running title series array.

 414

ABBYY FineReader Engine 10 API Reference

Method DeleteAll()

C++ Syntax

HRESULT DeleteAll();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See als

IRunningTitleSeriesArray::DeleteEmptySeries

he RunningTitleSeriesArray Object

empty running title series from the array.

o

RunningTitleSeriesArray

DeleteEmptySeries Method of t

This method removes all

Visual Basic Syntax

Method DeleteEmptySeries()

C++ Syntax

HRESULT DeleteEmptySeries();

gTitleSeriesArray

RunningTitleSeries O es Interface)

e ne series of running titles. It is a

Name Description

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Runnin

bject (IRunningTitleSeri

rs of o n element of the RunningTitleSeriesArray collection. This object stores the paramet

Properties

Type

Application e, read�only Returns the Engine object. Engin

RunningTitleSeriesText, read�
only FooterOnEven Provides access to the footer for even pages of this series.

RunningTitleSeries
only

Text, read�FooterOnOdd Provides access to the footer for odd pages of this series.

HeaderOnEven sText, read�RunningTitleSerie
only Provides access to the header for even pages of this series.

HeaderOnOdd riesText, read�RunningTitleSe
Provides access to the header for odd pages of this series.

only

IsEqualOddAndEven an, read�only d
even pages.
Specifies whether this running title series is the same for odd anBoole

Page ad�only n of
pages containing running titles of this series.
Returns the page with the specified index from the collectioFRPage, re

PagesCount Long, read�only Stores the number of pages with running titles of this series.

RunningTitle RunningTitleSeriesText, read�
only Provides access to the text of the specified running title series.

RunningTitleSeriesArray Running
read�only s this object. TitleSeriesArray,

Returns the running titles array which contain

Methods

Name Description
AddPage Adds page for the series.

 415

ABBYY FineReader Engine 10 API Reference

CreateFooter Creates the same footer for odd and even pages of this series.

CreateFooterOnEven s of this series. Creates a footer for even page

CreateFooterOnOdd Creates a footer for odd pages of this series.

CreateHeader Creates the same header for odd and even pages of this series.

CreateHeaderOnEven Creates a header for even pages of this series.

CreateHeaderOnOdd Creates a header for odd pages of this series.

DeletePage Deletes page from the series.

Related objects

Output parameter

This object is the output parameter of the CreateRunningTitlesSeries method of the RunningTitleSeriesArray object.

See als

y of the RunningTitleSeries Object

h the specified index from the collection of pages containing running titles of this series.

o

RunningTitleSeriesArray
Working with Properties

Page Propert

This pro the page witperty returns

Visual Basic Syntax

Property Page(

 pageIndex A g s Lon

) As FRPage

 read-only

 SyntaxC++

HRESULT get_Page(

 long pageIndex ,

 IFRPage** result

);

Parameters

pageIndex

[in] This variable contains the index of the page.

pointer variable that receives the interface pointer of the FRPage output object.

Return Values

YY FineReader Engine functions.

result

[out] A pointer to IFRPage*

This function has no specific return values. It returns standard return values of ABB

 416

ABBYY FineReader Engine 10 API Reference

See als

Property of the RunningTitleSeries Object

This pro s access to the text of the specified running title series.

o

RunningTitleSeries
FRPage
Working with Properties

RunningTitle

perty provide

Visual Basic Syntax

Property RunningTitle(

 isHeader As Boolean,

 isOdd As Boolean,

) As RunningTitleSeriesText

 read-only

C++ Syntax

HRESULT get_RunningTitle(

 VARIANT_BOOL isHeader,

 VARIANT_BOOL isOdd,

 IRunningTitleSeriesText** result

);

Parameters

isHeader

[in] This variable specifies if requested running title is a header.

riable specifies if requested running title is on an odd page.

TitleSeriesText* pointer variable that receives the interface pointer of the RunningTitleSeriesText
exposes properties of the running title text.

AddP od of the RunningTitleSeries Object

 the internal collection of pages containing running titles of this series. After this method call the page
r defined by this running title series.

Visual Basic Syntax

isOdd

[in] This va

result

[out] A pointer to IRunning
output object. This object

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

RunningTitleSeries
RunningTitleSeriesText
Working with Properties

age Meth

This method adds a page into
will have the footer and heade

Method AddPage(

 page As FRPage

)

C++ Syntax

HRESULT AddPage(

 IFRPage* page

);

[in] This variable refers to the FRPage object to be added.

Parameters

page

 417

ABBYY FineReader Engine 10 API Reference

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

the RunningTitleSeries Object

s of this series. Each page of the running title series can have no more than
ooter.

asic Syntax

RunningTitleSeries
FRPage

CreateFooter Method of

This method creates the same footer for odd and even page
one f

Visual B

Method CreateFooter() As RunningTitleSeriesText

C++ Syntax

HRESULT CreateFooter(

 IRunningTitleSeriesText** result

);

Parameters

result

[out, retval] A pointer to IRunningTitleSeriesText*
RunningTitleSeriesText output

pointer variable that receives the interface pointer of the
object. This object exposes properties of the running title text.

See als

RunningTitleSeriesText

ningTitleSeries Object

ethod creates a footer for even pages of this series. Each page of the running title series can have no more than one footer.

asic Syntax

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

o

RunningTitleSeries

CreateFooterOnEven Method of the Run

This m

Visual B

Method CreateFooterOnEven() As RunningTitleSeriesText

C++ Syntax

HRESULT CreateFooterOnEven(

 IRunningTitleSeriesText** result

);

Parameters

result

[out, retval] A pointer to
RunningTitleSeriesText output

IRunningTitleSeriesText* pointer variable that receives the interface pointer of the
object. This object exposes properties of the running title text.

See als

RunningTitleSeriesText

ingTitleSeries Object

ethod creates a footer for odd pages of this series. Each page of the running title series can have no more than one footer.

Visual Basic Syntax

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

o

RunningTitleSeries

CreateFooterOnOdd Method of the Runn

This m

 418

ABBYY FineReader Engine 10 API Reference

Method CreateFooterOnOdd() As RunningTitleSeriesText

C++ Syntax

HRESULT CreateFooterOnOdd(

 IRunningTitleSeriesText** result

);

Parameters

result

 pointer to IRunningTitleSeriesText* pointer variable that receives the interface pointer of the
ext output object. This object exposes properties of the running title text.

Return Values

Y FineReader Engine functions.

RunningTitleSeries
Runnin

Creat Method of the RunningTitleSeries Object

 and even pages of this series. Each page of the running title series can have no more than

Visual Basic Syntax

[out, retval] A
RunningTitleSeriesT

This function has no specific return values. It returns standard return values of ABBY

See also

gTitleSeriesText

eHeader

This method creates the same header for odd
one header.

Method CreateHeader() As RunningTitleSeriesText

C++ Syntax

HRESULT CreateHeader(

 IRunningTitleSeriesText** result

);

Parameters

result

 pointer to IRunningTitleSeriesText* pointer variable that receives the interface pointer of the
ext output object. This object exposes properties of the running title text.

Return Values

er Engine functions.

of the RunningTitleSeries Object

ach page of the running title series can have no more than one header.

Visual Basic Syntax

[out, retval] A
RunningTitleSeriesT

This function has no specific return values. It returns standard return values of ABBYY FineRead

See also

Runnin
RunningTitleSeriesText

gTitleSeries

CreateHeaderOnEven Method

This method creates a header for even pages of this series. E

Method CreateHeaderOnEven() As RunningTitleSeriesText

C++ Syntax

HRESULT CreateHeaderOnEven(

 IRunningTitleSeriesText** result

);

Parameters

result

 pointer to IRunningTitleSeriesText* pointer variable that receives the interface pointer of the
ext output object. This object exposes properties of the running title text.

[out, retval] A
RunningTitleSeriesT

 419

ABBYY FineReader Engine 10 API Reference

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See als

RunningTitleSeriesText

ningTitleSeries Object

ethod creates a header for odd pages of this series. Each page of the running title series can have no more than one header.

asic Syntax

o

RunningTitleSeries

CreateHeaderOnOdd Method of the Run

This m

Visual B

Method CreateHeaderOnOdd() As RunningTitleSeriesText

C++ Syntax

HRESULT CreateHeaderOnOdd(

 IRunningTitleSeriesText** result

);

Parameters

result

[out, retval] A pointer to IRunningTitleSeriesText*
RunningTitleSeriesText output

pointer variable that receives the interface pointer of the
object. This object exposes properties of the running title text.

 It returns standard return values of ABBYY FineReader Engine functions.

See als

DeletePage Method of the RunningTitleSeries Object

e series.

Return Values

This function has no specific return values.

o

RunningTitleSeries
RunningTitleSeriesText

This method deletes page from th

Visual Basic Syntax

Method DeletePage(

 page As FRPage

)

C++ Syntax

HRESULT DeletePage(

 IFRPage* page

);

Parameters

ariable refers to the FRPage object to be deleted.

rn values of ABBYY FineReader Engine functions.

gTitleSeries
FRPage

Title Ob itle

This object provides a c footer on a page.

page

[in] This v

Return Values

This function has no specific return values. It returns standard retu

See also

Runnin

Running ject (IRunningT Interface)

c ess to a single header or

 420

ABBYY FineReader Engine 10 API Reference

Properties

Name Type Description
Application Engine, read�only Re Engine object.turns the

IsHeader Boolean, read�only Spec s iifie f the running title is a header or footer.

RunningTitleSeries eries,
Provides a s. RunningTitleS

read�only ccess to the running title series to which this running title belong

Specifies the rectangle of the running title in hundredth parts of point. The
coor
IPageStr

dinates are counted from the left top corner of the page (see
ucture::PageRect).

Notes:

•
ectangle object with the help of

change the necessary
parameters, and then assign this object to the property.

• This rectangle may differ from the rectangle returned by the
IRunningTitleSeriesText::Rect property as the latter contains an
average position of all running title rectangles in the series, and the
current rectangle defines the real position of a single header or footer.

The property returns a constant object. To change the rectangle, you
must first receive an intermediate FRR
the IEngine::CreateRectangle method, Rect FRRectangle

Text Text, read�only Provides access to the text of the running title.

Related objects

See also

Working with the Logical Structure of a Document
PageStructure

Properties

ingTitleSe t Object (itleSeriesText Interface)

vides access to additional prope s concerning its text. The object defines an average
l running title rectangles in the se ss to all text of the running title series, not

to the text of a single running title. To work with the text of a single running title, receive the RunningTitle object using the
::He ageStructure t.

Properties

Name Type

Working with

Runn riesTex IRunningT

This object pro rties of the running title serie
position of al ries, orientation of the text, and provides acce

IPageStructure ader or IP ::Footer property, and then use the Text property of the RunningTitle objec

Description
Application Engine, read�only Re Engine object. turns the

IsInverted Boolean Spec s iifie f the running title text is inverted.

HasSeparator Boolean Specifies w rom the main text with a
horizontal

hether the running title text is separated f
 line. A separator may be below a header or above a footer.

Rect FRRectangle

Specifies a inates
are define
page.

n average position of all running title rectangles in the series. The coord
d in hundredth parts of point and counted from the left top corner of the

Notes:

 of • To view the position of a certain header or footer, use the Rect property

 421

ABBYY FineReader Engine 10 API Reference

the corresponding RunningTitle object.

• The property returns a constant object. To change the rectangle, you must
first receive an intermediate FRRectangle object with the help of the
IEngine::CreateRectangle method, change the necessary parameters, and
then assign this object to the property.

Text Text, read�only Contains all text of the running title series. This text has the TR_AbstractText role
(IText::TextRole property).

TextOrientation TextOrientation,
read�only

Specifies the text orientation in the running title series. The property returns a constant
object.

Related objects

Output parameter

 CreateFooter, CreateFooterOnOdd,

age. It can

rs are found during page layout analysis, then during document synthesis their additional attributes are detected. The
separators are used du rt to reconstruct the initial page layo This object works with the separator properties received after

nt synth work with the separators in th SeparatorBlock and SeparatorGroup objects of the
k n.

The PageBlackSeparator object allows you to get different
n. The PageStructure object provides access t
tructure SeparatorsCount property,

IPageStructure::BlackSeparator property.

rties

Name Type tion

This object is output parameter of the CreateHeader, CreateHeaderOnOdd, CreateHeaderOnEven,
CreateFooterOnEven methods of the RunningTitleSeries object.

See also

Working with the Logical Structure of a Document
RunningTitleSeries
Working with Properties

PageBlackSeparator Object (IPageBlackSeparator Interface)

This object represents a single page black separator in the logical structure of a document. Black separator is a line on an im
be horizontal, vertical, or slanting.

Black separato
ring expo

esis. To
ut.

e layout, use the docume
ILayout::Blac Separators collectio

black separator geometrical properties together with its type and
o a set of these objects. The number of separators on a page is accessible via the
while the separator with the specified index can be accessed via the

directio
IPageS ::Black

Prope

Descrip

Application Engine, read�only Returns the Engine object.

Stores the horizontal coordinate of the end point of separator. The coordinates
are measured in hundredth parts of point relative to the left top corner of the
page region.

EndX Long

 422

ABBYY FineReader Engine 10 API Reference

Stores the vertical coordinate of the end point of separator. The coordinates are
measured in hundredth parts of point relative to the left top corner of the page
region.

EndY Long

lackSeparatorRoleEnum a
 some additional text, etc.

Specifies the role of the black separator in the document. It may be a part of
Role PageB

table, may separate main text from

Stores the horizontal coordinate of the start point of separator. The coordinates
are measured in hundredth parts of point relative to the left top corner of the
page region.

StartX Long

StartY Long
Stores the vertical coordinate of the start point of separator. The coordinates are
measured in hundredth parts of point relative to the left top corner of the page
region.

Thickness Long Stores the precise width of the black separator in hundredth parts of point.

Type PageBlackSeparatorTypeEnum Stores the type of the separator.

Related objects

Output parameter

This object is the output parameter of the AddBlackSeparator method of the PageStructure object.

o

BackgroundLayer Obj

This object exposes properties o

Properties

Name Type

See als

PageStructure
Working with P

roperties

ect (IBackgroundLayer Interface)

f a background layer of a page.

Description
Engine,
read�only n Returns the Engine object. Applicatio

Specifies the background color. If the background layer is a picture (the IsPicture value is TRUE), th
value of this property is 0xFEFFFFFF, which means that the color is transparent. By default the
background color is white or RGB(255,255,255).

e

Color Long Note: The Long value is calculated from the RGB triplet using the formula: (red value) + (256 x
green value) + (65536 x blue value), where red value is the first triplet component, green value is the
second triplet component, blue value is the third triplet component. Hence the Long value of the
color white equals 16777215.

IsPicture lean,
read�only Specifies if the background layer is a picture. By default, the value is FALSE. Boo

Region Region

Stores the region of the background layer in pixels. The region is specified in coordinates relative to
the left top corner of the image. The region is allowed to overlap the logical page rectangle (the
IPageStructure::Margins rectangle).

Note: The property returns a constant object. To change the background layer region, you must first
ive an intermediate Region object with the help of the IEngine::CreateRegion method, change

the necessary parameters, and then assign this object to the property.
rece

 423

ABBYY FineReader Engine 10 API Reference

Related objects

Output parameter

e output paramete ou object

See also

GlobalStyleStorage Object (IGlobalSty ge Interface)

s access to the nt

 Type Description

r of the AddBackgr ndLayer method of the PageStructureThis object is th

PageStructure
Working with Properties

leStoraf

This object provide styles of the docume .

Properties

Name

Application Engine, read�only Returns the Engine object.

BaseStyleForParagraphRole Parag

Provides access to the base style of paragraphs with the specified role.

raphStyle
 Note: The property returns a constant object. To change the base

ediate ParagraphStyle
CreateParagraphStyle

ry parameters, and then assign this object to the

paragraph style, you must first receive an interm
object with the help of the IGlobalStyleStorage::
method, change the necessa
property.

ParagraphStyle g tyle,
read�only Provides access to the paragraph style with the specified index. Para raphS

ParagraphStylesCount Long, read�only Stores the number of paragraph styles in the document.

Methods

Name Description
Clean Cleans the global style storage.

CreateParagraphStyle Creates a new paragraph style (the ParagraphStyle object).

DeleteAllStyles Deletes all styles in the global style storage.

DeleteAndReplaceParagraphStyle eletes the specified style from the global style storage and replaces this style with another
yle.

D
st

Related objects

 424

ABBYY FineReader Engine 10 API Reference

See also

DocumentStructure

roperty of the GlobalStyleStorage Object

tyle of paragraphs with the specified role.

Working with Properties

BaseStyleForParagraphRole P

This property provides access to the base s

Note: The property returns a constant object. To change the
ParagraphStyle object with the help of the IGlobalStyleSto

 base paragraph style, you must first receive an intermediate
rage::CreateParagraphStyle method, change the necessary

 the property. parameters, and then assign this object to

Visual Basic Syntax

Property BaseStyleFor grPara aphRole(

 role As ParagraphRoleEnum,

 level As Long

) As ParagraphStyle

C++ Syntax

HRESULT get_BaseStyleForParagraphRole(

 ParagraphRoleEnum role,

 long level,

 IParagraphStyle** result

);

HRESULT put_BaseStyleForParagraphRole(

 ParagraphRoleEnum role,

 long , level

 IParagraphStyle* style

);

Parameters
role

[in] This variable specifies the role of the paragraphs which base style is to be found. It may be set to one of the constants from the
 enumeration.

nly if the role is PR_Heading. Otherwise it is set

result

graphStyle object which contains

[in] This he ParagraphStyle object which contains the base style to be set.

 It returns standard return values of ABBYY FineReader Engine functions.

lso

rage

ith the specified index.

Visual Basic Syntax

ParagraphRoleEnum
level

[in] This variable specifies the level of the heading. You need to specify this parameter, o
to �1.

[out, retval] A variable of type IParagraphStyle* that receives a pointer to the interface of the Para
the base style. result must not be NULL. *result is guaranteed to be non�NULL after a successful call.

style

 variable refers to t

Return Values

This Property has no specific return values.

See a

GlobalStyleSto

ParagraphStyle Property of the GlobalStyleStorage Object

This property provides access to the paragraph style w

Property ParagraphStyle(styleIndex As Long) As ParagraphStyle

 read-only

C++ Syntax

HRESULT get_ParagraphStyle(

 long styleIndex,

 IParagraphStyle** result

 425

ABBYY FineReader Engine 10 API Reference

);

Parameters

styleIndex

[in] This variable specifies the index of the paragraph style in the collection of document styles. Must be
IGlobalStyleStorage::ParagraphStylesCount �1.

in range from 0 to

raphStyle* pointer variable that receives the interface pointer to the returned ParagraphStyle object.

o specific return values. It returns standard return codes of ABBYY FineReader Engine functions.

leStorage

f the GlobalStyleStorage Object

This method cleans the global style storage: deletes all the styles and lists from the global style storage.

result

[out] A pointer to IParag

Return Values

This property has n

See also

GlobalSty

Clean Method o

Visual Basic Syntax

Method Clean()

C++ Syntax

HRESULT Clean();

Return

rns standard return values of ABBYY FineReader Engine functions.

lso

rage
rage::DeleteAllStyles

c Syntax

 Values

This method has no specific return values. It retu

See a

GlobalStyleSto
IGlobalStyleSto

CreateParagraphStyle Method of the GlobalStyleStorage Object

This method allows you to create a new paragraph style (the ParagraphStyle object).

Visual Basi

Method CreateParagraphStyle() As ParagraphStyle

C++ Syntax

HRESULT CreateParagraphStyle(

 IParagraphStyle** result

);

Parameters

result

[out] A p hStyle* pointer variable that receives the interface pointer to the created ParagraphStyle object. result
o be non�NULL after successful method call.

Return

rns standard return values of ABBYY FineReader Engine functions.

Style

 Method of the GlobalStyleStorage Object

 the global style storage.

Visual Basic Syntax

ointer to IParagrap
must not be NULL. *result is guaranteed t

 Values

This method has no specific return values. It retu

See also

GlobalStyleStorage
Paragraph

DeleteAllStyles

This method deletes all styles in

 426

ABBYY FineReader Engine 10 API Reference

Method DeleteAllStyles()

C++ Syntax

HRESULT DeleteAllStyles();

s standard return values of ABBYY FineReader Engine functions.

lso

Global

he GlobalStyleStorage Object

hod deletes the specified style from the global style storage and replaces this style in the document with another style.

Return Values

This method has no specific return values. It return

See a

StyleStorage
IGlobalStyleStorage::DeleteAndReplaceParagraphStyle
IGlobalStyleStorage::Clean

DeleteAndReplaceParagraphStyle Method of t

This met

Visual Basic Syntax

Method DeleteAndReplaceParagraphStyle(

 deleted As ParagraphStyle,

 substitute As ParagraphStyle

)

C++ Syntax

HRESULT DeleteAndReplaceParagraphStyle(

 IParagraphStyle* deleted,

 IParagraphStyle* substitute

);

Parameters

deleted

[in] This variable refers to the ParagraphStyle object that should be replaced.

[in] This variable refers to the ParagraphStyle object that contains the new style for the paragraphs.

Remarks

If the

es

thod has no spe turn values. It returns values of ABBYY FineReader Engine functions.

Storage

tyle ct (IParagraphS

This object exposes properties of the paragraph style.

substitute

deleted paragraph style is the main style for paragraphs with some role and role level and the substitute style has the same role
and role level, the substitute paragraph style will be used as the main style for the paragraphs with this style and role level. Otherwise
the main style for the paragraphs with this role and role level will be NULL.

Return Valu

This me cific re standard return

See also

GlobalStyle

ParagraphS Obje tyle Interface)

Important! If you wish to work with the style of
(e.g. the Process or Synthesize method of the FRD ul only after synthesis.

a single paragraph, you must first call any of the functions that perform synthesis
ocument object), as these properties become meaningf

Properties

Description Name Type

Application Engine, read�only Returns the Engine object.

BaseFont FontStyle, read�only Stores the base font style of this style paragraphs.

l Long
Specifies the level of the heading. The property only makes sense, if the value of
the ParagraphRole property is PR_Heading.

HeadingLeve

 427

ABBYY FineReader Engine 10 API Reference

Name String
efault, the value of

this property is an empty string. You can generate the name of the style on base
of the paragraph role (the ParagraphRole property).

Specifies the user�defined name of the paragraph style. By d

ParagraphParams ParagraphParams,
read�only

Stores the parameters of the paragraph of this style: alignment, left and right
indent, space before and after the paragraph.

ParagraphRole ParagraphRoleEnum Specifies the role of this style paragraphs in the logic structure of the document.
This property can be used to generate a suitable name for the style.

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

Related objects

Output parameter

This object is the output parameter of the CreateParagraphStyle method of the GlobalStyleStorage object.

ter

ject is e input paramet DeleteAndReplaceParagraphStyle method of the GlobalStyleStorage object.

See also

Storage
Working with Properties

FontStyle Object (IFontStyle Interfac

exposes properties nt style.

Properties

Name Type

Input parame

This ob th er of the

GlobalStyle

e)

Description

This object of a fo

Application Engine, read�only Returns the Engine object.

BaseLine
e base line of the string in pixels. The base line

seLine property. This
embedded in text.

Sets the shift of a character from th
of the string is defined by the IParagraphLine::BaLong
property is mainly used for the pictures

Sets the RGB value of the color for the font. By default the font color is blac
RGB(0,0,0).

k or

Color Long Note: The Long value is calculated from
value) + (256 x green value) + (65536 x

the RGB triplet using the formula: (red
 blue value), where red value is the first

nd triplet component, blue value is the
of the color black equals 0.

triplet component, green value is the seco
third triplet component. Hence the Long value

Boolean, read�IsBaseFont
only ph style. Specifies whether this font style is the base font style of the paragra

IsBold Boolean Specifies whether the font is bold.

IsItalic Boolean Specifies whether the font is italic.

IsSmallCaps is means that the small Boolean Specifies whether the font has "small caps" style. Th

 428

ABBYY FineReader Engine 10 API Reference

characters are displayed as small capitals.

IsStrikeout Specifies whether the font is strikeout. Boolean

IsUnderlined Boolean Specifies whether the font is underlined.

FontName String, read�only efault this value is "Times New Roman". This
property cannot be changed directly but via the SetFont method.
Stores the name of the font. By d

Specifies the height of the font in twips. Twip is 1/20 of point, and point is 1/72".
Default value of this property corresponds to 10 points or 200 twips. FontSize Long

FontType peEnum,
read�only

erif. This property cannot
be changed directly but via the SetFont method.

FontTy Stores the type of the font. By default this value is FT_S

HorizontalScale Long Stores horizontal scaling the font style in 1/1000. Default for this property is
1000, which corresponds to no scaling.

OverriddenStyleParams Long, read�only
of the style parameters overridden in this style against the base

font style of the roperty is an OR superposition of the
StyleParamsEnum constants.

Describes the set

paragraph. The p

ParagraphStyle ParagraphStyle,
read�only

Provides access to the paragraph style which contains this font style. The
property returns a constant object.

Spacing Long Specifies additional spacing between characters in twips. Twip is 1/20 of point,
and point is 1/72". Default value of this property is 0.

Methods

Name Description
SetFont Sets the new font name and font type.

Related objects

See also

ParagraphStyle
Workin ties

ame and font type for the font style. This method affects the IFontStyle::FontName and
 properties.

g with Proper

SetFont Method of the FontStyle Object

 nThis method allows you to set a new font
tStyle::FontType IFon

Visual Basic Syntax

Method SetFont(

 fontName As String,

 fontType As FontTypeEnum

)

C++ Syntax

HRESULT SetFont(

 BSTR fontName,

 FontTypeEnum fontType

);

Parameters

fontName

 429

ABBYY FineReader Engine 10 API Reference

[in] This variable specifies the name of the new font.

[in nts from the FontTypeEnum enumeration.

es

thod has no spe urn values. It returns stand s of ABBYY FineReader Engine functions.

le
FontTypeEnum

t (IList Interface)

epresents one list. It t levels.

fontType

] This variable specifies the type of the new font. It may be set to one of the consta

Return Valu

This me cific ret ard return value

See also

FontSty

List Objec

This object r is a collection of lis

Important! The indexing of ABBYY FineR

 Type

eader Engine collections starts with 0.

Properties

 Description Name

Application Engine, read�only Returns the Engine object.

Count Long, read�only Stores the number of elements in the collection.
Element ListLevel, read�only Provides access to a single element of the collection.

Methods

Name

Description
AddLevel Adds a new level with the next index to the collection.

RemoveAll Deletes all levels from the collection.

Item Provides access to a single element of the collection.

Output parameter

This ob ut paraject is the outp meter of the List property of the ListParams object.

evel
roperties

evel Method of the List Object

c Syntax

See also

ListL
Working with P

AddL

This method adds a new level with the next index to the collection. The maximum level index is 9.

Visual Basi

Method AddLevel() As ListLevel

C++ Syntax

HRESULT AddLevel(

 IListLevel** result

);

Parameters

result

[out, retval] A pointer to IListLevel* pointer variable that receives the interface pointer of the newly added ListLevel object.

 Values

as no specific return values. It returns stan f ABBYY

Return

This method h dard return values o FineReader Engine functions.

 430

ABBYY FineReader Engine 10 API Reference

See also

List
ListLevel

ject (IListLevel Interface)

 access to the parameters of one leve f

Name Type

ListLevel Ob

the List collection. This object provides l of a list. It is an element o

Properties

Description
Application Engine, read�only Returns the Engine object.

Contains the bullet of the unordered list level.
he

.

The property only makes sense, if the value of t
NumberingStyle property is NS_Bullet. By
default, the bullet symbol is ● (U+2022)

BulletSymbol Short

Stores the index of the level. The value of this
property is in range from 0 to 9. LevelIndex Long, read�only

NumberingStyle NumberingStyleEnum Specifies the numbering style of the list level.

RestartNumberingOnUpperListLevelOccurance Long

earance of the current level should be
 is �

Specifies the upper level of the list. If this level
appears in the list, the numbering in the next
app
restarted. By default, the value of this property
1, which means that the numbering is not
restarted.

StartNumber Long
Specifies the start number of the list level. The
value of this property is nonnegative. The non�

ted from 1.

numeric elements are coun

TemplateText String Specifies the template text of the list level. The
text may include elements %0, %1, ..., %n, where n
is the index of the current level. When viewing
the document these elements will be replaced
with actual values. "%%" is used for the normal
character "%". The other elements are displayed as

current numbering of the level with index 0 and
1 is used in the text of the current level.

is.
For example, "Section %0.%1" means that the

Output paramete

e out f and Element property of the List object.

See also

operti

Pa

This object provides access to the parameters of the list to which a paragraph belongs. This object is a subobject of the Paragraph

ties

Type Descripti

r

the Item, AddLevel methodsThis object is th put parameter o

List
Working with Pr es

ListParams Object (IList rams Interface)

object.

Proper

Name on
Engine, read�
only Returns thApplication e Engine object.

List List, read�
only Stores the List object which corresponds to the list to which the paragraph belongs.

ListLevel Long Specifies the level of the paragraph in the list. It may be in range from 0 to 8. As well the value

 431

ABBYY FineReader Engine 10 API Reference

of the property may be �1, if the paragraph is not in the list.
OrdinalNumber Long, read�

only
Specifies the paragraph's number in the list.

Methods

Name Description
AddToList Adds the paragraph to the list.
RemoveFromList Removes the paragraph from the list.

Related objects

See also

Paragraph
List

d of the L Params Object

s the paragraph to the list.

al Basic Syntax

Working with Properties

AddToList Metho ist

This method add

Visu

Method AddToList(
 listParams As ListParams
)

xC++ Synta

HRESULT AddToList(
 IListParams* listParams
);

Parameters

ameters of the list to which the paragraph should be

Return

lues. It returns standard return values of ABBYY FineReader Engine functions.

d removes the paragraph from the list.

 Basic Syntax

listParams

[in] This parameter refers to the ListParams object, which contains the par
added.

 Values

This method has no specific return va

See also

ListParams

RemoveFromList Method of the ListParams Object

This metho

Visual

Method RemoveFromList()

C++ Syntax

HRESULT RemoveFromList();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

 432

ABBYY FineReader Engine 10 API Reference

See also

ListParam

ects
Some additional information which is stored in the document, such as information about the author, keywords, subject, title of the
document, can be accessed using these objects.

This section contains descriptions of the following supplementary objects:

• DocumentContentInfo

• DocumentInformationDictionary

• DocumentInformationDictionaryItem

The document structure objects hierarchy

s

Document Supplementary Obj

For more information about the hierarch ABBYY FineReader Engine objects, Object Diagram.

ContentInfo Obje tentInfo In

t contains information about th keywords, subject, and title of th
. You can access content inform the certain document using the D

corresponding FRDocument object.

If you want the values of the properties to be written into the output file, set the co
ameters to TRUE (see the descr f the RTFExportParams, HTM

PPTExportParams, PDFExportParamsOld, PDFAExportParamsOld).

Properties

Name Type

y of the please see the

Document ct (IDocumentCon terface)

This objec
dictionary

e author,
ation of

e document and stores the document information
ocumentContentInfo property of the

rresponding properties of the needed format
LExportParams, XLExportParams, export par iptions o

Description
Application Engine, read–only Returns the Engine object.

Author String
u

property to the name of the user. The

Stores the name of the author of the document. Yo
may set this
default value of this property is an empty string.

t. The default value of

f

Stores the creator of the documen
this property is "ABBYY FineReader Engine 10". The
value of this property is used as the Creator attribute o
PDF, PDF/A file.

String Creator

Keywords String lue Stores the keywords of the document. The default va
of this property is an empty string.

Producer String

is
r attribute of PDF,

Stores the producer of the document. The default value
of this property is an empty string. The value of th
property is used as the Produce
PDF/A file.

Stores the subject of the document. The default value of
this property is an empty string. Subject String

Title String
 is an empty string.

Stores the title of the document. The default value of
this property

 433

ABBYY FineReader Engine 10 API Reference

DocumentInformationDictionary DocumentInformationDictionary

Author, Keywords,
Subject or Title properties are not empty strings, the
values of these properties are used instead of the
corresponding items of the
DocumentInformationDictionary object.

Stores the document information dictionary. This
property is only relevant for documents in PDF and
PDF/A formats. If the values of the

Note: The property returns a constant object. To
change the document information dictionary, you must
first receive an intermediate
DocumentInformationDictionary object with the
help of the
IEngine::CreateDocumentInformationDictionary
method, change the necessary parameters, and then
assign this object to the property.

Related objects

See also

FRDocument
fo

operties

Inform ry Object tionDictionary Interface)

epresents a d tion dictionary w
ther as a ontentInfo

his object provid ndard collection functio

DocumentIn
Working with Pr

Document ationDictiona (IDocumentInforma

This object r
DocumentInformationDictionary

ocument informa
 may exist ei

hich contains metadata from the PDF file. The
n independent object or as a sub�object of the DocumentC

object. T es the sta nality.

Note: If th
strings, the v

e values of the Author, Keywords, Subject or Title properties of the DocumentContentInfo object are not empty
alues of these properties are used instead of the corresponding items of the DocumentInformationDictionary object.

Important! The indexing of ABBYY FineReader En starts with 0.

Type

gine collections

Properties

Name Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Value String Provides access to a metadata value by its name.

Methods

Name Description
Add Adds a new element at the end of the collection.

CopyFrom Initializes the properties of the current object with the values of similar
properties of another object.

CreateDocumentInformationDictionaryItem Creates the DocumentInformationDictionaryItem object.

Insert Inserts a new element into the specified position in the collection.

Item Provides access to a single element of the collection (the
DocumentInformationDictionaryItem object).

 434

ABBYY FineReader Engine 10 API Reference

Remove Removes an element from the collection.

RemoveAll Removes all the elements from the collection.

Related objects

Output parameter

rameter of the CreateDocumentInformationDictionary method of the Engine object.

mationDictionaryItem
DocumentContentInfo

he DocumentInformationDictionary Object

roperty provides access to the value of the document information dictionary element by its name.

This object is the output pa

See also

DocumentInfor

Working with Properties

Value Property of t

This p

Visual Basic Syntax

Property Value(

 Name A ris St ng

)As String

taxC++ Syn

HRESULT get_Value(

 BSTR Name,

 BSTR* Result

);

HRESULT put_Value(

 BSTR Name,

 BSTR Value

);

Parameters

Name

[in] This variable contains the name of the element in the document information dictionary.

s the value which corresponds to the name.

 contains a new value of the element in the document information dictionary.

has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

o

ropertie

entInform DictionaryItem O rmationDictionaryItem
ace)

t of a document information dictionary which contains metadata from the PDF file. It represents a key�value

Result

[out, retval] This variable contain

Value

[in] This variable

Return Values

This function

See als

DocumentInformationDictionary
Working with P

s

Docum
Interf

ation bject (IDocumentInfo

This object is an elemen
pair.

 435

ABBYY FineReader Engine 10 API Reference

Pro t

Nam

per ies

e Type Description
Application Engine, read�only Returns the Engine object.

Name String Stores the name of the element which is used as key.

Value String Stores the value of the element.

Output parameter

lowing methods:

• CreateDocumentInformationDictionaryItem method of the Engine object.

mentInformationDictionary object.

DocumentInformationDictionary
Work

jects
, Exporter and ScanManager. These objects provide methods for layout

 text export; and for scanning respectively. The methods for layout analysis and recognition
and for recogn t provided by the DocumentAnalyzer and Exporter objects are also called internally by similar
meth s o , and have some additional features.

This ng objects and events and callback interfaces:

• DocumentAnalyzer

iagram

Engine object. These methods are
di

his fact means that it supports the IConnectionPointContainer interface. To receive notification events during
recognition, a C++ user should create an object derived from the IDocumentAnalyzerEvents interface, then set up the connection

 events source imp ed in DocumentAnalyzer object b means.

 analyzer allows yo tionary during process small dictionary (about a
hundred words) which can be changed easily during processing. The cache dictionaries can be used when it is possible to select a
dictionary more precisely, if you found new information about the document during processing.

This object is the output parameter of the fol

• Item method of the Docu

Input parameter

This object is the input parameter of the Insert, Add methods of the DocumentInformationDictionary object.

See also

ing with Properties

Me h
There e three objects

c anism Ob
 ar in this group: DocumentAnalyzer
sis d recognition; for the recognizedanaly an

ized text expor
od f the Engine object

section contains descriptions of the followi

• Exporter

• ScanManager

• IDocumentAnalyzerEvents

• IExporterEvents

• IScanManagerEvents

The mechanism objects hierarchy

For more details about the hierarchy of the ABBYY FineReader Engine objects, please see the Object D

DocumentAnalyzer Object (IDocumentAnalyzer Interface)

This object exposes a set of analysis and recognition functions analogous to those exposed by the
fferent in that the information about recognition progress is reported through special outgoing interfaces. These interfaces are

IDocumentAnalyzerEvents (for C++) and a dispinterface DIDocumentAnalyzerEvents (for Visual Basic).

It is worth noting that Visual Basic users should not care for details of event interfaces implementation as this development platform
provides easy means for handling them. This object may be declared WithEvents in Visual Basic.

For C++ user t

between it and lement y standard COM

The document u to use its cache dic ing. The cache dictionary is a

 436

ABBYY FineReader Engine 10 API Reference

Note: It is not recommended to recognize more than one page with the use of a single instance of the DocumentAnalyzer object,
y lead to unpredictable effects. The Doc er performs a kind of self�teaching during analysis and recognition, and
es itself for recognition of text of a cer s why it is good to use the DocumentAnalyzer object instance for

le p ition.

Type

umentAnalyz
tain type. That i

as it ma
thus tun
recognition of a number of blocks on a sing age, as this improves speed and quality of recogn

Properties

Name Description
Application Engine, read the Engine object. �only Returns

Methods
Name Description

Adds a group of words to the cache dictionary. AddWordsToCacheDic onary ti

Adds one word to the cache dictionar nary AddWordToCacheDictio y.

AnalyzeAndRecognizePage d page synthesis of the specified image. Performs layout analysis, recognition, an

Performs layout analysis, recognition, and page synthesis of an images collection. nizePages AnalyzeAndRecog

AnalyzePage n image. Performs layout analysis of a

Performs layout analysis of an images collection. AnalyzePages
Analyzes layout of the image inside the specified region. AnalyzeRegion

AnalyzeTable Replaces the specified block with the table block and analyzes the structure of table.

Deletes all words from the cache dictionary. CleanCacheDictionary
DetectOrientation image. Detects text orientation on the

Finds and recognizes all barcode blocks.
ExtractBarcodes Note: This method is obsolete and is intended to be removed in the next version of

ABBYY FineReader Engine.
FindPageSplitPosition osition of splitting it on pages. Detects the direction of text on image and finds the p

Recognizes text in an explicitly specified set of blocks and performs page synthesis. RecognizeBlocks
ecial "plain text" format. RecognizeImageDocumentAsPlainText Recognizes an image and returns recognized text in a sp

RecognizePage Recognizes parts of the specified image that lay inside the blocks in the specified layout
and performs page synthesis.
Recognizes those parts of the images from the collection that lay inside the blocks of
the specified layout collection and performs page synthesis. RecognizePages

RemoveGeometricalDistortions
binding when scanning/photographing thick books.
Straightens out distorted lines on an image. Distorted lines may occur close to the

Output parameter

This object is the output parameter of the CreateDocumentAnalyzer method of the Engine object.

See als

ethod of the DocumentAnalyzer Object

 method adds a group of words to the cache dictionary. The cache dictionary is a small dictionary (about a hundred words) which
can be changed easily during processing. The cache dictionaries can be used when it is possible to select a dictionary more precisely, if

processing.

o

IDocumentAnalyzerEvents
Working with Connectable Objects

AddWordsToCacheDictionary M

This

you found new information about the document during

Visual Basic Syntax

Method AddWordsToCacheDictionary(

 params As RecognizerParams,

 words As StringsCollection,

 weights As LongsCollection

)

C++ Syntax

HRESULT AddWordsToCacheDictionary(

 437

ABBYY FineReader Engine 10 API Reference

 IRecognizerParams* params,

 IStringsCollection* words,

 ILongsCollection* weights

);

Parameters

params

[in] The RecognizerParams object that stores parameters of page processing.

[in] This parameter of the LongsCollection type that must have the same size as the collection of words, is used to pass information
 1 to 200. You may pass 0 for this

rd
ed

est of the discrete set of values.

ard return values of ABBYY FineReader Engine functions.

ary

Dictionary Method of the DocumentAnalyzer Object

 method adds one word to the cache dictionary. The cache dictionary is a small dictionary (about a hundred words) which can be
changed processing. The cache dictionaries can be used when it is possible to select a dictionary more precisely, if you

cessing.

words

[in] This parameter of the StringsCollection type contains the collection of the newly added words.

weights

about the weights for the newly added words. The weights for the words must be in the range from
parameter in which case all the words will be included in the dictionary with default weights of 100. The weight assigned to the wo
in the dictionary may have a set of discrete values only. These values are 25, 50, 100, 200. The value passed in this parameter is round
to the near

Return Values

This method has no specific return values. It returns stand

Remarks

For more efficient operation it is recommended to pre�sort the added words in alphabetical order.

For adding one word into the cache dictionary, you can use the IDocumentAnalyzer::AddWordToCacheDictionary method.

See also

DocumentAnalyzer
IDocumentAnalyzer::AddWordToCacheDiction
Working with Dictionaries

AddWordToCache

This
 easily during

found new information about the document during pro

Visual Basic Syntax

Method AddWordToCacheDictionary(

 params As RecognizerParams,

 word As String,

 weight As Long

)

C++ Syntax

HRESULT AddWordToCacheDictionary(

 IRecognizerParams* params,

 BSTR word,

 long weight

);

Parameters

params

[in] The RecognizerParams object that stores parameters of page processing.

weight

word

[in] This parameter contains the newly added word.

 438

ABBYY FineReader Engine 10 API Reference

[in] The weight assigned to the word in the dictionary. Must be in the range from 1 to 200. The higher the weight for a word is, the
asic users see

crete values only.
e 25, 50, 100, 200. The value passed in this parameter is rounded to the nearest of the discrete set of values.

the IDocumentAnalyzer::AddWordsToCacheDictionary method

der Engine functions.

See als

hod of the DocumentAnalyzer Object

 page synthesis of the image specified.

more likely this word will be taken as a variant during recognition. The normal value for this parameter is 100. Visual B
this parameter as having default value of 100. The weight assigned to the word in the dictionary may have a set of dis
These values ar

Remarks

For adding a group of words into the cache dictionary, use
instead.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineRea

o

DocumentAnalyzer
IDocumentAnalyzer::AddWordsToCacheDictionary
Working with Dictionaries

AnalyzeAndRecognizePage Met

This method performs layout analysis, recognition, and

Visual Basic Syntax

Method AnalyzeAndRecognizePage(

 As ImageDocument, imageDocument

 As PageProcessingParams, processingParams

 As SynthesisParamsForPagesynthesisParams ,

 As Layout, layout

 As DocumentInfo documentInfo

)

C++ Syntax

HRESULT AnalyzeAndRecognizePage(

 IImageDocument* imageDocument,

 IPageProcessingParams* processingParams,

 ISynthesisParamsForPage* synthesisParams,

 ILayout* layout,

 IDocumentInfo* documentInfo

);

Parameters
imageDocument

[in] This variable refers to the ImageDocument object corresponding to the image that is to be processed.

processingParams

the page is analyzed and recognized using the default parameters (all page processing parameters have
 set to default values, and the recognition language is English) or, if a profile has been loaded, the parameters set by this

ed.

fers to the Layout object corresponding to the page layout. After this method is done, it contains the results of the
layout analysis and recognition.

iable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the same
DocumentInfo object, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this

mation about the image which was received during preparation is used during analysis and recognition. This parameter is
optional and may be set to 0, which means either that this information need not be used or that a file other than PDF is being
proc d

[in] This variable refers to the PageProcessingParams object that stores the parameters of the layout analysis and recognition. This
parameter may be 0. In this case
their properties
profile are used.

synthesisParams

[in] This variable refers to the SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In
this case the page is synthesized with default parameters or, if a profile has been loaded, the parameters set by this profile are us

layout

[in] This variable re

documentInfo

[in] This var

case, all infor

esse .

 439

ABBYY FineReader Engine 10 API Reference

Retu

If recogni e user, this method
will r
functions.

Rem k

• If the sizes and resolutions of the image and layout do not match, this method sets the size and resolution of the layout to be
se of the deskewed black�and�white page of ImageDocument.

locks are deleted from layout.

equivalent to successive calls to IDocumentAnalyzer::AnalyzePage and
Analyzer::RecognizePage methods, as the recognition information is used for more accurate layout analysis.

nterface of the
DocumentAnalyzer.

See als

tAnalyzer Object

 method performs layout analysis, recognition, and page synthesis of an images collection.

yntax

rn Values

tion is interrupted by the user, this method will return E_ABORT. If pattern training is interrupted by th
eturn FREN_E_PATTERN_TRAINING_ABORTED. It also returns the standard return codes of the ABBYY FineReader Engine

ar s

equal to tho

• All existing b

• Calling this method is not
IDocument

• The method may report events to the listeners attached to the IConnectionPointContainer i

o

DocumentAnalyzer
IEngine::AnalyzeAndRecognizePage
IFRPage::AnalyzeAndRecognize
Working with Profiles

AnalyzeAndRecognizePages Method of the Documen

This

Visual Basic S

Method AnalyzeAndRecognizePages(

 imageDocuments As ImageDocumentsCollection,

 layouts As LayoutsCollection,

 processingParams As PageProcessingParams,

 synthesisParams As SynthesisParamsForPage,

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT AnalyzeAndRecognizePages(

 IImageDocumentsCollection* imageDocuments,

 ILayoutsCollection* layouts,

 IPageProcessingParams* processingParams,

 ISynthesisParamsForPage* synthesisParams,

 IDocumentInfo* documentInfo

);

Parameters
imageDocuments

[in] This variable refers to the ImageDocumentsCollection object corresponding to the images collection that is to be processed.
ages in the collection must correspond to the number of Layout objects in the collection of the layouts.

the results of layout analysis and recognition.

s

t by this
sed.

synthesisParams

The number of im

layouts

[in] This variable refers to the LayoutsCollection object corresponding to the collection of the page layouts. After this method is
done, it contains

processingParams

[in] This variable refers to the PageProcessingParams object that stores the parameters of the layout analysis and recognition. Thi
parameter may be 0. In this case the page is analyzed and recognized using the default parameters (all page processing parameters have
their properties set to default values, and the recognition language is English), or, if a profile has been loaded, the parameters se
profile are u

 440

ABBYY FineReader Engine 10 API Reference

[in] This variable refers to the SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In

iable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the same
DocumentInfo object, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this

mation about the image which was received during preparation is used during analysis and recognition. This parameter is
optional and may
proc d

Return Values

If recogni user, this method will return E_ABORT. If pattern training is interrupted by the user, this method
will return FREN_E_PATTERN_TRAINING_ABORTED. It also returns the standard return codes of the ABBYY FineReader Engine

::MultiProcessingParams property, ABBYY FineReader Engine can distribute
ocuments to CPU cores.

• The method may report events to the listeners attached to the IConnectionPointContainer interface of the

DocumentAnalyzer
IEngin gnizePages

ecognizePages

er Object

 method may report events to the listeners attached to the IConnectionPointContainer interface of the DocumentAnalyzer.

this case the page is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

documentInfo

[in] This var

case, all infor
 be set to 0, which means either that this information need not be used or that a file other than PDF is being

esse .

tion is interrupted by the

functions.

Remarks

• Depending on the value of the IEngine
analysis and recognition of multi�page d

DocumentAnalyzer.

See also

e::AnalyzeAndReco
IFRDocument::AnalyzeAndR
Working with Profiles

AnalyzePage Method of the DocumentAnalyz

This method performs layout analysis of an image.

The

Visual Basic Syntax

Method AnalyzePage(

 As ImageDocument, imageDocument

 As PageProcessiprocessingParams s, ngParam

 As Layout layout

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT AnalyzePage(

 IImageDocument* imageDocument,

 IPageProcessingParams* , processingParams

 ILayout* layout,

 IDocumentInfo* documentInfo

);

Parameters

imageDocument

[in] This variable refers to the ImageDocument object corresponding to the image that is to be analyzed.

[in] This variable refers to the Layout object corresponding to the page layout. After analysis it contains the results of layout analysis.

processingParams

[in] This variable refers to the PageProcessingParams object that stores parameters of layout analysis. This parameter may be 0. In
this case the page is analyzed with default parameters (all page processing parameters are set to default values), or, if a profile has been
loaded, the parameters set by this profile are used.

layout

 441

ABBYY FineReader Engine 10 API Reference

documentInfo

[in] This variable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the sam
DocumentInfo object, which

e
 was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this

case, all information about the image which was received during preparation is used during analysis and recognition. This parameter is
 may be set to 0, which means either that this information need not be used or that a file other than PDF is being

proc d.

Return

If lay a d will return E_ABORT. It also returns the standard return codes of the ABBYY
FineRe

 resolutions of the image and layout do not match, this method sets these parameters for layout to be equal to
ewed black�and�white page of the ImageDocument.

locks are deleted from layout.

IEngin

bject

Visual Basic Syntax

optional and
esse

Values

out nalysis is interrupted by the user, this metho
ader Engine functions.

Remarks

• If the sizes and
those of the desk

• All existing b

See also

DocumentAnalyzer
e::AnalyzePage

IFRPage::Analyze
Working with Profiles

An od of the DocumentAnaalyzePages Meth lyzer O

ction. This method performs layout analysis of an images colle

Method AnalyzePages(

 imageDocuments As ImageDocumentsCollection,

 layouts As LayoutsCollection,

 processingParams As PageProcessingParams,

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT AnalyzePages(

 IImageDocumentsCollection* imageDocuments,

 ILayoutsCollection* layouts,

 IPageProcessingParams* processingParams,

 IDocumentInfo* documentInfo

);

Parameters
imageDocuments

[in] This variable refers to the ImageDocumentsCollection object corresponding to the images collection that is to be analyzed. Th
number of images in the collection must correspond to the number of Layout objects in the collection of the layouts.

layouts

e

 0. In
 page is analyzed with default parameters (all page processing parameters are set to default values), or, if a profile has been

loaded, the parameters set by this profile are used.

e
as used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this

case, all information about the image which was received during preparation is used during analysis and recognition. This parameter is

[in] This variable refers to the LayoutsCollection object corresponding to the collection of the page layouts. After this method is
done, it contains the results of layout analysis.

processingParams

[in] This variable refers to the PageProcessingParams object that stores parameters of layout analysis. This parameter may be
this case the

documentInfo

[in] This variable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the sam
DocumentInfo object, which w

 442

ABBYY FineReader Engine 10 API Reference

optional and may be set to 0, which means either that this information need not be used or that a file other than PDF is being
proce d.

Return

If lay a f the ABBYY
FineR

Remarks

Depending on the value of the IEngine::MultiProcessingParams property, ABBYY FineReader Engine can distribute
recognition of multi�page documents to CPU cores.

 events to the listeners attached to the IConnectionPointContainer interface of the
nalyzer.

IFRDocument::AnalyzePages
Workin

tAnalyzer Object

gion.

ctionPointContainer interface of the DocumentAnalyzer.

sse

Values

out nalysis is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes o
eader Engine functions.

•
analysis and

• The method may report
DocumentA

See also

DocumentAnalyzer
IEngine::AnalyzePages

g with Profiles

AnalyzeRegion Method of the Documen

This function analyzes the layout of the image inside the specified re

tached to the IConneIt does not report any events to the listeners at

Visual Basic Syntax

Method AnalyzeRegion(

 imageDocument As ImageDocument,

 region As Region,

 processingParams As PageProcessingParams,

 layout As Layout,

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT AnalyzeRegion(

 IImageDocument* imageDocument,

 IRegion* region,

 IPageProcessingParams* processingParams,

 ILayout* layout,

 IDocumentInfo* documentInfo

);

iable refers to the Region object that specifies the area on image that is to be analyzed. It should be set in coordinates of
ewed black�and�white plane of the ImageDocument.

e refers to the PageProcessingParams object that stores parameters of layout analysis. This parameter may be 0. In

iable refers to the Layout object corresponding to the page layout. After analysis it contains the results of layout analysis.

documentInfo

Parameters

imageDocument

[in] This variable refers to the ImageDocument object for which the layout and region are defined.

region

[in] This var
the desk

processingParams

[in] This variabl
this case the region is analyzed with default parameters (all page processing parameters are set to default values), or, if a profile has
been loaded, the parameters set by this profile are used.

layout

[in] This var

 443

ABBYY FineReader Engine 10 API Reference

[in] This variable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the same

s
hich means either that this information need not be used or that a file other than PDF is being

Retu

If layout a returns the standard return codes of the ABBYY
FineR ine functions.

Remark

s and resolutions of the image and layout do not match, this method sets these parameters for layout to be equal to
of the deskewed black�and�white page of the ImageDocument.

in region all the blocks that lay entirely inside the region are deleted from the Layout specified.
 new blocks may be added to the Layout as the result of this method call.

of the DocumentAnalyzer Object

k and analyzes the structure of the table.

ctionPointContainer interface of the DocumentAnalyzer.

DocumentInfo object, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this
case, all information about the image which was received during preparation is used during analysis and recognition. This parameter i
optional and may be set to 0, w
processed.

rn Values

nalysis is interrupted by the user, this method will return E_ABORT. It also
eader Eng

s

• If the size
those

• During the layout analysis
Zero or more

See also

DocumentAnalyzer
IFRPage::AnalyzeRegion
Working with Profiles

AnalyzeTable Method

This method replaces the specified block with the table bloc

tached to the IConneIt does not report any events to the listeners at

Visual Basic Syntax

Method AnalyzeTable(

 imageDocument As ImageDocument,

 processingParams As PageProcessingParams,

 layout As Layout,

 blockIndex As Long,

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT AnalyzeTable(

 IImageDocument* imageDocument,

 IPageProcessingParams* processingParams,

 ILayout* layout,

 long blockIndex,

 IDocumentInfo* documentInfo

);

Parameters

imageDocument

[in] This variable refers to the ImageDocument object corresponding to the image on which the layout is defined.

arams

In this case the table is analyzed with default parameters (all page processing parameters are set to default values), or, if a profile has

, the parameters set by this profile are used.

e refers to the Layout object corresponding to the page layout. It should contain the block with the index specified by

processingP

[in] This variable refers to the PageProcessingParams object that stores parameters of table layout analysis. This parameter may be 0.

been loaded

layout

[in] This variabl
the blockIndex variable. It is this block that will be analyzed as table.

blockIndex

[in] This variable specifies the index of block in the collection of blocks that belongs to layout.

 444

ABBYY FineReader Engine 10 API Reference

documentInfo

[in] This variable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the same
ject, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this

e image which was received during preparation is used during analysis and recognition. This parameter is

lues

If lay a
FineReade

Rem k

• match, this method sets these parameters for layout to be equal to
nt.

• Table blocks always have rectangular regions; if the block was not rectangular, the new table block receives the region
sponding to bounding rectangle of the initial block.

ture cannot be analyzed, the layout is not changed.

See also

CleanCacheDictionary Method of the DocumentAnalyzer Object

dictionary is a small dictionary (about a hundred words) which
cache dictionaries can be used when it is possible to select a dictionary more precisely, if
ent during processing.

DocumentInfo ob
case, all information about th
optional and may be set to 0, which means either that this information need not be used or that a file other than PDF is being
processed.

Return Va

out nalysis is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
r Engine functions.

ar s

If the sizes and resolutions of the image and layout do not
those of the deskewed black�and�white page of the ImageDocume

corre

• If the table struc

DocumentAnalyzer
IFRPage::AnalyzeTable
Working with Profiles

This method deletes all words from the cache dictionary. The cache
can be changed easily during processing. The

 found new information about the documyou

Visual Basic Syntax

Method CleanCacheDictionary(

 params As RecognizerParams

)

C++ Syntax

HRESULT CleanCacheDictionary(

 IRecognizerParams* params

);

Parameters

params

[in] The RecognizerParams object that stores parameters of page processing.

rd return values of ABBYY FineReader Engine functions.

e image. The method returns TextOrientation object, if orientation has been detected
led to detect orientation.

ntContainer interface of the DocumentAnalyzer.

Visual Basic Syntax

Return Values

This method has no specific return values. It returns standa

See also

DocumentAnalyzer
IDocumentAnalyzer::AddWordToCacheDictionary
IDocumentAnalyzer::AddWordsToCacheDictionary
Working with Dictionaries

DetectOrientation Method of the DocumentAnalyzer Object

This met ntation on th
successfully, and NULL, if the program fai

hod detects text orie

It does not report any events to the listeners attached to the IConnectionPoi

 445

ABBYY FineReader Engine 10 API Reference

Method DetectOrientation(

 imageDocument As ImageDocument,

 orientationParams As OrientationDetectionParams

 extractionParams As ObjectsExtractionParams,

 recognizerParams As RecognizerParams

) As TextOrientation

C++ Syntax

HRESULT DetectOrientation(

 IImageDocument* imageDocument,

 IOrientationDetectionParams* orientationParams,

 IObjectsExtractionParams* extractionParams,

 IRecognizerParams* recognizerParams,

 ITextOrientation** result

);

Parameters

imageDocument

[in] This variable refers to the ImageDocument object corresponding to the image, on which text orientation is to be detected.

orientationParams

[in] This variable refers to the OrientationDetectionParams object that stores parameters of orientation detection. This parameter
may be 0. In this case the default parameters are used, or, if a profile has been loaded, the parameters set by this profile are used.

extractionParams

[in] This variable refers to the ObjectsExtractionParams object that stores parameters of objects extraction. This parameter may be
0. In this case the default parameters are used, or, if a profile has been loaded, the parameters set by this profile are used.

recognizerParams

this

result

ter to ITextOrientation* pointer variable that receives the interface pointer of the TextOrientation output
d.

lues

 method is equivalent to the call to IDocumentAnalyzer::AnalyzePage method with the following parameters of the
input rams object: DetectOrientation = true, PerformPageAnalysis = false, RemoveGeometricalDictortions = false,

 DetectInvertedImage = false.

This met izes all barcode blocks on an image, no other blocks are processed.

ts to the listeners attached to the IConnectionPointContainer interface of the

[in] This variable refers to the RecognizerParams object that stores parameters of page recognition. This parameter may be 0. In
case the default parameters are used, or, if a profile has been loaded, the parameters set by this profile are used.

[out, retval] A poin
object. This object provides access to the text orientation on the page. If orientation detection failed, NULL is returne

Return Va

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Calling this
PageProcessingPa

DetectBarcodes = false,

See also

DocumentAnalyzer
IFRPage::DetectOrientation
IPageProcessingParams::DetectOrientation
Working with Profiles

ExtractBarcodes Method of the DocumentAnalyzer Object

hod finds and recogn

The method does not report any even
DocumentAnalyzer.

Visual Basic Syntax

Method ExtractBarcodes(

 imageDocument As ImageDocument,

 barcodeParams As BarcodeParams,

 446

ABBYY FineReader Engine 10 API Reference

 extractionParams As ObjectsExtractionParams,

 layout As Layout,

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT ExtractBarcodes(

 IImageDocument* imageDocument,

 IBarcodeParams* barcodeParams,

 IObjectsExtractionParams* extractionParams,

 ILayout* layout,

 IDocumentInfo* documentInfo

);

Parameters

imageDocument

[in] This variable refers to the ImageDocument object corresponding to the image that is to be processed.

barcodeParams

fers to the BarcodeParams object that stores parameters of barcode processing. This parameter may be 0. In this

onParams

same
object, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this

 about the image which was received during preparation is used during analysis and recognition. This parameter is
et to 0, which means either that this information need not be used or that a file other than PDF is being

Return Values

is interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY
Fine

Remarks

 layout do not match, this method sets these parameters for layout to be equal to

•

od with the
nalysis = false,

RemoveGeometricalDictortions = false, DetectOrientation = false, DetectInvertedImage = false.

 is obsolete and is intended to be removed in the next version of ABBYY FineReader Engine.

[in] This variable re
case all barcode processing parameters are set to default values, or, if a profile has been loaded, the parameters set by this profile are
used.

extracti

[in] This variable refers to the ObjectsExtractionParams object that stores parameters of objects extraction. This parameter may be
0. In this case the parameters are set to default values, or, if a profile has been loaded, the parameters set by this profile are used.

layout

[in] This variable refers to the Layout object corresponding to the page layout. After analysis it contains the results of layout analysis.

documentInfo

[in] This variable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the
DocumentInfo
case, all information
optional and may be s
processed.

If recognition
Reader Engine functions.

• If the sizes and resolutions of the image and
those of the deskewed black�and�white page of the ImageDocument.

All existing blocks are deleted from layout.

• Calling this method is equivalent to the call to IDocumentAnalyzer::AnalyzeAndRecognizePage meth
following parameters of the input PageProcessingParams object: DetectBarcodes = true, PerformPageA

• This method

See also

DocumentAnalyzer
IFRPage::ExtractBarcodes
IPageProcessingParams::DetectBarcodes
Working with Profiles

 447

ABBYY FineReader Engine 10 API Reference

FindPageSplitPosition Method of the DocumentAnalyzer Object

This method detects the direction of text on image and finds the position of splitting it on pages, if it exists. It is used to detect the
ability t book.

 returned in the startSplitPosition and endSplitPosition parameters. The
plitting image on pages. This area usually contains some garbage.

o split dual pages in a

The split position is defined by two lines, which coordinates are
image area between these two lines should be removed when s

Visual Basic Syntax

Method FindPageSplitPosition(

 imageDocument As ImageDocument,

 extractionParams As ObjectsExtractionParams,

 splitDirection As PageSplitDirectionEnum,

 As Long, startSplitPosition

 endSplitPosition As Long

)

C++ Syntax

HRESULT FindPageSplitPosition(

 IImageDocument* imageDocument,

 IObjectsExtractionParams* extractionParams,

 PageSplitDirectionEnum* splitDirection,

 long* startSplitPosition,

 long* endSplitPosition

);

Parameters
imageDocument

[in] This variable refers to the ImageDocument object corresponding to the image that is to be split on pages.

o the ObjectsExtractionParams object that stores parameters of objects extraction. This parameter may be
efault values are used, or, if a profile has been loaded, the parameters set by this profile are used.

ate of the first line, which defines split position (if a split is possible). The meaning of this value depends on the value

second line, which defines split position (if a split is possible). The meaning of this value depends on the
 variable. If the possibility of vertical split is detected, it contains the horizontal coordinate of the split line. If

gainst the
deskewed black�and�white page of the image.

Return Values

ctions.

extractionParams

[in] This variable refers t
0. In this case the d

splitDirection

[out] This variable receives the type of possible split: vertical split, horizontal split, or no split. Refer to the PageSplitDirectionEnum
description for details.

startSplitPosition

[out] The coordin
of the splitDirection variable. If the possibility of vertical split is detected, it contains the horizontal coordinate of the split line. If the
possibility of horizontal split is detected, it contains the vertical coordinate of the split line. Coordinate is given against the deskewed
black�and�white page of the image.

endSplitPosition

[out] The coordinate of the
value of the splitDirection
the possibility of horizontal split is detected, it contains the vertical coordinate of the split line. Coordinate is given a

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine fun

Sample

Visual C++ (COM) code

// Try to find dual pages among the images and split them into pages
 BOOL ProcessImages(FREngine::IStringsCollection* images)
 {
 BOOL bSplitWasFound = FALSE;
 int i;
 for(i = 0; i < images->Count; i++) {
 _bstr_t image = images->Item(i);
 // Let the images are in ABBYY FineReader Engine internal format
 // we may open them directly
 FREngine::IImageDocumentPtr imageDoc = Engine->OpenImage(image);

 448

ABBYY FineReader Engine 10 API Reference

 FREngine::IDocumentAnalyzerPtr documentAnalyzer = Engine-
>CreateDocumentAnalyzer();
 FREngine::PageSplitDirectionEnum splitDirection;
 long position1;
 long position2;
 // Try to find the dual page split
 documentAnalyzer->FindPageSplitPosition(imageDoc, 0, &splitDirection, &position1,
&position2);
 switch(splitDirection) {
 case FREngine::PSD_NoSplit:
 continue; // No split is possible
 case FREngine::PSD_HorizontalSplit:
 bSplitWasFound = TRUE;
 // make the horizontal split
 DoHorizontalSplit(imageDoc, position1, position2);
 break;
 case FREngine::PSD_VerticalSplit:
 bSplitWasFound = TRUE;
 // make the vertical split
 DoVerticalSplit(imageDoc, position1, position2);
 break;
 }
 }
 return bSplitWasFound;
 }

Visual Basic code

' Try to find dual pages among the images and split them into parts
 Function ProcessImages(Images As FREngine.StringsCollection) As Boolean
 Dim SplitFound As Boolean
 SplitFound = False
 Dim i As Long
 For i = 0 To Images.Count - 1
 ' Let the images are in ABBYY FineReader Engine internal format
 ' we may open them directly
 Dim Image As String
 Image = Images.Item(i)
 Dim ImageDoc As FREngine.ImageDocument
 Set ImageDoc = Engine.OpenImage(Image)
 Dim documentAnalyzer As FREngine.DocumentAnalyzer
 Set documentAnalyzer = Engine.CreateDocumentAnalyzer
 Dim SplitDirection As FREngine.PageSplitDirectionEnum
 Dim Position1 As Long
 Position1 = 0
 Dim Position2 As Long
 Position2 = 0
 ' Try to find the dual page split
 documentAnalyzer.FindPageSplitPosition ImageDoc, Nothing, SplitDirection,
Position1, Position2
 Select Case SplitDirection
 Case PSD_HorizontalSplit
 SplitFound = True
 ' make the horizontal split
 DoHorizontalSplit ImageDoc, Position1, Position2
 Case PSD_VerticalSplit
 SplitFound = True
 ' make the vertical split
 DoVerticalSplit ImageDoc, Position1, Position2
 End Select
 Next
 ProcessImages = SplitFound
 End Function

See also

Working with Pr

DocumentAnalyzer
IFRPage::FindPageSplitPosition

ofiles

 449

ABBYY FineReader Engine 10 API Reference

RecognizeBlocks Method of the DocumentAnalyzer Object

rforms page synthesis. This method recognizes text in an explicitly specified set of blocks and pe

Visual Basic Syntax

Method RecognizeBlocks(

 imageDocument As ImageDocument,

 synthesisParams As SynthesisParamsForPage,

 extractionParams As ObjectsExtractionParams,

 layout As Layout,

 blocks As LayoutBlocks,

 documentInfo As DocumentInfo

)

C++ Syntax

HRESULT RecognizeBlocks(

 IImageDocument* imageDocument,

 ISynthesisParamsForPage* synthesisParams,

 IObjectsExtractionParams* extractionParams,

 ILayout* layout,

 ILayoutBlocks* blocks,

 IDocumentInfo* documentInfo

);

Parameters
imageDocument

[in] This variable refers to the ImageDocument object corresponding to the image that is to be processed.

synthesisParams

[in] This variable refers to the SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In
e page is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

ters of objects extraction. This parameter may be
is case the objects are extracted with default parameters, or, if a profile has been loaded, the parameters set by this profile are

e refers to the Layout object corresponding to the page layout. The blocks in the layout should be created before

fers to the DocumentInfo object that stores service information about the open PDF file. You should use the same

s

lues

If recogni
will return codes of the ABBYY FineReader Engine
functions.

Remark

s and resolutions of the image and layout do not match, this method sets the size and resolution of the layout to be
se of the deskewed black�and�white page of ImageDocument.

gous to the IDocumentAnalyzer::RecognizePage, except that only the specified blocks from layout
d.

this case th

extractionParams

[in] This variable refers to the ObjectsExtractionParams object that stores parame
0. In th
used.

layout

[in] This variabl
calling the method. After recognition these blocks will contain the recognized text.

blocks

[in] This variable refers to the LayoutBlocks object, specifies the set of blocks to be recognized. All these blocks should belong to the
layout, otherwise an error code is returned.

documentInfo

[in] This variable re
DocumentInfo object, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this
case, all information about the image which was received during preparation is used during analysis and recognition. This parameter i
optional and may be set to 0, which means either that this information need not be used or that a file other than PDF is being
processed.

Return Va

tion is interrupted by the user, this method will return E_ABORT. If pattern training is interrupted by the user, this method
 FREN_E_PATTERN_TRAINING_ABORTED. It also returns the standard return

s

• If the size
equal to tho

• This method is analo
are recognize

 450

ABBYY FineReader Engine 10 API Reference

See also

DocumentAnalyzer
IFRPage::RecognizeBlocks
Working with Pr

od of the DocumentAnalyzer Object

ecial "plain text" format. This format only contains information
e symbols as relative to the recognized image.

ofiles

RecognizeImageDocumentAsPlainText Meth

This method recognizes an image and returns recognized text in a sp
abo ols, recognition confidence and positions of thesut recognized text symb

Visual Basic Syntax

Method RecognizeImageDocumentAsPlainText(

 As ImageDocument, image

 processingParams As PageProcessingParams,

 As SynthesisParasynthesisParams msForPage,

 As DocumentInfo documentInfo

) As PlainText

C++ Syntax

HRESULT RecognizeImageDocumentAsPlainText(

 IImageDocument* image,

 IPageProcessingParams* processingParams,

 ISynthesisParamsForPage* synthesisParams,

 IDocumentInfo* documentInfo,

 IPlainText** Result

);

Parameters

image

[in] This variable refers to the ImageDocument object corresponding to the image to be recognized

s
ters — all page processing parameters

lt values, and the recognition language is English.

fo

iable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the same

s
s being

ect
tion about recognized symbols and positions of these symbols relative to the recognized image.

alues

hod will return E_ABORT. If pattern training is interrupted by the user, this method
ns the standard return codes of the ABBYY FineReader Engine

See also

ecognizeImageDocumentAsPlainText
PlainText

processingParams

[in] This variable refers to the PageProcessingParams object that stores the parameters of analysis and recognition. This parameter i
optional and may be 0. In this case the page is analyzed and recognized using the default parame
are set to defau

synthesisParams

[in] This variable refers to the SynthesisParamsForPage object that stores parameters of page synthesis. This parameter is optional
and may be 0. In this case the page is synthesized with default parameters.

documentIn

[in] This var
DocumentInfo object, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this
case, all information about the image which was received during preparation is used during analysis and recognition. This parameter i
optional and may be set to 0, which means either that this information need not be used or that a file other than PDF i
processed.

Result

[out, retval] A pointer to IPlainText* pointer variable that receives the interface pointer of the PlainText output object. This obj
provides informa

Return V

If recognition is interrupted by the user, this met
will return FREN_E_PATTERN_TRAINING_ABORTED. It also retur
functions.

DocumentAnalyzer
IEngine::RecognizeImageAsPlainText
IEngine::R

 451

ABBYY FineReader Engine 10 API Reference

Recog d of the DocumentAnalyzer Object

y inside the blocks of the specified Layout object and performs page

nizePage Metho

This method recognizes parts of the specified image that la
synthesis.

Visual Basic Syntax

Method RecognizePage(

 imageDocument As ImageDocument,

 synthesisPar sForPage, ams As SynthesisParam

 extractionParams As ObjectsExtractionParams,

 layout As Layout,

 As DocumentInfo documentInfo

)

C++ Syntax

HRESULT RecognizePage(

 IImageDocument* imageDocument,

 ISynthesisParamsForPage* synthesisParams,

 IObjectsExtractionParams* extractionParams,

 ILayout* layout,

 IDocumentInfo* documentInfo

);

Parameters
imageDocument

[in] This variable refers to the ImageDocument object corresponding to the image that is to be recognized.

se the page is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

onParams

y be
en loaded, the parameters set by this profile are

iable refers to the DocumentInfo object that stores service information about the open PDF file. You should use the same
ct, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this
 about the image which was received during preparation is used during analysis and recognition. This parameter is

Return Values

n is interrupted by the user, this method will return E_ABORT. If pattern training is interrupted by the user, this method
will r
functions.

Rem k

•

after you have analyzed or created the layout of the page manually. The old text from blocks, if there is any,
he layout contains any table blocks with non�analyzed structure, they will be recognized as containing a single

g to the whole table. Only text, table and barcode blocks are recognized.

DocumentAnalyzer
IEngine::RecognizePage

synthesisParams

[in] This variable refers to the SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In
this ca

extracti

[in] This variable refers to the ObjectsExtractionParams object that stores parameters of objects extraction. This parameter ma
0. In this case the objects are extracted with default parameters, or, if a profile has be
used.

layout

[in] This variable refers to the Layout object corresponding to the page layout. The blocks in the layout should be created before
calling the method. After recognition these blocks will contain the recognized text.

documentInfo

[in] This var
DocumentInfo obje
case, all information
optional and may be set to 0, which means either that this information need not be used or that a file other than PDF is being
processed.

If recognitio
eturn FREN_E_PATTERN_TRAINING_ABORTED. It also returns the standard return codes of the ABBYY FineReader Engine

ar s

If the sizes and resolutions of the image and layout do not match, this method sets the size and resolution of the layout to be
equal to those of the deskewed black�and�white page of ImageDocument.

• Call this method
is deleted. If t
cell correspondin

See also

 452

ABBYY FineReader Engine 10 API Reference

IFRPage::Recognize
Working with Profiles

RecognizePages Method of the DocumentAnalyzer Object

ges from the collection that lay inside the blocks of the specified layout collection and This met e parts of the ima
performs page synthesis.

hod recognizes thos

Visual Basic Syntax

Method RecognizePages(

 imageDocuments As ImageDocumentsCollection,

 layouts As LayoutsCollection,

 synthesisParams As SynthesisParamsForPage,

 extractionParams As ObjectsExtractionParams,

 As DocumentInfo documentInfo

)

C++ Syntax

HRESULT RecognizePages(

 IImageDocumentsCollection* imageDocuments,

 ILayoutsCollection* layouts,

 ISynthesisParamsForPage* synthesisParams,

 IObjectsExtractionParams* extractionParams,

 IDocumentInfo* documentInfo

);

Parameters
imageDocuments

tionParams

e refers to the ObjectsExtractionParams object that stores parameters of objects extraction. This parameter may be

e same
fo object, which was used as a parameter during image preparation (e.g. in IEngine::PrepareImage method). In this

e image which was received during preparation is used during analysis and recognition. This parameter is
e set to 0, which means either that this information need not be used or that a file other than PDF is being

If recognition is interrupted by the user, this method will return E_ABORT. If pattern training is interrupted by the user, this method
REN_E_PATTERN_TRAINING_ABORTED. It also returns the standard return codes of the ABBYY FineReader Engine

func s.

Remark

• Call this method after you have analyzed or created the layouts of the pages manually. The old text from blocks, if there is

arcode blocks are recognized.

n distribute
 of multi�page documents to CPU cores.

[in] This variable refers to the ImageDocumentsCollection object corresponding to the images collection that is to be recognized.
The number of images in the collection must correspond to the number of Layout objects in the collection of the layouts.

layouts

[in] This variable refers to the LayoutsCollection object corresponding to the collection of the page layouts. The blocks in the layouts
should be created before calling the method. After recognition these blocks will contain the recognized text.

synthesisParams

[in] This variable refers to the SynthesisParamsForPage object that stores parameters of page synthesis. This parameter may be 0. In
this case the page is synthesized with default parameters, or, if a profile has been loaded, the parameters set by this profile are used.

extrac

[in] This variabl
0. In this case the objects are extracted with default parameters, or, if a profile has been loaded, the parameters set by this profile are
used.

documentInfo

[in] This variable refers to the DocumentInfo object that stores service information about the open PDF file. You should use th
DocumentIn
case, all information about th
optional and may b
processed.

Return Values

will return F
tion

s

any, is deleted. If the layouts contain any table blocks with non�analyzed structure, they will be recognized as containing a
single cell corresponding to the whole table. Only text, table and b

• Depending on the value of the IEngine::MultiProcessingParams property, ABBYY FineReader Engine ca
analysis and recognition

 453

ABBYY FineReader Engine 10 API Reference

• This method may report events to the listeners attached to the IConnectionPointContainer interface of the
nalyzer.

eometricalDistortions Method of the DocumentAnalyzer Object

g when scanning/photographing

r the page orientation has been corrected and a double�page spread has been split into two

IDocumentAnalyzer::AnalyzePage method. We recommend to set the correct recognition language before analysis, especially for
texts in d Korean.

 the IConnectionPointContainer interface of DocumentAnalyzer.

DocumentA

See also

DocumentAnalyzer
IEngine::RecognizePages
IFRDocument::RecognizePages
Working with Profiles

RemoveG

This method straightens out distorted lines on an image. Distorted lines may occur close to the bindin
thick books.

We recommend to call this method afte
separate pages, if necessary. This method should be called after layout analysis, for example after the

 Chinese, Japanese an

This method may report events to the listeners attached to

Visual Basic Syntax

Method RemoveGeometricalDistortions(

 image ageDocument, As Im

 params As ObjectsExtractionParams

)

C++ Syntax

HRESULT RemoveGeometricalDistortions(

 IImageDocument* image,

 IObjectsExtractionParams* params

);

Parameters

image

[in] This variable refers to the ImageDocument object corresponding to the image that is to be preprocessed.

params

[in] This variable re
lines on an image. T

fers to the ObjectsExtractionParams object corresponding to the parameters used for straightening out distorted
his parameter may be 0, in which case the default parameters are used, or, if a profile has been loaded, the

Return Values

s interrupted by the user, this method will return E_ABORT. It also returns the standard return codes of the ABBYY

 method is equivalent to the call to IDocumentAnalyzer::AnalyzePage method with the following parameters of the
ProcessingParams object: RemoveGeometricalDictortions = true, PerformPageAnalysis = false, DetectOrientation = false,

 DetectInvertedImage = false.

ortions

This ec ed features than
similar methods of the Engine object. The latter use the functionality of the Exporter object internally, simplifying the procedure of
saving recognized text in a file at the same time. The features that the Exporter object provides, compared to the Engine object, are:

parameters set by this profile are used.

If straightening i
FineReader Engine functions.

Remarks

Calling this
input Page
DetectBarcodes = false,

See also

DocumentAnalyzer
IFRPage::RemoveGeometricalDistortions
IPageProcessingParams::RemoveGeometricalDist
Working with Profiles

Exporter Object (IExporter Interface)

obj t provides tools for saving recognized text into files in external formats. Its methods provide more advanc

 454

ABBYY FineReader Engine 10 API Reference

• You may get a list of additional files that were generated during export (e.g., pictures for HTML format).

Information about export progress is reported through special outgoing interfaces. These interfaces are IExporterEvents •
(for C++), and a dispinterface DIExporterEvents (for Visual Basic). But it's worth noting that Visual Basic users should not

means for handling them.

terface. To receive notification events during recognition, a C++ user should create an object
derived from the IExporterEvents interface, then set up the connection between it and events source implemented in Exporter

ard COM means.

ties

care for details of event interfaces implementation as this development platform provides easy

This object may be declared WithEvents in Visual Basic. For C++ user this fact means that it supports the
IConnectionPointContainer in

object by stand

Proper

Name Type Description
 Engine, read�only Returns the Engine object. Application

Methods

Name Description
ExportPages Saves recognized text from several pages into a file in external format.

ExportPagesEx Saves recognized text from several pages into a file in external format. This method is optimized from the point of
 of memory consumption. view

Output parameter

This object is the output parameter of the CreateExporter method of the Engine object.

IFRDocument::ExportPages

This met e listeners attached to the IConnectionPointContainer interface supported by the Exporter

See also

IExporterEvents
IEngine::ExportPages

Working with Connectable Objects

ExportPages Method of the Exporter Object

This method saves recognized text from several pages into a file in an external format. Available file formats are represented by the
FileExportFormatEnum enumeration constants.

hod reports events to th
object.

Visual Basic Syntax

Method ExportPages(

 format As FileExportFormatEnum,

 fileName As String,

 imageDocuments As ImageDocumentsCollection,

 layouts As LayoutsCollection,

 exportParams As Unknown,

 documentInfo As DocumentInfo,

 additionalFiles As StringsCollection,

 additionalDirectories As StringsCollection

)

C++ Syntax

HRESULT ExportPages(

 FileExportFormatEnum format,

 BSTR fileName,

 IImageDocumentsCollection* imageDocuments,

 ILayoutsCollection* layouts,

 IUnknown* exportParams,

 IDocumentInfo* documentInfo,

 IStringsCollection** additionalFiles,

 455

ABBYY FineReader Engine 10 API Reference

 IStringsCollection** additionalDirectories

);

Parameters

riable specifies the format of the output file. See the FileExportFormatEnum description for the supported file formats.

ntains the full path to the output file. If this file already exists, it is overwritten without prompt.

ed
lection must correspond to the number of Layout objects in the collection of the exported

his parameter must not be 0.

 to the exported pages. This
be 0 when exporting pages to PDF (PDF/A) format using PEM_ImageOnly mode.

u

ase the default values for the export parameters are used, or, if a
 loaded, the parameters set by this profile are used.

used during export. This parameter may be 0, in which case the text attributes which
uring synthesis are not available.

by this method. This object contains
the additional files that were generated during export. Must not be NULL.

ethod. This object
e additional directories that were generated during export. Must not be NULL.

he user, this method returns E_ABORT. It may also return standard return values of ABBYY FineReader
ions.

Rem k

•
L file is written, additional picture files may appear together with it. The list of files does

not include the exported file itself.

• the
orPage object except for the properties CorrectDynamicRange, DetectBackgroundColor,

DetectTextColor.

rtPages
Working with Profiles

format

[in] This va

fileName

[in] This variable co

imageDocuments

[in] This variable refers to the ImageDocumentsCollection object that corresponds to the set of images that belong to the export
pages. The number of images in the col
layouts. T

layouts

[in] This variable refers to the LayoutsCollection object containing the set of layouts that belong
parameter may

exportParams

[in] Pass the export parameters object of the type corresponding to your file format through this input parameter. For example, if yo
are creating an RTF file, create the RTFExportParams object, set the necessary parameters in it, and pass it to this method as the
exportParams input parameter. This parameter may be 0, in which c
profile has been

documentInfo

[in] This variable refers to the DocumentInfo object. You should use the same DocumentInfo object, which was used as a
parameter in the SynthesizePages or SynthesizePagesEx methods of the Engine object. In this case, all the information about
document which was received during synthesis is
were detected d

additionalFiles

[out] A pointer to the IStringsCollection* pointer variable that receives the interface pointer of the StringsCollection object.
*additionalFiles should not refer to any valid object. The StringsCollection is created internally
the list of full paths to

additionalDirectories

[out] A pointer to the IStringsCollection* pointer variable that receives the interface pointer of the StringsCollection object.
*additionalDirectories should not refer to any valid object. The StringsCollection is created internally by this m
contains the list of full paths to th

Return Values

If export was interrupted by t
Engine funct

ar s

This method returns two lists of full paths to the additional files and additional directories that were generated during
export. For example, when an HTM

To analyze and recognize pages that will be exported into a single file, specify identical values for all the properties of
SynthesisParamsF

See also

Exporter
IEngine::ExportPages
IExporter::ExportPagesEx
IFRDocument::Expo

 456

ABBYY FineReader Engine 10 API Reference

ExportPagesEx Method of the Exporter Object

This method saves recognized text from several pages into a file in external format. Available file formats are represented by the
FileExportFormatEnum enumeration constants. This method differs from the IExporter::ExportPages in that it is optimized by
memory consumption. It requires interface of user�implemented object of type RecognizedPages, as its input parameter. This object
allows you to pass recognized texts and images of the exported pages one�by�one rather than as the batch, and thus requires memory
for only one recognized page at a time.

This method reports events to listeners attached to the IConnectionPointContainer interface supported by the Exporter object.

Visual Basic Syntax

Method ExportPagesEx(

 format As FileExportFormatEnum,

 fileName As String,

 recognizedPages As RecognizedPages,

 exportParams As Unknown,

 documentInfo As DocumentInfo

 additionalFiles As StringsCollection,

 additionalDirectories As StringsCollection

) As StringsCollection

C++ Syntax

HRESULT ExportPagesEx(

 FileExportFormatEnum format,

 BSTR fileName,

 IRecognizedPages* recognizedPages,

 IUnknown* exportParams,

 IDocumentInfo* documentInfo,

 IStringsCollection** additionalFiles,

 IStringsCollection** additionalDirectories

);

Parameters

format

[in] This variable specifies the format of the output file. See the FileExportFormatEnum description to find out the supported file
formats.

fileName

[in] This variable contains the full path to the output file. If this file already exists, it is overwritten without prompt.

recognizedPages

[in] This variable refers to the interface of the user�implemented object of the type RecognizedPages which is used to pass recognized
texts and images of the exported pages one�by�one.

exportParams

[in] Pass the export parameters object of type corresponding to your file format through this input parameter. For example, if you are
creating an RTF file, create the RTFExportParams object, set necessary parameters in it, and pass to this method as the exportParams
input parameter. This parameter may be 0, in which case default values for the export parameters are used, or, if a profile has been
loaded, the parameters set by this profile are used.

documentInfo

[in] This variable refers to the DocumentInfo object. You should use the same DocumentInfo object, which was used as a
parameter in the SynthesizePages or SynthesizePagesEx methods of the Engine object. In this case, all the information about
document which was received during synthesis is used during export. This parameter may be 0, in which case the text attributes which
were detected during synthesis are not available.

additionalFiles

[out] A pointer to the IStringsCollection* pointer variable that receives the interface pointer of the StringsCollection object.
*additionalFiles should not refer to any valid object. The StringsCollection is created internally by this method. This object contains
the list of full paths to additional files that were generated during export. Must not be NULL.

additionalDirectories

 457

ABBYY FineReader Engine 10 API Reference

[out] A pointer to the IStringsCollection* pointer variable that receives the interface pointer of the StringsCollection object.
*additionalDirectories should not refer to any valid object. The StringsCollection is created internally by this method. This object
contains the list of full paths to the additional directories that were generated during export. Must not be NULL.

Return Values

If export was interrupted by user, this method returns E_ABORT. It may also return standard return values of ABBYY FineReader
Engine functions.

Remarks

• This method returns two lists of full paths to the additional files and additional directories that were generated during
export. For example, when an HTML file is written, additional picture files may appear together with it. The list of files does
not include the exported file itself.

• To analyze and recognize pages that will be exported into a single file, specify identical values for all the properties of the
SynthesisParamsForPage object except for the properties CorrectDynamicRange, DetectBackgroundColor,
DetectTextColor.

See also

Exporter
IExporter::ExportPages
Working with Profiles

ScanManager Object (IScanManager Interface)

This object exposes a set of properties and methods required to perform scanning.

This object may be declared WithEvents in Visual Basic. For C++ user this fact means that it supports the
IConnectionPointContainer interface. To receive notification events during scanning, a C++ user should create an object derived
from the IScanManagerEvents interface, then set up the connection between it and events source implemented in ScanManager
object by standard COM means.

It is worth noting that this object requires a special implementation of the IScanManagerEvents interface methods which should
process Windows messages. This issue is described in detail in the IScanManagerEvents article.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Specifies the interface type for the scanning options. By
default, this property is set to SOIT_Twain. ScanOptionsInterfaceType ScanOptionsInterfaceTypeEnum

ScanSources StringsCollection, read�only Returns a list of scan sources available on the current
workstation.

ScanSourceSettings ScanSourceSettings Provides access to the scanning options of a source
(scanner). See for details Setting up Scanning Options.

Methods

Name Description
Scan Scans one or several images using the specified scan source into the specified folder on the disk.

Related objects

Output parameter

This object is the output parameter of the CreateScanManager method of the Engine object.

 458

ABBYY FineReader Engine 10 API Reference

See also

Setting up Scanning Options
Working with Connectable Objects
IScanManagerEvents
Working with Properties

ScanSourceSettings Property of the ScanManager Object

This property of the ScanManager object provides access to the scanning options of a source (scanner). The name of the source is
passed as the parameter.

Visual Basic Syntax

Property ScanSourceSettings(

 source As String

)As ScanSourceSettings

C++ Syntax

HRESULT get_ScanSourceSettings(

 BSTR source

 IScanSourceSettings** settings

);

HRESULT put_ScanSourceSettings(

 BSTR source

 IScanSourceSettings* newSet

);

Parameters

source

[in] This variable contains available scan source.

settings

[out] A pointer to the IScanSourceSettings* pointer variable that receives the interface pointer of the ScanSourceSettings object
that contains the scan settings.

newSet

[in] This variable refers to the ScanSourceSettings object that contains the scan settings.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

ScanManager
ScanSourceSettings
Setting up Scanning Options
Working with Properties

Scan Method of the ScanManager Object

This method performs scanning of one or several images with the specified scanning source into the specified folder on the disk. The
IScanManagerEvents interface methods may be called for this method, if there are any listeners attached to the
IConnectionPointContainer interface supported by the ScanManager object.

Visual Basic Syntax

Method Scan(

 scanSource As String,

 destFolder As String,

 multiplePages As Boolean

) As StringsCollection

C++ Syntax

 459

ABBYY FineReader Engine 10 API Reference

HRESULT Scan(

 BSTR scanSource,

 BSTR destFolder,

 VARIANT_BOOL multiplePages,

 IStringsCollection** scannedImages

);

Parameters

scanSource

[in] This variable specifies the name of scanning source with which to perform scanning. This name should be one of the collection
returned by the IScanManager::ScanSources property.

destFolder

[in] This variable contains the full path to the output folder, where scanned images should be stored.

multiplePages

[in] This variable of the Boolean type specifies whether multiple pages should be scanned at a time.

scannedImages

[out] A pointer to IStringsCollection* pointer variable that receives the interface pointer of the StringsCollection object. *pVal
should not refer to any valid object. The StringsCollection is created internally by this method. This object contains the list of full
paths to the image files that were received from the scanner.

Return Values

This method may return standard return values of ABBYY FineReader Engine functions.

Remarks

If no listeners are attached to the IConnectionPointContainer interface supported by the ScanManager object, Windows
messages are processed internally by ABBYY FineReader Engine. This is needed to avoid an effect that the application "is not
responding" during scanning. It is recommended to use ABBYY FineReader Engine internal Windows message processing, if an ability
to break scanning is needed.

The image files created by this method after scanning are saved in one of the formats which is supported both by the scanner and
ABBYY FineReader Engine (commonly it is BMP format).

The Scan Manager may show message boxes if an error occurs (no paper in the scanner, wrong resolution, bad TWAIN dll version, etc).

See also

IScanManagerEvents

ScanSourceSettings Object (IScanSourceSettings Interface)

This object provides access to the scanning settings of a source.

Note: By default, the scanning area rectangle is not set (all the properties PaperBottom, PaperLeft, PaperRight, PaperTop are
set to 0). In this case, the scanning area will be selected by the scanner. In most cases it will be the whole available scanning area.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Brightness Long Specifies the brightness of the scanned image (0�100). It is only valid
when the BrightnessControl property is set to SBC_Manual. By
default, this property is set to 50.

Sets brightness control mode. By default, this property is set to
SBC_Fine. BrightnessControl ScanBrightnessControlEnum

Delay Long Sets the pause between pages in sec. It is only valid if
PauseBetweenPages = TRUE. By default, this property is set to 5 sec.

DuplexMode Boolean Specifies whether duplex scanning must be used. By default, this
property is set to FALSE.

 460

ABBYY FineReader Engine 10 API Reference

PaperBottom Long Sets the coordinate of the bottom border of the scanning area rectangle
(in milli�inch). It is only valid if PaperSize = SPS_Custom. By default,
this property is set to 0.

PaperLeft Long Sets the coordinate of the left border of the scanning area rectangle (in
milli�inch). It is only valid if PaperSize = SPS_Custom. By default, this
property is set to 0.

PaperRight Long Sets the coordinate of the right border of the scanning area rectangle
(in milli�inch). It is only valid if PaperSize = SPS_Custom. By default,
this property is set to 0.

PaperSize ScanPaperSizeEnum Sets paper size. By default, this property is set to SPS_None.

PaperTop Long Sets the coordinate of the top border of the scanning area rectangle (in
milli�inch). It is only valid if PaperSize = SPS_Custom. By default, this
property is set to 0.

PauseBetweenPages Boolean Specifies whether the program must pause between pages during
scanning. The length of the pause can be specified in the Delay
property. By default, this property is set to FALSE.

PictureMode ScanPictureModeEnum Sets image type (black�and�white, gray, color). By default, this property
is set to SPM_BlackAndWhite.

Resolution Long Sets image resolution (from 200 to 600). The resolution must be set to a
number divisible by 100. By default, this property is set to 300.

RotationAngle ScanPageRotationAngleEnum Sets image rotation angle (once the image has been scanned). By
default, this property is set to SPRA_Rotation0.

StopBetweenPages Boolean Specifies whether the program must stop between pages during
scanning. By default, this property is set to FALSE. This property cannot
be set to TRUE, if the IScanManager::ScanOptionsInterfaceType is
set to SOIT_None.

UseFeeder Boolean Specifies whether an automatic document feeder must be used. By
default, this property is set to FALSE.

Related objects

See also

ScanManager
Setting up Scanning Options
Working with Properties

IDocumentAnalyzerEvents Interface

This is callback interface that is used for reporting events from the DocumentAnalyzer object to the listeners. This interface is
implemented on the client side. As it derives from the IUnknown interface, the client object should also implement the IUnknown
methods. This interface is designed primarily for using in C++. Visual Basic users that want to receive notifications from the
DocumentAnalyzer object should declare it WithEvents and implement the following Sub's:

Public WithEvents da As FREngine.DocumentAnalyzer

Private Sub da_OnProgress(ByVal Percentage As Long,

 ByRef Cancel As Boolean)

...

End Sub

Private Sub da_OnRecognizerTip(ByVal Tip As String,

 ByRef Cancel As Boolean)

...

End Sub

 461

ABBYY FineReader Engine 10 API Reference

Private Sub da_OnRegionProcessed(ByVal RecognitionPassNumber As Long,

 ByRef Region As Region,

 ByRef Cancel As Boolean)

...

End Sub

An object receiving notifications through this interface's methods may do the following inside the methods' implementation:

• Process any Windows messages, which is useful in applications having User Interface, to avoid an effect that the application
"is not responding" during long operations.

• Report percentage of recognition and/or fill up the already recognized parts of the image being recognized, with a color, as
it is done in ABBYY FineReader.

• Report recognizer tips to the user.

Methods

Name Description
OnProgress Delivers to the client information about approximate percentage of analysis or recognition.

OnRecognizerTip Delivers to the client recognizer tips.

OnRegionProcessed Delivers to the client information about a rectangle on image that has been recognized.

See also

DocumentAnalyzer
Working with Connectable Objects

OnProgress Method of the IDocumentAnalyzerEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for some of the methods of the
DocumentAnalyzer object. It delivers to the client an information about approximate percentage of analysis or recognition. Its
implementation may show a progress indicator, as it is done in ABBYY FineReader. It may also process any Windows messages to avoid
an effect that the application "is not responding" during long analysis or recognition operations.

Visual Basic Syntax

Sub OnProgress(

 ByVal percentage As Long,

 ByRef cancel As Boolean

)

C++ Syntax

HRESULT OnProgress(

 long percentage,

 VARIANT_BOOL* cancel

);

Parameters

percentage

[in] This parameter contains the percent of the work currently done. It is in the range from 0 to 100.

cancel

[in, out] You may set this variable to TRUE (VARIANT_TRUE) to indicate that the process should be terminated. In this case the
processing function, that reports the percentage, returns E_ABORT.

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side, and in this case the
value of the Cancel parameter is not taken into account.

Remarks

The client implementation of this method must assure that no exceptions are thrown inside it, as it may lead to unpredictable results.

 462

ABBYY FineReader Engine 10 API Reference

See also

DocumentAnalyzer
DocumentAnalyzerEvents

OnRegionProcessed Method of the IDocumentAnalyzerEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for some of the methods of the
DocumentAnalyzer object. It delivers to the client information about a rectangle on image that has been analyzed or recognized. Its
implementation may fill up parts of images with color, as it is done in ABBYY FineReader. It may also process any Windows messages
to avoid an effect that the application "is not responding" during long operations.

Visual Basic Syntax

Sub OnRegionProcessed(

 ByVal recognitionPassNumber As Long,

 ByRef region As Region,

 ByRef cancel As Boolean

)

C++ Syntax

HRESULT OnRegionProcessed(

 long recognitionPassNumber,

 IRegion* region,

 VARIANT_BOOL* cancel

);

Parameters

recognitionPassNumber

[in] This parameter reports the number of the recognition pass. It may be either 1 or 2. Rectangles from different passes may be filled
up with different colors as it is done in ABBYY FineReader.

region

[in] This parameter contains coordinates of the rectangle that has been recognized. These coordinates relate to the deskewed black�
and�white plane of the image.

cancel

[in, out] You may set this variable to TRUE (VARIANT_TRUE) to indicate that the process of recognition should be terminated. In this
case the processing function, that reports the rectangle, returns E_ABORT.

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side, and in this case the
value of the Cancel parameter is ignored.

Remarks

• The client implementation of this method must assure that no exceptions are thrown inside it, as it may lead to
unpredictable results.

• This method reports the rectangle that was recognized since the last call to this method, and not a cumulative recognized
rectangle.

See also

DocumentAnalyzer
IDocumentAnalyzerEvents

OnRecognizerTip Method of the IDocumentAnalyzerEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for some of the methods of the
DocumentAnalyzer object. Its implementation may report recognizer tips to the user. It may also process any Windows messages to
avoid an effect that the application "is not responding" during long operations.

Visual Basic Syntax

Sub OnRecognizerTip(

 463

ABBYY FineReader Engine 10 API Reference

 ByVal tip As String,

 ByRef cancel As Boolean

)

C++ Syntax

HRESULT OnRecognizerTip(

 BSTR tip,

 VARIANT_BOOL* cancel

);

Parameters

tip

[in] This parameter contains the recognizer tip.

cancel

[in, out] You may set this variable to TRUE (VARIANT_TRUE) to indicate that the process of recognition should be terminated. In this
case the processing function, that reports the tip, returns E_ABORT.

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side, and in this case the
value of the Cancel parameter is not taken into account.

Remarks

The client implementation of this method must assure that no exceptions are thrown inside it, as it may lead to unpredictable results.

See also

DocumentAnalyzer
IDocumentAnalyzerEvents

IExporterEvents Interface

This is callback interface that is used for reporting events from the Exporter object to the listeners. This interface is implemented on
the client side. As it derives from the IUnknown interface, the client object should also implement the IUnknown methods. This
interface is designed primarily for using in C++. Visual Basic users that want to receive notifications from the Exporter object should
declare it WithEvents and implement the following Sub:

Public WithEvents exporter As FREngine.Exporter

Private Sub exporter_ReportPercentage(ByVal percentage As Long,

 ByRef shouldTerminate As Boolean)

...

End Sub

An object receiving notifications through this interface's methods may do the following inside the methods' implementation:

• Process any Windows messages, which is useful in applications having user interface, to avoid an effect that the application
"is not responding" during long operations.

• Report percentage of export, as it is done in ABBYY FineReader.

Methods

Name Description
ReportPercentage Delivers to the client information about percentage of the export performed.

See also

Working with Connectable Objects
Exporter

ReportPercentage Method of the IExporterEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for the IExporter::ExportPages method. It
delivers to the client information about the percentage of export performed. It is called once for each exported page. Its

 464

ABBYY FineReader Engine 10 API Reference

implementation may show a progress indicator, as it is done in ABBYY FineReader. It may also process any Windows messages to avoid
an effect that the application "is not responding" during long operations.

Visual Basic Syntax

Sub ReportPercentage(

 ByVal percentage As Long,

 ByRef shouldTerminate As Boolean

)

C++ Syntax

HRESULT ReportPercentage(

 long percentage,

 VARIANT_BOOL* shouldTerminate

);

Parameters

percentage

[in] This parameter contains the percent of the work currently done. It is in the range from 0 to 100.

shouldTerminate

[in, out] You may set this variable to TRUE (VARIANT_TRUE) to indicate that the process of export should be terminated. In this case
the IExporter::ExportPages method, that reports the percentage, returns E_ABORT.

Return Values

[C++ only] If this method returns a value other than S_OK, it indicates that an error occurred on the client side, and in this case the
value of the shouldTerminate parameter is ignored.

Remarks

The client implementation of this method must assure that no exceptions are thrown inside it, as it may lead to unpredictable results.

See also

IExporterEvents
Exporter

IScanManagerEvents Interface

This is a callback interface that is used for interaction of the ScanManager object with its listeners. This interface is implemented on
the client side. As it derives from the IUnknown interface, the client object should also implement the IUnknown methods. This
interface is designed primarily for using in C++. Visual Basic users that want to implement listeners for the ScanManager object
should declare it WithEvents and implement the following Sub:

Public WithEvents scanManager As FREngine.ScanManager

Private Sub scanManager_NewImage(ByVal scannedImage As String)

 DoEvents

 ...

End Sub

Private Sub scanManager_ScanStopped()

 DoEvents

 ...

End Sub

An object connected to this callback interface should process Windows messages. This is absolutely necessary, or the scanning will not
function. When no listeners are connected to the IScanManagerEvents interface, the Windows messages are processed internally by
ABBYY FineReader Engine. When any listeners are attached, they should process Windows messages themselves. In Visual Basic it is
done by the DoEvents statement. For C++ users the following special kind of message loop is recommended:

 MSG msg;

 while(::PeekMessage(&msg, 0, 0, 0, PM_REMOVE | PM_NOYIELD)) {

 if(WM_MOUSEFIRST <= msg.message && msg.message <= WM_MOUSELAST) {

 continue;

 }

 if(WM_NCMOUSEMOVE <= msg.message && msg.message <= WM_NCMBUTTONDBLCLK) {

 465

ABBYY FineReader Engine 10 API Reference

 continue;

 }

 if(WM_KEYFIRST <= msg.message && msg.message <= WM_KEYLAST) {

 continue;

 }

 ::DispatchMessage(&msg);

 }

Note that all messages are removed from the message queue, but not all of them are processed. In particular, all user input (both from
keyboard and from the mouse) is not processed. This eliminates the possibility that user may do something wrong with our window
during the scanning (close it or choose something from the menu for example).

Methods

Name Description
NewImage Provides information about the name of the file with the scanned image. Allows you to stop multipage scanning.

ScanStopped Provides information about whether the scanning was stopped.

See also

ScanManager
Working with Connectable Objects

NewImage Method of the IScanManagerEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for the IScanManager::Scan method. Its
implementation should process Windows messages or the scanning will not function correctly. This method allows a user to receive a
name of the file with the scanned image and to break multipage scanning.

Visual Basic Syntax

Sub NewImage(

 ByVal scannedImage As String,

 ByRef CancelScanning As Boolean

)

C++ Syntax

HRESULT NewImage(

 BSTR scannedImage,

 VARIANT_BOOL* CancelScanning

);

Parameters

scannedImage

[in] This parameter contains the name of the file with the scanned image.

CancelScanning

[out] You may set this variable to TRUE (VARIANT_TRUE) to indicate that the scanning process should be terminated. In this case the
scanning function, that reports the tip, returns E_ABORT.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The client implementation of this method must assure that no exceptions are thrown inside it, as it may lead to unpredictable
results. The client implementation should process Windows messages. In Visual Basic this is done via the DoEvents statement, while
for C++ users it is recommended to use the special form of message loop described on the IScanManagerEvents page.

See also

ScanManager
IScanManagerEvents

 466

ABBYY FineReader Engine 10 API Reference

ScanStopped Method of the IScanManagerEvents Interface

This method is implemented on the client side. It is called by ABBYY FineReader Engine for the IScanManager::Scan method. Its
implementation should process Windows messages or the scanning will not function correctly. This method provides to the client an
information about whether the scanning was stopped.

Visual Basic Syntax

Sub ScanStopped()

C++ Syntax

HRESULT ScanStopped();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The client implementation of this method must assure that no exceptions are thrown inside it, as it may lead to unpredictable
results. The client implementation should process Windows messages. In Visual Basic this is done via the DoEvents statement, while
for C++ users it is recommended to use the special form of message loop described on the IScanManagerEvents page.

See also

ScanManager
IScanManagerEvents

Parameter Objects
The setting up of parameters of layout analysis, recognition, synthesis and export is performed via the so called ABBYY FineReader
Engine parameter objects.

This section contains descriptions of the following parameter objects:

• MultiProcessingParams

• Analysis, recognition, and synthesis parameters:

o PageProcessingParams

o PageAnalysisParams

o TableAnalysisParams

o BarcodeParams

o RecognizerParams

o ObjectsExtractionParams

o OrientationDetectionParams

o SynthesisParamsForDocument

o DocumentStructureDetectionParams

o FontFormattingDetectionParams

o SynthesisParamsForPage

o FontFormattingDetectionParamsForPage

• Export parameters:

o HTMLExportParams

o PPTExportParams

 467

ABBYY FineReader Engine 10 API Reference

o RTFExportParams

o TextExportParams

o XLExportParams

o XMLExportParams

o PDFExportParams

o PDFAExportParamsOld

o PDFExportParamsOld

o PDFEncryptionInfo

o PDFMRCParams

The additional information you can find in the Tuning Analysis, Recognition, and Synthesis Parameters and Tuning Export Parameters
sections.

The parameter objects hierarchy

For more information about the hierarchy of the ABBYY FineReader Engine objects, please see the Object Diagram.

MultiProcessingParams Object (IMultiProcessingParams Interface)

This object provides access to the parameters of multiprocessing and multiple CPU cores usage. The main parameter which defines
whether multiprocessing is to be used is the MultiProcessingMode property. All other properties regulate the number of processes
and CPU cores and are taken into account only if the MultiProcessingMode property is set to MPM_Auto or MPM_Parallel.

Name Type Description
Application Engine, read�only Returns the Engine object.

MultiProcessingMode MultiProcessingModeEnum Specifies whether ABBYY FineReader Engine should distribute
analysis and recognition of multi�page documents to CPU cores.
The maximum number of processes which can be run equals to
the value of the RecognitionProcessesCount property. By
default the property is set to MPM_Auto.

Specifies the number of processes which can be run. The
maximal possible value of the property is 32. By default this
property is 0 which means that the number of processes will be
equal to the minimum of the following values: RecognitionProcessesCount Long

• number of available physical or logical CPU cores
(depending on the value of the

 468

ABBYY FineReader Engine 10 API Reference

UseOnlyPhysicalCPUCores property),

• number of free CPU cores available in the license,

• number of pages in the processing document.

If you change the value of this property, ABBYY FineReader
Engine immediately allocates CPU cores of the license and loads
the FineReader Engine Processor module. If the value of this
property is 0, CPU cores allocation and loading of the FineReader
Engine Processor module will be performed when it will be
necessary.

Specifies the CPU cores, which can be used in shared mode of
CPU cores usage, as an affinity mask. The property makes sense
only if the value of the SharedCPUCoresMode property is
TRUE. By default all detected CPU cores are used.

SharedCPUCoresMask Long

Specifies whether the CPU cores are used in shared mode. There
are two modes of CPU cores usage: separate and shared. In
separate mode ABBYY FineReader Engine uses no more
processes than it is allowed by the license. In shared mode any
number of processes can be run, but all these processes will use
only the CPU cores specified by the SharedCPUCoresMask
property. By default the property is set to FALSE, which means
that the separate mode is used.

SharedCPUCoresMode Boolean

Specifies whether only physical CPU cores or physical and logical
CPU cores are used during processing. By default the property is
set to TRUE, which means that only physical CPU cores are used.

UseOnlyPhysicalCPUCores Boolean

Related objects

See also

Properties of the Engine Object
Working with Properties

PageProcessingParams Object (IPageProcessingParams Interface)

This object is used for tuning different parameters of layout analysis and recognition. It comprises child objects of
PageAnalysisParams, RecognizerParams, BarcodeParams, OrientationDetectionParams and ObjectsExtractionParams
types that are available through the corresponding properties. A pointer to this object is passed to all layout analysis and analysis�
recognition functions along with other parameters.

The PageProcessingParams object is a persistent object. This means that it is able to write its current state, indicated by the values of
its properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the
object's state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile,
SaveToMemory, and LoadFromMemory.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Provides access to the subset of page processing
parameters, affecting the process of barcode blocks
recognition.

BarcodeParams BarcodeParams

Specifies if barcodes are detected, and accordingly barcode
blocks created, during page processing. If this property is
FALSE, barcodes may be detected as blocks of some other
type (e.g. pictures). This property is FALSE by default.

DetectBarcodes Boolean

 469

ABBYY FineReader Engine 10 API Reference

The property is obsolete. We recommend that you keep its
default value.
This property set to TRUE tells ABBYY FineReader Engine
to detect whether the image is inverted (white text against
black background). The text color is detected during page
processing, and if it differs from normal, ABBYY
FineReader Engine automatically inverts the image. This
property is FALSE by default.

DetectInvertedImage Boolean

If this property is TRUE, the page orientation is detected
during page processing, and if it differs from normal,
ABBYY FineReader Engine automatically rotates the image.
This property is FALSE by default.

DetectOrientation Boolean

ObjectsExtractionParams ObjectsExtractionParams Provides access to the subset of page processing
parameters that affect extraction of objects.

OrientationDetectionParams OrientationDetectionParams Provides access to the parameters of orientation detection.

PageAnalysisParams PageAnalysisParams Provides access to the subset of page processing
parameters that affect the process of page analysis. These
parameters are ignored, if the value of the
PerformPageAnalysis property is FALSE.

Specifies if page analysis is to be performed. If this
property is FALSE, the PageAnalysisParams property is
ignored. This property is TRUE by default.

PerformPageAnalysis Boolean

Provides access to the subset of page processing
parameters that affect the process of page recognition. RecognizerParams RecognizerParams

Specifies if geometrical distortions (perspective on photos,
curved lines from scanned books, etc.) should be removed
during layout analysis. This property is FALSE by default.

RemoveGeometricalDistortions Boolean

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Related objects

 470

ABBYY FineReader Engine 10 API Reference

Sample

Visual C++ (COM) code

// Global ABBYY FineReader Engine object.

FREngine::IEnginePtr Engine;

...

// Global ABBYY FineReader Engine object.
 FREngine::IEnginePtr Engine;
 ...
 // Open the image file
 FREngine::IImageDocumentPtr pImageDoc =
 Engine->PrepareAndOpenImage(L"D:\\Demo.tif", 0, 0, 0);

 // Create the Layout object
 FREngine::ILayoutPtr pLayout = Engine->CreateLayout();
 // Create page processing parameters
 FREngine::IPageProcessingParamsPtr pPageProcessingParams =
 Engine->CreatePageProcessingParams();

 // Now tune it
 pPageProcessingParams->DetectBarcodes = VARIANT_TRUE;

 // Analyze and recognize the image
 Engine->AnalyzeAndRecognizePage(pImageDoc, pPageProcessingParams, 0, pLayout, 0);

Visual Basic code

' Global ABBYY FineReader Engine object.
 Public Engine As FREngine.Engine
 ...
 ' Open the image file
 Dim ImageDoc As FREngine.ImageDocument
 Set ImageDoc = Engine.PrepareAndOpenImage("D:\Demo.tif")

 ' Create the Layout object
 Dim Layout As FREngine.Layout
 Set Layout = Engine.CreateLayout()
 ' Create page processing parameters
 Dim PageProcessingParams As FREngine.PageProcessingParams
 Set PageProcessingParams = Engine.CreatePageProcessingParams
 ' Now tune it
 PageProcessingParams.DetectBarcodes = True

 ' Perform page analysis
 Engine.AnalyzeAndRecognizePage ImageDoc, PageProcessingParams, Nothing, Layout

Output parameter

This object is the output parameter of the CreatePageProcessingParams method of the Engine object.

Input parameter

This object is the input parameter of the following methods:

• AnalyzePage, AnalyzePages, AnalyzeAndRecognizePage,
AnalyzeAndRecognizePages, RecognizeImageDocumentAsPlainText, RecognizeImageAsPlainText,
RecognizeImageFile of the Engine object.

• AnalyzePage, AnalyzePages, AnalyzeRegion, AnalyzeTable,
AnalyzeAndRecognizePage, AnalyzeAndRecognizePages, RecognizeImageDocumentAsPlainText of the
DocumentAnalyzer object.

• Analyze, AnalyzePages, AnalyzeAndRecognize, AnalyzeAndRecognizePages, Process of the FRDocument object.

• Analyze, AnalyzeAndRecognize, AnalyzeTable, AnalyzeRegion of the FRPage object.

See also

Tuning Analysis, Recognition, and Synthesis Parameters
Working with Properties

 471

ABBYY FineReader Engine 10 API Reference

See sample: CustomLanguage

PageAnalysisParams Object (IPageAnalysisParams Interface)

This object provides access to parameters used for tuning the layout analysis process. It is passed as a member of the
PageProcessingParams object into layout analysis and layout analysis�recognition functions.

The PageAnalysisParams object is a persistent object. This means that it is able to write its current state, indicated by the values of its
properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the object's
state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory,
and LoadFromMemory.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

If this property is TRUE, the pictures are detected during layout analysis.
This property is TRUE by default. DetectPictures Boolean

If this property is TRUE, the separators are detected during layout analysis.
This property is TRUE by default. DetectSeparators Boolean

If this property is TRUE, the vector pictures are detected during layout
analysis. Vector picture blocks may appear in the layout only if this
property has been set to TRUE during layout analysis. This property is
TRUE by default.

DetectVectorGraphics Boolean

If this property is TRUE, the tables are detected during layout analysis. This
property is TRUE by default. DetectTables Boolean

This property set to TRUE tells ABBYY FineReader Engine to presume that
an image has no shadows from scanning. This property is FALSE by default.

NoShadowsMode Boolean

This property set to TRUE tells ABBYY FineReader Engine to presume that
an image is not a book double page. This property is FALSE by default. ProhibitDoublePageMode Boolean

If this property is FALSE, typical variants of page layout will be gone
through during page analysis and the best variant will be selected, which
can improve recognition quality. If the best variant of page layout cannot
be selected, standard page layout analysis will be performed. This property
is FALSE by default.

ProhibitModelAnalysis Boolean

If this property is set to TRUE, the analysis procedure presumes that there
is only one column of text on a page. This property is FALSE by default.
The value of this property is ignored, if the ProhibitModelAnalysis
property is set to FALSE.

SingleColumnMode Boolean

Provides access to the subset of page processing parameters that affect the
process of table analysis. TableAnalysisParams TableAnalysisParams

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

 472

ABBYY FineReader Engine 10 API Reference

Related objects

Output parameter

This object is the output parameter of the CreatePageAnalysisParams method of the Engine object.

See also

Tuning Analysis, Recognition, and Synthesis Parameters
PageProcessingParams
Working with Properties

TableAnalysisParams Object (ITableAnalysisParams Interface)

This object provides access to parameters affecting table block analysis process. All properties of a newly created object of this type are
set to reasonable defaults. To know about the default value of this or that property, see its description.

The TableAnalysisParams object is a persistent object. This means that it is able to write its current state, indicated by the values of
its properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the
object's state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile,
SaveToMemory, and LoadFromMemory.

Properties

Name Type Description
Engine,
read�only Application Returns the Engine object.

If this property is TRUE, the cells inversion is detected during table block analysis. This
property is TRUE by default. DetectCellsInversion Boolean

If this property is TRUE, the cells orientation is detected during table block analysis. This
property is TRUE by default. DetectCellsOrientation Boolean

SingleLinePerCell Boolean Set this property to TRUE if you only recognize tables with one line of text per each
cell. The table layout will be analyzed more readily. This property is FALSE by default.

SplitOnlyBySeparators Boolean Set this property to TRUE if you only recognize tables with no hidden separators. The
table layout will be analyzed more readily. This property is FALSE by default.

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object's contents from a file on disk.

LoadFromMemory Restores the object's contents from the global memory.

SaveToFile Saves the object's contents into a file on disk.

SaveToMemory Saves the object's contents into the global memory.

Related objects

 473

ABBYY FineReader Engine 10 API Reference

Output parameter

This object is the output parameter of the CreateTableAnalysisParams method of the Engine object.

See also

Tuning Analysis, Recognition, and Synthesis Parameters
PageAnalysisParams
Working with Properties

BarcodeParams Object (IBarcodeParams Interface)

This object allows you to tune the parameters of barcode block recognition. Each barcode block in layout has its own child object of
BarcodeParams type. Besides, this object is passed as a sub�object of the PageProcessingParams object into ABBYY FineReader
Engine layout analysis�recognition functions. Recognition functions use the barcode recognition parameters specified by barcode
blocks' child objects of the BarcodeParams type, rather than those specified by the sub�object of the PageProcessingParams
object passed to these functions.

Whenever a barcode block is created during layout analysis, the properties of its child object of the BarcodeParams type are
initialized with the values of the BarcodeParams object properties passed to the layout analysis function. Properties of a barcode
block which is created with the help of the AddBlock or InsertBlock methods of the Layout object are set to reasonable defaults.
See the description of a particular property for the information on its default value.

The BarcodeParams object is a persistent object. This means that it is able to write its current state, indicated by the values of its
properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the object's
state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory,
and LoadFromMemory.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Specifies whether the barcode being recognized must be interpreted as the
barcode of the same type but with a check sum. This property is only available
for barcodes of types Code 39, Interleaved 2 of 5, Codabar, and Matrix 2 of 5. By
default, this property is set to FALSE.

Note: While Codabar has no check digit, ABBYY FineReader Engine uses an
algorithm for computing check digits according to Modulo 16. The check digit is
computed as follows. Each Codabar character has a value assigned to it. The sum
of all character values is taken, including the Start and the Stop characters. The
data character whose value, when added to this sum, equals a multiple of 16 is
the check digit.

HasChecksum Boolean

Specifies that the Code 39 barcode being recognized has no start and stop
symbol, the asterisk "*". By default, this property is set to FALSE. IsCode39WithoutAsterisk Boolean

The value of this property is an OR superposition of the
BarcodeOrientationEnum enumeration constants which denote the types of
barcode orientation. For example, if it is set to BO_Left_To_Right |
BO_Down_To_Top, ABBYY FineReader Engine will presume that barcode blocks
may be oriented either from left to right or from down to top, ignoring all other
variants. By default, this property is set to BO_Autodetect, i.e. ABBYY FineReader
Engine will detect the barcode orientation automatically.

Orientation Long

PDF417CodePage CodePageEnum This property is used to recognize barcodes which do not conform to the
barcode specifications. Do not use this property for barcodes created in
conformity with the barcode specifications. Some barcode printers use code
pages other than US�MSDOS required by the specifications. In this case, use this
property to specify the code page which was used by the barcode printer to
create the barcode. In most cases this will be the code page of the operating
system under which the barcode printer was running. By default, this property is
set to CP_Null.

SupplementType Long The value of this property is an OR superposition of the
BarcodeSupplementTypeEnum enumeration constants. This property is only
available for barcodes of the EAN 8, 13, UPC�A, and UPC�E types. For example, if
it is set to BS_Void | BS_2Digits, ABBYY FineReader Engine will try to recognize
barcode blocks either without supplementary barcode or with 2�digit

 474

ABBYY FineReader Engine 10 API Reference

supplementary barcode. By default, this property is set to BS_Autodetect, i.e.
ABBYY FineReader Engine will detect the supplementary barcode type
automatically.

The value of this property is an OR superposition of the BarcodeTypeEnum
enumeration constants which denote the types of barcodes. For example, if it is
set to BT_EAN13 | BT_EAN8, ABBYY FineReader Engine will try to recognize
barcode blocks in either EAN 13 or EAN 8 standard, ignoring all other variants.
By default, this property is set to BT_Autodetect, i.e. ABBYY FineReader Engine
will detect the barcode type automatically.

Type Long

Methods

Name Description
CopyFrom Initializes the properties of the current object with the values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents to a file on disk.

SaveToMemory Saves the object contents to the global memory.

Related objects

Output parameter

This object is the output parameter of the CreateBarcodeParams method of the Engine object.

Input parameter

This object is the input parameter of the following methods:

• ExtractBarcodes method of the DocumentAnalyzer object

• ExtractBarcodes method of the FRPage object

See also

Barcode Types
Tuning Analysis, Recognition, and Synthesis Parameters
Working with Properties

RecognizerParams Object (IRecognizerParams Interface)

This object allows you to tune the recognition parameters. Each text block and table cell in layout has its own child object of the
RecognizerParams type. Besides, this object is passed as a sub–object of the PageProcessingParams object into ABBYY
FineReader Engine layout analysis–recognition functions. Recognition functions use parameters of recognition defined by text blocks'
and table cells' child objects of the type RecognizerParams. Whenever a text block or table cell is created during layout analysis,
properties of its child object of the RecognizerParams type are initialized with values of properties of the RecognizedParams
object, passed to analysis function. Properties of a subobject of the block which is created with the help of the AddBlock or
InsertBlock method of the Layout object are set to reasonable defaults. To know about the default value of this or that property see
its description.

The RecognizerParams object is a persistent object. This means that it is able to write its current state, indicated by the values of its
properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re–created by reading the object's
state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory,
and LoadFromMemory.

Properties

Name Type Description

 475

ABBYY FineReader Engine 10 API Reference

Application Engine, read–only Returns the Engine object.

If this property is TRUE, the recognition will run in
balanced mode. The balanced mode is an intermediate
mode between full and fast modes. The fast mode can
be activated with the help of the FastMode property.
This property is available for machine–printed texts
only, for hand–printed texts the recognition will be run
in full mode. By default, this property is FALSE.

BalancedMode Boolean

This property specifies the mode of letter case
recognition. By default the value of this property is
CRM_AutoCase, which corresponds to automatic case
recognition.

CaseRecognitionMode CaseRecognitionModeEnum

Specifies the number of character cells for a recognized
block. This property is valid only for the handprint
recognition. It has a sense only for the field marking
types (the FieldMarkingType property) that imply
splitting the text in cells. Default value for this property
is 1, but you should set the appropriate value to
recognize the text correctly.

CellsCount Long

Sets the direction of the text to be recognized. This
property is valid only for the hieroglyphic languages. By
default, this property is CJKTD_Autodetect.

CJKTextDirection CJKTextDirectionEnum

Specifies the level at which the
ICharParams::IsSuspicious property is set to TRUE
for a recognized character. The name of the property
reflects the fact that the uncertain characters are
highlighted with color in ABBYY FineReader. By default
the value of this property is EHL_Standard.

ErrorHiliteLevel ErrorHiliteLevelEnum

If this property is TRUE, character and word confidence
will be defined more accurately, but recognition speed
may get slower. The value of character confidence is
stored in the CharConfidence property of the
CharacterRecognitionVariant and PlainText
objects. The value of word confidence is stored in the
WordConfidence property of the
WordRecognitionVariant object. This property is
automatically set to TRUE if the
SaveCharacterRecognitionVariants or
SaveWordRecognitionVariants property is TRUE. By
default, this property is FALSE.

ExactConfidenceCalculation Boolean

This property set to TRUE provides 2–2.5 times faster
recognition speed at the cost of a moderately increased
error rate (1.5–2 times more errors). This property is
available both for machine– and hand–printed texts. In
the case of a hand–printed text (text type
TT_Handprinted), a special recognition mode is used.
On good print quality texts, ABBYY FineReader Engine
makes an average of 1–2 errors per page, and such
moderate increase in error rate can be easily tolerated in
many cases, such as full text indexing with "fuzzy"
searches, preliminary recognition, etc. By default, this
property is FALSE.

FastMode Boolean

Note: We do not recommend using this mode to
recognize small image fragments (for example,
fragments which consist of only one line or word)
because the time advantage will be insignificant.

This property specifies the type of marking around
letters (for example, underline, frame, box, etc.). This
property is valid only for the handprint recognition. By
default the value of this property is FMT_SimpleText,

FieldMarkingType FieldMarkingTypeEnum

 476

ABBYY FineReader Engine 10 API Reference

which means the plain text.
Note: For correct handprint recognition use

CellsCount property that allows you to set the number
of character cells for a recognized block.
Specifies whether a text on an image with low
resolution is recognized. By default, the value of this
property is FALSE.

LowResolutionMode Boolean

This property set to TRUE tells ABBYY FineReader
Engine to presume that the text in block to which the
current RecognizerParams object belongs contains no
more than one string. By default this property is FALSE.

OneLinePerBlock Boolean

OneWordPerLine Boolean This property set to TRUE tells ABBYY FineReader
Engine to presume that no text line may contain more
than one word, so the lines of text will be recognized as
a single word. By default this property is FALSE.

The property is obsolete. Use the TextTypes property
instead.
This property contains a collection of TextTypeEnum
values. The property tells ABBYY FineReader Engine to
presume that the text to recognize is of one of the types
the collection contains. If the value of the TextType
property is not TT_ToBeDetected, the value of this
property will be ignored. The property returns a copy of
the collection but not a reference to it. In order to
modify the value of the property it is necessary to create
a new collection, add required values to it, and then
assign the collection to the property. The collection
should contain at least one element and cannot contain
TT_ToBeDetected. When this property is changed, the
TextType property is automatically set to
TT_ToBeDetected. By default it contains TT_Normal.

PossibleTextTypes LongsCollection

This property set to TRUE prohibits recognition of
hyphenation from line to line. It is useful when a text
with presumably no hyphenations is recognized, in
which case it may speed up the recognition. If there
exist any hyphenations in the recognized block, and this
property is TRUE, the hyphenated words will be
recognized incorrectly. By default this property is FALSE.

ProhibitHyphenation Boolean

This property set to TRUE tells ABBYY FineReader
Engine to presume that text from one block cannot be
carried over to the next block. By default this property is
FALSE.

ProhibitInterblockHyphenation Boolean

This property set to TRUE tells ABBYY FineReader
Engine not to recognize letters printed with italic–styled
font. It is useful when a text with presumably no italic
letters is recognized, in which case it may speed up the
recognition. If there exist any italic letters on the image,
and this property is TRUE, these letters will be
recognized incorrectly. By default this property is FALSE.

ProhibitItalic Boolean

This property set to TRUE tells ABBYY FineReader
Engine not to recognize subscript letters. It is useful
when a text with presumably no subscripts is
recognized, in which case it may speed up the
recognition. If there exist any subscript letters on the
image, and this property is TRUE, these letters will be
recognized incorrectly. By default this property is FALSE.

ProhibitSubscript Boolean

ProhibitSuperscript Boolean This property set to TRUE tells ABBYY FineReader
Engine not to recognize superscript letters. It is useful
when a text with presumably no superscripts is
recognized, in which case it may speed up the

 477

ABBYY FineReader Engine 10 API Reference

recognition. If there exist any superscript letters on the
image, and this property is TRUE, these letters will be
recognized incorrectly. By default this property is FALSE.

Specifies whether the variants of characters recognition
are saved. The
ICharParams::CharacterRecognitionVariants
property returns a collection of recognition variants for
a character. The default value is FALSE. See also Using
Voting API.

SaveCharacterRecognitionVariants Boolean

Specifies whether the exact characters regions
(ICharParams::CharacterRegion) are saved. The
default value is FALSE.

SaveCharacterRegions Boolean

Specifies whether the variants of recognition of a word
are saved. The
IParagraph::GetWordRecognitionVariants method
and ICharParams::WordRecognitionVariants
property return a collection of recognition variants for a
word. The default value is FALSE. See also Using Voting
API.

SaveWordRecognitionVariants Boolean

This property refers to the TextLanguage object used
for image recognition. By default this parameter is
initialized with English language. This property may be
easily set via the SetPredefinedTextLanguage
method.

TextLanguage TextLanguage

TextType TextTypeEnum The property is obsolete. Use the TextTypes property
instead.
This property tells ABBYY FineReader Engine to
presume that the text to recognize is of that type. By
default the value of this property is TT_Normal.

Note: If this property is set to TT_ToBeDetected,
TT_Handprinted, or TT_Index, the TrainUserPatterns
property cannot be set to TRUE.

The value of this property is an OR superposition of the
TextTypeEnum enumeration constants which denote
possible text types used for recognition. For example, if
it is set to TT_Normal | TT_Index, ABBYY FineReader
Engine will presume that the text contains only
common typographic text and digits written in ZIP–
code style, ignoring all other variants. By default, this
property is set to TT_Normal. The property cannot be
set to TT_ToBeDetected. See also Using Text Type
Autodetection.

Notes:
TextTypes Long • If this property is set to TT_Handprinted, or

TT_Index, the TrainUserPatterns property
cannot be set to TRUE.

• If this property is equal to any combination of
TT_Matrix, TT_Typewriter, TT_OCR_A, and
TT_OCR_B, italic fonts and
superscript/subscript will not be recognized,
regardless of the values of the ProhibitItalic,
ProhibitSubscript and
ProhibitSuperscript properties.

This property specifies whether user patterns should be
trained during the recognition. If this property is TRUE,
some user pattern file should be specified in the
UserPatternsFile property. The Pattern Training
dialog box will display during recognition. For correct

TrainUserPatterns Boolean

 478

ABBYY FineReader Engine 10 API Reference

operation of pattern training process it is necessary to
set the value of the parent window HWND handle
(IEngine::ParentWindow property). See also
Recognizing with Training. By default this property is
FALSE.
If this property is set to TRUE, the TextType and
TextTypes properties cannot be set to
TT_ToBeDetected, TT_Handprinted, or TT_Index.
Notes: Pattern training is not supported for
hieroglyphic languages.

This property set to TRUE means that ABBYY
FineReader Engine will use its own built–in patterns for
recognition. Patterns are files establishing relationship
between character image and character itself. By default
this property is TRUE. You may want to set this property
to FALSE when you do not want to use standard ABBYY
FineReader Engine patterns for character recognition,
but user patterns only. This may be useful for
recognition of text typed with decorative or non–
standard fonts. In this case it is better not to use ABBYY
FineReader Engine built–in patterns, but use your own
user–defined patterns trained for these fonts. A path to
user–defined pattern file is stored in the
UserPatternsFile property. If the UserPatternsFile
property is empty the UseBuiltInPatterns property is
ignored. See also Recognizing with Training.

UseBuiltInPatterns Boolean

UserPatternsFile String Contains the full path to a file of the user pattern used
for recognition. By default this property stores an empty
string. If the value of this property is not empty,
information from the user pattern file will be used
during recognition. If the UseBuiltInPatterns property
is FALSE, which means that standard ABBYY FineReader
Engine patterns are not used during recognition, this
property should contain a path to user–defined pattern
file, as only information stored in it will be used. See also
Recognizing with Training.

Provides additional information about handprinted
letters writing style. By default the value of this property
is WS_Default, which means that the writing style is
selected depending on the current language of the
operating system.

WritingStyle WritingStyleEnum

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

SetPredefinedTextLanguage Sets the language of recognition to be one of the predefined ABBYY FineReader Engine languages.

 479

ABBYY FineReader Engine 10 API Reference

Related objects

Output parameter

This object is the output parameter of the CreateRecognizerParams method of the Engine object.

See also

Tuning Analysis, Recognition, and Synthesis Parameters
Recognizing Handprinted Texts
PageProcessingParams
TextBlock
Working with Properties

See sample: CustomLanguage

SetPredefinedTextLanguage Method of the RecognizerParams Object

This method sets the language of recognition to be one of the predefined ABBYY FineReader Engine languages. It affects the value of
the IRecognizerParams::TextLanguage property.

Visual Basic Syntax

Method SetPredefinedTextLanguage(

 internalName As String

)

C++ Syntax

HRESULT SetPredefinedTextLanguage(

 BSTR internalName

);

Parameters

internalName

[in] This variable is the internal name of one of the ABBYY FineReader Engine predefined languages. This name should be one from the
list of ABBYY FineReader Engine predefined languages. This parameter may also contain several languages names divided by commas,
for example "English,French,German".

Return Values

In case the predefined language you are trying to set is not available, or the language with the name passed is not supported, the
E_INVALIDARG error code is returned. This method may also return standard return values of ABBYY FineReader Engine functions.

Remarks

Availability of this or that predefined language depends on the availability of the corresponding modules in the set of ABBYY
FineReader Engine modules.

See also

IRecognizerParams::TextLanguage
Working with Languages

ObjectsExtractionParams Object (IObjectsExtractionParams Interface)

This object provides access to the parameters used for objects extraction. Objects extraction is a process which detects additional
objects (e.g. garbage, texture, small text areas of low quality) on an image before recognition.

The ObjectsExtractionParams object is a persistent object. This means that it is able to write its current state, indicated by the
values of its properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading

 480

ABBYY FineReader Engine 10 API Reference

the object's state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile,
SaveToMemory, and LoadFromMemory.

Properties

Name Type Description
Engine,
read�only Application Returns the Engine object.

If this property is TRUE, the text printed on matrix printer is detected during objects
extraction. This property is TRUE by default. DetectMatrixPrinter Boolean

If this property is TRUE, the regions with porous text are detected during objects
extraction. This property is TRUE by default. DetectPorousText Boolean

If this property is TRUE, objects extraction will speed up, but its quality may deteriorate.
This property is FALSE by default. FastObjectsExtraction Boolean

This property set to TRUE tells ABBYY FineReader Engine to locate all text on the page,
including small text areas of low quality and text in diagrams and pictures. Tables are
recognized as plain text. This property is FALSE by default.

FlexiFormsDA Boolean

This property set to TRUE tells ABBYY FineReader Engine to detect all text on an image,
including text embedded into the image. Reading order is not changed to provide ability
for further full�text search. This property is FALSE by default.

FullTextIndexDA Boolean

This property set to TRUE tells ABBYY FineReader Engine to use only black�and�white
plane during objects extraction. In this case detection quality of colored tables and
pictures can get worse. This property is FALSE by default.

ProhibitColorImage Boolean

Specifies if garbage (excess dots that are smaller than a certain size) is to be removed from
the image during objects extraction. This property is FALSE by default. RemoveGarbage Boolean

This property set to TRUE tells ABBYY FineReader Engine to remove the background noise
from a temporary image used for recognition. The source image remains unaffected. This
property is TRUE by default.

RemoveTexture Boolean

Methods

Name Description
CopyFrom Initializes the properties of the current object with the values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Related objects

Output parameter

This object is the output parameter of the CreateObjectsExtractionParams method of the Engine object.

Input parameter

This object is the input parameter of the following methods:

• Recognize, RecognizePages methods of the FRDocument object.

• Recognize, RecognizeBlocks, RemoveGeometricalDistortions, ExtractBarcodes, DetectOrientation,
FindPageSplitPosition methods of the FRPage object.

 481

ABBYY FineReader Engine 10 API Reference

• RecognizePage, RecognizePages, RecognizeBlocks, ExtractBarcodes, RemoveGeometricalDistortions,
DetectOrientation, FindPageSplitPosition methods of the DocumentAnalyzer object.

• RecognizePage, RecognizePages methods of the Engine object.

See also

Tuning Analysis, Recognition, and Synthesis Parameters
PageProcessingParams,
Working with Properties

OrientationDetectionParams Object (IOrientationDetectionParams Interface)

This object provides access to the parameters used for tuning the page orientation detection. It is passed as a parameter into the
DetectOrientation methods of the DocumentAnalyzer and FRPage objects. Besides, this object is passed as a sub�object of the
PageProcessingParams object into ABBYY FineReader Engine layout analysis�recognition functions.

The OrientationDetectionParams object is a persistent object. This means that it is able to write its current state, indicated by the
values of its properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading
the object's state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile,
SaveToMemory, and LoadFromMemory.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Specifies the mode of page orientation detection.
This property is ODM_Normal by default. OrientationDetectionMode OrientationDetectionModeEnum

Disables clockwise page rotation when selecting
the page orientation. This property is FALSE by
default.

Note: This property must not have the TRUE
value if the
ProhibitCounterclockwiseRotation and
ProhibitUpsidedownRotation properties are
set to TRUE.

ProhibitClockwiseRotation Boolean

Disables counterclockwise page rotation when
selecting the page orientation. This property is
FALSE by default.

ProhibitCounterclockwiseRotation Boolean Note: This property must not have the TRUE
value if the ProhibitClockwiseRotation and
ProhibitUpsidedownRotation properties are
set to TRUE.

Disables upside�down page rotation when
selecting the page orientation. This property is
FALSE by default.

ProhibitUpsidedownRotation Boolean Note: This property must not have the TRUE
value if the ProhibitClockwiseRotation and
ProhibitCounterclockwiseRotation properties
are set to TRUE.

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

 482

ABBYY FineReader Engine 10 API Reference

Related objects

Output parameter

This object is the output parameter of the CreateOrientationDetectionParams method of the Engine object

Input parameter

This object is the input parameter of the following methods and properties:

• DetectOrientation method of the FRPage object

• DetectOrientation method of the DocumentAnalyzer object

See also

Tuning Analysis, Recognition, and Synthesis Parameters
PageAnalysisParams
Working with Properties

SynthesisParamsForDocument Object (ISynthesisParamsForDocument Interface)

This object is used for setting up the parameters of the document synthesis. It allows you to specify the fonts that will be used for
reproducing different font types in the recognized text.

The SynthesisParamsForDocument object is a persistent object. This means that it is able to write its current state, indicated by the
values of its properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading
the object's state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile,
SaveToMemory, and LoadFromMemory.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Specifies whether document structure
detection should be performed while
document synthesis. This property is set
to TRUE by default.

DetectDocumentStructure Boolean

Specifies whether font formatting
detection should be performed while
document synthesis. This property is set
to TRUE by default.

DetectFontFormatting Boolean

Provides access to the parameters of
document structure detection. DocumentStructureDetectionParams DocumentStructureDetectionParams

Provides access to the parameters of
font formatting detection. FontFormattingDetectionParams FontFormattingDetectionParams

If this property is set to TRUE, empty
paragraphs are inserted to reproduce
big line spacing of the original text. This
property is set to FALSE by default.

InsertEmptyParagraphsForBigInterlines Boolean

Specifies how many pages may be
loaded by document synthesis
simultaneously. This property allows
you to decrease memory usage. We
recommend to use the value in range
from 32 to 64. The more the value, the
more speed of processing. However, for
processing big documents it is not
recommended to use the highest values

PagePoolSize Long

 483

ABBYY FineReader Engine 10 API Reference

of this property, as this may lead to an
"out of memory" error. The value less
than 5 is ignored. By default the value
of this property is 64.

Stores the number of elements in the
collection of fonts of the recognized
text.

RecognizedTextFontCount Long, read�only

If this property is set to TRUE, the
information about words and character
(quality, model, etc.) will be saved
during export. If the
SaveCharacterRecognitionVariants
property or the
SaveWordRecognitionVariants
property of the RecognizerParams
object is set to TRUE, the value of this
property is ignored. This property is set
to TRUE by default.

SaveRecognitionInfo Boolean

Methods

Name Description
AddRecognizedTextFontName Adds a font in the collection of fonts which are used in the recognized text.

CleanRecognizedTextFontNames Cleans the collection of fonts which are used in the recognized text.

CopyFrom Initializes properties of the current object with values of similar properties of another object.

GetRecognizedTextFontName Returns the name of the font in the collection of fonts which are used in the recognized text.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Related objects

Output parameter

This object is the output parameter of the CreateSynthesisParamsForDocument method of the Engine object.

Input parameter

This object is the input parameter of the following methods:

• Process, Synthesize, SynthesizePages of the FRDocument object.

• RecognizeImageFile, SynthesizePages, SynthesizePagesEx of the Engine object.

See also

Tuning Analysis, Recognition, and Synthesis Parameters
SynthesisParamsForPage
Working with Properties

AddRecognizedTextFontName Method of the SynthesisParamsForDocument Object

This method adds a font to the collection of fonts of the recognized text.

 484

ABBYY FineReader Engine 10 API Reference

Visual Basic Syntax

Method AddRecognizedTextFontName(

 Value As String

)

C++ Syntax

HRESULT AddRecognizedTextFontName(

 BSTR Value

);

Parameters

Value

[in] This parameter specifies the name of the font that should be added.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

SynthesisParamsForDocument

CleanRecognizedTextFontNames Method of the SynthesisParamsForDocument Object

This method cleans the collection of fonts which are used in the recognized text.

Visual Basic Syntax

Method CleanRecognizedTextFontNames()

C++ Syntax

HRESULT CleanRecognizedTextFontNames();

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

SynthesisParamsForDocument

GetRecognizedTextFontName Method of the SynthesisParamsForDocument Object

This method returns the name of the font in the collection of fonts which are used in the recognized text.

Visual Basic Syntax

Method GetRecognizedTextFontName(

 FontNumber As Long

) As String

C++ Syntax

HRESULT GetRecognizedTextFontName(

 long FontNumber

 BSTR* Result

);

Parameters
FontNumber

[in] This parameter specifies the index of the font in the internal collection of fonts used in the recognized text. Must be in a range
from 0 to the value of the ISynthesisParamsForDocucment::RecognizedTextFontCount property �1.

Result

[out] A pointer to a string variable that receives the font name.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

 485

ABBYY FineReader Engine 10 API Reference

See also

SynthesisParamsForDocument

DocumentStructureDetectionParams Object (IDocumentStructureDetectionParams
Interface)

This object is used for setting up the parameters of the document structure detection during document synthesis. This object is passed
as a subobject of SynthesisParamsForDocument object to recognition and synthesis methods. By default, all the Boolean properties
of this object are set to TRUE. You may turn off some of the properties, if your document does not contain any elements of this type
(e.g. it does not have footnotes or table of contents) which may speed up processing.

The DocumentStructureDetectionParams object is a persistent object. This means that it is able to write its current state, indicated
by the values of its properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by
reading the object's state from persistent storage. The following methods provide persistence of the object: SaveToFile,
LoadFromFile, SaveToMemory, and LoadFromMemory.

Properties

Name Type Description
Engine,
read�only Application Returns the Engine object.

If this property is set to TRUE, additional properties of separators (such as their
type, etc.) are detected during document synthesis. This property is set to TRUE by
default.

ClassifySeparators Boolean

If this property is set to TRUE, the captions are detected during document
synthesis. This property is set to TRUE by default. DetectCaptions Boolean

If this property is set to TRUE, the columns are detected during document
synthesis. This property is set to TRUE by default. DetectColumns Boolean

If this property is set to TRUE, the footnotes are detected during document
synthesis. This property is set to TRUE by default. DetectFootnotes Boolean

If this property is set to TRUE, the headlines are detected during document
synthesis. This property is set to TRUE by default. DetectHeadlines Boolean

If this property is set to TRUE, the lists are detected during document document
synthesis. This property is set to TRUE by default. DetectLists Boolean

If this property is set to TRUE, the overflowing paragraphs are detected during
document synthesis. The overflowing paragraph is the one which starts from one
page and ends on another page. If the property is set to FALSE, the program
presumes that there are no overflowing paragraphs in the document. This
property is set to TRUE by default.

Boolean DetectOverflowingParagraphs

If this property is set to TRUE, the running titles are detected during document
synthesis. This property is set to TRUE by default. DetectRunningTitles Boolean

If this property is set to TRUE, the table of contents is detected during document
synthesis. This property is set to TRUE by default. DetectTableOfContents Boolean

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

 486

ABBYY FineReader Engine 10 API Reference

Related objects

See also

Tuning Analysis, Recognition, and Synthesis Parameters
SynthesisParamsForDocument
Working with Properties

FontFormattingDetectionParams Object (IFontFormattingDetectionParams Interface)

This object is used for setting up the parameters of font formatting detection during document synthesis. This object is passed as a
subobject of SynthesisParamsForDocument object to recognition and synthesis methods. By default, all the Boolean properties of
this object are set to TRUE.

The FontFormattingDetectionParams object is a persistent object. This means that it is able to write its current state, indicated by
the values of its properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by
reading the object's state from persistent storage. The following methods provide persistence of the object: SaveToFile,
LoadFromFile, SaveToMemory, and LoadFromMemory.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

If this property is set to TRUE, the bold�face type is
detected during synthesis. This property is set to TRUE by
default.

DetectBold Boolean

If this property is set to TRUE, the drop caps are detected
during synthesis. This property is set to TRUE by default. DetectDropCaps Boolean

If this property is set to TRUE, the font name is detected
during synthesis. This property is set to TRUE by default. DetectFontFamily Boolean

If this property is set to TRUE, the font size is detected
during synthesis. This property is set to TRUE by default. DetectFontSize Boolean

If this property is set to TRUE, the italic�face type is
detected during synthesis. This property is set to TRUE by
default.

DetectItalic Boolean

If this property is set to TRUE, the monospace typeface is
detected during synthesis. This property is set to TRUE by
default. If this property is FALSE, the
MonospaceDetectionMode property is ignored.

DetectMonospace Boolean

If this property is set to TRUE, the scaling is detected
during synthesis. This property is TRUE by default. DetectScaling Boolean

If this property is set to TRUE, serif is detected during
synthesis, i.e. if serif has been detected, serif typeface is
selected to represent the recognized text. If this property
is set to FALSE, serif is ignored. This means that the most
suitable font (from both serif and sans serif typefaces) is
selected to represent the recognized text, no matter
whether the text is serif or sans serif. This property is set
to TRUE by default.

DetectSerifs Boolean

If this property is set to TRUE, the small capital letters are
detected during synthesis. This property is set to TRUE by
default.

DetectSmallCaps Boolean

If this property is set to TRUE, the spacing is detected
during synthesis. This property is TRUE by default. DetectSpacing Boolean

 487

ABBYY FineReader Engine 10 API Reference

If this property is set to TRUE, the subscripts and
superscripts are detected during synthesis. This property is
TRUE by default.

Boolean DetectSubscriptsSuperscripts

If this property is set to TRUE, the underline and strikeout
are detected during synthesis. This property is set to TRUE
by default.

DetectUnderlineStrikeout Boolean

Specifies the mode of monospaced font detection. The
property makes sense only if the DetectMonospace
property is set to TRUE. The default mode is MDM_Auto.

MonospaceDetectionMode MonospaceDetectionModeEnum

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Related objects

See also

Tuning Analysis, Recognition, and Synthesis Parameters
SynthesisParamsForDocument
Working with Properties

SynthesisParamsForPage Object (ISynthesisParamsForPage Interface)

This object is used for setting up the parameters of the page synthesis. Particularly, it allows you to specify the parameters of text and
background color detection.

The SynthesisParamsForPage object is a persistent object. This means that it is able to write its current state, indicated by the values
of its properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the
object's state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile,
SaveToMemory, and LoadFromMemory.

Properties
Name Type Description

If this property is set to TRUE, the gray
color is detected for background.
Otherwise, background will be detected
as black or white. The value of this
property is taken into account only if the
DetectBackgroundColor property is
set to TRUE. The default value of this
property is TRUE.

AllowGrayBackgroundColor Boolean

If this property is set to TRUE, the gray
color is detected for text. Otherwise, text
will be detected as black or white. The
value of this property is taken into
account only if the DetectTextColor
property is set to TRUE. The default value
of this property is FALSE.

AllowGrayTextColor Boolean

Application Engine, read�only Returns the Engine object.

 488

ABBYY FineReader Engine 10 API Reference

If this property is TRUE, image colors will
be corrected so that the background is
white and the text is black, or vice versa,
which improves image quality.
Recognition, however, will slow down.
We recommend using this property only
if the DetectBackgroundColor and
DetectTextColor properties are TRUE.
This property is set to FALSE by default.

CorrectDynamicRange Boolean

If this property is set to TRUE, the
background color is detected during
page synthesis. This property is set to
FALSE by default.

DetectBackgroundColor Boolean

If this property is set to TRUE, document
references (e.g. cross�references) are
detected during page synthesis. This
property is set to TRUE by default.

DetectDocumentLinks Boolean

If this property is set to TRUE, font
parameters are detected at the stage of
page synthesis. This property set to TRUE
enables detection of subscripts,
superscripts, italic�face type, small capital
letters at the stage of page synthesis and
allows you to set additional parameters
using
FontFormattingDetectionParams
property. If this property is FALSE, the
FontFormattingDetectionParams
property is ignored.

Note: Normally, ABBYY
FineReader Engine 10 detects font
parameters at the stage of document
synthesis. Therefore, if you set the value
of this property to TRUE, you can then
turn off the detection of font parameters
during document synthesis. To do this,
set the
ISynthesisParamsForDocument::Det
ectFontFormatting property to FALSE.
Detection of font parameters during
page synthesis enables the program to
speed up the subsequent document
synthesis and decrease memory usage.
However, the quality of font detection
may deteriorate.

DetectFontFormattingAtPageLevel Boolean

If this property is set to TRUE, hyperlinks
are detected during page synthesis. This
property is set to TRUE by default.

DetectHyperlinks Boolean

If this property is set to TRUE, the text
color is detected during page synthesis.
This property is set to FALSE by default.

DetectTextColor Boolean

Specifies additional parameters of font
formatting detection at the stage of page
synthesis: bold�face type detection, font
name and font size detection. This
property is used, only if the
DetectFontFormattingAtPageLevel
property is set to TRUE.

FontFormattingDetectionParamsForPag
e FontFormattingDetectionParams

Specifies the mode of paragraph
extraction. The default mode is
PEM_NormalExtraction.

ParagraphExtractionMode ParagraphExtractionModeEnum

 489

ABBYY FineReader Engine 10 API Reference

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object's contents from a file on disk.

LoadFromMemory Restores the object's contents from the global memory.

SaveToFile Saves the object's contents into a file on disk.

SaveToMemory Saves the object's contents into the global memory.

Output parameter

This object is the output parameter of the CreateSynthesisParamsForPage method of the Engine object.

Input parameter

This object is the input parameter of the following methods:

• AnalyzeAndRecognize, Recognize, RecognizeBlocks of the FRPage object

• AnalyzeAndRecognize, AnalyzeAndRecognizePages, Process, Recognize, RecognizePages of the FRDocument
object

• AnalyzeAndRecognizePage, AnalyzeAndRecognizePages, RecognizeBlocks,
RecognizeImageDocumentAsPlainText, RecognizePage, RecognizePages of the DocumentAnalyzer object

• RecognizePage, AnalyzeAndRecognizePage, RecognizeImageFile, RecognizeImageAsPlainText,
RecognizeImageDocumentAsPlainText, RecognizePages, AnalyzeAndRecognizePages of the Engine object

See also

Tuning Analysis, Recognition, and Synthesis Parameters
SynthesisParamsForDocument
Working with Properties

FontFormattingDetectionParamsForPage Object (IFontFormattingDetectionParamsForPage
Interface)

This object specifies the parameters of font formatting detection at the stage of page synthesis. This object is a subobject of the
SynthesisParamsForPage object and is used only if the ISynthesisParamsForPage::DetectFontFormattingAtPageLevel
property is set to TRUE.

Normally, ABBYY FineReader Engine 10 detects font parameters at the stage of document synthesis. Detection of font parameters
during page synthesis enables the program to speed up the subsequent document synthesis and decrease memory usage. However, the
quality of font detection may deteriorate.

The FontFormattingDetectionParamsForPage object is a persistent object. This means that it is able to write its current state,
indicated by the values of its properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�
created by reading the object's state from persistent storage. The following methods provide persistence of the object: SaveToFile,
LoadFromFile, SaveToMemory, and LoadFromMemory.

Properties

Name Type Description

Application Engine, read�
only

Returns the Engine object.

DetectBold Boolean If this property is ser to TRUE, the program will detect bold�face type at the stage of page
synthesis. This property is set to FALSE by default.

DetectFontFamily Boolean If this property is ser to TRUE, the program will detect font name at the stage of page
synthesis. This property is set to FALSE by default.

DetectFontSize Boolean If this property is ser to TRUE, the program will detect font size at the stage of page synthesis.
This property is set to FALSE by default.

Methods

 490

ABBYY FineReader Engine 10 API Reference

Name Description

CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object's contents from a file on disk.

LoadFromMemory Restores the object's contents from the global memory.

SaveToFile Saves the object's contents into a file on disk.

SaveToMemory Saves the object's contents into the global memory.

Related objects

See also

Tuning Analysis, Recognition, and Synthesis Parameters
SynthesisParamsForPage
Working with Properties

HTMLExportParams Object (IHTMLExportParams Interface)

This object provides functionality for tuning parameters of recognized text export in HTML format by means of ABBYY FineReader
Engine export functions. A pointer to this object is passed into the export methods as an input parameter, and thus affects the results
of export. All properties of a newly created object of this type are set to reasonable defaults. For more information about the default
value of this or that property, see the description of the corresponding property.

The HTMLExportParams object is a persistent object. This means that it is able to write its current state, indicated by the values of its
properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the object's
state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory,
and LoadFromMemory.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

This property specifies the code page to which the
recognized text is exported. The value of this
property is taken into account only when the
EncodingType property has value TET_Simple
(exported text is not Unicode), and in this case the
property must specify a valid code page (it cannot
be CP_Null).

CodePage CodePageEnum

Note: Firstly, you should set the correct code
page, and then change the value of the
EncodingType property to TET_Simple.
By default this property is CP_Null.
Specifies the encoding type of the output file in
HTML format. This property is TET_Auto by default
which means that encoding is selected
automatically. EncodingType TextEncodingTypeEnum

Note: If you want to change the value of this
property to TET_Simple, at first you should set the
correct code page (the CodePage property).

Specifies the version of HTML used for export.
Export may be done in HTML 3.2 format for old
browsers, HTML 4.0 format for newer browsers.
The default value is HFM_Format40, which
specifies the format supported only by newer
browsers.

HTMLFormatMode HTMLFormatModeEnum

 491

ABBYY FineReader Engine 10 API Reference

Specifies a mode of synthesizing HTML code from
the recognized text. There exist three modes of
synthesis: retain paragraphs only, retain paragraphs
and fonts, retain full logical structure of the
document. The default value is
HSM_FlexibleLayout, which means that the whole
logical structure of the document is retained. If you
set the value of this property to HSM_PlainText, the
value of the HTMLFormatMode property is
automatically set to HFM_Format32.

HTMLSynthesisMode HTMLSynthesisModeEnum

KeepLines Boolean Specifies if original lines in recognized text are
retained during export. This property is FALSE by
default.

Specifies if original colors of text and background
are retained during export of the recognized text in
HTML format. This property is TRUE by default.

KeepTextAndBackgroundColor Boolean

Specifies the image format to be used during export
to HTML; images are saved to separate files. This
property can have one of the following values:
EPF_Automatic, EPF_JpegColor, EPF_JpegGray,
EPF_PngBlackWhite, EPF_PngColor, EPF_PngGray.
The default value for this property is
EPF_Automatic.

PictureFormat ExportPictureFormatEnum

Stores the value of the JPEG quality for color
pictures saved in HTML format in percent. The
default value for this property is 50%.

PictureJpegQuality Long

Stores the value of picture resolution in dpi, that is
used for exporting pictures for HTML format. This
property may be set to �1, which means that the
original resolution must be preserved. The default
value for it is 72 dpi.

PictureResolution Long

Specifies the mode of running titles saving when
exporting in HTML format. This property is
RTM_WriteAsNative by default.

RunningTitleMode RunningTitleModeEnum

Specifies the mode of splitting output document
into files. By default this property is HDSM_None. SplitDocumentToFiles HTMLDocumentSplittingModeEnum

Specifies if the author of the document should be
written into the output HTML file. The author of
the document is defined in the Author property of
the DocumentContentInfo subobject of the
FRDocument object.

WriteAuthor Boolean

Specifies if the keywords of the document should
be written into the output HTML file. The keywords
of the document is defined in the Keywords
property of the DocumentContentInfo
subobject of the FRDocument object.

WriteKeywords Boolean

Specifies whether pictures must be saved along
with the file in HTML format. If pictures are not
written, references to them in HTML files are also
omitted. The default value is TRUE.

WritePictures Boolean

Specifies if the subject of the document should be
written into the output HTML file. The subject of
the document is defined in the Subject property of
the DocumentContentInfo subobject of the
FRDocument object.

WriteSubject Boolean

Specifies if the title of the document should be
written into the output HTML file. The title of the

WriteTitle Boolean

 492

ABBYY FineReader Engine 10 API Reference

document is defined in the Title property of the
DocumentContentInfo subobject of the
FRDocument object.

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Output parameter

This object is the output parameter of the CreateHTMLExportParams method of the Engine object.

Input parameter

This object is passed as the input parameter to the following methods:

• Export, ExportPages methods of the FRDocument object.

• Export method of the FRPage object.

• ExportPage, ExportPages, RecognizeImageFile methods of the Engine object.

• ExportPages, ExportPagesEx methods of the Exporter object.

See also

Tuning Export Parameters
Working with Properties

PPTExportParams Object (IPPTExportParams Interface)

This object provides functionality for tuning of parameters of recognized text export in PPTX format by means of ABBYY FineReader
Engine export functions. A pointer to this object is passed into the export methods as an input parameter, and thus affects the results
of export. All properties of a newly created object of this type are set to reasonable defaults. For more information about the default
value of this or that property, see the description of the corresponding property.

The PPTExportParams object is a persistent object. This means that it is able to write its current state, indicated by the values of its
properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the object's
state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory,
and LoadFromMemory.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

BackgroundColorMode BackgroundColorModeEnum Specifies the mode of background color saving when exporting to
PPTX format. Only background color of rectangular text and table
blocks can be saved. This property is BCM_Color by default.

KeepLines Boolean Specifies whether original lines in recognized text are retained
during export. The default value is FALSE.

KeepTextColor Boolean Specifies if original colors of text are retained during export of the
recognized text to PPTX format. This property is TRUE by default.

PaperHeight Long Specifies paper height in twips (1/1440 of inch) for PPTX file. The
value of this property should be in range from 1 to 56 inches. If the
value of this property or PaperWidth property is outside the scope,
the program will use the height of a standard slide which encloses

 493

ABBYY FineReader Engine 10 API Reference

the layout of exporting page. By default the value of this property is
0.

Long Specifies paper width in twips (1/1440 of inch) for PPTX file. The
value of this property should be in range from 1 to 56 inches. If the
value of this property or PaperHeight property is outside the scope,
the program will use the width of a standard slide which encloses the
layout of exporting page. By default the value of this property is 0.

PaperWidth

PictureFormat ExportPictureFormatEnum Specifies the image format to be used during export to PPTX. This
property can have one of the following values: EPF_Automatic,
EPF_JpegColor, EPF_JpegGray, EPF_PngBlackWhite, EPF_PngColor,
EPF_PngGray. The default value is EPF_Automatic.

PictureJpegQuality Long Stores the value in percentage points of the JPEG quality for color
pictures saved in PPTX format. The default value is 50%.

PictureResolution Long Stores the value of picture resolution in dpi, which is used for
exporting pictures to PPTX format. This property may be set to �1,
which means that the original resolution must be preserved. The
default value is 150 dpi.

RunningTitleMode RunningTitleModeEnum Specifies the mode of running titles saving when exporting to PPTX
format. This property is RTM_WriteAsNative by default.

WrapTextInBlock

Boolean

Specifies whether the text must fit into the original blocks when
KeepLines is set to TRUE. The default value is FALSE.

Note: Text in hieroglyphic languages which is arranged vertically
is exported as if the WrapTextInBlock is set to FALSE, no matter
what the value of the property is.

WriteAuthor Boolean Specifies if the author of the document should be written into the
output PPTX file. This property is TRUE by default. The author of the
document is defined in the Author property of the
DocumentContentInfo subobject of the FRDocument object.

WriteKeywords Boolean
Specifies if the keywords of the document should be written into the
output PPTX file. This property is TRUE by default. The keywords of
the document are defined in the Keywords property of the
DocumentContentInfo subobject of the FRDocument object.

WritePictures Boolean Specifies whether pictures must be written in files in PPTX format.
The default value is TRUE.

WriteSubject Boolean
Specifies if the subject of the document should be written into the
output PPTX file. This property is TRUE by default. The subject of the
document is defined in the Subject property of the
DocumentContentInfo subobject of the FRDocument object.

WriteTitle Boolean
Specifies if the title of the document should be written into the
output PPTX file. This property is TRUE by default. The title of the
document is defined in the Title property of the
DocumentContentInfo subobject of the FRDocument object.

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Output parameter

This object is the output parameter of the CreatePPTExportParams method of the Engine object.

 494

ABBYY FineReader Engine 10 API Reference

Input parameter

This object is passed as the input parameter to the following methods:

• Export, ExportPages methods of the FRDocument object.

• Export method of the FRPage object.

• ExportPage, ExportPages, RecognizeImageFile methods of the Engine object.

• ExportPages, ExportPagesEx methods of the Exporter object.

See also

Tuning Export Parameters
Working with Properties

RTFExportParams Object (IRTFExportParams Interface)

This object provides functionality for tuning parameters of recognized text export in RTF/DOC/DOCX format by means of ABBYY
FineReader Engine export methods. A pointer to this object is passed into the export methods as an input parameter, and thus affects
the results of export. All properties of a newly created object of this type are set to reasonable defaults. For more information about the
default value of this or that property, see the description of the corresponding property.

The RTFExportParams object is a persistent object. This means that it is able to write its current state, indicated by the values of its
properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the object's
state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory,
and LoadFromMemory.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Specifies the mode of background color saving
when exporting to RTF/DOC/DOCX format. This
property is BCM_Color by default.

BackgroundColorMode BackgroundColorModeEnum

Stores the value of color used to highlight
uncertainly recognized symbols' background in the
text exported to RTF/DOC/DOCX format. This
property is used only when the
HighlightErrorsWithBackgroundColor
property is TRUE. It stores the color with which the
background of uncertainly recognized symbols is
highlighted. By default this property is (0,255,0) in
RGB format, which corresponds to green color.

ErrorBackgroundColor Long
Note: The Long value is calculated from the RGB

triplet using the formula: (red value) + (256 x
green value) + (65536 x blue value), where red
value is the first triplet component, green value is
the second triplet component, blue value is the
third triplet component. Hence the Long value of
the color green equals 65280.

Stores the value of color used to highlight
uncertainly recognized symbols in the text
exported to RTF/DOC/DOCX format. This
property is used only when the
HighlightErrorsWithTextColor property is
TRUE. It stores the color with which the text of
uncertainly recognized symbols is highlighted. By
default this property is (0,255,0) in RGB format,
which corresponds to green color.

ErrorTextColor Long

Note: The Long value is calculated from the RGB
triplet using the formula: (red value) + (256 x
green value) + (65536 x blue value), where red

 495

ABBYY FineReader Engine 10 API Reference

value is the first triplet component, green value is
the second triplet component, blue value is the
third triplet component. Hence the Long value of
the color green equals 65280.

Specifies whether export result must fit to
dimensions set by the PaperWidth and
PaperHeight properties. This property is FALSE by
default.

ForceFixedPageSize Boolean

Specifies if uncertainly recognized symbols are
highlighted with background color when exported
to RTF/DOC/DOCX format. The color with which
to highlight the background of uncertainly
recognized symbols is stored in the property
ErrorBackgroundColor. This property is FALSE
by default.

HighlightErrorsWithBackgroundColor Boolean

Specifies if uncertainly recognized symbols are
highlighted with text color when exported to
RTF/DOC/DOCX format. The color with which to
highlight the text of uncertainly recognized
symbols is stored in the property ErrorTextColor.
This property is FALSE by default.

HighlightErrorsWithTextColor Boolean

Specifies if original lines in recognized text are
retained during export in RTF/DOC/DOCX format.
This property is FALSE by default.

KeepLines Boolean

Specifies if original page arrangement in
recognized text is retained during export to
RTF/DOC/DOCX format. This property is TRUE by
default.

KeepPages Boolean

This property is obsolete. Use the properties
KeepTextColor and BackgroundColorMode
instead.

KeepTextAndBackgroundColor Boolean

Specifies if original colors of text are retained
during export of the recognized text to
RTF/DOC/DOCX format. This property is TRUE by
default.

KeepTextColor Boolean

Specifies page orientation during export in
RTF/DOC/DOCX format. By default, the property is
set to POM_Auto. The value of this property is
ignored if the PageSynthesisMode property is set
to PSM_RTFColumns. In this case, portrait
orientation is used.

PageOrientation RTFPageOrientationEnum

Specifies the mode of RTF/DOC/DOCX file
synthesis from the recognized text when exporting
to RTF/DOC/DOCX format. This property is
PSM_RTFColumns by default.

PageSynthesisMode RTFPageSynthesisModeEnum

Stores paper height in twips (1/1440 of inch).
Default for this property is the height of A4 format
page. See the table below.

PaperHeight Long

Stores paper width in twips (1/1440 of inch).
Default for this property is the width of A4 format
page. See the table below.

PaperWidth Long

Specifies the image format which will be used
during export to an RTF/DOC/DOCX file with
embedded pictures. This property can have one of
the following values: EPF_JpegColor,
EPF_JpegGray, EPF_PngBlackWhite, EPF_PngColor,
EPF_PngGray, EPF_DontSave or EPF_Automatic.
The default value for this property is

PictureFormat ExportPictureFormatEnum

 496

ABBYY FineReader Engine 10 API Reference

EPF_Automatic.

Stores the value of the JPEG quality for color
pictures saved in RTF/DOC/DOCX format in
percent. The default value for this property is 50%.

PictureJpegQuality Long

Stores the value of picture resolution in dpi. This
property may be set to �1, which means that the
original resolution must be preserved. The default
value for it is 150 dpi.

PictureResolution Long

Tells ABBYY FineReader Engine to remove
optional hyphens when exporting recognized text
to RTF/DOC/DOCX format. If the KeepLines
property is TRUE, optional hyphens are replaced
with hyphens. By default this property is FALSE.

RemoveSoftHyphens Boolean

Specifies the mode of running titles saving when
exporting to RTF/DOC/DOCX format. This
property is RTM_WriteAsNative by default.

RunningTitleMode RunningTitleModeEnum

Specifies if the author of the document should be
written into the output RTF/DOC/DOCX file. The
author of the document is defined in the Author
property of the DocumentContentInfo
subobject of the FRDocument object.

WriteAuthor Boolean

Specifies if the keywords of the document should
be written into the output RTF/DOC/DOCX file.
The keywords of the document are defined in the
Keywords property of the
DocumentContentInfo subobject of the
FRDocument object.

WriteKeywords Boolean

Specifies if pictures are written in files in
RTF/DOC/DOCX format. By default this property is
TRUE.

WritePictures Boolean

Specifies if the subject of the document should be
written into the output RTF/DOC/DOCX file. The
subject of the document is defined in the Subject
property of the DocumentContentInfo
subobject of the FRDocument object.

WriteSubject Boolean

Specifies if the title of the document should be
written into the output RTF/DOC/DOCX file. The
title of the document is defined in the Title
property of the DocumentContentInfo
subobject of the FRDocument object.

WriteTitle Boolean

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Paper size in different units of measurement

Paper size in inch in mm in twips (1/1440 of inch)
A3 11,69 x 16,54 297 x 420 16838 x 23811

A4 8,27 x 11,69 210 x 297 11909 x 16834

 497

ABBYY FineReader Engine 10 API Reference

A5 5,83 x 8,27 148 x 210 8391 x 11909

Legal 8,5 x 14 216 x 356 12240 x 20160

Letter 8,5 x 11 216 x 279 12240 x 15840

Executive 7,25 x 10,5 184 x 266 10440 x 15120

Output parameter

This object is the output parameter of the CreateRTFExportParams method of the Engine object.

Input parameter

This object is passed as the input parameter to the following methods:

• Export, ExportPages methods of the FRDocument object.

• Export method of the FRPage object.

• ExportPage, ExportPages, RecognizeImageFile methods of the Engine object.

• ExportPages, ExportPagesEx methods of the Exporter object.

See also

Tuning Export Parameters
Working with Properties

TextExportParams Object (ITextExportParams Interface)

This object provides functionality for tuning parameters of recognized text export in TXT or CSV format by means of ABBYY
FineReader Engine export functions. To select the format of export, use the ExportFormat property. In CSV the following formatting
applies:

• Original lines are retained

• Lines containing separator symbols are quoted(" ")

• Quotes inside other quotes are duplicated

A pointer to this object is passed into the export methods as an input parameter, and thus affects the results of export. All properties of
a newly created object of this type are set to reasonable defaults. For more information about the default value of this or that property,
see the description of the corresponding property.

The TextExportParams object is a persistent object. This means that it is able to write its current state, indicated by the values of its
properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the object's
state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory,
and LoadFromMemory.

Properties

Name Type Description
Specifies if the EOF symbol is inserted at the end of file.
This property is FALSE by default. AppendEOF Boolean

Specifies if exported text is appended at the end of file if it
already exists. This property is FALSE by default. AppendToEnd Boolean

Application Engine, read�only Returns the Engine object.

This property specifies the code page to which the
recognized text is exported. The value of this property is
taken into account only when the EncodingType
property has value TET_Simple (exported text is not
Unicode). If this property does not specify any code page
(CP_Null), the code page is selected automatically. By
default this property is CP_Null.

CodePage CodePageEnum

EncodingType TextEncodingTypeEnum Specifies the encoding type of the output file in TXT or

 498

ABBYY FineReader Engine 10 API Reference

CSV format. This property is TET_Auto by default which
means that encoding is selected automatically.
Specifies the format of export: TXT, CSV with full layout
retained, or CSV with text from tables only. By default, the
value of the property is TEF_TXT, which means that
export to TXT format is performed.

ExportFormat TXTExportFormatEnum

Specifies if each paragraph in the recognized text is
exported as one line. This property is FALSE by default. ExportParagraphsAsOneLine Boolean

InsertEmptyLineBetweenParagraphs Boolean Specifies if an empty line should be inserted between
paragraphs. This property is FALSE by default.

Specifies the mode of running titles saving when
exporting in TXT format. This property is
RTM_WriteAsNative by default.

RunningTitleMode RunningTitleModeEnum

Stores the string with which the table separators are
replaced in the exported text. By default the value of the
table separator is "\t". This property is taken into account
during export to CSV and TXT formats.

TabSeparator String

Specifies if page break symbols (0x12) will be inserted
between pages in case multiple pages are exported into
TXT or CSV format. This property is FALSE by default.

UsePageBreaks Boolean

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Output parameter

This object is the output parameter of the CreateTextExportParams method of the Engine object.

Input parameter

This object is passed as the input parameter to the following methods:

• Export, ExportPages methods of the FRDocument object

• Export method of the FRPage object

• ExportPage, ExportPages, RecognizeImageFile methods of the Engine object

• ExportPages, ExportPagesEx methods of the Exporter object

See also

Tuning Export Parameters
Working with Properties

XLExportParams Object (IXLExportParams Interface)

This object provides functionality for tuning parameters of recognized text export in XLS/XLSX format. A pointer to this object is
passed into the export methods as an input parameter, and thus affects the results of export. All properties of a newly created object of
this type are set to reasonable defaults. For more information about the default value of this or that property, see the description of the
corresponding property.

The XLExportParams object is a persistent object. This means that it is able to write its current state, indicated by the values of its
properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the object's

 499

ABBYY FineReader Engine 10 API Reference

state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory,
and LoadFromMemory.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

BackgroundColorMode BackgroundColorModeEnum Specifies the mode of background color saving when exporting
to XLSX format. Only table cells background color can be saved.
The background color of the text outside tables is not saved
regardless of the value of this property. This property is
BCM_DontSave by default.

ConvertStringsToNumbers Boolean Specifies if numerical values in recognized text are exported to
XLS/XLSX format as numbers rather than as strings. This
property is TRUE by default.

KeepTextColor
Boolean

Specifies if original colors of text are retained during export of
the recognized text to XLSX format. This property is FALSE by
default.

PageOrientation RTFPageOrientationEnum Specifies page orientation during export in XLSX format. By
default, the property is set to POM_Auto.

PaperSize XLSXPaperSizeEnum Specifies one of the standard paper sizes for XLSX file. By default
the value of this property is XLPS_NotSpecified.

RemoveFormatting Boolean This property set to TRUE tells ABBYY FineReader Engine to
remove formatting for the text exported in XLS format. This
property is FALSE by default.

RunningTitleMode RunningTitleModeEnum Specifies the mode of running titles saving when exporting to
XLS format. This property is RTM_WriteAsNative by default.

TablesOnly
Boolean

In case this property is TRUE, recognized text from table blocks
only is exported into XLS/XLSX format. The default for it is
FALSE.

WriteAuthor

Boolean

Specifies if the author of the document should be written into
the output XLS/XLSX file. This property is TRUE by default. The
author of the document is defined in the Author property of the
DocumentContentInfo subobject of the FRDocument
object.

WriteKeywords

Boolean

Specifies if the keywords of the document should be written into
the output XLS/XLSX file. This property is TRUE by default. The
keywords of the document are defined in the Keywords
property of the DocumentContentInfo subobject of the
FRDocument object.

WriteSubject Boolean

Specifies if the subject of the document should be written into
the output XLS/XLSX file. This property is TRUE by default. The
subject of the document is defined in the Subject property of
the DocumentContentInfo subobject of the FRDocument
object.

Specifies if the title of the document should be written into the
output XLS/XLSX file. This property is TRUE by default. The title
of the document is defined in the Title property of the
DocumentContentInfo subobject of the FRDocument
object.

WriteTitle Boolean

XLFileFormat XLFileFormatEnum This property determines how recognized text will be exported
to XLS format. It may be set to MS Excel 5, MS Excel 8, or both.
This property is XLFF_DoubleStream by default. The value of this
property is ignored when exporting to XLSX format.

 500

ABBYY FineReader Engine 10 API Reference

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object's contents from a file on disk.

LoadFromMemory Restores the object's contents from the global memory.

SaveToFile Saves the object's contents into a file on disk.

SaveToMemory Saves the object's contents into the global memory.

Output parameter

This object is the output parameter of the CreateXLExportParams method of the Engine object.

Input parameter

This object is passed as the input parameter to the following methods:

• Export, ExportPages methods of the FRDocument object

• Export method of the FRPage object

• ExportPage, ExportPages, RecognizeImageFile methods of the Engine object

• ExportPages, ExportPagesEx methods of the Exporter object

See also

Tuning Export Parameters
Working with Properties

XMLExportParams Object (IXMLExportParams Interface)

This object provides functionality for tuning parameters of recognized text export in XML format. A pointer to this object is passed
into the export methods as an input parameter, and thus affects the results of export. All properties of a newly created object of this
type are set to reasonable defaults. For more information about the default value of this or that property, see the description of the
corresponding property.

Note: If your license supports the "ASCII License Basic Modules" module, the default values of the WriteCharAttributes and
WriteNondeskewedCoordinates differ from the values specified in the description of the properties (set to XCA_Ascii and TRUE,
respectively).

You can find the XML scheme of an XML document in the FineReader10�schema�v1.xsd file, which can be found in the Inc folder
(Start > Programs > ABBYY FineReader Engine 10 > Installation Folders > Include Files Folder).

The XMLExportParams object is a persistent object. This means that it is able to write its current state, indicated by the values of its
properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the object's
state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory,
and LoadFromMemory.

Properties

Name Type Description
Application Engine, read–only Returns the Engine object.

Specifies if collections of variants of characters recognition are
to be written in files in XML format. This property is not taken
into account if the WriteCharAttributes property is
XCA_None. This property is FALSE by default. Note that the
collections may contain more than one element only if the
IRecognizerParams::SaveCharacterRecognitionVariants
property was set to TRUE during recognition. See also Using
Voting API section.

WriteCharacterRecognitionVariants Boolean

Specifies which character attributes are to be written in files in
XML format. This property is XCA_None by default. WriteCharAttributes XMLCharAttributesEnum

WriteCharFormatting Boolean Specifies if character formatting is to be written in files in XML

 501

ABBYY FineReader Engine 10 API Reference

format. This property is FALSE by default.
WriteNondeskewedCoordinates Boolean Specifies if character coordinates written in files in XML format

are on a non�deskewed image plane. This property is FALSE by
default.
Specifies if collections of variants of words recognition are to
be written in files in XML format. This property is FALSE by
default. Note that the collections may contain more than one
element only if the
IRecognizerParams::SaveWordRecognitionVariants
property was set to TRUE during recognition. See also Using
Voting API section.

WriteWordRecognitionVariants Boolean

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Output parameter

This object is the output parameter of the CreateXMLExportParams method of the Engine object.

Input parameter

This object is passed as the input parameter to the following methods:

• Export, ExportPages methods of the FRDocument object

• Export method of the FRPage object

• ExportPage, ExportPages, RecognizeImageFile methods of the Engine object

• ExportPages, ExportPagesEx methods of the Exporter object

See also

Tuning Export Parameters
Working with Properties

PDFExportParams Object (IPDFExportParams Interface)

This object provides functionality for tuning the parameters of export of recognized text into PDF (PDF/A) format by means of the
ABBYY FineReader Engine export functions.

A pointer to this object is passed into the export methods as an input parameter, and thus affects the results of export. All properties of
a newly created object of this type are set to reasonable defaults.

The PDFExportParams object is a persistent object. This means that it is able to write its current state, indicated by the values of its
properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the object's
state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory,
and LoadFromMemory.

Properties
Name Type Description
Application Engine, read�only Returns the Engine object.
Colority PDFColorityModeEnum Specifies color settings of the resulting PDF (PDF/A) file. The default

value for this property is PCM_KeepColority.
MRCMode PDFMRCModeEnum Specifies the mode of using Mixed Raster Content for output PDF

(PDF/A) file. By default, the value of this property is MRC_Auto.

 502

ABBYY FineReader Engine 10 API Reference

PDFAComplianceMode PDFAComplianceModeEnum Specifies the format of export: PDF, PDF/A�1a, or PDF/A�1b. By
default, the value is PCM_None, which means that export to PDF
should be performed.

Resolution Long Specifies the picture resolution in dpi. The default value for the
property is 150 dpi.

ResolutionType PDFResolutionTypeEnum Defines how to use the value of the picture resolution specified in the
Resolution property. It may be used:

• as the absolute resolution (used for all pictures),

• as the desired resolution (may be used only if the original
resolution is above the desired),

• or the value is ignored (and the original resolution is used).

By default, the value of this property is
PRT_Desired.

Scenario PDFExportScenarioEnum Specifies the scenario of export to PDF (PDF/A) format, which
optimizes export for some parameters: quality, size of the file, or/and
speed of export. The default value is PES_Balanced.

TextExportMode PDFExportModeEnum Specifies the mode of export of recognized text into PDF format. It
may be: text and pictures only, text over the page image, text under
the page image, page image only. This property is PEM_ImageOnText
by default.

Methods

Name Description
Initializes the properties of the current object with the values of similar properties of another object. CopyFrom
Restores the object contents from a file on disk. LoadFromFile
Restores the object contents from the global memory. LoadFromMemory
Saves the object contents into a file on disk. SaveToFile
Saves the object contents into the global memory. SaveToMemory

Output parameter

This object is the output parameter of the CreatePDFExportParams method of the Engine object.

See also

Tuning Export Parameters
Working with Properties

PDFExportParamsOld Object (IPDFExportParamsOld Interface)

This object is obsolete. We recommend you to use the PDFExportParams object to tune export to PDF format.

This object provides functionality for tuning the parameters of export of recognized text into PDF format by means of the ABBYY
FineReader Engine export functions.

Note: The recognized text is exported into linearized PDF that are optimized for Web publishing.

A pointer to this object is passed into the export methods as an input parameter, and thus affects the results of export. All properties of
a newly created object of this type are set to reasonable defaults.

When you save texts that use a non�Latin codepage (say, Cyrillic, Greek, Czech, etc.), ABBYY FineReader uses the fonts provided by
ParaType company (www.paratype.com/shop).

ABBYY FineReader Engine has some peculiarities of exporting hieroglyphic languages to PDF. See the Recognizing Hieroglyphic
Languages section for details.

The PDFExportParamsOld object is a persistent object. This means that it is able to write its current state, indicated by the values of
its properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the
object's state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile,
SaveToMemory, and LoadFromMemory.

 503

ABBYY FineReader Engine 10 API Reference

Note: The earliest version of the PDF file which matches the specified properties of the PDFEncryptionInfo object and the
IPDFExportParamsOld::WriteTaggedPDF property is selected as the version of the PDF file.

• The earliest file version available is the version 1.3.

• If at least one of the PermissionFillFormFields, PermissionExtractTextAndGraphicsExt,
PermissionAssembleDoc, PermissionPrintExt properties of the PDFEncryptionInfo object or the WriteTaggedPDF
property is TRUE, or the encryption key length exceeds 40 bits, the PDF file version will be 1.4.

• If the IPDFEncryptionInfo::UseAES property is TRUE, the version will be 1.6.

Properties
Name Type Description
Application Engine, read�only Returns the Engine object.
EmbedFonts Boolean Specifies whether fonts should be embedded during

export to PDF. The FontMode property specifies the
fonts to be embedded. If the value of the FontMode
property is FM_UseStandardFonts and Latin Code page is
used, fonts are not embedded (the value of the
EmbedFonts property is ignored). The default value for
this property is TRUE.

EnableMRC Boolean Specifies whether tuning Mixed Raster Content
parameters is enabled. By default, the value of this
property is FALSE.

EncryptionInfo PDFEncryptionInfo Specifies encryption parameters of the PDF file.
Note: The property returns a constant object. To

change the encryption parameters, you must first receive
an intermediate PDFEncryptionInfo object with the
help of the IEngine::CreatePDFEncryptionInfo
method, change the necessary parameters, and then
assign this object to the property.

ExportMode PDFExportModeEnum Specifies the mode of export of recognized text into PDF
format. It may be: text and pictures only, text over the
page image, text under the page image, page image only.
This property is PEM_ImageOnText by default.

FontMode FontModeEnum Specifies the mode of font usage for export of recognized
text into PDF format. The standard fonts can be used or
the fonts can be taken from the Text object, which
represents the recognized text. This property is
FM_UseFontsFromIText by default.

KeepTextAndBackgroundColor Boolean Specifies if the original colors of the text and background
are retained during export of the recognized text into
PDF format. This property is TRUE by default. It is only
usable when the ExportMode property is
PEM_TextWithPictures, otherwise the value of this
property is ignored.

MRCParams PDFMRCParams, read�only Returns a reference to the PDFMRCParams object
which specifies Mixed Raster Content parameters of the
PDF file. The property is only usable when the
ExportMode property is PEM_ImageOnText or
PEM_ImageOnly and EnableMRC property is set to
TRUE, otherwise the value of this property is ignored.

PaperHeight Long Stores paper height in twips (1/1440 of inch). Default for
this property is the height of A4 format page. See the
table "Paper size in different units of measurement" in the
RTFExportParams object.

PaperWidth Long Stores paper width in twips (1/1440 of inch). Default for
this property is the width of A4 format page. See the table
"Paper size in different units of measurement" in the
RTFExportParams object.

PDFVersion PDFVersionEnum Specifies the version of the PDF file. The version should
not conflict with the specified export parameters (see the

 504

ABBYY FineReader Engine 10 API Reference

note above for details). The default value for this
property is PVN_Auto which specifies that the version is
detected automatically.

PictureFormat ExportPictureFormatEnum Specifies the image format to be used during export to a
PDF file with embedded pictures. This property can have
one of the following values: EPF_Automatic,
EPF_JpegColor, EPF_JpegGray, EPF_LZWColor,
EPF_LZWGray, EPF_ZipColor, EPF_ZipGray, EPF_CCITT4,
EPF_JBIG2. The default value for this property is
EPF_Automatic.

PictureResolution Long Stores the value of picture resolution in dpi, which is used
for exporting pictures into PDF format. This property
may be set to �1, which means that the original resolution
must be preserved. The default value for it is 150 dpi.

Quality Long Stores the value of the JPEG quality for color pictures
saved in PDF format in percent. This value is ignored for
black�and�white pictures. The default value for this
property is 50%.

ReplaceUncertainWordsWithImage Boolean Specifies if uncertainly recognized words will be replaced
with their images during export into PDF format. You
may use this property when the ExportMode property is
set to PEM_TextWithPictures or PEM_TextOnImage,
otherwise its value is ignored. This property is FALSE by
default.

RunningTitleMode RunningTitleModeEnum Specifies the mode of running titles saving when
exporting in PDF format. This property is
RTM_WriteAsNative by default.

SetPageSizeByLayoutSize Boolean Specifies that the page size must be equal to the layout
size during export of the recognized text into PDF
format. If this property is FALSE the PaperHeight and
PaperWidth properties define the page size. This
property is TRUE by default.

WriteAuthor Boolean Specifies if the author of the document should be written
into the output PDF file. This property is TRUE by default.
The author of the document is defined in the Author
property of the DocumentContentInfo subobject of
the FRDocument object.

WriteCreator Boolean Specifies if the creator of the document should be written
into the output PDF file. This property is TRUE by default.
The author of the document is defined in the Creator
property of the DocumentContentInfo subobject of
the FRDocument object.

WriteKeywords Boolean Specifies if the keywords of the document should be
written into the output PDF file. This property is TRUE by
default. The keywords of the document are defined in the
Keywords property of the DocumentContentInfo
subobject of the FRDocument object.

WriteLinks Boolean Specifies that the hyperlinks must be retained during
export of the recognized text into PDF format. This
property is TRUE by default. If this property is FALSE the
hyperlinks are exported as text.

WriteProducer Boolean Specifies if the producer of the document should be
written into the output PDF file. This property is FALSE
by default. The subject of the document is defined in the
Producer property of the DocumentContentInfo
subobject of the FRDocument object.

WriteSubject Boolean Specifies if the subject of the document should be written
into the output PDF file. This property is TRUE by default.
The subject of the document is defined in the Subject
property of the DocumentContentInfo subobject of
the FRDocument object.

 505

ABBYY FineReader Engine 10 API Reference

WriteTaggedPDF Boolean Specifies if the recognized text should be exported to
tagged PDF. Tagged PDF is a particular use of structured
PDF that allows page content to be extracted and used
for various purposes such as reflow of text and graphics,
conversion to file formats such as HTML and XML, and
accessibility to the visually impaired. This property is
FALSE by default.

WriteTitle Boolean Specifies if the title of the document should be written
into the output PDF file. This property is TRUE by default.
The title of the document is defined in the Title property
of the DocumentContentInfo subobject of the
FRDocument object.

Methods

Name Description
CopyFrom Initializes the properties of the current object with the values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Related objects

Output parameter

This object is the output parameter of the CreatePDFExportParamsOld method of the Engine object.

Input parameter

This object is passed as the input parameter to the following methods:

• Export, ExportPages methods of the FRDocument object

• Export method of the FRPage object

• ExportPage, ExportPages, RecognizeImageFile methods of the Engine object

• ExportPages, ExportPagesEx methods of the Exporter object

See also

Tuning Export Parameters
Working with Properties

PDFAExportParamsOld Object (IPDFAExportParamsOld Interface)
This object is obsolete. We recommend you to use the PDFExportParams object to tune export to PDF/A format.

This object provides functionality for tuning the parameters of export of recognized text into PDF/A format by means of the ABBYY
FineReader Engine export functions. PDF/A is a constrained form of PDF version 1.4 intended to be suitable for long�term preservation
of page�oriented documents.

A pointer to this object is passed into the export methods as an input parameter, and thus affects the results of export. All properties of
a newly created object of this type are set to reasonable defaults.

 506

ABBYY FineReader Engine 10 API Reference

When you save texts that use a non�Latin codepage (say, Cyrillic, Greek, Czech, etc.), ABBYY FineReader uses the fonts provided by
ParaType company (www.paratype.com/shop).

The ABBYY FineReader Engine has some peculiarities of exporting hieroglyphic languages to PDF/A. See the Recognizing Hieroglyphic
Languages section for details.

The PDFAExportParamsOld object is a persistent object. This means that it is able to write its current state, indicated by the values
of its properties, to persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the
object's state from persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile,
SaveToMemory, and LoadFromMemory.

Note: ABBYY uses the Adobe Preflight utility (version 9.0) to examine the implementation of export to PDF/A for compliance with
standard.

Properties
Name Type Description
Application Engine, read�only Returns the Engine object.
EnableMRC Boolean Specifies whether tuning Mixed Raster Content parameters is

enabled. By default, the value of this property is FALSE.
ExportMode PDFExportModeEnum Specifies the mode of export of recognized text to PDF/A format. It

may be: text and pictures only, text over the page image, text under
the page image, page image only. We recommend using the text
under the page image mode as it is the most suitable for the PDF/A
standard. This property is PEM_ImageOnText by default.

MRCParams PDFMRCParams, read�only Returns a reference to the PDFMRCParams object which specifies
Mixed Raster Content parameters of the PDF/A file. The MRC
property is only usable when the ExportMode property is
PEM_ImageOnText or PEM_ImageOnly and EnableMRC property is
set to TRUE, otherwise the value of this property is ignored.

PaperHeight Long Stores paper height in twips (1/1440 of inch). Default for this
property is the height of A4 format page. See the table "Paper size in
different units of measurement" in the RTFExportParams object.

PaperWidth Long Stores paper width in twips (1/1440 of inch). Default for this
property is the width of A4 format page. See the table "Paper size in
different units of measurement" in the RTFExportParams object.

PDFVersion PDFVersionEnum Specifies the version of the PDF/A file. The minimal version of the
PDF/A file is 1.4. The default value for this property is PVN_Auto
which specifies that the version is detected automatically.

PictureFormat ExportPictureFormatEnum Specifies the image format to be used during export to a PDF/A file
with embedded pictures. This property can have one of the following
values: EPF_Automatic, EPF_JpegColor, EPF_JpegGray, EPF_ZipColor,
EPF_ZipGray, EPF_CCITT4, EPF_JBIG2. The default value for this
property is EPF_Automatic.

PictureResolution Long Stores the value of picture resolution in dpi, which is used for
exporting pictures to PDF/A format. This property may be set to �1,
which means that the original resolution must be preserved. The
default value for it is 150 dpi.

Quality Long Stores the value of the JPEG quality for color pictures saved in PDF/A
format in percent. This value is ignored for black�and�white pictures.
The default value for this property is 50%.

RunningTitleMode RunningTitleModeEnum Specifies the mode of running titles saving when exporting to PDF/A
format. This property is RTM_WriteAsNative by default.

SetPageSizeByLayoutSize Boolean Specifies that the page size must be equal to the layout size during
export of the recognized text to PDF/A format. If this property is
FALSE the PaperHeight and PaperWidth properties define the
page size. This property is TRUE by default.

WriteAuthor Boolean Specifies if the author of the document should be written into the
output PDF/A file. This property is TRUE by default. The author of the
document is defined in the Author property of the
DocumentContentInfo subobject of the FRDocument object.

 507

ABBYY FineReader Engine 10 API Reference

WriteCreator Boolean Specifies if the creator of the document should be written into the
output PDF/A file. This property is TRUE by default. The author of the
document is defined in the Creator property of the
DocumentContentInfo subobject of the FRDocument object.

WriteKeywords Boolean Specifies if the keywords of the document should be written into the
output PDF/A file. This property is TRUE by default. The keywords of
the document are defined in the Keywords property of the
DocumentContentInfo subobject of the FRDocument object.

WriteLinks Boolean Specifies that the hyperlinks must be retained during export of the
recognized text to PDF/A format. This property is TRUE by default. If
this property is FALSE the hyperlinks are exported as text.

WritePDFA1A Boolean Specifies if the recognized text should be exported to PDF/A�1a
format. The values of this property and the WriteTaggedPDF
property depend on each other, if one property is set to TRUE, the
other is automatically set to TRUE. This property is FALSE by default.

WriteProducer Boolean Specifies if the producer of the document should be written into the
output PDF/A file. This property is FALSE by default. The subject of
the document is defined in the Producer property of the
DocumentContentInfo subobject of the FRDocument object.

WriteSubject Boolean Specifies if the subject of the document should be written into the
output PDF/A file. This property is TRUE by default. The subject of
the document is defined in the Subject property of the
DocumentContentInfo subobject of the FRDocument object.

WriteTaggedPDF Boolean Specifies if the recognized text should be exported to tagged PDF.
The values of this property and the WritePDFA1A property depend
on each other, if one property is set to TRUE, the other is
automatically set to TRUE. This property is FALSE by default.

WriteTitle Boolean Specifies if the title of the document should be written into the
output PDF/A file. This property is TRUE by default. The title of the
document is defined in the Title property of the
DocumentContentInfo subobject of the FRDocument object.

Methods

Name Description
CopyFrom Initializes the properties of the current object with the values of similar properties of another object.

LoadFromFile Restores the object contents from a file on disk.

LoadFromMemory Restores the object contents from the global memory.

SaveToFile Saves the object contents into a file on disk.

SaveToMemory Saves the object contents into the global memory.

Related objects

Output parameter

This object is the output parameter of the CreatePDFAExportParamsOld method of the Engine object.

Input parameter

This object is passed as the input parameter to the following methods:

• Export, ExportPages methods of the FRDocument object

• Export method of the FRPage object

• ExportPage, ExportPages, RecognizeImageFile methods of the Engine object

 508

ABBYY FineReader Engine 10 API Reference

• ExportPages, ExportPagesEx methods of the Exporter object

See also

Tuning Export Parameters
Working with Properties

PDFEncryptionInfo Object (IPDFEncryptionInfo Interface)

This object provides access to encryption parameters of the PDF file during export. These parameters are set in the EncryptionInfo
property of PDFExportParamsOld. The PDFEncryptionInfo object allows you to do the following:

• set owner and user passwords;

• set the level of encryption;

• enable or disable the following:

o adding or modifying text annotations and interactive form fields;

o assembling the document: inserting, rotating, or deleting pages and creating navigation elements such as
bookmarks or thumbnail images;

o copying or otherwise extracting text and graphics from the document;

o filling out forms (that is, filling out existing interactive form fields) and signing the document (which amounts to
filling out existing signature fields, a type of interactive form field);

o modifying the contents of the document;

o printing the document.

Properties

Name Type Description
Application Engine, read–only Returns the Engine object.

Specifies whether the PDF file must be encrypted. If
this property is set to FALSE, the other properties will
be ignored. This property is FALSE by default.

IsEncryptionRequested Boolean

Sets the length of the encryption key. This property is
automatically set to PDFKL_128Bit if the UseAES
property is TRUE. This property is PDFKL_40Bit by
default.

KeyLength PDFKeyLengthEnum

Stores owner password. Opening the document with
the correct owner password (assuming it is not the
same as the user password) allows full (owner) access
to the document. This unlimited access includes the
ability to change the document’s passwords and
access permissions.

OwnerPassword String

Enables/disables adding or modifying text annotations
and interactive form fields. The default value is FALSE. PermissionAddAnnotations Boolean

Enables/disables assembling the document: inserting,
rotating, or deleting pages and creating navigation
elements such as bookmarks or thumbnail images.
The default value is FALSE.

PermissionAssembleDoc Boolean

Enables/disables copying or otherwise extracting text
and graphics from the document. The default value is
FALSE.

PermissionExtractTextAndGraphics Boolean

Enables/disables extracting text and graphics (to
make the accessible to users with disabilities or for
other purposes). The default value is FALSE.

PermissionExtractTextAndGraphicsExt Boolean

 509

ABBYY FineReader Engine 10 API Reference

Enables/disables filling out forms (that is, filling out
existing interactive form fields) and signing the
document (which amounts to filling out existing
signature fields, a type of interactive form field). The
default value is FALSE.

PermissionFillFormFields Boolean

Enables/disables modifying the contents of the
document. The default value is FALSE. PermissionModifyContent Boolean

PermissionPrint Boolean Enables/disables printing the document. The default
value is FALSE.

PermissionPrintExt Boolean Enables/disables printing to a representation from
which a faithful digital copy of the PDF content could
be generated. Disallowing such printing may result in
degradation of output quality (a feature implemented
as "Print As Image" in Acrobat). The default value is
FALSE. The value of this property is ignored if the
PermissionPrint property is set to FALSE.

UseAES Boolean Enables/disables a high (128–bit AES) encryption
level, but Acrobat 6.0 (or earlier) users cannot open
PDF documents with this encryption level. If the value
of this property is TRUE, the value of the KeyLength
property is automatically set to PDFKL_128Bit. This
property is FALSE by default.

UserPassword String Stores the user password. Opening the document with
the correct user password (or opening a document
that does not have a user password) allows additional
operations to be performed according to the user
access permissions specified in the document’s
encryption dictionary. The default value is an empty
string.

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

Related objects

Output parameter

This object is the output parameter of the CreatePDFEncryptionInfo method of the Engine object.

See also

Tuning Export Parameters
PDFExportParams
PdfExtendedParams
Working with Properties

PDFMRCParams Object (IPDFMRCParams Interface)

This object allows you to tune Mixed Raster Content (MRC) parameters for PDF (PDF/A) files. These parameters are set in the
MRCParams property of the PDFExportParamsOld (PDFAExportParamsOld) object.

The MRC imaging model represents a document as three different layers: a foreground plane, a mask plane, and a background plane.
Each layer is compressed separately using the best type of compression for that data type. The MRC technology for PDF (PDF/A) allows
you to achieve significantly better file compression without visible degradation of document representation.

The PDFMRCParams object allows you to do the following:

• set MRC compression level;

 510

ABBYY FineReader Engine 10 API Reference

• set the parameters of compression for background, color mask, and text mask;

• change background and text color.

All the properties of the PDFMRCParams object are set to reasonable defaults. For more information about the default value of this
or that property, see the description of the corresponding property.

Note: The value of the CompressionLevel property is set to PMRC_Custom automatically if you change the default value of any
other property of the PDFMRCParams object.

Properties

Name Type Description
Application Engine, read–only Returns the Engine object.

Specifies the background color. You can set the value of
this property to –1. In this case, the background color will
be detected automatically based on the original
background. By default the background color is white or
RGB(255,255,255).

BackgroundColor Long Note: The Long value is calculated from the RGB triplet
using the formula: (red value) + (256 x green value) +
(65536 x blue value), where red value is the first triplet
component, green value is the second triplet component,
blue value is the third triplet component. Hence the Long
value of the color white equals 16777215.

Specifies the down sampling rate of the background. Only a
positive rate makes sense. The default value is 2. BackgroundDownSampling Long

Specifies the background format. Only the EPF_JpegColor,
EPF_JpegGray, EPF_J2KColor, and EPF_J2KGray values
make sense during export to PDF, and only the
EPF_JpegColor and EPF_JpegGray values make sense
during export to PDF/A. The default value is EPF_J2KColor.

BackgroundFormat ExportPictureFormatEnum

Stores the value of JPEG compression for background color
in percentage points. By default, this property is set to 50%.

BackgroundQuality Long

Specifies the down sampling rate of the color mask. Only a
positive rate makes sense. The default value is 2. ColorMaskDownSampling Long

Specifies the color mask format. Only the EPF_JpegColor,
EPF_JpegGray, EPF_ZipColor, EPF_LZWColor,
EPF_J2KColor, EPF_J2KGray values make sense during
export to PDF, and only the EPF_JpegColor, EPF_JpegGray,
EPF_ZipColor values make sense during export to PDF/A.
The default value is EPF_ZipColor.

ColorMaskFormat ExportPictureFormatEnum

Specifies the color mask quality in percentage points. The
bigger the value, the better the quality. By default, this
property is set to 30%.

ColorMaskQuality Long

Stores the MRC compression level. The default value of this
property is PMRC_AvgCompression. CompressionLevel PDFMRCCompressionLevelEnum

Specifies if the original background is retained during
export to a PDF (PDF/A) file with Mixed Raster Content.
This property is TRUE by default.

KeepBackground Boolean

Specifies if the recognized text is monochrome. If you set
the value of this property to TRUE, you can specify the text
color in the TextColor property. The default value of the
MonochromeText property is FALSE.

MonochromeText Boolean

Specifies whether pictures should be considered as parts of
the background. If this property is set to TRUE, the
background compression options are used for the pictures.
The default value of this property is FALSE.

PicturesInBackground Boolean

 511

ABBYY FineReader Engine 10 API Reference

Specifies the text color in monochrome mode. This
property is used only when the MonochromeText
property is set to TRUE. By default, the text color is black or
RGB(0,0,0).

Note: The Long value is calculated from the RGB triplet
using the formula: (red value) + (256 x green value) +
(65536 x blue value), where red value is the first triplet
component, green value is the second triplet component,
blue value is the third triplet component. Hence the Long
value of the color black equals 0.

TextColor Long

Specifies the down sampling rate of the text mask. Only a
positive rate makes sense. The default value is 1. TextMaskDownSampling Long

Specifies the text mask compression algorithm. Only the
EPF_CCITT4 and EPF_JBIG2 values make sense. The default
value is EPF_JBIG2.

TextMaskFormat ExportPictureFormatEnum

Specifies the text mask quality in percentage points. The
bigger the value, the better the quality. By default, this
property is set to 50%.

TextMaskQuality Long

Related objects

See also

Tuning Export Parameters
PDFExportParamsOld
PDFAExportParamsOld
Working with Properties

License�Related Objects
This section contains descriptions of the following license�related objects:

• License

• LicenseCollection

The license�related objects hierarchy

For more information about the hierarchy of the ABBYY FineReader Engine objects, please see the Object Diagram.

License Object (ILicense Interface)

This object stores information about the current license.

Properties

Name Type Description
Returns the number of CPU cores that can be used
simultaneously. If the value of this property is 0, the
number of CPU cores is unlimited.

AllowedCoresCount Long, read�only

Application Engine, read�only Returns the Engine object.
Describes the set of the ABBYY FineReader Engine
modules available in the license as a bitwise OR
combination of the AEM_ prefixed flags.

AvailableEngineModules Long, read�only

Describes the set of the export formats available in
the license as a bitwise OR combination of the AEF_
prefixed flags.

AvailableExportFormats Long, read�only

 512

ABBYY FineReader Engine 10 API Reference

Describes the set of the language sets available in the
license as a bitwise OR combination of the ALS_
prefixed flags.

AvailableLanguageSets Long, read�only

Describes the set of the text types available in the
license as a bitwise OR combination of the ATT_
prefixed flags.

AvailableTextTypes Long, read�only

Describes the set of the ABBYY FineReader Engine
Visual Components modules available in the license
as a bitwise OR combination of the AVC_ prefixed
flags.

AvailableVisualComponents Long, read�only

Returns the minimum number of CPU cores, which is
allocated by ABBYY FineReader Engine at
initialization.

MinimumCoresCountPerInstance Long, read�only

Returns the serial number of the license. SerialNumber String, read�only
Volume Long, read�only Returns the total number of pages/characters which

can be processed during a period if the license has
such a limitation. See also
VolumeRefreshingPeriod property.
Returns information about the limitation period if
the license limits the number of processed
pages/characters during this period. See also
VolumeRemaining, Volume properties.

VolumeRefreshingPeriodEnum,
read�only VolumeRefreshingPeriod

Returns the remaining number of pages/characters
which can be processed till the end of the current
period if the license has such a limitation. When this
property value reaches 0, analysis, recognition and
export operations will not be possible. See also
VolumeRefreshingPeriod property.

VolumeRemaining Long, read�only

Methods

Name Description
ExpirationDate Returns the flag indicating whether the license has an absolute or relative time limitation as well as the date at

which the license will stop working.

Related objects

Output parameter

This object is the output parameter of the Item and FindLicense methods of the LicenseCollection object.

Input parameter

This object is the input parameter of the SetCurrentLicense method of the Engine object.

See also

LicenseCollection
Working with Properties

Volume Property of the License Object

This property provides access to the total number of pages/characters which can be processed during a period if the license has such a
limitation. The property uses as an input parameter the type of units (pages, characters) used by the ABBYY FineReader Engine license
to limit the number of operations. The period is specified by the ILicense::VolumeRefreshingPeriod property.

Visual Basic Syntax

 513

ABBYY FineReader Engine 10 API Reference

Property Volume(
 counterType As LicenseCounterTypeEnum
) As Long
 read-only

C++ Syntax

HRESULT get_Volume(
 LicenseCounterTypeEnum counterType,
 long* result
);

Parameters
counterType

[in] This variable specifies the type of units used by the ABBYY FineReader Engine license to limit the number of operations during the
period. See the description of the LicenseCounterTypeEnum constants.

result

[out, retval] Returns the total number of the specified limitation units which can be processed during the period.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

License
Working with Properties

VolumeRefreshingPeriod Property of the License Object

This property provides access to the limitation period if the license limits the number of processed pages/characters during this period.
The property uses as an input parameter the type of units (pages, characters) used by the ABBYY FineReader Engine license to limit the
number of operations.

Visual Basic Syntax

Property VolumeRefreshingPeriod(
 counterType As LicenseCounterTypeEnum
) As VolumeRefreshingPeriodEnum
 read-only

C++ Syntax

HRESULT get_VolumeRefreshingPeriod(
 LicenseCounterTypeEnum counterType,
 VolumeRefreshingPeriodEnum* result
);

Parameters
counterType

[in] This variable specifies the type of units used by the ABBYY FineReader Engine license to limit the number of operations during the
period. See the description of the LicenseCounterTypeEnum constants.

result

[out, retval] Returns the license limitation period for the specified limitation units as the VolumeRefreshingPeriodEnum constant.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

License
Working with Properties

VolumeRemaining Property of the License Object

This property provides access to the remaining number of pages/characters which can be processed till the end of the current period if
the license has such a limitation. When this property value reaches 0, analysis, recognition and export operations will not be possible.
The property uses as an input parameter the type of units (pages, characters) used by the ABBYY FineReader Engine license to limit the
number of operations. The period is specified by the ILicense::VolumeRefreshingPeriod property.

 514

ABBYY FineReader Engine 10 API Reference

Visual Basic Syntax

Property VolumeRemaining(
 counterType As LicenseCounterTypeEnum
) As Long
 read-only

C++ Syntax

HRESULT get_VolumeRemaining(
 LicenseCounterTypeEnum counterType,
 long* result
);

Parameters
counterType

[in] This variable specifies the type of units used by the ABBYY FineReader Engine license to limit the number of operations during the
period. See the description of the LicenseCounterTypeEnum constants.

result

[out, retval] Returns the remaining number of the specified limitation units which can be processed till the end of the current period.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

License
Working with Properties

ExpirationDate Method of the License Object

This method returns the date at which the license will stop working if the license has an absolute or relative time limitation.

Visual Basic Syntax

Method ExpirationDate(

 year As Long,

 month As Long,

 day As Long

) As Boolean

C++ Syntax

HRESULT ExpirationDate(

 long* year,

 long* month,

 long* day,

 VARIANT_BOOL* hasTimeLimitation

);

Parameters

year

[out] A pointer to the long variable that receives the year of the expiration or 0 if no time limitation is used.

month

[out] A pointer to the long variable that receives the month of the expiration or 0 if no time limitation is used.

day

[out] A pointer to the long variable that receives the day of the expiration or 0 if no time limitation is used.

hasTimeLimitation

[out] A pointer to the bool variable that receives the flag indicating whether a time limitation is used.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

 515

ABBYY FineReader Engine 10 API Reference

See also

License
IEngine::SetCurrentLicense

LicenseCollection Object (ILicenseCollection Interface)

This object is a collection of available (activated) licenses. The collection is accessible via the Engine object.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element Provides access to a single element of the collection. License, read�only

Methods

Name Description
FindLicense Provides access to the license by its serial number.

Item Provides access to a single element of the collection.

Related objects

See also

License
IEngine::SetCurrentLicense
Working with Properties

FindLicense Method of the LicenseCollection Object

This method provides access to the license by its serial number.

Visual Basic Syntax

Method FindLicense(

 serialNumber As String

) As License

C++ Syntax

HRESULT FindLicense(

 BSTR serialNumber,

 ILicense** result

);

Parameters

serialNumber

[in] This parameter specifies the serial number of the license.

result

[out, retval] A pointer to the ILicense* pointer variable that receives the interface pointer of the License object. result is guaranteed to
be non�NULL after successful method call.

 516

ABBYY FineReader Engine 10 API Reference

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

LicenseCollection

Supplementary Objects
This group of auxiliary objects. These objects are collections of different types and other objects which are used as input parameters
and return values in ABBYY FineReader Engine methods.

This section contains descriptions of the following supplementary objects and interfaces:

• StringsCollection

• LongsCollection

• DocumentInfo

• Region

• FRRectangle

• IRecognizedPages

StringsCollection Objects (IStringsCollection Interface)

This object represents a collection of strings. It serves as a storage to pass various sets of parameters into those ABBYY FineReader
Engine functions that require them. It may also be return value of ABBYY FineReader Engine methods.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element String Provides access to a single element of the collection.

Methods

Name Description
Add Adds a new element at the end of the collection.

CopyFrom Initializes properties of the current object with values of similar properties of another object.

Insert Inserts a new element into the specified position in the collection.

Item Provides access to a single element of the collection.

Remove Removes an element from the collection.

RemoveAll Removes all the elements from the collection.

Output parameter

This object is the output parameter of the following methods:

• CreateStringsCollection and PrepareImage method of the Engine object

• ExportPages, ExportPagesEx of the Exporter object

• Scan method and ScanSources property of the ScanManager object

 517

ABBYY FineReader Engine 10 API Reference

Input parameter

This object is the input parameter of the following methods:

• AddWordsToCacheDictionary method of the DocumentAnalyzer object

• AddWords, DeleteWords methods of the Dictionary object

• CreateCompoundTextLanguage method of the LanguageDatabase object

• GetAllFootnoteTargets method of the DocumentStructure object

• MergePatterns method of the Engine object

See also

Working with Properties

LongsCollection Object (ILongsCollection Interface)

This object represents a collection of Long type variables. It serves as a storage to pass various sets of parameters into those ABBYY
FineReader Engine functions that require them. It may also be return value of ABBYY FineReader Engine methods.

Important! The indexing of ABBYY FineReader Engine collections starts with 0.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Count Stores the number of elements in the collection. Long, read�only

Element Long Provides access to a single element of the collection.

Methods

Name Description
Add Adds a new element at the end of the collection.

CopyFrom Initializes properties of the current object with values of similar properties of another object.

Insert Inserts a new element into the specified position in the collection.

Item Provides access to a single element of the collection.

Remove Removes an element from the collection.

RemoveAll Removes all the elements from the collection.

Output parameter

This collection is the output parameter of the following methods and properties:

• CreateLongsCollection method of the Engine object

• PossibleTextTypes property of the RecognizerParams object

• PageIds property of the IRecognizedPages interface

Input parameter

This collection is the input parameter of the following methods and properties:

• AddImageFile, AddImageFileWithPassword, AddImageFileWithPasswordCallback, AnalyzeAndRecognizePages,
AnalyzePages, ExportPages, RecognizePages, SynthesizePages methods of the FRDocument object

• Renumber method of the FRPages object

• RecognizeBlocks of the FRPage object

 518

ABBYY FineReader Engine 10 API Reference

• AddWords method of the Dictionary object

• InitializeGrid method of the TableBlock object

• PossibleTextTypes property of the RecognizerParams object

See also

Working with Properties

Element Property

This property provides access to a single element of ABBYY FineReader Engine collection. Each ABBYY FineReader Engine collection
uses this property.

Visual Basic Syntax

Property Element(

 index As Long,

) As ObjectType

C++ Syntax

HRESULT Element(

 long index,

 InterfaceType** pVal

);

Parameters

index

[in] This variable contains the index of the element that is accessed via this method. It must be in the range from 0 to the Number of
elements � 1, where the number of elements may be received from the Count property of the same collection.

ObjectType

[out] The type of objects in collection. For example, for the LayoutsCollection collection this type is Layout.

pVal

[out] A variable of type InterfaceType* that receives a pointer to the interface of the collection element. pVal must not be NULL. *pVal
is guaranteed to be non�NULL after a successful method call. InterfaceType is the type of the interface of the objects forming the
collection.

Remark

The following objects provide this property:

• Image�related objects

o ImageDocumentsCollection

o TrainingImagesCollection

• Layout and blocks:

o LayoutBlocks

o LayoutsCollection

o CheckmarkGroup

o SeparatorGroup

o TableCells

o TableSeparators

o BarcodeText

 519

ABBYY FineReader Engine 10 API Reference

• Language�related objects

o BaseLanguages

o PredefinedLanguages

o FuzzyStringsCollection

o DictionaryDescriptions

• Text�related objects

o Paragraphs

o ParagraphLines

o CharacterRecognitionVariants

o WordRecognitionVariants

o Words

o TabPositions

• Document�related objects

o FRPages

o Captions

o FootnoteSeriesArray

o List

o PageElements

o PageSections

o PageStreams

o RunningTitleSeriesArray

• Supplementary objects

o StringsCollection

o LongsCollection

• LicenseCollection

See also

Item
Working with Properties

Add Method

This method adds a new element at the end of the collection.

Visual Basic Syntax

Method Add(

 item As <ElementType>

)

C++ Syntax

HRESULT Add(

 520

ABBYY FineReader Engine 10 API Reference

 <ElementType> item

);

Parameters

item

[in] This parameter contains the newly added element. Its type depends on the type of collection and is described in the following
table:

Collection type Element type (Visual Basic/C++)
BarcodeText BarcodeSymbol/IBarcodeSymbol*

BaseLanguages BaseLanguage/IBaseLanguage*

DocumentInformationDictionary DocumentInformationDictionaryItem/IDocumentInformationDictionaryItem*

FuzzyStringsCollection FuzzyString/IFuzzyString*

ImageDocumentsCollection ImageDocument/IImageDocument*

LayoutBlocks
* Block/IBlock*

LayoutsCollection Layout/ILayout*

LongsCollection Long/long

StringsCollection String/BSTR

TabPositions TabPosition/ITabPosition*

TrainingImagesCollection TrainingImage/ITrainingImage*

* — The method cannot be used for the LayoutBlocks object received using the ILayout::Blocks or ILayout::BlackSeparators
property. To add a block into the collection, use the AddBlock method of the corresponding Layout object.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Insert Method of Collection Objects

This method inserts a new element at the specified position in the collection.

Visual Basic Syntax

Method Insert(

 item As <CollectionType>,

 index As Long

)

C++ Syntax

HRESULT Insert(

 <CollectionType> item,

 long index

);

Parameters

item

[in] This parameter contains the newly inserted element. Its type depends on the type of collection and is described in the following
table:

Collection type Element type (Visual basic/C++)
DocumentInformationDictionary DocumentInformationDictionaryItem/IDocumentInformationDictionaryItem*

FuzzyStringsCollection FuzzyString/IFuzzyString*

ImageDocumentsCollection ImageDocument/IImageDocument*

LayoutBlocks
* Block/IBlock*

 521

ABBYY FineReader Engine 10 API Reference

LayoutsCollection Layout/ILayout*

LongsCollection Long/long

StringsCollection String/BSTR

TrainingImagesCollection TrainingImage/ITrainingImage*

* — The method cannot be used for the LayoutBlocks object received using the ILayout::Blocks property. To insert a block into the
collection, use the InsertBlock method of the corresponding Layout object.

index

[in] This parameter specifies the index of the newly inserted element. If the element is inserted in place of the existing element, the
elements of the collection are shifted to the right. The element may also be inserted at the end of collection, in which case the value of
this parameter must be equal to the value of the Count property.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Add

Item Method

This method provides access to a single element of ABBYY FineReader Engine collection. Each ABBYY FineReader Engine collection
uses this method.

Visual Basic Syntax

Method Item(

 index As Long,

) As ObjectType

C++ Syntax

HRESULT Item(

 long index,

 InterfaceType** pVal

);

Parameters

index

[in] This variable contains the index of the element that is accessed via this method. It must be in the range from 0 to the Number of
elements � 1, where the number of elements may be received from the Count property of the same collection.

ObjectType

[out, retval] The type of objects in collection. For example, for the LayoutsCollection collection this type is Layout.

pVal

[out, retval] A variable of type InterfaceType* that receives a pointer to the interface of the collection element. pVal must not be
NULL. *pVal is guaranteed to be non�NULL after a successful method call. InterfaceType is the type of the interface of the objects
forming the collection.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remark

The following objects provide this method:

• Layout�related objects

o LayoutBlocks

o LayoutsCollection

 522

ABBYY FineReader Engine 10 API Reference

o BarcodeText

o CheckmarkGroup

o SeparatorGroup

• Image�related objects

o ImageDocumentsCollection

o TrainingImagesCollection

• Language�related objects

o BaseLanguages

o PredefinedLanguages

o FuzzyStringsCollection

• Text�related objects

o Paragraphs

o ParagraphLines

o Words

o WordRecognitionVariants

o CharacterRecognitionVariants

o TabPositions

• Document�related objects

o FRPages

o DocumentInformationDictionary

o PageSections

o PageStreams

o PageElements

o Captions

o FootnoteSeriesArray

o RunningTitleSeriesArray

o List

• Supplementary objects

o LongsCollection

o StringsCollection

• LicenseCollection

See also

Element

See samples: RecognizedTextProcessing, CustomLanguage

 523

ABBYY FineReader Engine 10 API Reference

Remove Method

This method is specific to collection objects. It removes an element from collection by its index.

Visual Basic Syntax

Method Remove(

 index As Long

)

C++ Syntax

HRESULT Remove(

 long index

);

Parameters

index

[in] This variable contains index of the collection element. It should be in a range from 0 to the value of the Count property of this
collection minus 1.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions

Remark

The following objects have this method:

• BaseLanguages

• CheckmarkGroup

• DocumentInformationDictionary

• FRPages

• FuzzyStringsCollection

• ImageDocumentsCollection

• LayoutBlocks

• LayoutsCollection

• LongsCollection

• StringsCollection

• TabPositions

• TrainingImagesCollection

See also

RemoveAll

RemoveAll Method

This method is specific to ABBYY FineReader Engine collection objects. It removes all the elements from collection and empties it.

Visual Basic Syntax

Method RemoveAll()

C++ Syntax

HRESULT RemoveAll();

 524

ABBYY FineReader Engine 10 API Reference

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remark

The following objects provide this method:

• BarcodeText

• BaseLanguages

• CheckmarkGroup

• DocumentInformationDictionary

• FuzzyStringsCollection

• ImageDocumentsCollection

• LayoutBlocks

• LayoutsCollection

• List

• LongsCollection

• PageSections

• StringsCollection

• TabPositions

• TrainingImagesCollection

See also

Remove

See sample: CustomLanguage

DocumentInfo Object (IDocumentInfo Interface)

This object stores service information about document. The object may be used in two different scenarios.

The first one uses the DocumentInfo object for OCR. You should save it when preparing the image and then pass it to the
corresponding functions for use during analysis and recognition. If service information need not be used or files other than PDF are
being opened, pass 0 to the corresponding function parameter.

The second scenario use document information during document synthesis and export. In this case, the DocumentInfo object is
passed as a parameter to the SynthesizePages, SynthesizePagesEx methods of the Engine object and then is used during export.
This allows to use during export all the information about document which was received during synthesis.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Returns a reference to the DocumentContentInfo object, which
contains information about the author, keywords, subject, and title of the
document and stores the document information dictionary.

DocumentContentInfo,
read�only DocumentContentInfo

Methods

Name Description
Close Releases all the resources that were used by the DocumentInfo object.

 525

ABBYY FineReader Engine 10 API Reference

Related objects

Output parameter

This object is the output parameter of the CreateDocumentInfo method of the Engine object.

Input parameter

This object is the input parameter of the following methods:

• PrepareAndOpenImage, PrepareImage, AnalyzeAndRecognizePage, AnalyzeAndRecognizePages, AnalyzePage,
AnalyzePages, ExportPages, RecognizeImageDocumentAsPlainText, RecognizePage, RecognizePages,
SynthesizePages, SynthesizePagesEx of the Engine object.

• AnalyzeAndRecognizePage, AnalyzeAndRecognizePages, AnalyzePage, AnalyzePages, AnalyzeRegion,
AnalyzeTable, ExtractBarcodes, RecognizeBlocks, RecognizeImageDocumentAsPlainText, RecognizePage,
RecognizePages of the DocumentAnalyzer object.

• ExportPages, ExportPagesEx of the Exporter object.

See also

Engine
Working with Properties

Region Object (IRegion Interface)

This is a supplementary object. It is designed to store the information about the region of an ABBYY FineReader Engine block.

A region is a set of rectangles positioned one under another in such a way that the top line of the lower rectangle is the bottom line of
the upper one (so that the rectangles do not overlap). Some examples of correct and incorrect ABBYY FineReader Engine regions are
shown on the following figure:

An empty Region object may be created by calling the IEngine::CreateRegion method, and then rectangles may be added to it one�
by�one by calling the IRegion::AddRect method. We recommend you to add rectangles in top to bottom order, because the Region
object is optimized for it, and this is the fastest way to add rectangles to it.

The Region object is a persistent object. This means that it is able to write its current state, indicated by the values of its properties, to
persistent storage: an area in the global memory or a disk file. Later, the object can be re�created by reading the object's state from

 526

ABBYY FineReader Engine 10 API Reference

persistent storage. The following methods provide persistence of the object: SaveToFile, LoadFromFile, SaveToMemory, and
LoadFromMemory.

Properties

Name Type Description
Application Engine, read�only Returns the Engine object.

Bottom Returns the coordinate of the bottom border of the specified rectangle. Long, read�only

Count Stores the number of rectangles in the region. Long, read�only

Left Returns the coordinate of the left border of the specified rectangle. Long, read�only

Right Returns the coordinate of the right border of the specified rectangle. Long, read�only

Top Returns the coordinate of the top border of the specified rectangle. Long, read�only

Methods

Name Description
AddRect Adds a new rectangle into the region.

CopyFrom Initializes properties of the current object with values of similar properties of another object.

LoadFromFile Restores the object's contents from a file on disk.

LoadFromMemory Restores the object's contents from the global memory.

MakeEmpty Removes all the rectangles from the region.

SaveToFile Saves the object's contents into a file on disk.

SaveToMemory Saves the object's contents into the global memory.

Related objects

Output parameter

This object is the output parameter of the CreateRegion method of the Engine object.

Input parameter

This object is the input parameter of the following methods:

• AnalyzeRegion method of the FRPage object

• AnalyzeRegion method of the DocumentAnalyzer object

• RemoveColorObjects, RemoveCameraBlur, RemoveCameraNoise, RemoveGarbage, SmoothImage,
SaveImageRegionTo methods of the ImageDocument object

• AddCheckmark, InsertCheckmark methods of the CheckmarkGroup object

• AddSeparator, InsertSeparator methods of the SeparatorGroup object

See also

Working with Properties

 527

ABBYY FineReader Engine 10 API Reference

Bottom Property of the Region Object

This property returns the coordinate of the right border of the specified rectangle.

Visual Basic Syntax

Property Bottom(index As Long) As Long

 read-only

C++ Syntax

HRESULT get_Bottom(

 long index,

 long* pVal

);

Parameters

index

[in] This parameter specifies the rectangle inside the region. It should be in the range from 0 to the value of the IRegion::Count
property � 1.

pVal

[in] A pointer to long variable that receives the value of this property. Must not be NULL.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Region
Working with Properties

Left Property of the Region Object

This property returns the coordinate of the left border of the specified rectangle.

Visual Basic Syntax

Property Left(index As Long) As Long

 read-only

C++ Syntax

HRESULT get_Left(

 long index,

 long* pVal

);

Parameters

index

[in] This parameter specifies the rectangle inside the region. It should be in the range from 0 to the value of the IRegion::Count
property � 1.

pVal

[in] A pointer to long variable that receives the value of this property. Must not be NULL.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Region
Working with Properties

Right Property of the Region Object

This property returns the coordinate of the right border of the specified rectangle.

 528

ABBYY FineReader Engine 10 API Reference

Visual Basic Syntax

Property Right(index As Long) As Long

 read-only

C++ Syntax

HRESULT get_Right(

 long index,

 long* pVal

);

Parameters

index

[in] This parameter specifies the rectangle inside the region. It should be in the range from 0 to the value of the IRegion::Count
property � 1.

pVal

[in] A pointer to long variable that receives the value of this property. Must not be NULL.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Region
Working with Properties

Top Property of the Region Object

This property returns the coordinate of the top border of the specified rectangle.

Visual Basic Syntax

Property Top(index As Long) As Long

 read-only

C++ Syntax

HRESULT get_Top(

 long index,

 long* pVal

);

Parameters

index

[in] This parameter specifies the rectangle inside the region. It should be in the range from 0 to the value of the IRegion::Count
property � 1.

pVal

[in] A pointer to long variable that receives the value of this property. Must not be NULL.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

Region
Working with Properties

AddRect Method of the Region Object

This method adds a new rectangle to the region.

Visual Basic Syntax

Method AddRect(

 left As Long,

 529

ABBYY FineReader Engine 10 API Reference

 top As Long,

 right As Long,

 bottom As Long

)

C++ Syntax

HRESULT AddRect(

 long left,

 long top,

 long right,

 long bottom

);

Parameters

left

[in] This parameter specifies coordinate of the left border of the rectangle.

top

[in] This parameter specifies coordinate of the top border of the rectangle.

right

[in] This parameter specifies coordinate of the right border of the rectangle.

bottom

[in] This parameter specifies coordinate of the bottom border of the rectangle.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

We recommend you to add rectangles in top to bottom order, because if a rectangle is inserted between the existing ones, it may
change the region structure unpredictably.

See also

Region

FRRectangle Object (IFRRectangle Interface)

This object represents the location and size of a rectangle. It is used in a number of ABBYY FineReader Engine methods and properties
as input or output parameter.

Properties

Name Type Description
Height Long Specifies the height of the rectangle.

Left Long Specifies the coordinate of the left border of the rectangle.

Top Long Specifies the coordinate of the top border of the rectangle.

Width Long Specifies the width of the rectangle.

Methods

Name Description
CopyFrom Initializes properties of the current object with values of similar properties of another object.

SetRectangle Sets the location and size of the rectangle.

 530

ABBYY FineReader Engine 10 API Reference

Related objects

Output parameter

This object is the output parameter of the CreateRectangle method of the Engine object.

Input parameter

This object is the input parameter of the CreateCell method of the TextTable object.

See also

Working with Properties

SetRectangle Method of the FRRectangle Object

This method allows setting the location and size of the rectangle.

Visual Basic Syntax

Method SetRectangle(

 Left As Long,

 Top As Long,

 Width As Long,

 Height As Long

)

C++ Syntax

HRESULT SetRectangle(

 long Left,

 long Top,

 long Width,

 long Height

);

Parameters

Left

[in] This parameter contains the coordinate of the left border of the rectangle.

Top

[in] This parameter contains the coordinate of the top border of the rectangle.

Width

[in] This parameter contains the width of the rectangle.

Height

[in] This parameter contains the height of the rectangle.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

See also

FRRectangle

IRecognizedPages Interface

This interface is to be implemented on the client side. It contains properties and methods necessary for passing recognized texts and
images of the pages to be exported, one�by�one. The sequence of usage for this interface is as follows:

 531

ABBYY FineReader Engine 10 API Reference

1. The user of ABBYY FineReader Engine implements an object with the IRecognizedPages interface. For C++, this object
should be derived from this interface and implement its get_PageIds, get_Layout, put_Layout, get_ImageDocument
and raw_ReleasePage methods. This object should also implement the methods of the IUnknown interface.

2. The user then passes a pointer to this object's interface into the IEngine::SynthesizePagesEx and
IExporter::ExportPagesEx methods as one of their input parameters. ABBYY FineReader Engine will call the properties
and methods of this object to get the pointers to the next page layout and image document.

Why use this interface to export a large number of recognized pages into one file?

When exporting a large number of recognized pages into a single file, you have the alternative of using the IExporter::ExportPages
method. This method requires objects of the IImageDocumentsCollection and ILayoutsCollection types to be passed to it as
input parameters. This means that you have to store all your recognized texts and corresponding image objects in memory. For a large
number of pages this may become critical from the point of view of memory consumption. In practice, only several hundred of
recognized pages may fit into computer memory.

The IExporter::ExportPagesEx method allows you to export an unlimited number of recognized pages, because it requires image
document and layout objects corresponding only to one recognized page to be loaded into memory at a time. So you may:

1. Open the image with the help of the IEngine::PrepareImage method and specify the temporary folder where the image
will be saved. Then load the image into memory with the help of the IEngine::OpenImage method and recognize it.

2. Save the image and recognized text as files with the help of the IImageDocument::SaveModified and
ILayout::SaveToFile methods.

3. Use the IRecognizedPages interface to implement your own object. This object must obtain the ImageDocument object
with the help of the IEngine::OpenImage method using the saved images and return it through the
get_ImageDocument method. This object must also obtain the Layout object: it must return it through the get_Layout
method and set it through the put_Layout method if the layout has been modified. It must release all unreleased objects
when the raw_ReleasePage method is called.

When exporting image files into PDF (PDF/A) format using the PEM_ImageOnly mode, you may skip the recognition stage
altogether as the layout information is not used here. In this case ABBYY FineReader Engine does not call the get_Layout or
put_Layout methods, and your implementation of these methods will not result in any action. However, the methods must be present
as their presence is required by the definition of the COM interface.

Properties

Name Type Description
PageIds Returns the collection of identifiers of pages to be exported. LongsCollection, read�only

ImageDocument ImageDocument, read�only Returns the ImageDocument object for the specified page.

Layout Layout Returns or sets the Layout object for the specified page.

Methods

Name Description
ReleasePage This method is called after the page has been processed to release the cached objects. Any clean�up should be done

here.

Sample

Visual C++ (COM) code

class CRecognizePagesImpl : public FREngine::IRecognizedPages {
 public:
 CRecognizePagesImpl()
 {
 pageIds = Engine->CreateLongsCollection();
 fileNames = Engine->CreateStringsCollection();
 }

 void AddPage(FREngine::IImageDocument* imageDoc, FREngine::ILayout* layout)
 {
 long pageId = imageDoc->Id;
 _bstr_t imagePath = imageDoc->Path;

 imageDoc->SaveModified();

 532

ABBYY FineReader Engine 10 API Reference

 layout->SaveToFile(imagePath + L".layout");

 fileNames->Add(imagePath);
 pageIds->Add(pageId);
 }

///
///
 // IRecognizedPages implementation

 // Since we completely control callback object lifetime
 // there is no need to implement reference counter
 ULONG STDMETHODCALLTYPE AddRef() { return 1; }
 ULONG STDMETHODCALLTYPE Release() { return 1; }

 HRESULT STDMETHODCALLTYPE QueryInterface(REFIID riid, void** ppObject)
 {
 *ppObject = 0;
 if(riid == __uuidof(IUnknown) || riid == __uuidof(FREngine::IRecognizedPages))
 {
 *ppObject = this;
 AddRef();
 return S_OK;
 } else {
 return E_NOINTERFACE;
 }
 }

 HRESULT STDMETHODCALLTYPE get_PageIds(FREngine::ILongsCollection **result)
 {
 pageIds.AddRef();
 *result = pageIds;
 return S_OK;
 }

 HRESULT STDMETHODCALLTYPE get_ImageDocument(long pageId, FREngine::IImageDocument**
result)
 {
 int index = findPageId(pageId);
 FREngine::IImageDocumentPtr image = Engine->OpenImage(fileNames->Item(index));
 image.AddRef();
 *result = image;
 return S_OK;
 }

 HRESULT STDMETHODCALLTYPE get_Layout(long pageId, FREngine::ILayout** result)
 {
 int index = findPageId(pageId);
 FREngine::ILayoutPtr layout = Engine->CreateLayout();
 layout->LoadFromFile(fileNames->Item(index) + L".layout");
 layout.AddRef();
 *result = layout;
 return S_OK;
 }

 HRESULT STDMETHODCALLTYPE put_Layout(long pageId, FREngine::ILayout* layout)
 {
 int index = findPageId(pageId);
 layout->SaveToFile(fileNames->Item(index) + L".layout");
 return S_OK;
 }

 HRESULT STDMETHODCALLTYPE raw_ReleasePage(long pageId)
 {
 return S_OK;
 }

 private:
 FREngine::ILongsCollectionPtr pageIds;

 533

ABBYY FineReader Engine 10 API Reference

 FREngine::IStringsCollectionPtr fileNames;

 int findPageId(long pageId)
 {
 int pageIdsCount = pageIds->Count;
 for(int i = 0; i < pageIdsCount; i++) {
 if(pageIds->Item(i) == pageId) {
 return i;
 }
 }
 return -1;
 }
 };

 void processMultiPageOldAPI()
 {
 displayMessage(L"Loading image...");
 _bstr_t imagePath = ::GetSamplesFolder();
 imagePath += L"\\SampleImages\\Demo.tif";

 FREngine::IDocumentInfoPtr docInfo = Engine->CreateDocumentInfo();
 FREngine::IStringsCollectionPtr imageNames = Engine->PrepareImage(imagePath,
L"d:\\temp", 0, -1, 0, docInfo);

 CRecognizePagesImpl recognizedPages;
 int pagesCount = imageNames->Count;

 for(int i = 0; i < pagesCount; i++) {
 _bstr_t imageName = imageNames->Item(i);
 FREngine::IImageDocumentPtr imageDoc = Engine->OpenImage(imageName);
 FREngine::ILayoutPtr layout = Engine->CreateLayout();

 Engine->AnalyzeAndRecognizePage(imageDoc, 0, 0, layout, docInfo);
 recognizedPages.AddPage(imageDoc, layout);
 }

 Engine->SynthesizePagesEx(&recognizedPages, 0, docInfo);

 _bstr_t exportPath = ::GetSamplesFolder();
 exportPath += L"\\SampleImages\\Demo-oldmp.rtf";

 FREngine::IExporterPtr exporter = Engine->CreateExporter();
 exporter->ExportPagesEx(FREngine::FEF_RTF, exportPath, &recognizedPages, 0, docInfo,
0, 0);
 }

See also

IExporter::ExportPagesEx
IEngine::SynthesizePagesEx

UserProperty Property

This property allows you to associate any user�defined information with an object. This information is passed as VARIANT, which may
contain only simple types (String, integer types), but no SAFEARRAY or VARIANT types may be contained inside this VARIANT.
More precisely, only the following variant types are allowed: VT_EMPTY, VT_UI1, VT_I2, VT_I4, VT_R4, VT_R8, VT_CY, VT_BSTR,
VT_NULL, VT_ERROR, VT_BOOL, VT_DATE.

Visual Basic Syntax

Property UserProperty(name As String) As Variant

C++ Syntax

HRESULT get_UserProperty(

 BSTR name,

 VARIANT* pVal

);

HRESULT put_UserProperty(

 BSTR name,

 534

ABBYY FineReader Engine 10 API Reference

 VARIANT newVal

);

Parameters

name

[in] This variable contains any string value you want to identify the property among others, for example, "MyProperty".

pVal

[out] A pointer to VARIANT variable that receives the value of the user�defined property.

newVal

[in] A VARIANT variable that contains the new value for the property.

Return Values

This function has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Properties are identified by their names. Thus only one property with the given name is allowed for a given object. If an object does not
have a user property with the given name, it is created when a value for this property is first assigned. When trying to get a value of the
property that does not exist in an object, an empty VARIANT is returned. When copying an object via the CopyFrom method, user�
defined properties are also copied. If an object may persist, user�defined properties are also persistent.

The following objects provide this property:

• BaseLanguage

• Block

• Layout

• TextLanguage

See also

Working with Properties

CopyFrom Method

This method initializes properties of the current object with the values of similar properties of another object.

Visual Basic Syntax

Method CopyFrom(

 otherObject As <ObjectType>

)

C++ Syntax

HRESULT CopyFrom(

 I<ObjectType>* otherObject

);

Parameters

otherObject

[in] This variable refers to the object of the same type as the current one. This object serves as a source data to be copied into the new
object.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Sample

Visual C++ (COM) code

// Global FineReader Engine object.

 535

ABBYY FineReader Engine 10 API Reference

FREngine::IEnginePtr Engine;

// Create new TextLanguage object

FREngine::ITextLanguagePtr pTextLanguage = Engine->CreateTextLanguage();

// Copy all attributes from predefined English language

FREngine::ITextLanguagePtr pEnglishLanguage =

 Engine->PredefinedLanguages->FindLanguage("English")->TextLanguage;

pTextLanguage->CopyFrom(pEnglishLanguage);

pTextLanguage->InternalName = "SampleTL";

Visual Basic code

Public Engine As FREngine.Engine

' Create new TextLanguage object

Dim TextLanguage As FREngine.TextLanguage

Set TextLanguage = Engine.CreateTextLanguage

' Copy all attributes from predefined English language

TextLanguage.CopyFrom _

Engine.PredefinedLanguages.FindLanguage("English").TextLanguage

TextLanguage.InternalName = "SampleTL"

TextLanguage.BaseLanguages(0).InternalName = "SampleBL"

Remark

The following objects provide this method:

• Image�related objects

o ImageDocumentsCollection

o ImageProcessingParams

o PrepareImageMode

o ImageModification

o JpegExtendedParams

o TrainingImagesCollection

• Layout and blocks:

o Layout

o LayoutBlocks

o LayoutsCollection

o BarcodeBlock

o CheckmarkBlock

o CheckmarkGroup

o SeparatorBlock

o SeparatorGroup

o TextBlock

o RasterPictureBlock

o BarcodeSymbol

• Language�related objects

 536

ABBYY FineReader Engine 10 API Reference

o TextLanguage

o BaseLanguage

o FuzzyStringsCollection

• Text�related objects

o ParagraphParams

o CharParams

o TabPositions

o TabPosition

o TextOrientation

• Analysis, recognition, and export parameters

o PageProcessingParams

o PageAnalysisParams

o TableAnalysisParams

o BarcodeParams

o ObjectsExtractionParams

o OrientationDetectionParams

o RecognizerParams

o SynthesisParamsForDocument

o DocumentStructureDetectionParams

o FontFormattingDetectionParams

o SynthesisParamsForPage

• Export parameters

o HTMLExportParams

o PPTExportParams

o RTFExportParams

o TextExportParams

o XLExportParams

o XMLExportParams

o PDFExportParams

o PDFEncryptionInfo

o PDFAExportParamsOld

o PDFExportParamsOld

• Supplementary objects

o StringsCollection

 537

ABBYY FineReader Engine 10 API Reference

o LongsCollection

o Region

o FRRectangle

• Document synthesis objects

o FootnoteSeries

o ParagraphStyle

• DocumentInformationDictionary

See also

See sample: CustomLanguage

LoadFromFile Method

This method restores the contents of the object from a file on disk, where it should have previously been saved by the SaveToFile
method.

Visual Basic Syntax

Method LoadFromFile(

 path As String

)

C++ Syntax

HRESULT LoadFromFile(

 BSTR path

);

Parameters

path

[in] A path to the file on disk where the contents of the object is stored. If a file specified by this path was not obtained as a result of a
call to the SaveToFile method of an object of the same type as the current one, some specific error code is returned.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Note that in the case when an object data is read by a functionally limited ABBYY FineReader Engine version, while it was saved by a
version with a wider functional set, object properties that cannot be changed in the limited version, are restored to default values.

The following objects provide this method:

• Image�related objects

o ImageProcessingParams

o PrepareImageMode

o ImageModification

o JpegExtendedParams

• Language�related objects

o TextLanguage

o BaseLanguage

• Analysis, recognition, and export parameters

 538

ABBYY FineReader Engine 10 API Reference

o PageProcessingParams

o PageAnalysisParams

o TableAnalysisParams

o BarcodeParams

o ObjectsExtractionParams

o OrientationDetectionParams

o RecognizerParams

o SynthesisParamsForDocument

o DocumentStructureDetectionParams

o FontFormattingDetectionParams

o SynthesisParamsForPage

• Export parameters

o HTMLExportParams

o PPTExportParams

o RTFExportParams

o TextExportParams

o XLExportParams

o XMLExportParams

o PDFExportParams

o PDFEncryptionInfo

o PDFAExportParamsOld

o PDFExportParamsOld

• Layout

• ParagraphParams

• Region

See also

SaveToFile
SaveToMemory
LoadFromMemory

LoadFromMemory Method

This method restores the object contents from the global memory.

Visual Basic Syntax

Method LoadFromMemory(hGlobal As Long)

C++ Syntax

HRESULT LoadFromMemory(

 long hGlobal

);

 539

ABBYY FineReader Engine 10 API Reference

Parameters

hGlobal

[in] This parameter specifies the HGLOBAL handle of the memory from where the object contents should be loaded. The parameter is
statically casted to the Long type. This handle should be the one obtained from the SaveToMemory method of an object of the same
type as the current one, and should be valid (not freed by the GlobalFree function).

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

The size of the memory area that the object allocates, can be obtained by calling the GlobalSize function.

Note that in the case when an object data is read by a functionally limited ABBYY FineReader Engine version, while it was saved by a
version with a wider functional set, object properties that cannot be changed in the limited version, are restored to default values.

The following objects provide this method:

• Image�related objects

o ImageProcessingParams

o PrepareImageMode

o ImageModification

o JpegExtendedParams

• Language�related objects

o TextLanguage

o BaseLanguage

• Analysis, recognition, and export parameters

o PageProcessingParams

o PageAnalysisParams

o TableAnalysisParams

o BarcodeParams

o ObjectsExtractionParams

o OrientationDetectionParams

o RecognizerParams

o SynthesisParamsForDocument

o DocumentStructureDetectionParams

o FontFormattingDetectionParams

o SynthesisParamsForPage

• Export parameters

o HTMLExportParams

o PPTExportParams

o RTFExportParams

o TextExportParams

 540

ABBYY FineReader Engine 10 API Reference

o XLExportParams

o XMLExportParams

o PDFExportParams

o PDFEncryptionInfo

o PDFAExportParamsOld

o PDFExportParamsOld

• Layout

• ParagraphParams

• Region

See also

SaveToMemory
SaveToFile
LoadFromFile

SaveToFile Method

This method saves the object contents into a file on disk.

Visual Basic Syntax

Method SaveToFile(

 path As String

)

C++ Syntax

HRESULT SaveToFile(

 BSTR path

);

Parameters

path

[in] This parameter specifies the path to the file where the object contents should be saved. If a file with this name already exists, it is
overwritten without prompt.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Note that in the case when an object data is read by a functionally limited ABBYY FineReader Engine version, while it was saved by a
version with a wider functional set, object properties that cannot be changed in the limited version, are restored to default values.

The following objects provide this method:

• Image�related objects

o ImageProcessingParams

o PrepareImageMode

o ImageModification

o JpegExtendedParams

• Language�related objects

o TextLanguage

 541

ABBYY FineReader Engine 10 API Reference

o BaseLanguage

• Analysis, recognition, and export parameters

o PageProcessingParams

o PageAnalysisParams

o TableAnalysisParams

o BarcodeParams

o ObjectsExtractionParams

o OrientationDetectionParams

o RecognizerParams

o SynthesisParamsForDocument

o DocumentStructureDetectionParams

o FontFormattingDetectionParams

o SynthesisParamsForPage

• Export parameters

o HTMLExportParams

o PPTExportParams

o RTFExportParams

o TextExportParams

o XLExportParams

o XMLExportParams

o PDFExportParams

o PDFEncryptionInfo

o PDFAExportParamsOld

o PDFExportParamsOld

• Layout

• ParagraphParams

• Region

See also

LoadFromFile
SaveToMemory
LoadFromMemory

SaveToMemory Method

This method saves the contents of the object into the global memory and returns an HGLOBAL handle — casted to the Long type, of
the memory area allocated for the object. It is user's responsibility to deallocate this memory when it is no longer needed. As the
memory is allocated by the GlobalAlloc API function, it should be deallocated by the GlobalFree function. The size of the memory
area that the object allocates, can be obtained by calling the GlobalSize function.

 542

ABBYY FineReader Engine 10 API Reference

Visual Basic Syntax

Method SaveToMemory() As Long

C++ Syntax

HRESULT SaveToMemory(

 long* hGlobal

);

Parameters

hGlobal

[out, retval] A pointer to a long variable that receives the HGLOBAL handle — casted to long — of the memory area allocated for the
object. Should not be NULL.

Return Values

This method has no specific return values. It returns standard return values of ABBYY FineReader Engine functions.

Remarks

Note that in the case when an object data is read by a functionally limited ABBYY FineReader Engine version, while it was saved by a
version with a wider functional set, object properties that cannot be changed in the limited version, are restored to default values.

The following objects provide this method:

• Image�related objects

o ImageProcessingParams

o PrepareImageMode

o ImageModification

o JpegExtendedParams

• Language�related objects

o TextLanguage

o BaseLanguage

• Analysis, recognition, and export parameters

o PageProcessingParams

o PageAnalysisParams

o TableAnalysisParams

o BarcodeParams

o ObjectsExtractionParams

o OrientationDetectionParams

o RecognizerParams

o SynthesisParamsForDocument

o DocumentStructureDetectionParams

o FontFormattingDetectionParams

o SynthesisParamsForPage

• Export parameters

o HTMLExportParams

 543

ABBYY FineReader Engine 10 API Reference

o PPTExportParams

o RTFExportParams

o TextExportParams

o XLExportParams

o XMLExportParams

o PDFExportParams

o PDFEncryptionInfo

o PDFAExportParamsOld

o PDFExportParamsOld

• Layout

• ParagraphParams

• Region

See also

LoadFromMemory
SaveToFile
LoadFromFile

Enumerations

AEF_ prefixed flags

The AEF_ prefixed flags are used to denote the possible ABBYY FineReader Engine export formats whose availability depends on the
license. The ILicense::AvailableExportFormats property returns a bitwise OR combination of zero or more of these flags values,
where each set bit indicates that the corresponding export format is available in the license.

module AvailableExportFormatesFlags
 {
 const long AEF_RTF = 0x00000001;
 const long AEF_HTML = 0x00000002;
 const long AEF_XLS = 0x00000004;
 const long AEF_PDF = 0x00000008;
 const long AEF_Text = 0x00000020;
 const long AEF_PDFImageOnly = 0x00000040;
 const long AEF_XML = 0x00000080;
 const long AEF_PPT = 0x00000100;
 const long AEF_PDFA = 0x00000200;
 const long AEF_PDFMRC = 0x00000800;
 };

Elements

Flag name Description
AEF_RTF RTF, DOC, DOCX export format.
AEF_HTML HTML export format.
AEF_XLS XLS, XLSX export format.
AEF_PDF PDF export format.
AEF_Text Text export format.
AEF_PDFImageOnly PDF Image Only export format.
AEF_XML ABBYY XML export format.
AEF_PPT PPTX export format.

 544

ABBYY FineReader Engine 10 API Reference

AEF_PDFA PDF/A export format.
AEF_PDFMRC PDF MRC export format.

See also

License
ABBYY FineReader Engine 10 Modules

AEM_ prefixed flags

The AEM_ prefixed flags are used to denote the possible ABBYY FineReader Engine modules whose availability depends on the license.
The ILicense::AvailableEngineModules property returns a bitwise OR combination of zero or more of these flags values, where
each set bit indicates that the corresponding ABBYY FineReader Engine module is available in the license.

const long AEM_1DBarcode = 0x00000001;

const long AEM_PDF417 = 0x00000002;

const long AEM_Aztec = 0x00000004;

const long AEM_QRCode = 0x00000008;

const long AEM_DataMatrix = 0x00000010;

const long AEM_BarcodeAutolocation = 0x00000020;

const long AEM_Analyze = 0x00000040;

const long AEM_FullTextIndexDA = 0x00000080;

const long AEM_FlexiFormsDA = 0x00000100;

const long AEM_CyrillicHandprint = 0x00000200;

const long AEM_OMR = 0x00000400;

const long AEM_ExtendedCharacterInfo = 0x00000800;

const long AEM_ASCII = 0x00001000;

const long AEM_OpenPDF = 0x00002000;

const long AEM_UserPatterns = 0x00004000;

const long AEM_BalancedMode = 0x00008000;

const long AEM_FastMode = 0x00010000;

const long AEM_CameraOCR = 0x00020000;

const long AEM_ColorFiltering = 0x00040000;

Elements

Name Description
AEM_1DBarcode 1D Barcodes module.
AEM_PDF417 PDF417 module.
AEM_Aztec Aztec module.
AEM_QRCode QR Code module.
AEM_DataMatrix DataMatrix module.
AEM_BarcodeAutolocation Barcode Autolocation module.
AEM_Analyze Document Analysis module.
AEM_FullTextIndexDA DA for Full�Text Indexing module.
AEM_FlexiFormsDA DA for Invoices module.
AEM_CyrillicHandprint Cyrillic ICR module.
AEM_OMR OMR module.
AEM_ExtendedCharacterInfo Extended Character Info module.
AEM_ASCII ASCII License Basic Modules module.
AEM_OpenPDF PDF Opening module.
AEM_UserPatterns User Patterns module.
AEM_BalancedMode Balanced Mode module.
AEM_FastMode Fast Mode module.
AEM_CameraOCR Camera OCR module.
AEM_ColorFiltering Color Filtering module.

 545

ABBYY FineReader Engine 10 API Reference

See also

License
ABBYY FineReader Engine 10 Modules

ALS_ prefixed flags

The ALS_ prefixed flags are used to denote the possible ABBYY FineReader Engine language sets whose availability depends on the
license. The ILicense::AvailableLanguageSets property returns a bitwise OR combination of zero or more of these flags values,
where each set bit indicates that the corresponding ABBYY FineReader Engine language set is available in the license.

module AvailableLanguageSetsFlags
 {
 const long ALS_Standard = 0x00000001;
 const long ALS_DataCapture = 0x00000002;
 const long ALS_Artificial = 0x00000004;
 const long ALS_FineReaderXIX = 0x00000008;
 const long ALS_Programming = 0x00000010;
 const long ALS_User = 0x00000020;
 const long ALS_CJK = 0x00000040;
 const long ALS_Hebrew = 0x00000080;
 const long ALS_Thai = 0x00000100;
 const long ALS_Vietnamese = 0x00000200;
 const long ALS_Arabic = 0x00000400;
 };

Elements

Name Description
ALS_Standard Natural languages module.
ALS_DataCapture Natural for Data Capture languages module.
ALS_Artificial Artificial languages module.
ALS_FineReaderXIX FineReader XIX languages module.
ALS_Programming Programming languages module.
ALS_User User (Custom) OCR Languages module.
ALS_CJK Chinese, Japanese, and Korean languages modules.
ALS_Hebrew Hebrew and Yiddish languages modules.
ALS_Thai Thai languages module.
ALS_Vietnamese Vietnamese languages module.

See also

License
ABBYY FineReader Engine 10 Modules

ATT_ prefixed flags

The ATT_ prefixed flags are used to denote the possible ABBYY FineReader Engine text types whose availability depends on the license.
The ILicense::AvailableTextTypes property returns a bitwise OR combination of zero or more of these flags values, where each set
bit indicates that the corresponding text type is available in the license.

module AvailableTextTypesFlags
 {
 const long ATT_Normal = 0x00000001;
 const long ATT_Typewriter = 0x00000002;
 const long ATT_Matrix = 0x00000004;
 const long ATT_Index = 0x00000008;
 const long ATT_Handprinted = 0x00000010;
 const long ATT_OCR_A = 0x00000020;
 const long ATT_OCR_B = 0x00000040;
 const long ATT_MICR_E13B = 0x00000080;
 const long ATT_Gothic = 0x00000100;
 const long ATT_MICR_CMC7 = 0x00000200;
 const long ATT_Fax = 0x00000400;
 };

 546

ABBYY FineReader Engine 10 API Reference

Elements

Flag name Description
ATT_Normal Normal text type (TextTypeEnum::TT_Normal)

ATT_Typewriter Typewriter text type (TextTypeEnum::TT_Typewriter)

ATT_Matrix Matrix text type (TextTypeEnum::TT_Matrix)

ATT_Index Index text type (TextTypeEnum::TT_Index)

ATT_Handprinted Handprinted text type (TextTypeEnum::TT_Handprinted)

ATT_OCR_A OCR�A text type (TextTypeEnum::TT_OCR_A)

ATT_OCR_B OCR�B text type (TextTypeEnum::TT_OCR_B)
ATT_MICR_E13B E13B language and MICR text type (TextTypeEnum::TT_MICR_E13B).
ATT_Gothic Gothic text type (TextTypeEnum::TT_Gothic). Available if and only if the ABBYY FineReader XIX module is

available.
ATT_MICR_CMC7 CMC7 language and MICR text type (TextTypeEnum::TT_MICR_CMC7).
ATT_Fax Normal text type with low resolution (TextTypeEnum::TT_Normal and

IRecognizerParams::LowResolutionMode property set to TRUE)

See also

License
ABBYY FineReader Engine 10 Modules

AVC_ prefixed flags

The AVC_ prefixed flags are used to denote the possible ABBYY FineReader Engine modules for Visual Components whose availability
depends on the license. The ILicense::AvailableVisualComponents property returns a bitwise OR combination of zero or more of
these flags values, where each set bit indicates that the corresponding Visual Component module is available in the license.

const long AVC_ImageViewer = 0x00000001;

const long AVC_DocumentViewer = 0x00000002;

const long AVC_TextEditor = 0x00000004;

const long AVC_TextValidator = 0x00000008;

const long AVC_Scanning = 0x00000010;

const long AVC_Training = 0x00000020;

Elements

Flag name Description
AVC_ImageViewer Image Viewing and Blocks Drawing module. This module is currently not supported.

AVC_DocumentViewer Document Batch Managing module. This module is currently not supported.

AVC_TextEditor Text Viewing and Editing module. This module is currently not supported.

AVC_TextValidator Full�Text Verification module. This module is currently not supported.

AVC_Scanning Scanning module.

AVC_Training User Patterns Training module.

See also

License
ABBYY FineReader Engine 10 Modules

BF_ prefixed flags

The BF_ prefixed flags are used to denote borders of an incut frame. The IIncut::Borders property returns a bitwise OR combination
of zero or more of these flags values, where each set bit indicates that the corresponding border is visible.

module BorderFlags

 547

ABBYY FineReader Engine 10 API Reference

{

 const long BF_Top = 0x00000001;

 const long BF_Bottom = 0x00000002;

 const long BF_Left = 0x00000004;

 const long BF_Right = 0x00000008;

}

Elements
Flag name Description
BF_Top Top separator.
BF_Bottom Bottom separator.
BF_Left Left separator.
BF_Right Right separator.

See also

IIncut::Borders

BackgroundColorModeEnum

BackgroundColorModeEnum enumeration constants are used to denote modes of background color saving during export.

typedef enum {

 BCM_DontSave,

 BCM_BlackWhite,

 BCM_ColorForInverted,

 BCM_Color

} BackgroundColorModeEnum;

Elements

Name Description
BCM_DontSave The background color is not saved.

BCM_BlackWhite The background is saved in black�and�white.

BCM_ColorForInverted The background color is saved only for inverted blocks.

BCM_Color The background color is saved.

See also

IRTFExportParams::BackgroundColorMode
IXLExportParams::BackgroundColorMode
IPPTExportParams::BackgroundColorMode

BaseLanguageLetterSetEnum

BaseLanguageLetterSetEnum enumeration constants are used to describe different letter sets of a base language. Letter sets are the
sets of characters that are allowed or disallowed in certain places inside the words in a specified language.

typedef enum {

 BLLS_Alphabet,

 BLLS_Prefixes,

 BLLS_Suffixes,

 BLLS_IgnorableLetters,

 BLLS_SubscriptAlphabet,

 BLLS_SuperscriptAlphabet

} BaseLanguageLetterSetEnum;

Elements

Name Description

 548

ABBYY FineReader Engine 10 API Reference

BLLS_Alphabet This value denotes a letter set that includes the full alphabet of the base language.

BLLS_Prefixes This constant denotes a letter set that covers the punctuation marks that may be found immediately
before words. Among these characters there may be ", (, { and so on.

BLLS_Suffixes This constant denotes a letter set that covers the punctuation marks that may be found immediately after
words. Among these characters there may be !, ",), } and so on.

BLLS_IgnorableLetters This value denotes a letter set that includes the characters that may be found inside a word, but are
ignored during the internal spelling check.

BLLS_SubscriptAlphabet This value denotes a letter set that includes the characters allowed inside the words of the language as
subscripts.

BLLS_SuperscriptAlphabet This value denotes a letter set that includes the characters allowed inside the words of the language as
superscripts.

See also

IBaseLanguage::LetterSet

BarcodeOrientationEnum

BarcodeOrientationEnum enumeration constants are used to denote the types of barcode orientation that can be detected by
ABBYY FineReader Engine. It is used by the BarcodeParams object.

typedef enum {

 BO_Unknown = 0x00000000,

 BO_Left_To_Right = 0x00000001,

 BO_Down_To_Top = 0x00000002,

 BO_Right_To_Left = 0x00000004,

 BO_Top_To_Down = 0x00000008,

 BO_Autodetect = BO_Left_To_Right | BO_Down_To_Top | BO_Right_To_Left |
BO_Top_To_Down

} BarcodeOrientationEnum;

Elements

Name Description
BO_Unknown Denotes unknown type of barcode orientation. It may be used as the return value if ABBYY FineReader Engine

has failed to detect barcode orientation.

BO_Left_To_Right Barcode is oriented from left to right.

BO_Down_To_Top Barcode is oriented from down to top.

BO_Right_To_Left Barcode is oriented from right to left.

BO_Top_To_Down Barcode is oriented from top to down.

BO_Autodetect Detect the barcode orientation automatically.

See also

IBarcodeParams::Orientation

BarcodeSupplementTypeEnum

BarcodeSupplementTypeEnum enumeration constants are used to denote the types of supplementary barcodes that can be
recognized by ABBYY FineReader Engine. The barcodes of the EAN 8, 13, UPC�A, and UPC�E types may include supplementary
barcodes which may contain 2 or 5 digits.

typedef enum {

 BS_Unknown = 0x00000000,

 BS_Void = 0x00000001,

 BS_2Digits = 0x00000002,

 BS_5Digits = 0x00000004,

 BS_Autodetect = BS_Void | BS_2Digits | BS_5Digits

 549

ABBYY FineReader Engine 10 API Reference

} BarcodeSupplementTypeEnum;

Elements

Name Description
BS_Unknown Denotes unknown type of supplementary barcode. It may be used as the return value if ABBYY FineReader Engine

has failed to detect the type of supplementary barcode.

BS_Void No supplementary barcode.

BS_2Digits 2�digit supplementary barcode.

BS_5Digits 5�digit supplementary barcode.

BS_Autodetect Forces ABBYY FineReader Engine to automatically detect the supplementary barcode type during recognition.

See also

Barcode Types
IBarcodeBlock::SupplementType
IBarcodeParams::SupplementType

BarcodeTypeEnum

BarcodeTypeEnum enumeration constants are used to denote the types of barcodes that can be recognized by ABBYY FineReader
Engine. These constants can be used during recognition to specify the types of barcodes to be recognized, or after recognition to define
the types of recognized barcodes.

typedef enum {

 BT_Unknown = 0x00000000,

 BT_Code39 = 0x00000001,

 BT_Interleaved25 = 0x00000002,

 BT_EAN13 = 0x00000004,

 BT_Code128 = 0x00000008,

 BT_EAN8 = 0x00000010,

 BT_PDF417 = 0x00000020,

 BT_Codabar = 0x00000040,

 BT_UPCE = 0x00000080,

 BT_Industrial25 = 0x00000100,

 BT_IATA25 = 0x00000200,

 BT_Matrix25 = 0x00000400,

 BT_Code93 = 0x00000800,

 BT_PostNet = 0x00001000,

 BT_UCC128 = 0x00002000,

 BT_Patch = 0x00004000,

 BT_Aztec = 0x00008000,

 BT_DataMatrix = 0x00010000,

 BT_QRCode = 0x00020000,

 BT_UPCA = 0x00040000,

 BT_Autodetect = BT_Code39 | BT_Interleaved25 | BT_EAN13 | BT_Code128 |
BT_EAN8 | BT_PDF417 | BT_Codabar | BT_UPCE | BT_Industrial25 | BT_IATA25 | BT_Matrix25
| BT_Code93 | BT_PostNet | BT_UCC128 | BT_Patch | BT_Aztec | BT_DataMatrix | BT_QRCode
| BT_UPCA

} BarcodeTypeEnum;

Elements

Name Description
BT_Unknown Denotes unknown type of barcode. It may be used as the return value if ABBYY FineReader Engine has failed to

detect the type of barcode.

BT_Code39 Barcode in Code 39 standard.

BT_Interleaved25 Barcode in Interleaved 2 of 5 standard.

 550

ABBYY FineReader Engine 10 API Reference

BT_EAN13 Barcode in EAN 13 standard.

BT_Code128 Barcode in Code 128 standard.

BT_EAN8 Barcode in EAN 8 standard.

BT_PDF417 Barcode in PDF417 standard.

BT_Codabar Barcode in Codabar standard.

BT_UPCE Barcode in UPC�E standard.

BT_Industrial25 Barcode in Industrial 2 of 5 standard.

BT_IATA25 Barcode in IATA 2 of 5 standard.

BT_Matrix25 Barcode in Matrix 2 of 5 standard.

BT_Code93 Barcode in Code 93 standard.

BT_PostNet Barcode in PostNet standard.

BT_UCC128 Barcode in UCC�128 standard.

BT_Patch Barcode in Patch standard.

BT_Aztec Barcode in Aztec standard.

BT_DataMatrix Barcode in Data Matrix standard.

BT_QRCode Barcode in QR Code standard.

BT_UPCA Barcode in UPC�A standard.

BT_Autodetect Forces ABBYY FineReader Engine to automatically detect the barcode type during recognition.

See also

Barcode Types
IBarcodeBlock::BarcodeType
IBarcodeParams::Type

BlockLayerTypeEnum

BlockLayerTypeEnum enumeration constants are used to designate the layers to which blocks belong. Blocks may be overlaid, for
example, a text block may lay over a background picture block.

typedef enum {

 BLT_Unknown,

 BLT_Background,

 BLT_Foreground,

 BLT_Hidden

} BlockLayerTypeEnum;

Elements

Name Description
BLT_Unknown The layer is undefined.

BLT_Background The block belongs to background of the page.

BLT_Foreground The block is on foreground of the page.

BLT_Hidden The block is hidden. Such blocks appear in the layout, if the IObjectsExtractionParams::FullTextIndexDA
was set to TRUE during recognition and a text was found on a picture.

See also

IBlock::BlockLayerType

BlockRoleEnum

BlockRoleEnum enumeration constants are used to describe the role of the text block in the logic structure of the document.

 551

ABBYY FineReader Engine 10 API Reference

typedef enum {

 BR_Unknown,

 BR_RunningTitle,

 BR_MainText,

 BR_IncutText,

 BR_Caption,

 BR_LineNumbers,

 BR_Artefact

} BlockRoleEnum;

Elements

Name Description
BR_Unknown The role is undefined.

BR_RunningTitle The block contains a running title.

BR_MainText The block contains the main text of the page.

BR_IncutText The block contains an incut.

BR_Caption The block contains a caption.

BR_LineNumbers The block contains line numbers.

BR_Artefact The block contains some garbage text.

See also

ITextBlock::BlockRole

BlockTypeEnum

BlockTypeEnum enumeration constants are used to designate the type of a block.

typedef enum {

 BT_Text,

 BT_RasterPicture,

 BT_Table,

 BT_Barcode,

 BT_Checkmark,

 BT_CheckmarkGroup

 BT_VectorPicture,

 BT_Separator,

 BT_SeparatorGroup

} BlockTypeEnum;

Elements

Name Description
BT_Text Designates a text block. It corresponds to an image zone recognized as formatted text. Additional properties

of the blocks of this type are accessible via the TextBlock object.

BT_RasterPicture Designates a raster picture. The part of the image that this block encloses is not recognized, and the block is
exported "as is". Properties of this block type are represented by the RasterPictureBlock object.

BT_Table Designates a table block. It corresponds to an image zone recognized as table. A table region may only be
rectangular. Additional properties of the blocks of this type are accessible via the TableBlock object.

BT_Barcode Designates a barcode block. It corresponds to an image zone recognized as barcode. Additional properties of
the blocks of this type are accessible via the BarcodeBlock object.

BT_Checkmark Designates a checkmark block. It corresponds to an image zone recognized as checkmark. Additional
properties of the blocks of this type are accessible via the CheckmarkBlock object.

Designates a checkmarks group block. It corresponds to an image zone recognized as checkmarks group.
Additional properties of the blocks of this type are accessible via the CheckmarkGroup object. BT_CheckmarkGroup

 552

ABBYY FineReader Engine 10 API Reference

BT_VectorPicture Designates a vector picture block. Blocks of this type may appear in the layout only if a page has been
analyzed with the IPageAnalysisParams::DetectVectorGraphics property set to TRUE. Usually
background pictures are recognized as the blocks of this type. Additional properties of the blocks of this type
are accessible via the VectorPictureBlock object.

BT_Separator Designates a separator block. Separators are lines on an image. They may be parts of a table, lines that
separate different text elements, etc. Additional properties of the blocks of this type are accessible via the
SeparatorBlock object.

BT_SeparatorGroup Designates a separators group block. It corresponds to an image zone recognized as a group of separators. A
group of separators usually includes four separators, which form a rectangle. For example, four lines of a table
border is recognized as a separators group. Additional properties of the blocks of this type are accessible via
the SeparatorGroup object.

See also

IBlock::Type
ILayout::AddBlock
ILayout::InsertBlock

See sample: RecognizedTextProcessing

CaptionPositionEnum

CaptionPositionEnum enumeration constants are used to designate the position of the caption relative to the object which has this
caption.

typedef enum {

 CP_Top,

 CP_Bottom,

 CP_Left,

 CP_Right,

 CP_Inside

} CaptionPositionEnum;

Elements

Name Description
CP_Top The caption is located above the object.

CP_Bottom The caption is located below the object.

CP_Left The caption is located to the left of the object.

CP_Right The caption is located to the right of the object.

CP_Inside The caption is crossed with the object.

See also

ICaption::Position
ICaptions::CreateCaption

CaseRecognitionModeEnum

CaseRecognitionModeEnum enumeration constants denote the modes of letter case recognition.

typedef enum {

 CRM_AutoCase,

 CRM_SmallCase,

 CRM_CapitalCase

} CaseRecognitionModeEnum;

Elements

Name Description
CRM_AutoCase This value tells ABBYY FineReader Engine to automatically detect the case of letters and to keep it in the output

text.

 553

ABBYY FineReader Engine 10 API Reference

CRM_SmallCase The recognized text will be set in lowercase letters.

CRM_CapitalCase The recognized text will be set in capitals.

See also

IRecognizerParams::CaseRecognitionMode

CheckmarkCheckStateEnum

CheckmarkCheckStateEnum enumeration constants are used to specify the state of a checkmark block.

typedef enum {

 CMCS_Checked,

 CMCS_NotChecked,

 CMCS_Corrected

} CheckmarkCheckStateEnum;

Elements

Name Description
CMCS_Checked Selected.

CMCS_NotChecked Not selected.

CMCS_Corrected Checkmark was selected but was corrected later.

See also

ICheckmarkBlock::CheckmarkState

CheckmarkTypeEnum

CheckmarkTypeEnum enumeration constants describe checkmark types.

typedef enum {

 CMT_Square,

 CMT_Empty,

 CMT_Custom

} CheckmarkTypeEnum;

Elements

Name Description
CMT_Square Checkmarks in squares.

CMT_Empty Checkmarks against an empty background.

CMT_Custom The checkmark has a non�standard form.

See also

ICheckmarkBlock::CheckmarkType

CJKTextDirectionEnum

Sets the direction of the text to be recognized. This parameter is valid only for the hieroglyphic languages.

typedef enum {

 CJKTD_Horizontal,

 CJKTD_Vertical,

 CJKTD_Autodetect

} CJKTextDirectionEnum;

Elements

Name Description
CJKTD_Horizontal The text to be recognized is arranged horizontally.

 554

ABBYY FineReader Engine 10 API Reference

CJKTD_Vertical The text to be recognized is arranged vertically. Characters are written one below the other, top to bottom.

CJKTD_Autodetect The direction of the text is detected automatically.

See also

IRecognizerParams::CJKTextDirection

CodePageEnum

CodePageEnum enumeration represents Win32 standard code pages.

typedef enum {

 CP_Null = 0,

 CP_Latin = 1252,

 CP_Cyrillic = 1251,

 CP_EasternEuropean = 1250,

 CP_Baltic = 1257,

 CP_Turkish = 1254,

 CP_US_MSDOS = 437,

 CP_LatinI_MSDOS = 850,

 CP_Russian_MSDOS = 866,

 CP_Baltic_MSDOS = 775,

 CP_Turkish_IBM = 857,

 CP_Slavic_MSDOS = 852,

 CP_Greek = 1253,

 CP_Greek_737 = 737,

 CP_Greek_869 = 869,

 CP_Latin_ISO = 28591,

 CP_EasternEuropean_ISO = 28592,

 CP_Turkish_ISO = 28593,

 CP_Baltic_ISO = 28594,

 CP_Cyrillic_ISO = 28595,

 CP_Greek_ISO = 28597,

 CP_KOI8 = 20866,

 CP_Tatar = 5000,

 CP_Tatar_MSDOS = 5001,

 CP_Roman_Macintosh = 10000,

 CP_Greek_Macintosh = 10006,

 CP_Cyrillic_Macintosh = 10007,

 CP_Ukrainian_Macintosh = 10017,

 CP_Latin2_Macintosh = 10029,

 CP_Icelandic_Macintosh = 10079,

 CP_Turkish_Macintosh = 10081,

 CP_Croatian_Macintosh = 10082,

 CP_Armenian = 5002,

 CP_Armenian_MSDOS = 5003,

 CP_Armenian_Macintosh = 5004,

 CP_Hebrew = 1255,

 CP_Hebrew_MSDOS = 862,

 CP_Hebrew_Macintosh = 10005,

 CP_Hebrew_ISO = 28598,

 CP_Latin5_ISO = 28599,

 CP_Cyrillic_MSDOS = 855,

 CP_Bashkir = 5006,

 CP_Chinese_Simpl_GB = 936,

 CP_Chinese_Simpl_Mac = 10008,

 CP_Chinese_Trad_Big = 950,

 555

ABBYY FineReader Engine 10 API Reference

 CP_Chinese_Trad_Mac = 10002,

 CP_Japan_Mac = 10001,

 CP_Japan_SJIS = 932,

 CP_Korean = 949,

 CP_Korean_Johab = 1361,

 CP_Korean_Mac = 10003,

 CP_Mathematical = 5007,

 CP_Digits = 5008,

 CP_Thai = 874,

 CP_Thai_Macintosh = 10021,

 CP_Vietnamese = 1258

} CodePageEnum;

Elements

Name Description
CP_Null Invalid code page.

CP_Latin Windows Western Europe (1252)

CP_Cyrillic Windows Cyrillic (1251)

CP_EasternEuropean Windows Central Europe (1250)

CP_Baltic Windows Baltic (1257)

CP_Turkish Windows Turkish (1254)

CP_US_MSDOS DOS United States (437)

CP_LatinI_MSDOS DOS Multilingual Latin 1 (850)

CP_Russian_MSDOS DOS Russian (866)

CP_Baltic_MSDOS DOS Baltic (775)

CP_Turkish_IBM DOS Turkish (857)

CP_Slavic_MSDOS DOS Latin 2 (852)

CP_Greek Windows Greek (1253)

CP_Greek_737 DOS Greek (737)

CP_Greek_869 DOS Modern Greek (869)

CP_Latin_ISO ISO Latin 1 (8859�1)

CP_EasternEuropean_ISO ISO Central Europe (8859�2)

CP_Turkish_ISO ISO Latin 3 (8859�3)

CP_Baltic_ISO ISO Baltic (8859�4)

CP_Cyrillic_ISO ISO Cyrillic (8859�5)

CP_Greek_ISO ISO Greek (8859�7)

CP_KOI8 Russian KOI8

CP_Tatar Windows Tatar

CP_Tatar_MSDOS DOS Tatar

CP_Roman_Macintosh Macintosh Roman

CP_Greek_Macintosh Macintosh Greek 1

CP_Cyrillic_Macintosh Macintosh Cyrillic

CP_Ukrainian_Macintosh Macintosh Ukrainian

CP_Latin2_Macintosh Macintosh Latin 2

 556

ABBYY FineReader Engine 10 API Reference

CP_Icelandic_Macintosh Macintosh Icelandic

CP_Turkish_Macintosh Macintosh Turkish

CP_Croatian_Macintosh Macintosh Croatian

CP_Armenian Windows Armenian

CP_Armenian_MSDOS DOS Armenian

CP_Armenian_Macintosh Macintosh Armenian

CP_Hebrew Windows Hebrew (1255)

CP_Hebrew_MSDOS DOS Hebrew (862)

CP_Hebrew_Macintosh Macintosh Hebrew

CP_Hebrew_ISO ISO Hebrew (8859�8)

CP_Latin5_ISO ISO Turkish (8859�9)

CP_Cyrillic_MSDOS DOS Cyrillic (855)

CP_Bashkir Windows Bashkir

CP_Chinese_Simpl_GB Chinese Simplified (GB2312)

CP_Chinese_Simpl_Mac Chinese Simplified (Mac)

CP_Chinese_Trad_Big Chinese Traditional (Big5)

CP_Chinese_Trad_Mac Chinese Traditional (Mac)

CP_Japan_Mac Japanese (Mac)

CP_Japan_SJIS Japanese (Shift�JIS)

CP_Korean Korean

CP_Korean_Johab Korean (Johab)

CP_Korean_Mac Korean (Mac)

CP_Mathematical Mathematical symbols

CP_Digits Digits

CP_Thai Windows Thai (874)

CP_Thai_Macintosh Macintosh Thai

CP_Vietnamese Vietnamese

See also

ITextExportParams::CodePage
IHTMLExportParams::CodePage
IBarcodeParams::PDF417CodePage
IPlainText::SaveToTextFile

CorrectSkewModeEnum

CorrectSkewModeEnum enumeration constants are used to describe the type of the skew correction. These constants are bit flags.

typedef enum {

 CSM_CorrectSkewByBlackSquaresHorizontally = 1,

 CSM_CorrectSkewByBlackSquaresVertically = 2,

 CSM_CorrectSkewByHorizontalLines = 4,

 CSM_CorrectSkewByVerticalLines = 8,

 CSM_CorrectSkewByHorizontalText = 16,

 CSM_CorrectSkewByVerticalText = 32

} CorrectSkewModeEnum;

 557

ABBYY FineReader Engine 10 API Reference

Elements

Name Description
The image skew angle is corrected based on so�called "black squares" (the skew angle
is calculated based on the horizontal pairs of squares). Black squares are often placed
on forms. It is recommended to use this constant only when working with images of
forms, otherwise you may obtain incorrect results.

CSM_CorrectSkewByBlackSquaresHorizontally

The image skew angle is corrected based on so�called "black squares" (the skew angle
is calculated based on the vertical pairs of squares). Black squares are often placed on
forms. It is recommended to use this constant only when working with images of
forms, otherwise you may obtain incorrect results.

CSM_CorrectSkewByBlackSquaresVertically

CSM_CorrectSkewByHorizontalLines The image skew angle is corrected based on horizontal lines.

CSM_CorrectSkewByVerticalLines The image skew angle is corrected based on vertical lines.

CSM_CorrectSkewByHorizontalText The image skew angle is corrected based on horizontal text lines.

CSM_CorrectSkewByVerticalText The image skew angle is corrected based on vertical text lines.

See also

IImageDocument::CorrectSkew
IPrepareImageMode::CorrectSkewMode

DictionaryTypeEnum

DictionaryTypeEnum enumeration constants are used to denote different types of dictionaries.

typedef enum {

 DT_SystemDictionary,

 DT_UserDictionary,

 DT_RegularExpression,

 DT_ExternalDictionary

} DictionaryTypeEnum;

Elements

Name Description
DT_SystemDictionary The standard dictionary. The StandardDictionaryDescription provides access to the standard dictionary

description.

DT_UserDictionary The user�defined dictionary. The UserDictionaryDescription provides access to the user�defined
dictionary description.

DT_RegularExpression The regular expression�based dictionary. The RegExpDictionaryDescription provides access to the
regular expression�based dictionary description.

DT_ExternalDictionary The external dictionary. The ExternalDictionaryDescription provides access to the external dictionary
description.

See also

IDictionaryDescription::Type

DocumentElementTypeEnum

DocumentElementTypeEnum enumeration constants are used to designate the types of document elements.

typedef enum {

 DET_Paragraph,

 DET_Table,

 DET_Picture,

 DET_Barcode

} DocumentElementTypeEnum;

 558

ABBYY FineReader Engine 10 API Reference

Elements

Name Description
DET_Paragraph Paragraph.

DET_Table Table.

DET_Picture Picture.

DET_Barcode Barcode.

See also

IDocumentElement::Type

EnhancedImageColorVarietyEnum

EnhancedImageColorVarietyEnum enumeration constants represent the variety of colors on the image.

typedef enum {

 EICV_DontKnow,

 EICV_FewColors,

 EICV_ManyColors

} EnhancedImageColorVarietyEnum;

Elements

Name Description
EICV_DontKnow Unknown.

EICV_FewColors Relatively few colors. Saving in PNG or TIFF with LZW compression is recommended.

EICV_ManyColors Quite many colors. Saving in JPEG is recommended.

Note: "Recommended" means that the recommended algorithm will provide the best compression.

See also

IRasterPictureBlock::ColorVariety

ErrorHiliteLevelEnum

ErrorHiliteLevelEnum enumeration constants are used to set the level at which the uncertainly recognized characters will be
highlighted in the recognized text, that is the degree of their uncertainty.

typedef enum {

 EHL_None,

 EHL_Scanty,

 EHL_Standard,

 EHL_Thorough,

 EHL_AllText

} ErrorHiliteLevelEnum;

Elements

Name Description
EHL_None Do not highlight uncertain characters at all. This means that no character in the recognized text will have the

property ICharParams::IsSuspicious set to TRUE.

EHL_Scanty Highlight only very uncertain characters.

EHL_Standard Sets standard highlight level. This value is used by default for the IRecognizerParams::ErrorHiliteLevel property.

EHL_Thorough Highlight each character that is uncertain.

EHL_AllText Highlight all characters in the text.

 559

ABBYY FineReader Engine 10 API Reference

See also

IRecognizerParams::ErrorHiliteLevel
ICharParams::IsSuspicious

ExportPictureFormatEnum

ExportPictureFormatEnum enumeration constants specify the format or the image compression algorithm to be used during
export to various formats. Some enumeration constants may be unavailable for certain formats. For more information, see the
description of the PictureFormat property of the RTFExportParams, HTMLExportParams, PPTExportParams,
PDFExportParamsOld, PDFAExportParamsOld objects and the BackgroundFormat, ColorMaskFormat, TextMaskFormat
properties of the PDFMRCParams object.

typedef enum {

 EPF_DontSave,

 EPF_Automatic,

 EPF_JpegColor,

 EPF_JpegGray,

 EPF_PngColor,

 EPF_PngGray,

 EPF_PngBlackWhite,

 EPF_ZipColor,

 EPF_ZipGray

 EPF_LZWColor,

 EPF_LZWGray,

 EPF_CCITT4,

 EPF_BmpColor,

 EPF_BmpGray,

 EPF_BmpBlackWhite,

 EPF_J2KColor,

 EPF_J2KGray

 EPF_JBIG2

} ExportPictureFormatEnum;

Elements

Name Description
EPF_DontSave Images will not be exported.

EPF_Automatic Format is defined automatically.

EPF_BmpBlackWhite Black�and�white BMP format.

EPF_BmpColor Color BMP format.

EPF_BmpGray Gray BMP format.

EPF_CCITT4 CCITT4 compression algorithm.

EPF_J2KColor Color JPEG 2000 format.

EPF_J2KGray Gray JPEG 2000 format.

EPF_JBIG2 JBIG2 compression algorithm.

EPF_JpegColor Color JPEG format.

EPF_JpegGray Gray JPEG format.

EPF_LZWColor LZW compression algorithm will be used during export in color.

EPF_LZWGray LZW compression algorithm will be used during export in gray.

EPF_PngBlackWhite Black�and�white PNG format.

EPF_PngColor Color PNG format.

EPF_PngGray Gray PNG format.

 560

ABBYY FineReader Engine 10 API Reference

EPF_ZipColor ZIP compression algorithm will be used during export in color.

EPF_ZipGray ZIP compression algorithm will be used during export in gray.

See also

IRTFExportParams::PictureFormat
IHTMLExportParams::PictureFormat
IPPTExportParams::PictureFormat
IPDFMRCParams::BackgroundFormat
IPDFMRCParams::ColorMaskFormat
IPDFMRCParams::TextMaskFormat
IPDFExportParamsOld::PictureFormat
IPDFAExportParamsOld::PictureFormat

FieldMarkingTypeEnum

FieldMarkingTypeEnum enumeration constants describe available types of field marking for handprinted text.

Note: The number of character cells for a recognized block you can set with help of the IRecognizerParams::CellsCount property.

typedef enum {

 FMT_SimpleText,

 FMT_UnderlinedText,

 FMT_TextInFrame,

 FMT_GreyBoxes,

 FMT_CharBoxSeries,

 FMT_SimpleComb,

 FMT_CombInFrame,

 FMT_PartitionedFrame

} FieldMarkingTypeEnum;

Elements

Name Description
FMT_SimpleText This value denotes the plain text:

FMT_UnderlinedText This value specifies that the text is underlined:

FMT_TextInFrame This value specifies that the text is enclosed in a frame:

FMT_GreyBoxes This value specifies that the text is located in white fields on a gray background:

FMT_CharBoxSeries This value specifies that the field where the text is located is a set of separate boxes:

FMT_SimpleComb This value specifies that the field where the text is located is a comb:

FMT_CombInFrame This value specifies that the field where the text is located is a comb and that this comb is also the bottom
line of a frame:

FMT_PartitionedFrame This value specifies that the field where the text is located is a frame and this frame is split by vertical lines:

 561

ABBYY FineReader Engine 10 API Reference

See also

IRecognizerParams::FieldMarkingType
Recognizing Handprinted Texts

FileExportFormatEnum

FileExportFormatEnum enumeration constants define different file formats in which ABBYY FineReader Engine can save the
recognized text.

typedef enum {

 FEF_RTF,

 FEF_HTML,

 FEF_XLS,

 FEF_PDF,

 FEF_Text,

 FEF_XML,

 FEF_PDFA,

 FEF_DOCX,

 FEF_XLSX,

 FEF_PPTX

} FileExportFormatEnum;

Elements

Name Description
FEF_RTF Microsoft RTF/DOC format. The parameters of the file in this format are tuned through the RTFExportParams object.

HTML/Unicode HTML format. The parameters of a file in this format are tuned through the HTMLExportParams
object. FEF_HTML

FEF_XLS XLS (Microsoft Excel) format. The parameters of a file in this format are tuned through the XLExportParams object.
FEF_PDF PDF or PDF/A format. The parameters of a file in this format are tuned through the PDFExportParams object.

TXT/Unicode TXT or CSV/Unicode CSV format. The parameters of a file in this format are tuned through the
TextExportParams object. FEF_Text

FEF_XML XML format. The parameters of a file in this format are tuned through the XMLExportParams object.
This constant is obsolete, use the FEF_PDF instead.
The constant defines the PDF/A format. The parameters of a file in this format are tuned through the
PDFAExportParamsOld object.

FEF_PDFA

DOCX (Microsoft Word 2007) format. The parameters of the file in this format are tuned through the
RTFExportParams object. FEF_DOCX

XLSX (Microsoft Excel 2007) format. The parameters of a file in this format are tuned through the XLExportParams
object. FEF_XLSX

PPTX (Microsoft PowerPoint 2007) format. The parameters of a file in this format are tuned through the
PPTExportParams object. FEF_PPTX

See also

IFRDocument::Export
IFRDocument::ExportPages
IFRPage::Export
IEngine::ExportPage
IEngine::ExportPages
IEngine::RecognizeImageFile
IExporter::ExportPages
IExporter::ExportPagesEx

See sample: Hello

 562

ABBYY FineReader Engine 10 API Reference

FontModeEnum

FontModeEnum enumeration constants set the mode of font usage during export of recognized text into PDF format.

typedef enum {

 FM_UseStandardFonts,

 FM_UseFontsFromIText

} FontModeEnum;

Elements

Name Description
FM_UseStandardFonts The PDF file refers to the standard system fonts Times, Helvetica and CourierNew.

If the IPDFExportParamsOld::EmbedFonts property is set to TRUE, for a non�Latin code page (e.g.,
Cyrillic, Greek, Czech, etc.) ABBYY FineReader will embed the fonts provided by ParaType
(www.paratype.com/shop), and for a Latin code page fonts will not be embedded and ABBYY FineReader
will create references to the standard system fonts Times, Helvetica and CourierNew.
If the IPDFExportParamsOld::EmbedFonts property is set to FALSE, ABBYY FineReader will create
references to the standard system fonts Times, Helvetica and CourierNew for all code pages.

FM_UseFontsFromIText During export, the names of the fonts are taken from the Text object, which represents the recognized
text. System fonts are used in this case, therefore the fonts saved in the Text object must be installed on the
system.

See also

IPDFExportParamsOld::FontMode

FontTypeEnum

FontTypeEnum enumeration constants are used to denote different types of fonts.

typedef enum {

 FT_Serif,

 FT_SansSerif,

 FT_MonoSpace,

 FT_Decorative,

 FT_Unknown

} FontTypeEnum;

Elements

Name Description
FT_Serif Serif font (e.g. Times New Roman).

FT_SansSerif Sans Serif font (e.g. Arial).

FT_MonoSpace Monospace font (e.g. Courier).

FT_Decorative Decorative or handprinted font.

FT_Unknown Font type is undefined.

See also

ICharParams::FontType
ICharParams::SetFont
IFontStyle::FontType

FootnotePositionOnPageTypeEnum

FootnotePositionOnPageTypeEnum enumeration constants are used to designate the position of a footnote relative to its anchor.

typedef enum {
 FPPT_LastColumn,
 FPPT_CurrentColumn,
 FPPT_SingleColumnSection
 } FootnotePositionOnPageTypeEnum;

 563

ABBYY FineReader Engine 10 API Reference

Elements
Name Description
FPPT_LastColumn At the end of the last column on the page.
FPPT_CurrentColumn In the same column with anchor.
FPPT_SingleColumnSection In the single�column section.

See also

IFootnoteSeries::PositionOnPage
IFootnoteSeries::SetPosition

FootnoteNumberingTypeEnum

FootnoteNumberingTypeEnum enumeration constants are used to designates numbering types of footnotes.

typedef enum {

 FNT_1,

 FNT_I_capital,

 FNT_i_small,

 FNT_A_capital,

 FNT_a_small,

 FNT_Asterisk,

 FNT_AsteriskOnly

} FootnoteNumberingTypeEnum;

Elements

Name Description
FNT_1 Decimal numbering. For example, 1, 2, 3, 4, 5, ...

FNT_I_capital Uppercase Roman numerals. For example, I, II, III, IV, V, ...

FNT_i_small Lowercase Roman numerals. For example, i, ii, iii, iv, v, ...

FNT_A_capital Uppercase letters of the Latin alphabet. For example, A, B, C, D, E, ...

FNT_a_small Lowercase letters of the Latin alphabet. For example, a, b, c, d, e, ...

FNT_Asterisk Characters as defined in the Chicago Manual of Style. For example, *, †, ‡, §, **, ...

FNT_AsteriskOnly Only asterisks. For example, *, **, ***, ****, ...

See also

IFootnoteSeries::NumberingType

FootnotePositionInDocumentTypeEnum

FootnotePositionInDocumentTypeEnum enumeration constants are used to designate the different types of footnote positions.

typedef enum {

 FPDT_TextEnd,

 FPDT_PageEnd,

 FPDT_SectionEnd,

 FPDT_DocumentEnd

} FootnotePositionInDocumentTypeEnum;

Elements
Name Description
FPDT_TextEnd At the end of text on the same page.
FPDT_PageEnd At the end of page.
FPDT_SectionEnd At the end of section (may be on another page).
FPDT_DocumentEnd At the end of document.

 564

ABBYY FineReader Engine 10 API Reference

See also

IFootnoteSeries::PositionInDocument
IFootnoteSeries::SetPosition

FrameHorizontalReferenceEnum

FrameHorizontalReferenceEnum enumeration constants designate different types of objects on the page to measure horizontal
offset from. Horizontal offset is generally measured from the left border of the object for texts with left�to�right writing direction, and
from the right border — for texts with right�to�left writing direction.

typedef enum {

 FHR_Margin,

 FHR_Page

} FrameHorizontalReferenceEnum;

Elements

Name Description
FHR_Margin The offset is measured from the left (or right — for right�to�left texts) margin of the page.

FHR_Page The offset is measured from the left (or right — for right�to�left texts) border of the page.

See also

IIncut::HorizontalOffset

FrameVerticalReferenceEnum

FrameVerticalReferenceEnum enumeration constants designate different types of objects on the page to measure vertical offset
from.

typedef enum {

 FVR_Page,

 FVR_Margin,

 FVR_Section,

 FVR_Paragraph

} FrameVerticalReferenceEnum;

Elements

Name Description
FVR_Page The offset is measured from the top of the page.

FVR_Margin The offset is measured from the top margin of the page.

FVR_Section The offset is measured from the top of the section on this page.

FVR_Paragraph The offset is measured from the first line of the paragraph.

See also

IIncut::VerticalOffset

FREngineModuleEnum

FREngineModuleEnum enumeration constants are used to denote loaded modules.

typedef enum {

 FREM_ImageSupport,

 FREM_Export,

 FREM_DocumentAnalyzer,

 FREM_Recognizer,

 FREM_RecognizerHP,

 FREM_PDF,

 FREM_FREngineProcessor,

 FREM_ChineseTraditionalPatterns,

 565

ABBYY FineReader Engine 10 API Reference

 FREM_ChineseSimplifiedPatterns,

 FREM_JapanesePatterns,

 FREM_KoreanPatterns,

 FREM_EuropeanPatterns

} FREngineModuleEnum;

Elements

Name Description
FREM_ImageSupport Specifies Image Support module.

Note: The Image Support module is loaded during the creation of the Engine object. Attempts
to load this module with the help of the LoadModule method will be ignored. This constant has
been retained for backward compatibility.

FREM_Export Specifies Export module.

FREM_DocumentAnalyzer Specifies Document Analyzer module.

FREM_Recognizer Specifies Recognizer module.

FREM_RecognizerHP Specifies RecognizerHP module.

FREM_PDF Specifies PDF module.
Note: The PDF module is loaded during the creation of the Engine object. Attempts to load

this module with the help of the LoadModule method will be ignored. This constant has been
retained for backward compatibility.

FREM_FREngineProcessor Specifies FineReader Engine Processor module.

Specifies Chinese Traditional Patterns module. FREM_ChineseTraditionalPatterns

FREM_ChineseSimplifiedPatterns Specifies Chinese Simplified Patterns module.

FREM_JapanesePatterns Specifies Japanese Patterns module.

FREM_KoreanPatterns Specifies Korean Patterns module.

FREM_EuropeanPatterns Specifies European Patterns module.

See also

IEngine::LoadModule

HTMLFormatModeEnum

HTMLFormatModeEnum enumeration constants are used to specify the language version used for export to HTML format.

typedef enum {

 HFM_Format32,

 HFM_Format40

} HTMLFormatModeEnum;

Elements

Name Description
HFM_Format32 Simple format using HTML 3.2 standard. Almost all browsers support this format (Netscape Navigator, Internet

Explorer 3.0 and later). Not all document layout is retained: first�line indent and indents in tables are not retained.

HFM_Format40 Full format using HTML 4.0 standard. It supports all types of document layout retention. It requires Internet
Explorer 4.0 or later. A built�in style sheet (CSS) is used.

See also

IHTMLExportParams::HTMLFormatMode

HTMLDocumentSplittingModeEnum

HTMLDocumentSplittingModeEnum enumeration constants are used to denote the mode of splitting HTML document into files.

typedef enum {

 566

ABBYY FineReader Engine 10 API Reference

 HDSM_None,

 HDSM_Heading_1,

 HDSM_Heading_2,

 HDSM_Smart

} HTMLDocumentSplittingModeEnum;

Elements

Name Description
HDSM_None Do not split file. One output HTML file corresponds to one input file.

HDSM_Heading_1 Split into files by headings of one level.

HDSM_Heading_2 Split into files by headings of two levels.

HDSM_Smart Smart mode. The program takes into account headings and controls the output files length in order the file
length does not exceed some value.

See also

IHTMLExportParams::SplitDocumentToFiles

HTMLSynthesisModeEnum

HTMLSynthesisModeEnum enumeration constants are used to denote available modes of synthesizing HTML code from the
recognized text.

typedef enum {

 HSM_PlainText,

 HSM_FormattedStream,

 HSM_FlexibleLayout

} HTMLSynthesisModeEnum;

Elements

Name Description
HSM_PlainText Only paragraphs are retained in the recognized text with the use of the <p> tag.

HSM_FormattedStream Paragraphs and fonts of the recognized text are retained in the output HTML file. The <p> tag is used.

HSM_FlexibleLayout Logical structure of the document is retained in the output HTML file.

See also

IHTMLExportParams::HTMLSynthesisMode

HyperlinkSchemeEnum

HyperlinkSchemeEnum enumeration constants are used to denote different types of hyperlinks.

typedef enum {

 HS_Unknown,

 HS_Local,

 HS_Ftp,

 HS_Gopher,

 HS_Http,

 HS_Https,

 HS_File,

 HS_News,

 HS_Mailto

} HyperlinkSchemeEnum;

Elements

Name Description
HS_Unknown The type of hyperlink is defined automatically.

 567

ABBYY FineReader Engine 10 API Reference

HS_Local A local hyperlink to a text fragment in the same document.

HS_Ftp The FTP site address.

HS_Gopher The Gopher server address.

HS_Http The web site address.

HS_Https The HTTPS web site address.

HS_File The full path to the file.

HS_News The full address to a news group.

HS_Mailto The e�mail address.

See also

IHyperlink::ParseTarget
IHyperlink::Scheme

ImageColorTypeEnum

ImageColorTypeEnum enumeration constants are used to describe different color types of an image.

typedef enum {

 ICT_BlackWhite,

 ICT_Gray,

 ICT_Color

} ImageColorTypeEnum;

Elements

Name Description
ICT_BlackWhite Black�and�white image.

ICT_Gray Gray image.

ICT_Color Color image.

See also

IImageDocument::ImageColorType
IImage::ImageColorType
IRasterPictureBlock::ColorType

ImageCompressionEnum

ImageCompressionEnum enumeration constants are used to set the image compression type for temporary image files.
Compression can be applied to color and gray images only. ZIP compression is used.

typedef enum {

 IC_NoCompression,

 IC_Compress,

 IC_Auto

} ImageCompressionEnum;

Elements

Name Description
Uncompressed. This compression type provides the largest image file size, the quality of the original image, and
the least processing time. IC_NoCompression

IC_Compress This compression type provides the least image file size and the worst image quality.

IC_Auto Lossless compression. This compression type provides a medium image file size and the quality of the original
image.

 568

ABBYY FineReader Engine 10 API Reference

See also

IPrepareImageMode::ImageCompression

ImageFileFormatEnum

ImageFileFormatEnum enumeration constants are used to specify the format of the image file that can be read or written by means
of ABBYY FineReader Engine. ABBYY FineReader Engine can open image files in all formats described by these enumeration constants,
but not all formats are supported for writing.

typedef enum {

 IFF_UnknownFormat,

 IFF_BmpBwUncompressed,

 IFF_BmpGrayUncompressed,

 IFF_BmpColorUncompressed,

 IFF_DcxBwPackbits,

 IFF_DcxGrayPackbits,

 IFF_DcxColorPackbits,

 IFF_JpegGrayJfif,

 IFF_JpegColorJfif,

 IFF_PcxBwPackbits,

 IFF_PcxGrayPackbits,

 IFF_PcxColorPackbits,

 IFF_PngBwPng,

 IFF_PngGrayPng,

 IFF_PngColorPng,

 IFF_TiffBwUncompressed,

 IFF_TiffBwCcittGroup3,

 IFF_TiffBwCcittGroup3Fax,

 IFF_TiffBwCcittGroup4,

 IFF_TiffBwPackbits,

 IFF_TiffGrayUncompressed,

 IFF_TiffGrayPackbits,

 IFF_TiffGrayJpegJfif,

 IFF_TiffColorUncompressed,

 IFF_TiffColorPackbits,

 IFF_TiffColorJpegJfif,

 IFF_TiffGrayABBYYLossless,

 IFF_TiffColorABBYYLossless,

 IFF_Jpeg2kGray,

 IFF_Jpeg2kColor,

 IFF_PDF,

 IFF_TiffBwLZW,

 IFF_TiffGrayLZW,

 IFF_TiffColorLZW,

 IFF_TiffBwZip,

 IFF_TiffGrayZip,

 IFF_TiffColorZip,

 IFF_GifBwLZW,

 IFF_GifGrayLZW,

 IFF_GifColorLZW,

 IFF_DjVuBw,

 IFF_DjVuGray,

 IFF_DjVuColor,

 IFF_JBIG2,
 IFF_WdpBw,
 IFF_WdpGray,

 569

ABBYY FineReader Engine 10 API Reference

 IFF_WdpColor,
 IFF_Wic

} ImageFileFormatEnum;

Elements

Name Description Supported for
reading

Supported for
writing

IFF_UnknownFormat This value specifies unknown format. May only
appear as the return value.

IFF_BmpBwUncompressed Black–and–white uncompressed BMP. + +

IFF_BmpGrayUncompressed Gray uncompressed BMP. + +

IFF_BmpColorUncompressed Color uncompressed BMP. + +

IFF_DcxBwPackbits Black–and–white DCX. + +

IFF_DcxGrayPackbits Gray DCX. + +

IFF_DcxColorPackbits Color DCX. + +

IFF_JpegGrayJfif Gray JPEG (JFIF fomat). + +

IFF_JpegColorJfif Color JPEG (JFIF fomat). + +

IFF_PcxBwPackbits Black–and–white PCX. + +

IFF_PcxGrayPackbits Gray PCX. + +

IFF_PcxColorPackbits Color PCX. + +

IFF_PngBwPng Black–and–white PNG. + +

IFF_PngGrayPng Gray PNG. + +

IFF_PngColorPng Color PNG. + +

IFF_TiffBwUncompressed Black–and–white uncompressed TIFF. + +

IFF_TiffBwCcittGroup3 Black–and–white TIFF, GROUP3 compressed. + +

IFF_TiffBwCcittGroup3Fax Black–and–white TIFF, GROUP3FAX compressed. + +

IFF_TiffBwCcittGroup4 Black–and–white TIFF, GROUP4 compressed. + +

IFF_TiffBwPackbits Black–and–white TIFF, PACKBITS compressed. + +

IFF_TiffGrayUncompressed Gray uncompressed TIFF. + +

IFF_TiffGrayPackbits Gray TIFF, PACKBITS compressed. + +

IFF_TiffGrayJpegJfif Gray TIFF, JPEG(JFIF) compressed. + +

IFF_TiffColorUncompressed Color uncompressed TIFF. + +

IFF_TiffColorPackbits Color TIFF, PACKBITS compressed. + +

IFF_TiffColorJpegJfif Color TIFF, JPEG(JFIF) compressed. + +

IFF_TiffGrayABBYYLossless Gray TIFF, ABBYYLossless compressed. +

IFF_TiffColorABBYYLossless Color TIFF, ABBYYLossless compressed. +

IFF_Jpeg2kGray Gray JPEG 2000. + +

IFF_Jpeg2kColor Color JPEG 2000. + +

IFF_PDF PDF. + +

IFF_TiffBwLZW Black–and–white TIFF, LZW–compressed. + +

IFF_TiffGrayLZW Gray TIFF, LZW–compressed. + +

IFF_TiffColorLZW Color TIFF, LZW–compressed. + +

 570

ABBYY FineReader Engine 10 API Reference

IFF_TiffBwZip Black–and–white TIFF, ZIP–compressed. + +

IFF_TiffGrayZip Gray TIFF, ZIP–compressed. + +

IFF_TiffColorZip Color TIFF, ZIP–compressed. + +

IFF_GifBwLZW Black–and–white GIF, LZW–compressed. +

IFF_GifGrayLZW Gray GIF, LZW–compressed. +

IFF_GifColorLZW Color GIF, LZW–compressed. +

IFF_DjVuBw Black–and–white DjVu. +

IFF_DjVuGray Gray DjVu. +

IFF_DjVuColor Color DjVu. +

IFF_JBIG2 JBIG2. + +
IFF_WdpBw Black�and�white WDP. +
IFF_WdpGray Gray WDP. +
IFF_WdpColor Color WDP. +
IFF_Wic WIC. +

See also

IEngine::CreateMultipageImageWriter
IImageDocument::SourceImageFileFormat
IImage::WriteToFile
Supported Image Formats

ImageTypeEnum

ImageTypeEnum enumeration constants are used to convert coordinates between different image planes of the ImageDocument
object. The latter object represents an open image. The open image contains only one page for each color type (black�and�white or
color). It is either deskewed or non�deskewed depending on the internal file preparation mode (see the description of the
PrepareImageMode object).

typedef enum {

 IT_Base,

 IT_Deskewed,

 IT_Preview

} ImageTypeEnum;

Elements

Name Description
IT_Base Non�deskewed image.

IT_Deskewed Fully deskewed image.

IT_Preview Preview image.
 Note: An open image contains this image plane, only if IPrepareImageMode::CreatePreview property was set
to TRUE during image preparation.

See also

ImageDocument
IImageDocument::ConvertCoordinates

LanguageCategoryEnum

LanguageCategoryEnum enumeration constants are used to describe the category of a predefined ABBYY FineReader
Engine language.

typedef enum {

 LC_CoreLanguage,

 LC_AdditionalLanguage,

 571

ABBYY FineReader Engine 10 API Reference

 LC_ConstructedLanguage,

 LC_FormalLanguage

} LanguageCategoryEnum;

Elements

Name Description
LC_CoreLanguage A widespread language, such as English or Russian.

LC_AdditionalLanguage Additional languages, not so widely used as core languages. Examples are Afrikaans or Albanian.

LC_ConstructedLanguage An artificial language such as Esperanto or Interlingua.

LC_FormalLanguage Programming language or another formal language. For example, Basic and C/C++ languages belong to
this category.

See also

IPredefinedLanguage::LanguageCategory

LanguageIdEnum

LanguageIdEnum enumeration represents Win32 standard language identifier (data type LANGID). It may be converted into the
standard Win32 LCID by calling the IEngine::ConvertLanguageIdToLCID method.

typedef enum {

 LI_Null = 0,

 LI_EnglishUnitedStates = 1033,

 LI_EnglishUnitedKingdom = 2057,

 LI_EnglishAustralian = 3081,

 LI_EnglishCanadian = 4105,

 LI_EnglishNewZealand = 5129,

 LI_EnglishIreland = 6153,

 LI_EnglishSouthAfrica = 7177,

 LI_EnglishJamaica = 8201,

 LI_EnglishCaribbean = 9225,

 LI_EnglishBelize = 10249,

 LI_EnglishTrinidad = 11273,

 LI_Bulgarian = 1026,

 LI_Czech = 1029,

 LI_Danish = 1030,

 LI_GermanStandard = 1031,

 LI_GermanSwiss = 2055,

 LI_GermanAustrian = 3079,

 LI_GermanLuxembourg = 4103,

 LI_GermanLiechtenstein = 5127,

 LI_Greek = 1032,

 LI_SpanishTraditionalSort = 1034,

 LI_SpanishMexican = 2058,

 LI_SpanishModernSort = 3082,

 LI_SpanishGuatemala = 4106,

 LI_SpanishCostaRica = 5130,

 LI_SpanishPanama = 6154,

 LI_SpanishDominicanRepublic = 7178,

 LI_SpanishVenezuela = 8202,

 LI_SpanishColombia = 9226,

 LI_SpanishPeru = 10250,

 LI_SpanishArgentina = 11274,

 LI_SpanishEcuador = 12298,

 LI_SpanishChile = 13322,

 572

ABBYY FineReader Engine 10 API Reference

 LI_SpanishUruguay = 14346,

 LI_SpanishParaguay = 15370,

 LI_SpanishBolivia = 16394,

 LI_SpanishElSalvador = 17418,

 LI_SpanishHonduras = 18442,

 LI_SpanishNicaragua = 19466,

 LI_SpanishPuertoRico = 20490,

 LI_Finnish = 1035,

 LI_FrenchStandard = 1036,

 LI_FrenchBelgian = 2060,

 LI_FrenchCanadian = 3084,

 LI_FrenchSwiss = 4108,

 LI_FrenchLuxembourg = 5132,

 LI_Hungarian = 1038,

 LI_Icelandic = 1039,

 LI_ItalianStandard = 1040,

 LI_ItalianSwiss = 2064,

 LI_DutchStandard = 1043,

 LI_DutchBelgian = 2067,

 LI_NorwegianBokmal = 1044,

 LI_NorwegianNynorsk = 2068,

 LI_Polish = 1045,

 LI_PortugueseBrazilian = 1046,

 LI_PortugueseStandard = 2070,

 LI_Romanian = 1048,

 LI_Russian = 1049,

 LI_Croatian = 1050,

 LI_SerbianLatin = 2074,

 LI_SerbianCyrillic = 3098,

 LI_Slovak = 1051,

 LI_Swedish = 1053,

 LI_SwedishFinland = 2077,

 LI_Turkish = 1055,

 LI_Slovenian = 1060,

 LI_Afrikaans = 1078,

 LI_Albanian = 1052,

 LI_Basque = 1069,

 LI_Belarusian = 1059,

 LI_Catalan = 1027,

 LI_Estonian = 1061,

 LI_Faeroese = 1080,

 LI_Indonesian = 1057,

 LI_Latvian = 1062,

 LI_Lithuanian = 1063,

 LI_Ukrainian = 1058,

 LI_Japanese = 1041,

 LI_Korean = 1042,

 LI_KoreanJohab = 2066,

 LI_ChinesePRC = 2052,

 LI_ChineseSingapore = 4100,

 LI_Thai = 1054,

 LI_ChineseTaiwan = 1028,

 LI_ChineseHongKong = 3076,

 LI_Vietnamese = 1066,

 LI_Hebrew = 1037,

 573

ABBYY FineReader Engine 10 API Reference

 LI_Macedonian = 1071,

 LI_Swahili = 1089,

 LI_Tatar = 1092,

 LI_Irish = 1552,

 LI_Tagalog = 1553,

 LI_User = 1554,

 LI_MalayMalaysian = 1086,

 LI_MalayBruneiDarussalam = 2110,

 LI_Maori = 1064,

 LI_RomanianMoldavia = 2072,

 LI_RhaetoRomanic = 1047,

 LI_Breton = 1536,

 LI_Esperanto = 1537,

 LI_Fijian = 1538,

 LI_Hawaiian = 1539,

 LI_Latin = 1540,

 LI_Provencal = 1541,

 LI_Samoan = 1542,

 LI_Welsh = 1543,

 LI_Chechen = 1544,

 LI_CrimeanTatar = 1546,

 LI_Mongol = 1104,

 LI_Ossetic = 1547,

 LI_Kabardian = 1548,

 LI_Yiddish = 1077,

 LI_ArmenianEastern = 1067,

 LI_ArmenianWestern = 32811,

 LI_ArmenianGrabar = 33835,

 LI_GermanNewSpelling = 32775,

 LI_RussianOldSpelling = 32793,

 LI_AzeriCyrillic = 2092,

 LI_AzeriLatin = 1068,

 LI_ChineseMacau = 5124,

 LI_EnglishPhilippines = 13321,

 LI_EnglishZimbabwe = 12297,

 LI_FrenchMonaco = 6156,

 LI_GaelicScottish = 1084,

 LI_Kazakh = 1087,

 LI_Lappish = 1083,

 LI_LithuanianClassic = 2087,

 LI_Maltese = 1082,

 LI_RussianMoldavia = 2073,

 LI_Sorbian = 1070,

 LI_Tswana = 1074,

 LI_UzbekCyrillic = 2115,

 LI_UzbekLatin = 1091,

 LI_Xhosa = 1076,

 LI_Zulu = 1077,

 LI_Abkhaz = 1556,

 LI_Adyghe = 1557,

 LI_Awar = 1558,

 LI_Agul = 1559,

 LI_Altaic = 1545,

 LI_Aymara = 1560,

 LI_Bashkir = 1561,

 574

ABBYY FineReader Engine 10 API Reference

 LI_Bemba = 1562,

 LI_Blackfoot = 1563,

 LI_Bugotu = 1564,

 LI_Buryat = 1565,

 LI_Chamorro = 1566,

 LI_Chukcha = 1567,

 LI_Chuvash = 1568,

 LI_Corsican = 1569,

 LI_Crow = 1570,

 LI_Dargwa = 1571,

 LI_Dungan = 1572,

 LI_EskimoCyrillic = 1573,

 LI_Even = 1574,

 LI_Evenki = 1575,

 LI_Frisian = 1576,

 LI_Friulian = 1577,

 LI_Gagauz = 1578,

 LI_Galician = 1579,

 LI_Ganda = 1580,

 LI_EskimoLatin = 1581,

 LI_Guarani = 1582,

 LI_Hani = 1583,

 LI_Ido = 1584,

 LI_Ingush = 1585,

 LI_Interlingua = 1586,

 LI_Kalmyk = 1587,

 LI_Karakalpak = 1588,

 LI_KarachayBalkar = 1589,

 LI_Kasub = 1590,

 LI_Kawa = 1591,

 LI_Khakas = 1592,

 LI_Khanty = 1593,

 LI_Kikuyu = 1594,

 LI_Kirgiz = 1595,

 LI_Kongo = 1598,

 LI_Koryak = 1599,

 LI_Kpelle = 1600,

 LI_Kumyk = 1601,

 LI_Kurdish = 1602,

 LI_Lak = 1604,

 LI_Lezgin = 1605,

 LI_Luba = 1606,

 LI_Malagasy = 1607,

 LI_Malinke = 1608,

 LI_Mansi = 1609,

 LI_Mari = 1610,

 LI_Maya = 1611,

 LI_Miao = 1612,

 LI_Minankabaw = 1613,

 LI_Mohawk = 1614,

 LI_Mordvin = 1615,

 LI_Nahuatl = 1616,

 LI_Nenets = 1618,

 LI_Nivkh = 1619,

 LI_Nogay = 1620,

 575

ABBYY FineReader Engine 10 API Reference

 LI_Nyanja = 1621,

 LI_Occidental = 1622,

 LI_Ojibway = 1623,

 LI_Papiamento = 1624,

 LI_PidginEnglish = 1625,

 LI_Quechua = 1626,

 LI_Romany = 1627,

 LI_Ruanda = 1628,

 LI_Rundi = 1629,

 LI_Selkup = 1630,

 LI_Shona = 1631,

 LI_Sioux = 1632,

 LI_Somali = 1633,

 LI_Sotho = 1634,

 LI_Sunda = 1635,

 LI_Swazi = 1636,

 LI_Tabassaran = 1637,

 LI_Tajik = 1638,

 LI_Tahitian = 1639,

 LI_Tinpo = 1640,

 LI_Tongan = 1641,

 LI_Tun = 1642,

 LI_Turkmen = 1643,

 LI_Tuvin = 1644,

 LI_Udmurt = 1645,

 LI_UighurCyrillic = 1646,

 LI_Visayan = 1648,

 LI_Wolof = 1649,

 LI_Yakut = 1650,

 LI_Zapotec = 1651,

 LI_Hausa = 1652,

 LI_OldEnglish = 32777,

 LI_OldGerman = 33799,

 LI_OldFrench = 32780,

 LI_OldItalian = 32784,

 LI_OldSpanish = 32778,

 LI_EnglishLaw = 35849,

 LI_GermanLaw = 34823,

 LI_GermanNewSpellingLaw = 35847,

 LI_EnglishMedical = 33801,

 LI_GermanMedical = 36871,

 LI_GermanNewSpellingMedical = 37895,

 LI_UighurLatin = 1647,

 LI_LatvianGothic = 1655

} LanguageIdEnum;

See also

IEngine::CreateNewDictionary
IEngine::ConvertLanguageIdToLCID
IEngine::ConvertLCIDToLanguageId
IBaseLanguage::LanguageId
ICharParams::LanguageId
IRecognizerParams::WritingStyle

 576

ABBYY FineReader Engine 10 API Reference

LicenseCounterTypeEnum

LicenseCounterTypeEnum enumeration constants are used to denote the units (pages, characters) used by the ABBYY FineReader
Engine license to limit the number of the recognition and export operations during a period.

typedef enum {

 LCT_Pages,

 LCT_Characters,

 LCT_FineReaderXIXPages,

 LCT_FineReaderXIXCharacters

} LicenseCounterTypeEnum;

Elements

Name Description
LCT_Pages The limitation counts pages.

LCT_Characters The limitation counts characters.

LCT_FineReaderXIXPages The limitation counts pages of the FineReader XIX module.

LCT_FineReaderXIXCharacters The limitation counts characters of the FineReader XIX module.

See also

ILicense::VolumeRefreshingPeriod
ILicense::VolumeRemaining
ILicense::Volume

MemoryImageFormatEnum

MemoryImageFormatEnum enumeration constants describe formats of the memory images that ABBYY FineReader Engine can
work with.

typedef enum {

 MIF_BlackAndWhite,

 MIF_Gray,

 MIF_Color

} MemoryImageFormatEnum;

Elements

Name Description
MIF_BlackAndWhite Black�and�white memory image file. One pixel is represented by one bit in memory. 0 corresponds to white

color, 1 corresponds to black color.

MIF_Gray Gray memory image file. One pixel is represented by one byte in memory. Thus, this image file format may
have 255 shades of gray. 0 corresponds to white color, 255 corresponds to black color.

MIF_Color Color memory image file. One pixel is represented by three bytes in memory. Each byte corresponds to one of
the basic colors (red, green or blue). The value of 0 for a byte corresponds to the minimum color intensity, and
the value of 255 corresponds to the maximum color intensity.

See also

IEngine::OpenMemoryImage
IEngine::PrepareMemoryImage
IEngine::PrepareAndOpenMemoryImage
Memory image format description

MessagesLanguageEnum

MessagesLanguageEnum enumeration constants describe different interface languages that ABBYY FineReader Engine supports.
Some languages defined by this enumeration are not currently supported, and the specific set of languages that are supported by your
system depends on the availability of resource modules. If you try to set a messages language that is not supported by ABBYY
FineReader Engine, it will automatically be changed to the language with the lowest code available.

Note: The locale for the selected messages language must be installed on the computer.

 577

ABBYY FineReader Engine 10 API Reference

typedef enum {

 ML_English = 0,

 ML_Russian = 1,

 ML_German = 2,

 ML_French = 3,

 ML_Ukrainian = 4,

 ML_Spanish = 5,

 ML_Italian = 6,

 ML_DutchStandard = 7,

 ML_Danish = 8,

 ML_Swedish = 9,

 ML_Slovak = 14,

 ML_Polish = 15,

 ML_Czech = 16,

 ML_Hungarian = 17,

 ML_Lithuanian = 18,

 ML_Estonian = 20,

 ML_Bulgarian = 23,

 ML_Turkish = 24,

 ML_PortugueseBrazilian = 27,

 ML_Korean = 63,

 ML_ChinesePRC = 64,

 ML_ChineseTaiwan = 65

} MessagesLanguageEnum;

Elements

Name Description
ML_English English language

ML_Russian Russian language

ML_German German language

ML_French French language

ML_Ukrainian Ukrainian language

ML_Spanish Spanish language

ML_Italian Italian language

ML_DutchStandard Dutch language

ML_Danish Danish language

ML_Swedish Swedish language

ML_Slovak Slovak language

ML_Polish Polish language

ML_Czech Czech language

ML_Hungarian Hungarian language

ML_Lithuanian Lithuanian language

ML_Estonian Estonian language

ML_Bulgarian Bulgarian language

ML_Turkish Turkish language

ML_PortugueseBrazilian Portuguese (Brazil) language

ML_Korean Korean language

 578

ABBYY FineReader Engine 10 API Reference

ML_ChinesePRC Chinese (PRC) language

ML_ChineseTaiwan Chinese (Taiwan) language

See also

IEngine::MessagesLanguage

MonospaceDetectionModeEnum

MonospaceDetectionModeEnum enumeration constants specify the mode of monospaced font detection.

typedef enum {

 MDM_Auto,

 MDM_NotMonospace,

 MDM_Monospace

} MonospaceDetectionModeEnum;

Elements

Name Description
MDM_Auto The font is detected automatically.

MDM_NotMonospace Sets the font to non–monospaced.

MDM_Monospace Sets the font to monospaced.

See also

IFontFormattingDetectionParams::MonospaceDetectionMode

MultiProcessingModeEnum

MultiProcessingModeEnum enumeration constants specify the mode of distribution analysis and recognition of multi�page
documents to CPU cores.

typedef enum {

 MPM_Sequential,

 MPM_Auto,

 MPM_Parallel

} MultiProcessingModeEnum;

Elements
Name Description
MPM_Sequential Pages of a document are recognized sequentially in one process.
MPM_Auto The number of processes is detected automatically. If one page is recognized or there is only one processor in the

system, one process is used for recognition. Otherwise parallel recognition is used.
MPM_Parallel Pages of a document are always recognized in parallel processes.

Notes:

• When parallel recognition is used, the number of processes is equal to the minimum of the following values:

o the value of the IMultiProcessingParams::RecognitionProcessesCount property,

o number of available physical or logical CPU cores (depending on the value of the UseOnlyPhysicalCPUCores
property),

o number of free CPU cores available in the license,

o number of pages in the processing document.

• ABBYY FineReader Engine uses self�training recognition algorithm, and thus tunes itself for recognition of text of a certain
type. Therefore it is good to use one Document analyzer instance for recognition of a number of pages of the same kind, as
this improves speed and quality of recognition as compared with the situation when each page is recognized in a separate

 579

ABBYY FineReader Engine 10 API Reference

document. Now ABBYY FineReader Engine cannot share the information about recognition between different processes,
that is why the results of recognition of the same document in parallel processes and in a single process may be different.

• The distribution among CPU cores is available for the following methods:

o the Analyze, AnalyzePages, Recognize, RecognizePages, AnalyzeAndRecognize,
AnalyzeAndRecognizePages, and Process methods of the FRDocument object

o the AnalyzeAndRecognizePages, AnalyzePages, RecognizePages methods of the Engine object

o the AnalyzeAndRecognizePages, AnalyzePages, RecognizePages methods of the DocumentAnalyzer
object.

See also

IMultiProcessingParams::MultiProcessingMode

NumberingStyleEnum

NumberingStyleEnum enumeration constants describe different styles of list numbering.

typedef enum {

 NS_None,

 NS_Decimal,

 NS_UpperRoman,

 NS_LowerRoman,

 NS_UpperLetter,

 NS_LowerLetter,

 NS_Ordinal,

 NS_CardinalText,

 NS_OrdinalText,

 NS_Hex,

 NS_Chicago,

 NS_IdeographDigital,

 NS_JapaneseCounting,

 NS_Aiueo,

 NS_Iroha,

 NS_DecimalFullWidth,

 NS_DecimalHalfWidth,

 NS_JapaneseLegal,

 NS_JapaneseDigitalTenThousand,

 NS_DecimalEnclosedCircle,

 NS_DecimalFullWidth2,

 NS_AiueoFullWidth,

 NS_IrohaFullWidth,

 NS_DecimalZero,

 NS_Bullet,

 NS_Ganada,

 NS_Chosung,

 NS_DecimalEnclosedFullstop,

 NS_DecimalEnclosedParen,

 NS_DecimalEnclosedCircleChinese,

 NS_IdeographEnclosedCircle,

 NS_IdeographTraditional,

 NS_IdeographZodiac,

 NS_IdeographZodiacTraditional,

 NS_TaiwaneseCounting,

 NS_IdeographLegalTraditional,

 NS_TaiwaneseCountingThousand,

 580

ABBYY FineReader Engine 10 API Reference

 NS_TaiwaneseDigital,

 NS_ChineseCounting,

 NS_ChineseLegalSimplified,

 NS_ChineseCountingThousand,

 NS_ApplicationDefined,

 NS_KoreanDigital,

 NS_KoreanCounting,

 NS_KoreanLegal,

 NS_KoreanDigital2,

 NS_Hebrew1,

 NS_ArabicAlpha,

 NS_Hebrew2,

 NS_ArabicAbjad,

 NS_HindiVowels,

 NS_HindiConsonants,

 NS_HindiNumbers,

 NS_HindiCounting,

 NS_ThaiLetters,

 NS_ThaiNumbers,

 NS_ThaiCounting,

 NS_VietnameseCounting,

 NS_NumberInDash,

 NS_RussianLower,

 NS_RussianUpper

} NumberingStyleEnum;

Elements

Name Description
NS_None No numbering.

NS_Decimal Decimal numbering. For example, 1, 2, 3, … , 9, 10, 11.

NS_UpperRoman Uppercase Roman numerals. For example, I, II, III.

NS_LowerRoman Lowercase Roman numerals. For example, i, ii, iii.

NS_UpperLetter Uppercase letters of the Latin alphabet. For example, A, B, C.

NS_LowerLetter Lowercase letters of the Latin alphabet. For example, a, b, c.

NS_Ordinal Ordinal numbers of the current language. For example, 1st, 2nd, 3rd.

NS_CardinalText Cardinal numerals of the current language. For example, one, two, three.

NS_OrdinalText Ordinal numerals of the current language. For example, first, second, third.

NS_Hex Hexadecimal numbering. For example, 1, 2, 3, … , 9, A, B.

NS_Chicago Characters as defined in the Chicago Manual of Style. For example, *, †, ‡.

NS_IdeographDigital Sequential numeric ideographs.

NS_JapaneseCounting Sequential numbers from the Japanese counting system.

NS_Aiueo Hiragana characters in the traditional a�i�u�e�o order.

NS_Iroha Katakana characters in the iroha order.

NS_DecimalFullWidth Double�byte Arabic numbering.

NS_DecimalHalfWidth Single�byte Arabic numbering. For example, 1, 2, 3.

NS_JapaneseLegal Sequential numbers from the Japanese legal counting system.

NS_JapaneseDigitalTenThousand Sequential numbers from the Japanese digital ten thousand counting system.

 581

ABBYY FineReader Engine 10 API Reference

NS_DecimalEnclosedCircle Decimal numbering enclosed in a circle, using the enclosed alphanumeric glyph character. Once
the specified sequence reaches 21, the numbers may be replaced with non�enclosed equivalents.

NS_DecimalFullWidth2 An alternative set of double�byte Arabic numbering, if one exists in the current font.

NS_AiueoFullWidth Full�width hiragana characters in the traditional a�i�u�e�o order.

NS_IrohaFullWidth Full�width katakana characters in the iroha order.

NS_DecimalZero Arabic numbering with a zero added to numbers one through nine. For example, 01, 02, 03, …,
09, 10.

NS_Bullet Bullet characters. For example, ●.

NS_Ganada Sequential numbers in the Korean Ganada format.

NS_Chosung Sequential numbers in the Korean Chosung format.

NS_DecimalEnclosedFullstop Decimal numbering followed by a period, using the enclosed alphanumeric glyph character.
Once the specified sequence reaches 21, the numbers may be replaced with non�enclosed
equivalents.

NS_DecimalEnclosedParen Decimal numbering enclosed in parenthesis, using the enclosed alphanumeric glyph character.
Once the specified sequence reaches 21, the numbers may be replaced with non�enclosed
equivalents.

NS_DecimalEnclosedCircleChinese Decimal numbering enclosed in a circle, using the enclosed alphanumeric glyph character. Once
the specified sequence reaches 11, the numbers may be replaced with non�enclosed equivalents.

NS_IdeographEnclosedCircle Sequential numerical ideographs enclosed in a circle, using the appropriate character. Once the
specified sequence reaches 11, the numbers may be replaced with non�enclosed equivalents.

NS_IdeographTraditional Sequential numerical traditional ideographs.

NS_IdeographZodiac Zodiac ideographs.

NS_IdeographZodiacTraditional Traditional zodiac ideographs.

NS_TaiwaneseCounting Sequential numbers from the Taiwanese counting system.

NS_IdeographLegalTraditional Sequential numerical traditional legal ideographs.

NS_TaiwaneseCountingThousand Sequential numbers from the Taiwanese counting thousand system.

NS_TaiwaneseDigital Sequential numbers from the Taiwanese digital counting system.

NS_ChineseCounting Ascending numbers from the Chinese counting system.

NS_ChineseLegalSimplified Sequential numbers in the Chinese simplified legal format.

NS_ChineseCountingThousand Sequential numbers from the Chinese counting thousand system.

NS_ApplicationDefined Application defined numbering. May be ignored.

NS_KoreanDigital Sequential numbers from the Korean digital counting system.

NS_KoreanCounting Sequential numbers from the Korean counting system.

NS_KoreanLegal Sequential numbers from the Korean legal numbering system.

NS_KoreanDigital2 Sequential numbers from the Korean digital counting system alternate.

NS_Hebrew1 Hebrew numerals.

NS_ArabicAlpha Characters of the Arabic alphabet.

NS_Hebrew2 Characters of the Hebrew alphabet.

NS_ArabicAbjad Ascending Arabic Abjad numerals.

NS_HindiVowels Hindi vowels.

NS_HindiConsonants Hindi consonants.

NS_HindiNumbers Hindi numbers.

NS_HindiCounting Sequential numbers from the Hindi counting system.

 582

ABBYY FineReader Engine 10 API Reference

NS_ThaiLetters Thai letters. For example, ก, ข, ค.

NS_ThaiNumbers Thai numerals. For example, ๒, ๓, ๔.

NS_ThaiCounting Sequential numbers from the Thai counting system. For example, หนึ่ง, สอง, สาม.

NS_VietnameseCounting Vietnamese numerals. For example, một, hai, ba.

NS_NumberInDash Arabic numbering surrounded by dash characters. For example, � 1 �, � 2 �, � 3 �.

NS_RussianLower Lowercase letters of the Russian alphabet.

NS_RussianUpper Uppercase letters of the Russian alphabet.

See also

IListLevel::NumberingStyle

ObjectsColorEnum

ObjectsColorEnum enumeration constants describe available colors of the objects, which can be removed from the image.

typedef enum {

 OC_Red,

 OC_Green,

 OC_Blue,

 OC_Yellow

} ObjectsColorEnum;

Elements

Name Description
OC_Red Red tint.

OC_Green Green tint.

OC_Blue Blue tint.

OC_Yellow Yellow tint.

See also

IImageDocument::RemoveColorObjects

ObjectsTypeEnum

ObjectsTypeEnum enumeration constants describe available types of color objects, which can be removed from the image.

typedef enum {

 OT_Full,

 OT_Background,

 OT_Stamp

} ObjectsTypeEnum;

Elements

Name Description
OT_Full All color object on the image.

OT_Background Color objects on the background.

OT_Stamp Color stamps and signatures.

See also

IImageDocument::RemoveColorObjects

OrientationDetectionModeEnum

OrientationDetectionModeEnum enumeration constants specify the mode of orientation detection.

 583

ABBYY FineReader Engine 10 API Reference

typedef enum {

 ODM_Fast,

 ODM_Normal,

 ODM_Thorough

} OrientationDetectionModeEnum;

Elements

Name Description
ODM_Fast Fast mode. This mode provides the fastest speed of orientation detection at the cost of a moderately decreased

quality.

ODM_Normal Normal mode. The normal mode is an intermediate mode between thorough and fast modes.

ODM_Thorough Thorough mode. This mode provides the best quality of orientation detection.

See also

IOrientationDetectionParams::OrientationDetectionMode

PageBlackSeparatorRoleEnum

PageBlackSeparatorRoleEnum enumeration constants specify the possible roles of page black separators in a page structure.

typedef enum {

 PBSR_Unclassified,

 PBSR_TablePart,

 PBSR_PicturePart,

 PBSR_TextPart,

 PBSR_RunningTitle,

 PBSR_FootNote,

 PBSR_Incut,

 PBSR_InterColumn,

 PBSR_InterSection,

 PBSR_ParagraphBorderBox,

 PBSR_IncutBorderBox

} PageBlackSeparatorRoleEnum;

Elements

Name Description
PBSR_Unclassified The role is undefined.

PBSR_TablePart The separator is a part of table.

PBSR_PicturePart The separator is a part of picture.

PBSR_TextPart The separator is a part of text: underline, strikeout, or tableader.

PBSR_RunningTitle Separates a header or footer from the main text.

PBSR_FootNote Separates a footnote from the main text.

PBSR_Incut Separates an incut from the main text.

PBSR_InterColumn Separates two columns.

PBSR_InterSection Separates two sections.

PBSR_ParagraphBorderBox, The separator is a side of rectangle surrounding a paragraph.

PBSR_IncutBorderBox The separator is a side of rectangle surrounding an incut.

See also

IPageBlackSeparator::Role

 584

ABBYY FineReader Engine 10 API Reference

PageBlackSeparatorTypeEnum

PageBlackSeparatorTypeEnum enumeration constants specify the available types of page black separators.

typedef enum {

 PBST_Solid,

 PBST_Dotted

} PageBlackSeparatorTypeEnum;

Elements

Name Description
PBST_Solid A solid black separator.

PBST_Dotted A dotted black separator.

See also

IPageBlackSeparator::Type

PageElementTypeEnum

PageElementTypeEnum enumeration constants are used to denote the page element type.

typedef enum {

 PET_Text,

 PET_Table,

 PET_Picture,

 PET_Barcode

} PageElementTypeEnum;

Elements

Name Description
PET_Text Text.

PET_Table Table.

PET_Picture Picture.

PET_Barcode Barcode.

See also

IPageElement::Type

PageFlushingPolicyEnum

PageFlushingPolicyEnum enumeration constants are used to denote the modes of working with document pages (with their
ImageDocument and Layout objects) in memory.

typedef enum {

 PFP_KeepInMemory,

 PFP_FlushToDisk,

 PFP_Auto

} PageFlushingPolicyEnum;

Elements

Name Description
PFP_KeepInMemory The document is always kept in memory.

PFP_FlushToDisk If there are no references to the ImageDocument and the Layout objects for corresponding pages, these
objects should be unloaded and saved to disk.

PFP_Auto Automatic mode. If there are no more than 30 pages in the document, the document is kept in memory.
Otherwise, its pages are unloaded and saved to disk, if there are no references to the ImageDocument and
the Layout objects for corresponding pages.

 585

ABBYY FineReader Engine 10 API Reference

See also

IFRDocument::PageFlushingPolicy
IFRPage::Flush

PageSplitDirectionEnum

PageSplitDirectionEnum enumeration constants describe different types of dual pages split that may be detected by means of
ABBYY FineReader Engine.

typedef enum {

 PSD_HorizontalSplit,

 PSD_VerticalSplit,

 PSD_NoSplit

} PageSplitDirectionEnum;

Elements

Name Description
PSD_HorizontalSplit Horizontal split is detected.

PSD_VerticalSplit Vertical split is detected.

PSD_NoSplit No split is detected.

See also

IDocumentAnalyzer::FindPageSplitPosition
IFRPage::FindPageSplitPosition

ParagraphAlignmentEnum

ParagraphAlignmentEnum enumeration constants are used to denote different types of alignment for a paragraph in the
recognized text.

typedef enum {

 PA_Left,

 PA_Center,

 PA_Right,

 PA_Justify

} ParagraphAlignmentEnum;

Elements

Name Description
PA_Left Left�aligned paragraph.

PA_Center Centered paragraph.

PA_Right Right�aligned paragraph.

PA_Justify Justified paragraph (aligned both left and right).

See also

IParagraphParams::ParagraphAlignment

ParagraphExtractionModeEnum

ParagraphExtractionModeEnum enumeration constants describe different modes of paragraph extraction.

typedef enum {

 PEM_NormalExtraction,

 PEM_RoughExtraction,

 PEM_SingleLineParagraphsWithSpaceFormatting,

 PEM_SingleLineParagraphsWithWordSeparationOnly

} ParagraphExtractionModeEnum;

 586

ABBYY FineReader Engine 10 API Reference

Elements

Name Description
PEM_NormalExtraction Normal paragraph extraction.

PEM_RoughExtraction Extracts the minimal number of paragraphs (either one paragraph per block
or only paragraphs which start with a dropped capital).

PEM_SingleLineParagraphsWithSpaceFormatting Each line is extracted to a separate paragraph formatted with spaces.

PEM_SingleLineParagraphsWithWordSeparationOnly Each line is extracted to a separate paragraph without space formatting, blank
spaces are to separate words only.

See also

ISynthesisParamsForPage::ParagraphExtractionMode

ParagraphRoleEnum

ParagraphRoleEnum enumeration constants are used to describe the role of the paragraph in the logic structure of the document.

typedef enum {

 PR_Text,

 PR_TableText,

 PR_Heading,

 PR_TableHeading,

 PR_PictureCaption,

 PR_TableCaption,

 PR_TableOfContents,

 PR_Footnote,

 PR_Endnote,

 PR_RunningTitle,

 PR_Garbage,

 PR_Other,

 PR_Barcode

} ParagraphRoleEnum;

Elements

Name Description
PR_Text A paragraph of a text.

PR_TableText A paragraph of a table cell text.

PR_Heading A heading paragraph.

PR_TableHeading A table heading paragraph.

PR_PictureCaption A picture caption paragraph.

PR_TableCaption A table caption paragraph.

PR_TableOfContents A paragraph of a table of contents.

PR_Footnote A footnote paragraph.

PR_Endnote An endnote paragraph.

PR_RunningTitle A running title paragraph.

PR_Garbage A paragraph contains some garbage.

PR_Other Some other paragraph role.

PR_Barcode A barcode paragraph.

 587

ABBYY FineReader Engine 10 API Reference

See also

IParagraphStyle::ParagraphRole
IGlobalStyleStorage::BaseStyleForParagraphRole

ParagraphTabAlignmentEnum

ParagraphTabAlignmentEnum enumeration constants denote available types of alignment for a single tab stop.

typedef enum {

 PTA_Left,

 PTA_Right,

 PTA_Center

} ParagraphTabAlignmentEnum;

Elements

Name Description
PTA_Left Left�aligned tab stop.

PTA_Right Right�aligned tab stop.

PTA_Center Center�aligned tab stop.

See also

ITabPosition::Alignment

PDFAComplianceModeEnum

PDFAComplianceModeEnum enumeration constants are used to set the compliance with PDF/A standard for output PDF files.

Note: ABBYY uses the Adobe Preflight utility (version 9.0) to examine the implementation of export to PDF/A for compliance with
standard.

typedef enum {
 PCM_None,
 PCM_Pdfa_1b,
 PCM_Pdfa_1a
 } PDFAComplianceModeEnum;

Elements
Name Description
PCM_None Compliance with PDF/A standard is not necessary.
PCM_Pdfa_1b The recognized text should be exported to PDF/A�1b format.
PCM_Pdfa_1a The recognized text should be exported to PDF/A�1a format.

See also

IPDFExportParams::PDFAComplianceMode

PDFColorityModeEnum

PDFColorityModeEnum enumeration constants are used to define color setting for output PDF (PDF/A) files.

typedef enum {

 PCM_KeepColority,

 PCM_ForceToGray

} PDFColorityModeEnum;

Elements

Name Description
PCM_KeepColority Colors will be saved during PDF (PDF/A) export.

PCM_ForceToGray PDF (PDF/A) files will be saved in gray.

 588

ABBYY FineReader Engine 10 API Reference

See also

IPDFExportParams::Colority

PDFExportModeEnum

PDFExportModeEnum enumeration constants are used to set the mode of export into PDF format.

typedef enum {

 PEM_TextWithPictures,

 PEM_TextOnImage,

 PEM_ImageOnText,

 PEM_ImageOnly

} PDFExportModeEnum;

Elements

Name Description
PEM_TextWithPictures The recognized text is saved as text, and the pictures are saved as pictures.

PEM_TextOnImage The entire image is saved as a picture. Text areas are saved as text over the image.

PEM_ImageOnText The entire image is saved as a picture. The recognized text is put under it. This option is useful if you
export your text to document archives: the full page layout is retained and the full�text search is available
if you save in this mode.

PEM_ImageOnly The entire image is saved as a picture. The recognized text and layout information are not used in this
mode, so the recognition stage may be skipped.

See also

IPDFExportParams::ExportMode
IPDFAExportParams::ExportMode

PDFExportScenarioEnum

PDFExportScenarioEnum enumeration constants are used to set the scenario of export to PDF (PDF/A) format, which optimizes
export for some parameters.

typedef enum {

 PES_MaxQuality,

 PES_Balanced,

 PES_MinSize,

 PES_MaxSpeed

} PDFExportScenarioEnum;

Elements

Name Description
PES_MaxQuality Optimize the PDF (PDF/A) export in order to receive the best quality of the resulting file.

PES_Balanced The PDF (PDF/A) export will be balanced between the quality of the resulting file, its size and the time of
processing.

PES_MinSize Optimize the PDF (PDF/A) export in order to receive the minimum size of the resulting file.

PES_MaxSpeed Optimize the PDF (PDF/A) export in order to receive the highest speed of processing.

See also

IPDFExportParams::Scenario

PDFKeyLengthEnum

PDFKeyLengthEnum enumeration constants are used to set the length of the encryption key used to encrypt the PDF file during
export.

 589

ABBYY FineReader Engine 10 API Reference

typedef enum {

 PDFKL_40Bit = 5,

 PDFKL_48Bit = 6,

 PDFKL_56Bit = 7,

 PDFKL_64Bit = 8,

 PDFKL_72Bit = 9,

 PDFKL_80Bit = 10,

 PDFKL_88Bit = 11,

 PDFKL_96Bit = 12,

 PDFKL_104Bit = 13,

 PDFKL_112Bit = 14,

 PDFKL_120Bit = 15,

 PDFKL_128Bit = 16

} PDFKeyLengthEnum;

Elements

Name Description
PDFKL_40Bit The key length is 40 bits.

PDFKL_48Bit The key length is 48 bits.

PDFKL_56Bit The key length is 56 bits.

PDFKL_64Bit The key length is 64 bits.

PDFKL_72Bit The key length is 72 bits.

PDFKL_80Bit The key length is 80 bits.

PDFKL_88Bit The key length is 88 bits.

PDFKL_96Bit The key length is 96 bits.

PDFKL_104Bit The key length is 104 bits.

PDFKL_112Bit The key length is 112 bits.

PDFKL_120Bit The key length is 120 bits.

PDFKL_128Bit The key length is 128 bits.

See also

IPDFEncryptionInfo::KeyLength

PDFMRCCompressionLevelEnum

PDFMRCCompressionLevelEnum enumeration constants describe different levels of MRC compression.

typedef enum {

 PMRC_LowCompression,

 PMRC_AvgCompression,

 PMRC_MaxCompression,

 PMRC_Custom

} PDFMRCCompressionLevelEnum;

Elements

Name Description
PMRC_LowCompression This value specifies MRC with low compression. Appropriate for saving documents without quality loss.

PMRC_AvgCompression This value specifies MRC with average compression ratio. Appropriate for saving the majority of
documents. The value is used by default.

PMRC_MaxCompression This value specifies MRC with maximum compression ratio. Appropriate for documents without
background pictures.

 590

ABBYY FineReader Engine 10 API Reference

PMRC_Custom This value specifies MRC with user�defined compression ratio.

See also

IPDFMRCParams::CompressionLevel

PDFMRCCompressionLevelEnum

PDFMRCCompressionLevelEnum enumeration constants describe different levels of MRC compression.

typedef enum {

 PMRC_LowCompression,

 PMRC_AvgCompression,

 PMRC_MaxCompression,

 PMRC_Custom

} PDFMRCCompressionLevelEnum;

Elements

Name Description
PMRC_LowCompression This value specifies MRC with low compression. Appropriate for saving documents without quality loss.

PMRC_AvgCompression This value specifies MRC with average compression ratio. Appropriate for saving the majority of
documents. The value is used by default.

PMRC_MaxCompression This value specifies MRC with maximum compression ratio. Appropriate for documents without
background pictures.

PMRC_Custom This value specifies MRC with user�defined compression ratio.

See also

IPDFMRCParams::CompressionLevel

PDFMRCModeEnum

PDFMRCModeEnum enumeration constants are used to define the mode of using MRC during export to PDF (PDF/A).

typedef enum {
 MRC_Auto,
 MRC_Always,
 MRC_Disable
 } PDFMRCModeEnum;

Elements
Name Description
MRC_Auto ABBYY FineReader Engine will use MRC, if it is necessary.
MRC_Always Always use MRC.
MRC_Disable Do not use MRC.

See also

IPDFExportParams::MRCMode

PDFResolutionTypeEnum

PDFResolutionTypeEnum enumeration constants designate the types of picture resolution used in output PDF (PDF/A) files.

typedef enum {
 PRT_Desired,
 PRT_Exact,
 PRT_Source
 } PDFResolutionTypeEnum;

Elements
Name Description
PRT_Desired Use the desired value of the resolution. In this case, picture resolution is defined as follows:

 591

ABBYY FineReader Engine 10 API Reference

• if the original resolution of the source image is less than or equal to the desired resolution, the original
resolution is preserved,

• if the original resolution is above the desired resolution, the program selects the value nearest to the desired
resolution.

PRT_Exact Use the specified resolution.
PRT_Source Original resolution must be preserved.

See also

IPDFExportParams::ResolutionType

PDFVersionEnum

PDFVersionEnum enumeration constants are used to specify the version of the PDF file.

typedef enum {

 PVN_Auto,

 PVN_Version13,

 PVN_Version14,

 PVN_Version15,

 PVN_Version16,

 PVN_Version17

} PDFVersionEnum;

Elements

Name Description
PVN_Auto The version will be detected automatically.

PVN_Version13 The PDF file will be saved in the version 1.3.

PVN_Version14 The PDF file will be saved in the version 1.4.

PVN_Version15 The PDF file will be saved in the version 1.5.

PVN_Version16 The PDF file will be saved in the version 1.6.

PVN_Version17 The PDF file will be saved in the version 1.7.

See also

IPdfExtendedParams::PDFVersion
IPDFExportParamsOld::PDFVersion
IPDFAExportParamsOld::PDFVersion

ReadingTypeEnum

ReadingTypeEnum enumeration constants are used to designate a reading type of a text. A text on page can be divided into columns
or written in a single column.

typedef enum {

 TRT_Unknown,

 TRT_LinesBased,

 TRT_ColumnsBased

} ReadingTypeEnum;

Elements

Name Description
TRT_Unknown The reading type is undefined.

TRT_LinesBased The text is written in a single column.

TRT_ColumnsBased The text on page is divided into several columns.

 592

ABBYY FineReader Engine 10 API Reference

See also

ITextOrientation::ReadingType

RotationTypeEnum

RotationTypeEnum enumeration constants are used to denote the types of rotation that can be performed upon image, or the types
of text orientation.

typedef enum {

 RT_UnknownRotation = -1,

 RT_NoRotation,

 RT_Clockwise,

 RT_Counterclockwise,

 RT_Upsidedown

} RotationTypeEnum;

Elements
Name Description
RT_UnknownRotation Rotation type or orientation is undefined.
RT_NoRotation This value denotes no rotation, or normal orientation.
RT_Clockwise Rotation 90 degrees clockwise, or clockwise orientation.
RT_Counterclockwise Rotation 90 degrees counterclockwise, or counterclockwise orientation.
RT_Upsidedown Rotation upside down, or upside down orientation.

See also

IImageProcessingParams::RotationType
IImageDocument::Transform
IImageDocument::ImageRotation
IPrepareImageMode::Rotation
IImageDocumentEvents::TransformationMade
ITextOrientation::RotationType

RTFPageOrientationEnum

RTFPageOrientationEnum enumeration constants are used to set page orientation during export in RTF/DOC/DOCX or XLSX
format.

typedef enum {

 POM_Portrait,

 POM_Landscape,

 POM_Auto

} RTFPageOrientationEnum;

Elements

Name Description
POM_Portrait Sets portrait orientation.

POM_Landscape Sets landscape orientation.

POM_Auto The orientation is detected automatically.

See also

IRTFExportParams::PageOrientation
IXLExportParams::PageOrientation

RTFPageSynthesisModeEnum

RTFPageSynthesisModeEnum enumeration constants are used to denote modes of RTF file synthesis from the recognized text
when exporting in RTF format.

typedef enum {

 PSM_Unknown,

 593

ABBYY FineReader Engine 10 API Reference

 PSM_RTFPlainText,

 PSM_RTFFormatParagraphs,

 PSM_RTFColumns,

 PSM_RTFExactCopy,

 PSM_RTFEditableCopy

} RTFPageSynthesisModeEnum;

Elements

Name Description
PSM_Unknown The mode of file synthesis is not defined.

PSM_RTFPlainText The text in output file is formatted in a single column. Frames are not used. Paragraphs are retained,
while types and sizes of fonts are not retained.

PSM_RTFFormatParagraphs Paragraphs and fonts types and sizes are retained. The text formatting inside paragraphs is not retained.

Full formatting is retained using columns and frames. This mode is not suitable for export to clipboard.
If it is set when the text is exported to clipboard, it is replaced with the PSM_RTFFormatParagraphs
mode.

PSM_RTFColumns

PSM_RTFExactCopy Produces a document that maintains the formatting of the original. This option is recommended for
documents with complex layouts, such as promotion booklets. Note, however, that this option limits
the ability to change the text and formatting of the output document.

PSM_RTFEditableCopy Produces a document that preserves the original format and text flow but allows easy editing.

See also

IRTFExportParams::PageSynthesisMode

RunningTitleModeEnum

RunningTitleModeEnum enumeration constants are used to denote modes of running titles saving.

typedef enum {

 RTM_WriteAsNative,

 RTM_WriteAsText,

 RTM_DontWrite

} RunningTitleModeEnum;

Elements

Name Description
RTM_WriteAsNative The running titles are written to the file according to the running title standard of the export format.

RTM_WriteAsText The running titles are written to the file as plain text.

RTM_DontWrite The running titles are not written to the file.

See also

IRTFExportParams::RunningTitleMode
IHTMLExportParams::RunningTitleMode
IXLExportParams::RunningTitleMode
IPPTExportParams::RunningTitleMode
ITextExportParams::RunningTitleMode
IPDFExportParamsOld::RunningTitleMode
IPDFAExportParamsOld::RunningTitleMode

ScanBrightnessControlEnum

ScanBrightnessControlEnum enumeration constants are used to set brightness control modes.

typedef enum {

 SBC_Fine,

 SBC_Scanner,

 SBC_Manual

 594

ABBYY FineReader Engine 10 API Reference

}ScanBrightnessControlEnum;

Elements

Name Description
SBC_Fine Brightness is controlled by ABBYY FineReader Engine.

SBC_Scanner Brightness is controlled by the scanner.

SBC_Manual Brightness is set by the user.

See also

ScanSourceSettings::BrightnessControl

ScanOptionsInterfaceTypeEnum

ScanOptionsInterfaceTypeEnum enumeration constants are used to specify the interface type for the scanning options.

typedef enum {

 SOIT_None,

 SOIT_Twain,

 SOIT_Fine

}ScanOptionsInterfaceTypeEnum;

Elements

Name Description
SOIT_None If this parameter is used no interface will be displayed, the settings specified by

using IScanManager::ScanSourceSettings will be used for scanning.

SOIT_Twain Displays the Twain interface.

SOIT_Fine Displays the ABBYY FineReader interface.
 Note: In order to use this interface, your license must support the Scanning module.

See also

IScanManager::ScanOptionsInterfaceType

ScanPageRotationAngleEnum

ScanPageRotationAngleEnum enumeration constants are used to set the image rotation angle (once the page has been scanned).

typedef enum {

 SPRA_Rotation0,

 SPRA_Rotation90,

 SPRA_Rotation180,

 SPRA_Rotation270

} ScanPageRotationAngleEnum;

Elements

Name Description
SPRA_Rotation0 No rotation.

SPRA_Rotation90 The image to be rotated by 90 degrees.

SPRA_Rotation180 The image to be rotated by 180 degrees.

SPRA_Rotation270 The image to be rotated by 270 degrees.

See also

IScanSourceSettings::RotationAngle

 595

ABBYY FineReader Engine 10 API Reference

ScanPaperSizeEnum

ScanPaperSizeEnum enumeration constants are used to set size of the scanned page.

typedef enum {

 SPS_None,

 SPS_Tabloid,

 SPS_Fanfold,

 SPS_Legal,

 SPS_Folio,

 SPS_Letter,

 SPS_Slide,

 SPS_Executive,

 SPS_Statement,

 SPS_GermanLegalFanfold,

 SPS_GermanFanfold,

 SPS_A0,

 SPS_A1,

 SPS_A2,

 SPS_A3,

 SPS_A4,

 SPS_A5,

 SPS_B1_ISO,

 SPS_B2_ISO,

 SPS_B3_ISO,

 SPS_B4_ISO,

 SPS_B5_ISO,

 SPS_B6_ISO,

 SPS_B4_JIS,

 SPS_B5_JIS,

 SPS_B6_JIS,

 SPS_C3,

 SPS_C4,

 SPS_C5,

 SPS_C6,

 SPS_RA2,

 SPS_RA3,

 SPS_RA4,

 SPS_QUARTO,

 SPS_DL,

 SPS_Envelope14,

 SPS_Envelope12,

 SPS_Envelope11,

 SPS_Envelope10,

 SPS_Envelope9,

 SPS_EnvelopeCheck,

 SPS_EnvelopeMonarch,

 SPS_Custom

}ScanPaperSizeEnum;

Elements

Name Description Page size in inches Page size in mm
SPS_None Page size is not defined.

SPS_Tabloid Page size is Tabloid. 11 x 17 279.4 x 431.8

SPS_Fanfold Page size is Fanfold. 11 x 14.88

 596

ABBYY FineReader Engine 10 API Reference

SPS_Legal Page size is Legal. 8.5 x 14 216 x 356

SPS_Folio Page size is Folio. 8.5 x 13

SPS_Letter Page size is Letter. 8.5 x 11 216 x 279

SPS_Slide Page size is Slide. 7.33 x 11

SPS_Executive Page size is Executive. 7.25 x 10.5 184 x 266

SPS_Statement Page size is Statement. 5.5 x 8.5 140 x 216

SPS_GermanLegalFanfold Page size is German Legal Fanfold. 8.5 x 13

SPS_GermanFanfold Page size is German Fanfold. 8.5 x 12

SPS_A0 Page size is À0. 33.1 x 46.8 841 x 1189

SPS_A1 Page size is A1. 23.4 x 33.1 594 x 841

SPS_A2 Page size is A2. 16.5 x 23.4 420 x 594

SPS_A3 Page size is A3. 11.69 x 16.54 297 x 420

SPS_A4 Page size is A4. 8.27 x 11.69 210 x 297

SPS_A5 Page size is A5. 5.83 x 8.27 148 x 210

SPS_B1_ISO Page size is B1 (ISO). 27.8 x 39.4 707 x 1000

SPS_B2_ISO Page size is B2 (ISO). 19.7 x 27.8 500 x 707

SPS_B3_ISO Page size is B3 (ISO). 13.9 x 19.7 353 x 500

SPS_B4_ISO Page size is B4 (ISO). 9.8 x 13.9 250 x 353

SPS_B5_ISO Page size is B5 (ISO). 6.9 x 9.8 176 x 250

SPS_B6_ISO Page size is B6 (ISO). 4.9 x 6.9 125 x 176

SPS_B4_JIS Page size is B4 (JIS). 10.12 x 14.33 257 x 364

SPS_B5_JIS Page size is B5 (JIS). 7.17 x 10.12 182 x 257

SPS_B6_JIS Page size is B6 (JIS). 5.06 x 7.17 128 x 182

SPS_C3 Page size is C3. 12.8 x 18.0 324 x 458

SPS_C4 Page size is C4. 9.0 x 12.8 229 x 324

SPS_C5 Page size is C5. 6.4 x 9.0 162 x 229

SPS_C6 Page size is C6. 4.5 x 6.4 114 x 162

SPS_RA2 Page size is RA2. 430 x 610

SPS_RA3 Page size is RA3. 305 x 430

SPS_RA4 Page size is RA4. 215 x 305

SPS_QUARTO Page size is QUARTO. 215 x 275

SPS_DL Page size is Envelope DL. 4.33 x 8.66 110 x 220

SPS_Envelope14 Page size is Envelope #14. 5 x 11.5

SPS_Envelope12 Page size is Envelope #12. 4.75 x 11

SPS_Envelope11 Page size is Envelope #11. 4.5 x 10.38

SPS_Envelope10 Page size is Envelope #10. 4.13 x 9.5 104,8 x 241,3

SPS_Envelope9 Page size is Envelope #9. 3.88 x 8.88

SPS_EnvelopeCheck Page size is Envelope Check. 3.88 x 8.58

SPS_EnvelopeMonarch Page size is Envelope Monarch. 3.88 x 7.5 98,4 x 190,5

SPS_Custom Page size is set by the user.

 597

ABBYY FineReader Engine 10 API Reference

See also

IScanSourceSettings::PaperSize

ScanPictureModeEnum

ScanPictureModeEnum enumeration constants are used to set image type.

typedef enum {

 SPM_BlackAndWhite,

 SPM_Grayscale,

 SPM_Color

}ScanPictureModeEnum;

Elements

Name Description
SPM_BlackAndWhite Black�and�white image.

SPM_Grayscale Gray image.

SPM_Color Color image.

See also

IScanSourceSettings::PictureMode

SkewCorrectionModeEnum

SkewCorrectionModeEnum enumeration constants are used to set skew correction modes.

typedef enum {
 SCM_Unknown,
 SCM_AccordingToPage,
 SCM_Always,
 SCM_Never
 }SkewCorrectionModeEnum;

Elements
Name Description
SCM_Unknown The mode of skew correction is not defined.
SCM_AccordingToPage Skew correction is performed according to the page settings.
SCM_Always Skew correction is always performed.
SCM_Never Skew correction is not performed.

See also

ITextBlockAnalysisParams::SkewCorrectionMode

SeparatorTypeEnum

SeparatorTypeEnum enumeration constants are used to specify separator type.

typedef enum {

 ST_Unknown,

 ST_Solid,

 ST_Dotted

}SeparatorTypeEnum;

Elements

Name Description
ST_Unknown The separator type is undefined.

ST_Solid The separator is a solid line.

ST_Dotted The separator is a dotted line.

 598

ABBYY FineReader Engine 10 API Reference

See also

ISeparatorBlock::Type

StreamElementAlignmentEnum

StreamElementAlignmentEnum enumeration constants are used to denote different types of alignment for an element.

typedef enum {

 SEA_None,

 SEA_Left,

 SEA_Center,

 SEA_Right,

 SEA_Justify

} StreamElementAlignmentEnum;

Elements

Name Description
SEA_None No alignment. The position of stream element in the column is defined by the LeftIndent and RightIndent properties

of the StreamElementLocationParams object. If the width of the stream element with left indent and right indent is
greater than the width of the column, both left and right indent are decreased by the same value.

SEA_Left The left side of the stream element coincides with the left side of the column. The values of the LeftIndent and
RightIndent properties of the StreamElementLocationParams object are ignored.

SEA_Center The center of the stream element coincides with the vertical line through the center of the column. The values of the
LeftIndent and RightIndent properties of the StreamElementLocationParams object are ignored.

SEA_Right The right side of the stream element coincides with the right side of the column. The values of the LeftIndent and
RightIndent properties of the StreamElementLocationParams object are ignored.

SEA_Justify The left side of the stream element coincides with the left side of the column, the right side of the stream element
coincides with the right side of the column. If the width of the stream element is not equal to the width of the column,
the positions of the picture and barcode elements are the same as for SEA_Center, the position of the table element is
the same as for SEA_Center or all the cells are stretched or squeezed proportionally in order the width of the stream
element is equal to the width of the column. The values of the LeftIndent and RightIndent properties of the
StreamElementLocationParams object are ignored.

See also

IStreamElementLocationParams::Alignment

StreamTypeEnum

StreamTypeEnum enumeration constants are used to specify the types of document and page streams.

typedef enum {

 ST_MainText,

 ST_Incut,

 ST_Footnote,

 ST_Artefact

} StreamTypeEnum;

Elements

Name Description
ST_MainText Main text. Each document section can have only one stream of the main text type.

ST_Incut Incut.

ST_Footnote Footnote.

ST_Artefact Artefact. Document stream cannot be of this type.

 599

ABBYY FineReader Engine 10 API Reference

See also

IDocumentSection::AddNewStream
IDocumentStream::Type
IPageStream::Type

StyleParamsEnum

StyleParamsEnum enumeration constants are used to denote different parameters of a font style. They are used as a mask in some
methods of the Paragraph object. The mask is an OR combination of these constants and define what properties of the CharParams
object should be taken into account in these methods. The constants are also used as a mask in the
IFontStyle::OverriddenStyleParams property.

typedef enum {

 SF_Bold = 1,

 SF_Italic = 2,

 SF_Underlined = 4,

 SF_Strikeout = 8,

 SF_SmallCaps = 16,

 SF_FontSize = 0x10000,

 SF_FontName = 0x20000,

 SF_Scaling = 0x40000,

 SF_Spacing = 0x80000,

 SF_Color = 0x100000,

 SF_BackgroundColor = 0x200000,

 SF_BaseLineRise = 0x400000

} StyleParamsEnum;

Elements

Name Description
SF_Bold Designates the ICharParams::IsBold or IFontStyle::IsBold property.

SF_Italic Designates the ICharParams::IsItalic or IFontStyle::IsItalic property.

SF_Underlined Designates the ICharParams::IsUnderlined or IFontStyle::IsUnderlined property.

SF_Strikeout Designates the ICharParams::IsStrikeout or IFontStyle::IsStrikeout property.

SF_SmallCaps Designates the ICharParams::IsSmallCaps or IFontStyle::IsSmallCaps property.

SF_FontSize Designates the ICharParams::FontSize or IFontStyle::FontSize property.

SF_FontName Designates the ICharParams::FontName or IFontStyle::FontName property.

SF_Scaling Designates the ICharParams::HorizontalScale or IFontStyle::HorizontalScale property.

SF_Spacing Designates the ICharParams::Spacing or IFontStyle::Spacing property.

SF_Color Designates the ICharParams::Color or IFontStyle::Color property.

SF_BackgroundColor Designates the IParagraphParams::BackgroundColor property.

SF_BaseLineRise Designates the ICharParams::BaseLine or IFontStyle::BaseLine property.

See also

IParagraph::SetCharParams
IParagraph::NextGroup
IFontStyle::OverriddenStyleParams

TabLeaderTypeEnum

TabLeaderTypeEnum enumeration constants denote available types of tab leaders.

typedef enum {

 TLT_None,

 TLT_Dots,

 600

ABBYY FineReader Engine 10 API Reference

 TLT_MiddleDots,

 TLT_Hyphens,

 TLT_Underline

} TabLeaderTypeEnum;

Elements

Name Description
TLT_None No tab leader.

TLT_Dots Dots on the base line.

TLT_MiddleDots Dots in the middle of the line (not on the base line).

TLT_Hyphens Hyphens are used as tab leaders.

TLT_Underline Underline is used as tab leader.

See also

ITabPosition::TabLeaderType

TableCellVertAlignmentEnum

TableCellVertAlignmentEnum enumeration constants are used to denote different types of vertical alignment of the text in table
cells.

typedef enum {

 TCVA_Top,

 TCVA_Center,

 TCVA_Bottom

} TableCellVertAlignmentEnum;

Elements

Name Description
TCVA_Top Align top.

TCVA_Center Align center.

TCVA_Bottom Align bottom.

See also

ITextTableCell::VertAlignment

TableSeparatorTypeEnum

TableSeparatorTypeEnum enumeration constants are used to denote different types of table separators.

typedef enum {

 TST_Absent,

 TST_Unknown,

 TST_Invisible,

 TST_Explicit,

 TST_Multiple

} TableSeparatorTypeEnum;

Elements

Name Description
TST_Absent This type of table separator is used inside a merged cell.

TST_Unknown This type is initially assigned to table separators created by user.

TST_Invisible This type of separator may be assigned as a result of layout recognition. As a rule, this type of separator appears
where the original table does not have one but where it "should be".

 601

ABBYY FineReader Engine 10 API Reference

This type of separator may be assigned as a result of layout recognition. It corresponds to an ordinary black or color
table separator of the original table. TST_Explicit

TST_Multiple This type of separator may be assigned as a result of table editing.

See also

ITableSeparator::Type
ITableSeparator::SetType
TableSeparator

TextCategoryEnum

TextCategoryEnum enumeration constants describe different categories of text, that may be recognized using a text language.

typedef enum {

 TC_Unknown,

 TC_NaturalText,

 TC_TableCells,

 TC_FormFields,

 TC_Listing

} TextCategoryEnum;

Elements

Name Description
TC_Unknown This value specifies the text of any type.

TC_NaturalText This value specifies the text in a natural language. It consists of sentences, sentences in turn consist of words in the
natural language with rare inclusions of digits, punctuation marks, abbreviations, URL, etc.

TC_TableCells This constant describes the text located in table cells. Generally it contains numbers, single words or phrases.
Contents of the cells are semantically unrelated (or the relation is of a very general type).

TC_FormFields This constant describes the text located in fields of a filled in form. It contains single words, phrases, numbers.
Allowed syntax is frequently limited. Punctuation and spaces arrangement rules are often not kept.

TC_Listing This value corresponds to a text in a programming language or some other formal language.

See also

ITextLanguage::ImpliedTextCategory

TextEncodingTypeEnum

TextEncodingTypeEnum enumeration constants are used to denote possible types of the output file encoding for export in TXT and
CSV formats.

typedef enum {

 TET_Simple,

 TET_UTF8,

 TET_UTF16,

 TET_Auto

} TextEncodingTypeEnum;

Elements

Name Description
TET_Simple Simple encoding, one byte per symbol.

TET_UTF8 Unicode UTF8 format. UTF8 is a code page that uses a string of bytes to represent a 16�bit Unicode string where ASCII
text (<=U+007F) remains unchanged as a single byte, U+0080�07FF (including Latin, Greek, Cyrillic, Hebrew, and
Arabic) is converted to a 2�byte sequence, and U+0800�FFFF (Chinese, Japanese, Korean, and others) becomes a 3�byte
sequence.

TET_UTF16 Native Unicode format where every symbol is represented by two�byte sequence.

TET_Auto Encoding is selected automatically.

 602

ABBYY FineReader Engine 10 API Reference

See also

ITextExportParams::EncodingType
IHTMLExportParams::EncodingType
IPlainText::SaveToTextFile

TextLanguageLetterSetEnum

TextLanguageLetterSetEnum enumeration constants describe different types of letter sets that may be assigned to a text language.

typedef enum {

 TLLS_InterwordPunctuators,

 TLLS_ProhibitedLetters,

 TLLS_Prefixes,

 TLLS_Suffixes

} TextLanguageLetterSetEnum;

Elements

Name Description
TLLS_InterwordPunctuators This value denotes punctuation marks that may be found between words. There is no analogue of such

letter set for a base language, as it represents the language of a word.

TLLS_ProhibitedLetters This value denotes a set of letters that are prohibited for the current text language. They will never
appear in the recognized text.

TLLS_Prefixes This value denotes punctuation marks that may appear immediately before a word. These punctuation
marks are additional to those defined by the base language.

TLLS_Suffixes This value denotes punctuation marks that may appear immediately after a word. These punctuation
marks are additional to those defined by the base language.

See also

ITextLanguage::LetterSet

TextRoleEnum

TextRoleEnum enumeration constants are used to set text role.

typedef enum {

 TR_MainText,

 TR_Footnote,

 TR_Incut,

 TR_RunningTitle,

 TR_PictureCaption,

 TR_TableCaption,

 TR_Other,

 TR_CompoundText,

 TR_AbstractText

} TextRoleEnum;

Elements

Name Description
TR_MainText Main text.

TR_Footnote Footnote body.

TR_Incut Incut.

TR_RunningTitle Running title.

TR_PictureCaption Picture caption.

TR_TableCaption Table caption.

TR_Other Some other role (garbage, artefacts, line numbers in legal document, etc.)

 603

ABBYY FineReader Engine 10 API Reference

Whole text of a text block. This constant is used for compatibility.
TR_CompoundText Note: If a text has such role, its role cannot be changed.

Text, which does not refer to any particular place in the document. This constant is used for compatibility. TR_AbstractText
Note: If a text has such role, its role cannot be changed.

See also

IText::TextRole

TextWrappingEnum

TextWrappingEnum enumeration constants are used to designate the different types of text wrapping around an incut.

typedef enum {

 TW_Undefined,

 TW_OnTheLeft,

 TW_OnTheRight,

 TW_Around,

 TW_None

} TextWrappingEnum;

Elements
Name Description
TW_Undefined The text streamline is undefined. The value has not been set yet.
TW_OnTheLeft The text is to the left of the frame.

TW_OnTheRight The text is to the right of the frame.

TW_Around The text is both to the left and to the right of the frame.

TW_None The text break. There is no text streamline.

 604

ABBYY FineReader Engine 10 API Reference

See also

IIncut::TextWrapping

TextTableSeparatorTypeEnum

TextTableSeparatorTypeEnum enumeration constants are used to denote different types of table separators in the table which
contains text.

typedef enum {

 TTST_CellSeparator,

 TTST_TableInvisibleSeparator,

 TTST_TableVisibleSeparator,

} TextTableSeparatorTypeEnum;

Elements

Name Description
TTST_CellSeparator This type of separator is used inside a cell.

TTST_TableInvisibleSeparator This type of separator appears where the original table does not have one but where it "should be".

TTST_TableVisibleSeparator This type of separator corresponds to an ordinary black or color table separator of the original table.

See also

ITextTable::SetVSeparator
ITextTable::SetHSeparator
ITextTable::VSeparatorType
ITextTable::HSeparatorType

TextTypeEnum

TextTypeEnum enumeration constants are used to describe the type of recognized text.

typedef enum {

 TT_Normal = 0x00000001,

 TT_Typewriter = 0x00000002,

 TT_Matrix = 0x00000004,

 TT_Index = 0x00000008,

 TT_Handprinted = 0x00000010,

 TT_OCR_A = 0x00000020,

 TT_OCR_B = 0x00000040,

 TT_MICR_E13B = 0x00000080,

 TT_MICR_CMC7 = 0x00000100,

 TT_Gothic = 0x00000200,

 TT_ToBeDetected = 0

} TextTypeEnum;

Elements

Name Description

 605

ABBYY FineReader Engine 10 API Reference

TT_Normal This value corresponds to a common typographic type of text.

This value tells ABBYY FineReader Engine to presume that the text on the recognized image is typed on a
typewriter. TT_Typewriter

This value tells ABBYY FineReader Engine to presume that the text on the recognized image is printed on a dot�
matrix printer. TT_Matrix

This constant corresponds to a special set of characters including only digits written in ZIP�code style. They look
as follows:

TT_Index

This value corresponds to handprinted text. It may look as follows:

TT_Handprinted

Note that automatic analysis is not available for handprinted text. The coordinates of blocks containing
handprinted text should be set manually.

This value corresponds to a monospaced font, designed for Optical Character Recognition. Largely used by banks,
credit card companies and similar businesses. It may look as follows:

TT_OCR_A

This value corresponds to a font designed for Optical Character Recognition. It may look as follows:

TT_OCR_B

This value corresponds to a special set of numeric characters printed with special magnetic inks. MICR (Magnetic
Ink Character Recognition) characters are found in a variety of places, including personal checks. It may look as
follows: TT_MICR_E13B

This value corresponds to a special MICR barcode font (CMC�7). It may look as follows:

TT_MICR_CMC7

This value tells ABBYY FineReader Engine to presume that the text on the recognized image is printed with the
Gothic type. It may look as follows:

TT_Gothic

For this text type, ABBYY FineReader Engine currently supports only "Fraktur" font.

This value tells ABBYY FineReader Engine to automatically detect the type of the text. It may be used as the value
of the IRecognizerParams::TextType property. The possible values of type to detect are stored as the
PossibleTextTypes property of the RecognizerParams object.

TT_ToBeDetected

See also

IRecognizerParams::TextTypes
Using Text Type Autodetection
IRecognizerParams::TextType
IRecognizerParams::PossibleTextTypes
Text Types

TrainingImageFormatEnum

TrainingImageFormatEnum enumeration constants are used to denote the types of image which are used during pattern training.

typedef enum {

 TIF_Binarized,

 TIF_Gray

 606

ABBYY FineReader Engine 10 API Reference

} TrainingImageFormatEnum;

Elements

Name Description
TIF_Binarized Black and white image, 1 bit per pixel.

TIF_Gray Gray image, 8 bits per pixel.

See also

ICharParams::FontType
ICharParams::SetFont

TXTExportFormatEnum

TXTExportFormatEnum enumeration constants are used to denote the format of export to TXT and CSV files.

typedef enum {

 TEF_TXT,

 TEF_CSVFullLayout,

 TEF_CSVTablesOnly

} TXTExportFormatEnum;

Elements

Name Description
TEF_TXT TXT format.
TEF_CSVFullLayout CSV format with full layout retained.
TEF_CSVTablesOnly CSV format with text from table blocks only.

See also

ITextExportParams::ExportFormat

WordModelTypeEnum

WordModelTypeEnum enumeration constants are used to describe the type of the word model.

typedef enum {

 WMT_MonolingualWord,

 WMT_RegExpWord,

 WMT_BilingualComposite,

 WMT_Acronym,

 WMT_Number,

 WMT_NumberWithQualifier,

 WMT_WordNumberComposite,

 WMT_BilingualWordNumberComposite,

 WMT_RomanNumber,

 WMT_MonolingualWordWithExtras,

 WMT_MixedFormDictionaryWord,

 WMT_PhoneNumber,

 WMT_Punctuation,

 WMT_FileName,

 WMT_UrlOrEmail,

 WMT_NoSuitableModel

} WordModelTypeEnum;

Elements

Name Description

 607

ABBYY FineReader Engine 10 API Reference

A common word. Its grammar is determined by the language alphabet. Besides that, the
word can contain characters�separators, e.g., "/" or "�". WMT_MonolingualWord

WMT_RegExpWord A word from the language which grammar is described by a regular expression.

WMT_BilingualComposite A bilingual compound word with an explicit dividing point.

An acronym consisting of capital letters. The word can contain digits and separators, e.g.,
"B2B", "C.E.R.N.". WMT_Acronym

WMT_Number A word consisting of digits and punctuators, e.g., "123", "4.56", "#789".

A word with a prefix or suffix that serves as a qualifier or inflexion, e.g., "USD250", "1.2GHz",
"2nd". WMT_NumberWithQualifier

A compound word with an explicit dividing point consisting of a word and a digit, e.g., "2�
meter". WMT_WordNumberComposite

A compound word with explicit dividing points consisting of two words belonging to
different languages and a number, e.g., "Windows�2000�kompatibel". WMT_BilingualWordNumberComposite

WMT_RomanNumber A Roman number.

A word consisting of the language alphabet characters and special characters, digits, etc.,
e.g., "Alias|Wavefront". WMT_MonolingualWordWithExtras

A word belonging to the mixed form dictionary. It can contain any characters including
characters from the alphabets of different languages. Non�dictionary words are not
allowed.

WMT_MixedFormDictionaryWord

WMT_PhoneNumber A phone number. A prefix is allowed, e.g., "Ph.(495)123�45678".

WMT_Punctuation A set of punctuation marks separated from a word by a space(s).

A DOS/Windows or UNIX file name, e.g., "README.TXT", "C:\WINNT\system32",
"/etc/motd.rc". WMT_FileName

WMT_UrlOrEmail An URL or e�mail address, e.g., "http://www.abbyy.com", "engine_support@abbyy.com".

A word that does not meet any word model. Every word character is recognized separately,
without context. The recognition result may be a meaningless character sequence. WMT_NoSuitableModel

See also

IWordRecognitionVariant::ModelType

WritingStyleEnum

WritingStyleEnum enumeration constants are used to describe available writing styles of handprinted letters.

typedef enum {

 WS_Default,

 WS_American,

 WS_German,

 WS_Russian,

 WS_Polish,

 WS_Thai,

 WS_Japanese,

 WS_Arabic,

 WS_Baltic,

 WS_British,

 WS_Bulgarian,

 WS_Canadian,

 WS_Czech,

 WS_Croatian,

 WS_French,

 WS_Greek,

 WS_Hungarian,

 608

ABBYY FineReader Engine 10 API Reference

 WS_Italian,

 WS_Romanian,

 WS_Slovak,

 WS_Spanish,

 WS_Turkish,

 WS_Ukrainian,

 WS_Common,

 WS_Chinese,

 WS_Azerbaijan,

 WS_Kazakh,

 WS_Kirgiz,

 WS_Latvian

} WritingStyleEnum;

Elements

Name Description
WS_Default The writing style is selected depending on the current language of the operating system. This constant cannot be the

return value of the IRecognizerParams::WritingStyle property. If this property was set to WS_Default, it returns
the writing style corresponding to the language of the operating system.

WS_American The American writing style.

WS_German The German writing style.

WS_Russian The Russian writing style.

WS_Polish The Polish writing style.

WS_Thai The Thai writing style.

WS_Japanese The Japanese writing style.

WS_Arabic The Arabic writing style.

WS_Baltic The Baltic writing style.

WS_British The British writing style.

WS_Bulgarian The Bulgarian writing style.

WS_Canadian The Canadian writing style.

WS_Czech The Czech writing style.

WS_Croatian The Croatian writing style.

WS_French The French writing style.

WS_Greek The Greek writing style.

WS_Hungarian The Hungarian writing style.

WS_Italian The Italian writing style.

WS_Romanian The Romanian writing style.

WS_Slovak The Slovak writing style.

WS_Spanish The Spanish writing style.

WS_Turkish The Turkish writing style.

WS_Ukrainian The Ukrainian writing style.

WS_Common The Esperanto writing style.

WS_Chinese The Chinese writing style.

WS_Azerbaijan The Azerbaijan writing style.

WS_Kazakh The Kazakh writing style.

 609

ABBYY FineReader Engine 10 API Reference

WS_Kirgiz The Kirgiz writing style.

WS_Latvian The Latvian writing style.

See also

IRecognizerParams::WritingStyle
Recognizing Handprinted Texts

XLFileFormatEnum

XLFileFormatEnum enumeration constants are used to describe formats available for the XLS file format.

typedef enum {

 XLFF_BIFF8,

 XLFF_BIFF5,

 XLFF_DoubleStream

} XLFileFormatEnum;

Elements

Name Description
XLFF_BIFF8 This is a newer format of XLS�formatted clipboard data.

XLFF_BIFF5 This format is previous to the XLFF_BIFF8 one and may be used for compatibility with the older versions of MS
Excel.

XLFF_DoubleStream Both formats (MS Excel 5 and 8 versions) are saved to the same file.

See also

IXLExportParams::XLFileFormat

XLSXPaperSizeEnum

XLSXPaperSizeEnum enumeration constants are used to denote available paper sizes for output XLSX files.

typedef enum {

 XLPS_NotSpecified,

 XLPS_Autodetect,

 XLPS_Letter,

 XLPS_Legal,

 XLPS_Statement,

 XLPS_Executive,

 XLPS_A2,

 XLPS_A3,

 XLPS_A4,

 XLPS_A5,

 XLPS_B4,

 XLPS_B5,

 XLPS_Folio,

 XLPS_11x17,

 XLPS_Envelope10,

 XLPS_EnvelopeDL,

 XLPS_EnvelopeC5,

 XLPS_EnvelopeB5,

 XLPS_EnvelopeMonarch,

 XLPS_JapanesePostcard,

 XLPS_Quarto,

 XLPS_10x14,

 XLPS_C,

 XLPS_D,

 XLPS_E,

 610

ABBYY FineReader Engine 10 API Reference

 XLPS_9x11,

 XLPS_10x11,

 XLPS_Letter_Extra,

 XLPS_Legal_Extra,

 XLPS_Tabloid_Extra,

 XLPS_A4_Extra,

 XLPS_SuperA,

 XLPS_SuperB,

 XLPS_A4_Plus,

 XLPS_A3_Extra,

 XLPS_A5_Extra,

 XLPS_ISO_B5

} XLSXPaperSizeEnum;

Elements

Name Description
XLPS_NotSpecified Paper size should not be specified in the output file.

The paper size should be selected automatically. The program selects the minimal paper size which
encloses all the layouts of the exporting pages. XLPS_Autodetect

XLPS_Letter Letter (8�1/2 in. × 11 in.)

XLPS_Legal Legal (8�1/2 in. × 14 in.)

XLPS_Statement Statement (5�1/2 in. × 8�1/2 in.)

XLPS_Executive Executive (7�1/4 in. × 10�1/2 in.)

XLPS_A2 A2 (420 mm × 594 mm)

XLPS_A3 A3 (297 mm × 420 mm)

XLPS_A4 A4 (210 mm × 297 mm)

XLPS_A5 A5 (148 mm × 210 mm)

XLPS_B4 B4 (JIS) (257 mm × 364 mm)

XLPS_B5 B5 (176 mm × 250 mm)

XLPS_Folio Folio (8�1/2 in. × 13 in.)

XLPS_11x17 11 in. × 17 in.

XLPS_Envelope10 Envelope #10 (4�1/8 in. × 9�1/2 in.)

XLPS_EnvelopeDL Envelope DL (110 mm × 220 mm)

XLPS_EnvelopeC5 Envelope C5 (162 mm × 229 mm)

XLPS_EnvelopeB5 Envelope B5 (176 mm × 250 mm)

XLPS_EnvelopeMonarch Envelope Monarch (3�7/8 in. × 7�1/2 in.)

XLPS_JapanesePostcard Japanese Postcard (100 mm × 148 mm)

XLPS_Quarto Quarto paper (215 mm × 275 mm)

XLPS_10x14 Standard paper (10 in. × 14 in.)

XLPS_C C paper (17 in. × 22 in.)

XLPS_D D paper (22 in. × 34 in.)

XLPS_E E paper (34 in. × 44 in.)

XLPS_9x11 9 in. × 11 in.

XLPS_10x11 10 in. × 11 in.

XLPS_Letter_Extra Letter extra paper (9.275 in. × 12 in.)

 611

ABBYY FineReader Engine 10 API Reference

XLPS_Legal_Extra Legal extra paper (9.275 in. × 15 in.)

XLPS_Tabloid_Extra Tabloid extra paper (11.69 in. × 18 in.)

XLPS_A4_Extra A4 extra paper (236 mm × 322 mm)

XLPS_SuperA SuperA (227 mm × 356 mm)

XLPS_SuperB SuperB paper (305 mm × 487 mm)

XLPS_A4_Plus A4 plus paper (210 mm × 330 mm)

XLPS_A3_Extra A3 extra paper (322 mm × 445 mm)

XLPS_A5_Extra A5 extra paper (174 mm × 235 mm)

XLPS_ISO_B5 ISO B5 extra paper (201 mm × 276 mm)

See also

IXLExportParams::PaperSize

XMLCharAttributesEnum

XMLCharAttributesEnum enumeration constants are used to describe groups of character attributes to be written in files in XML
format.

typedef enum {
 XCA_None,
 XCA_Ascii,
 XCA_Basic,
 XCA_Extended
 } XMLCharAttributesEnum;

Elements

Name Description
XCA_None No character attributes are to be written in files in XML format.
XCA_Ascii Character coordinates and character confidence are to be written in files in XML format. Exactly the same format is

used by IPlainText::SaveToAsciiXMLFile.
XCA_Basic Character coordinates are to be written in files in XML format.
XCA_Extended Character coordinates, character confidence and extended character attributes are to be written in files in XML

format. The following extended attributes are written:

• whether the word was found in the dictionary,

• whether the word was recognized with a standard or user�defined language,

• whether the word is a number,

• whether the word is an identifier,

• probability that a character is written with a Serif font,

• penalty for discordance of characters in a word,

• the mean width of stroke in the RLE representation of a word image.

See also

IXMLExportParams::WriteCharAttributes

VolumeRefreshingPeriodEnum

VolumeRefreshingPeriodEnum enumeration constants are used to denote the period during which the ABBYY FineReader Engine
license limits the number of the recognition and export operations.

typedef enum {
 VRP_Day,

 612

ABBYY FineReader Engine 10 API Reference

 613

 VRP_Week,
 VRP_Month,
 VRP_Quarter,
 VRP_HalfYear,
 VRP_Year,
 VRP_Infinite
 } VolumeRefreshingPeriodEnum;

Elements

Name Description
LLP_Day The remaining units counter is refreshed at the beginning of each day.

LLP_Week The remaining units counter is refreshed at the beginning of each week.

LLP_Month The remaining units counter is refreshed at the beginning of each month.

LLP_Quarter The remaining units counter is refreshed at the beginning of each quarter.

LLP_HalfYear The remaining units counter is refreshed at the beginning of each half a year.

LLP_Year The remaining units counter is refreshed at the beginning of each year.

LLP_Infinite The remaining units counter is never refreshed.

See also

ILicense::VolumeRefreshingPeriod

Standard Return Codes
Here is a list of the standard return codes of ABBYY FineReader Engine functions and properties.

Return code Value Description
S_OK 0 (&H00000000L) Method completed successfully.

E_OUTOFMEMORY There was not enough memory to perform the operation. �2147024882 (&H8007000EL)

E_UNEXPECTED Unexpected internal error. �2147418113 (&H8000FFFFL)

E_ABORT Operation was aborted by the user. �2147467260 (&H80004004L)

E_NOTIMPL Method is not implemented. �2147467263 (&H80004001L)

E_POINTER Invalid pointer argument. �2147467261 (&H80004003L)

E_INVALIDARG One or more arguments are invalid. �2147024809 (&H80070057L)

A pointer to an object was passed that is no longer valid (this object
was destroyed). CO_E_OBJNOTCONNECTED �2147220995 (&H800401FDL)

CLASS_E_NOTLICENSED This copy of ABBYY FineReader Engine is not registered. �2147221230 (&H80040112L)

CO_E_NOT_SUPPORTED �2147467231 (&H80004021L) Some property or method is not available under the current license.

E_FAIL Unspecified error. �2147467259 (&H80004005L)

Note: These return codes you can find in the Microsoft® Platform Software Development Kit (SDK) header file winerror.h.

Here is a list of interface�specific return codes of ABBYY FineReader Engine functions and properties. All these codes are defined in the
ABBYY FineReader Engine type library.

Return code Value Description
FREN_E_PATTERN_TRAINING_ABORTED �2147221503 (&H80040001) Pattern training was aborted by the user.

Other return codes are possible, specifically those related to file system errors.

See also

Error Handling

ABBYY FineReader Engine 10 Licensing

Licensing

A special protection technology is used to protect ABBYY FineReader Engine 10 from illegal copying and distribution. This technology
effectively excludes unauthorized use of ABBYY products by persons who have not signed a License Agreement with the software
copyright owner.

Developer and Runtime Licenses

ABBYY FineReader Engine has two types of licenses:

• Developer License
This license grants an SDK customer the right to use ABBYY FineReader Engine for development purposes only or for
internal use of the developed applications only under the terms of Software Developer License Agreement. Developer
License does not allow developers to distribute their applications with ABBYY FineReader Engine functions inside or to use
the developed applications internally.

• Runtime License
This license grants developers the right to distribute ABBYY FineReader Engine functions inside developer’s applications.
Runtime licensing is regulated by Runtime License Agreement with ABBYY.

Important! The Runtime License should correspond to the Developer License under which your application was
compiled.

Each license defines available ABBYY FineReader Engine functionality by the set of included modules. For details about functionality
your license includes see the description of ABBYY FineReader Engine 10 Modules.

Standalone and Network Licenses

Both Developer and Runtime Licenses can be used either locally on a single computer or in a network. Consequently, each ABBYY
FineReader Engine license can have one of the following types:

• Standalone – for local work on a single computer;

• Network – licenses will be located on the server and passed down to workstations through the network.

Use and management of the licenses is performed with the License Manager utility.

Hardware and software protection keys

ABBYY FineReader Engine 10 will not function without a protection key. All ABBYY FineReader Engine licenses support two types of
protection keys:

• Hardware protection key – This is a USB dongle that contains the license parameters. For the correct operation of the
hardware protection key, you need to install the corresponding drivers. See the Installing the Hardware Key Drivers section
for details.

• Software protection key – This is an activation file that should be obtained from the ABBYY server during a license
activation process. Activation is carried out with the help of a special utility (the License Manager utility) which is supplied
by ABBYY as an integral part of the ABBYY FineReader Engine package.

The details about use of protection keys and license activation you can find in the Activation section.

For additional licensing information, please contact the ABBYY office serving your region. You can find the list of ABBYY offices in the
How to Buy section.

See also

Activation
ABBYY FineReader Engine 10 Modules

About ABBYY FineReader Engine 10 Activation
ABBYY FineReader Engine must be activated before use. If you have a Standalone license, you should activate ABBYY FineReader
Engine on the same computer on which ABBYY FineReader Engine is installed. In the case of Network license, you should activate
ABBYY FineReader Engine on a network server – a computer which will manage and distribute licenses among workstations in a
network. However ABBYY FineReader Engine may be installed both on the network server and on workstations.

 614

ABBYY FineReader Engine 10 Licensing

Both Standalone and Network licenses require License Service (LicensingService.exe) for correct operation of ABBYY FineReader
Engine. The License Service can be installed automatically during the Developer installation and the Runtime installation of the ABBYY
FineReader Engine library in automatic mode. If you need to install it manually, see for details Installing the License Service.

Note: The Licensing Service settings are provided in the LicensingSettings.xml file. The file is required for network installation and
for standalone installation if Hardware protection key is used. This file is generated automatically during automatic installation. When
installing manually, you must specify the correct settings in this file. The XML scheme of the settings is located in the
LicensingSettings.xsd file. You can find this file in the Bin folder of the ABBYY FineReader Engine distribution package. The detailed
description of the settings is provided in the Working with the LicensingSettings.xml File section.

For managing licenses ABBYY FineReader Engine provides the License Manager utility. With the help of this utility you can add,
remove, activate, deactivate, update licenses and view license properties. The License Manager utility allows you to work with licenses
with both types of protection keys:

• Software protection key – This is an activation file that should be obtained from the ABBYY server during an activation
process.

• Hardware protection key – This is a USB dongle that contains the license parameters. In the case of a hardware
protection key, license activation is not required.

If you choose a hardware protection key

If you choose the hardware protection key, the Hardware Key drivers must be installed on the computer where the License Service is
installed. See the Installing the Hardware Key Drivers section for details. Once the installation is completed, connect the hardware
protection key to the USB port of the computer. Make sure that you do it before the first run of the program. No license activation is
required. To view license properties, use the License Manager utility.

If you choose a software protection key

A software protection key requires the activation of its serial number by means of the License Manager utility.

How is activation carried out?

Activation takes very little time and is carried out with the help of an Activation Wizard. This wizard is built into the License Manager
utility. The Activation Wizard has a friendly interface and is used for sending the necessary activation information to ABBYY. The same
wizard is used for loading the ABBYY License File (*.ABBYY.License file) which you receive from ABBYY during activation.

Activation information is sent as a code (Installation ID) which is generated on the basis of information about the computer on which
the program is being installed. No personal information about the user or computer is used for generating this code and this code
cannot be used for identifying the user.

Activation methods:

• Via the Internet
Activation is carried out automatically and takes only a few seconds. An Internet connection is required for this type of
activation.

• By e�mail
The user needs to send an e�mail message generated by the program and containing information required for activation. To
ensure a quick reply from the mail robot, do not alter the information in the message body or Subject field.

• By e�mail from another computer
This method is suitable, if your computer does not have an Internet connection. The program will generate an e�mail
message containing information required for activation and offer you to copy the message and send it to ABBYY from
another computer.

In the case of activation via the Internet, the whole process is carried out automatically. In the case of activation by e�mail, the user
needs to enter the path to the Activation File received from ABBYY in the corresponding field of the Activation Wizard.

Once the activation is complete, the program can be used.

Reactivation

ABBYY FineReader Engine 10 can be reinstalled on one and the same computer an unlimited number of times without reactivation.
However, if you make major upgrades, format your hard drive, or reinstall the operating system on the computer where the License
Service is installed, an additional activation may be required.

Deactivation

ABBYY FineReader Engine 10 license can be deactivated. The deactivated license can be then activated on another computer. The
number of allowed deactivations can be restricted by your license.

 615

ABBYY FineReader Engine 10 Licensing

Deactivation takes very little time and is carried out with the help of a Deactivation Wizard. This wizard is built into the License
Manager utility. During the deactivation the Activation File (*.ABBYY.License file) which you receive from ABBYY during activation is
deleted. Any copy of this file cannot be used for activation again.

The deactivation can be performed only via the Internet. Deactivation is carried out automatically and takes only a few seconds. An
Internet connection is required. Once the deactivation is complete, the license can be activated on another computer.

License update

If you have purchased additional modules or an additional amount of pages for ABBYY FineReader Engine 10 and your license does
not allow you to use them, you need to update the license. The license update process is similar to the activation process. The update
process is carried out with the help of the Update Wizard and can be performed via the Internet or by e�mail. Once the update is
complete, the newest functionality of the program can be used.

See also

Licensing

License Manager Utility

The License Manager utility (LicenseManager.exe) allows you to manage ABBYY FineReader Engine licenses of all types. In the ABBYY
SDK 10 License Manager dialog box you can activate, deactivate, or update license and view the properties of an activated license.

The License Manager utility is installed automatically during a Developer installation or during a Runtime ABBYY FineReader Engine
library installation in automatic mode together with the License Service. This utility is accessible through Start > Programs > ABBYY
FineReader Engine 10 > License Manager or in the Bin folder. This utility is distributed along with other ABBYY
FineReader Engine 10 files allowed for distribution and is used for Runtime Licenses activation.

ABBYY SDK 10 License Manager dialog box

The following information about your ABBYY FineReader Engine 10 license is available in the ABBYY SDK 10 License Manager
dialog box:

Column Description
Serial number The ABBYY FineReader Engine 10 serial number.

The license type. For Developer's licenses the type of the license or the type of the emulated license is displayed
depending on the license status. License type

The protection type:

• File — software protection key; Protection
type

• Hardlock — hardware protection key.

The installation type:
Installation
type • Standalone — the license is used on a local computer;

 616

ABBYY FineReader Engine 10 Licensing

• Network — the license is located on a network computer.

Expiration
date The expiration date.

More details about the license you can find in the License Parameters table. To show or hide license parameters, use the License
Parameters/Hide License Parameters button.

Activating, updating, or deactivating the license

To activate, update, or deactivate the license, press the corresponding button, or select the corresponding item in the menu, and follow
the instructions in the dialog box that opens. See details about license activation, deactivation and update in the Activation section.

Buttons

• License Parameters/Hide License Parameters
Shows or hides license parameters.

• Activate license...
Starts the License Activation Wizard.

• Update license...
Starts the License Update Wizard for the selected license.

• Refresh
Updates the license list.

• Close
Closes the License Manager.

Menu items

Item Description
Activate... Starts the License Activation Wizard.

Update... Starts the License Update Wizard for the selected license.

Deactivate... Starts the License Deactivation Wizard for the selected license.

Copy Serial
Number Copies the selected license.

License

Close Closes the License Manager.

License Use
Statistic...

Shows the statistics of license usage on the workstations. Available only for the Network licenses
with the CPU cores limitation. Service

Refresh Updates the license list.

Help Help Opens this help file.

See also

Licensing
Activation

License Parameters

The license parameters are displayed in the table below the list of the licenses in the License Manager. To show or hide license
parameters, use the License Parameters/Hide License Parameters button in the main window of the License Manager.

License Parameters/Hide License Parameters

 617

ABBYY FineReader Engine 10 Licensing

The License Parameters table provides information about your license and the mode of using the Developer's License
(Developer/Runtime Emulated).

The following information about your ABBYY FineReader Engine 10 license is available:

• License type;

• Type of protection (software or hardware protection key);

• ABBYY FineReader Engine 10 serial number;

• Expiration date for your ABBYY FineReader Engine 10 license;

• Performance limitation: CPU core limit (the number of CPU Core which can be used for recognition), minimum number of
CPU cores which can be used on a station, performance limit (e.g. characters per second);

• Environment limitation: usage in a network and on virtual machines;

• List of features that are allowed by your license (text types, export formats, additional modules, etc.).

See also

License Manager Utility

 618

ABBYY FineReader Engine 10 Licensing

Working with the LicensingSettings.xml File
The LicensingSettings.xml file contains the ABBYY FineReader Engine protection settings. This file is necessary for correct work of the
Licensing Service in the network. When Licensing Service is used on a local computer, this file is required if you use a Hardware
protection key.

The file is generated automatically during Developer or Runtime installation in automatic mode. When installing manually, you must
specify the correct settings in this file. The XML scheme of the settings is located in the LicensingSettings.xsd file. You can find both
these files in the Bin folder of the ABBYY FineReader Engine distribution package.

Description of Tags

Tag Type Parent Tag Description Multiplicity

LicensingSettings.
Elements:

Protection
settings. LicensingSettings 1 no • LocalLicenseServer

• LicensingServers

The parameters
of the
connection with
the local
Licensing
Service located
on the same
computer.

LocalLicenseServerSettings.
Elements:

LocalLicenseServer 0...1 LicensingSettings • ConnectionProtocol

• EnableIKeyLicenses

Complex Type.
Attributes:

• ProtocolType – the protocol type:
LocalInterprocessCommunication,
NamedPipes, or TCP/IP.

Note: This is an additional
protocol type for the local License
Service. It is not necessary to
specify this protocol type for
Standalone installation, as
Standalone licenses are always
used with the
LocalInterprocessCommunication
protocol type.

The parameters
of the
connection
protocol.

ConnectionProtocol 0...1 LocalLicenseServer

• EndPointName – (optional)

Complex Type.
Attributes:

Specifies
whether
Hardware
protection keys
can be used on
the computer.

• Enable – specifies whether
Hardware protection keys can be
used on the computer (set it to
"yes" or "no")

EnableIKeyLicenses 0...1 LocalLicenseServer

The list of
network servers
where the
Licensing
Service is
installed.

Complex Type.
Elements:

LicensingServers 0...1 LicensingSettings
• MainNetworkLicenseServer

The parameters
of the
connection with
the main
network server

NetworkServerAddress.
Attributes:

MainNetworkLicenseServer 1 LicensingServers
• ServerAddress – the DNS name or

IP address of the computer where

 619

ABBYY FineReader Engine 10 Licensing

where the
Licensing
Service is
installed.

the Licensing Service is installed.

• ProtocolType – the protocol type:
LocalInterprocessCommunication,
NamedPipes, or TCP/IP.

• EndPointName – (optional)

See also

ABBYY FineReader Engine Distribution Kit
Distribution of Applications Which Use the ABBYY FineReader Engine Library
Installing the License Service

Installing the Hardware Key Drivers
The Hardware Key drivers must be installed before the USB key itself is plugged to the computer.

Warning! You must instruct your customers to close any iKey�dependent applications before running your installation program. If any
of the iKey components are already on their computer and in use when the iKey installer is run, an incomplete iKey installation may
result.

You should call the Ikeydrvr.exe installer program from your own installation program. The Ikeydrvr.exe is located in the \USB
Drivers folder of your ABBYY FineReader Engine installation in the case of a 32�bit system, or \USB Drivers\64 folder in the case of
a 64�bit system.

Syntax:

 Ikeydrvr.exe [self�extracting options] [installation options]

where

Self�extracting Options
Runs the self�extracting installer in silent mode. This option must precede the [�a] option, if defined.

Note: Hardware Key drivers are installed in silent mode when you run “Ikeydrvr.exe �s” from the CD�ROM
drive. Otherwise the attended installation is performed. To install Hardware Key drivers in silent mode from a
hard drive, you can use the MSI installation. The Ikeydrvr.msi file can be downloaded from the SafeNet site
(http://www.safenet�inc.com/Support_and_Downloads/Download_Drivers/iKey_Drivers.aspx). The installation
instruction is distributed with the installation file.

 [�s]

Specifies command line options for the Setup program. This option must be specified if any Installation options
(see below) are specified. [�a]

Installation Options
If this option is defined, a log file is created in the path specified by <path of log file>. See "Log File Format"
later in this document for information about the format of the log file. The path defined must be an absolute
path, without the trailing backslash character ('\'). It also must be defined as a short path (DOS 8.3). By default,
if the LOGFILE option is not defined, the default log file name of IKASETUP.LOG, is used.

[LOGPATH=<path
of log file>]

If this option is defined, a log file is created in the path specified by LOGPATH, with the file name defined by
<log file name>. This option requires the LOGPATH option to be defined. The file name must be defined as a
short file name (DOS 8.3). See "Log File Format" later in this document for information about the format of the
log file.

[LOGFILE=<log file
name>]

Installation Log File Format

Your applications can use the log file when spawning the installer from your own installation program. The log file is formatted as an
.ini file and has the following format:

[InstallShield Silent]

File=Log File

[ResponseResult]

ResultCode=<Status Code>

[RequiredAction]

ActionCode=<Action Code>

 620

ABBYY FineReader Engine 10 Licensing

[Application]

Name=iKey Components

Version=<version of installer>

Company=SafeNet

The <version of installer> value is formatted as follows: <major>.<minor>.<revision>.<build>

Example: Version=3.4.0.93 is Version 3.4.0 Build 93 of the installer.

Status codes can only be retrieved if the [LOGPATH] option is specified. Status codes define the status of the installation — warnings
and error messages are logged using status codes.

 Status Code Description
 0 The operation completed successfully.

 1 The operation completed successfully. Changes will not be in effect until you restart your system

 2 The operation completed successfully. A system restart is required to enable Smart Card Services.

 3 The operation completed successfully. A power down of the system is required.

 100 Warning, the iKey Device Driver has been installed with Smart Card Services disabled.

Warning, the iKey Device Driver has been installed with Smart Card Services disabled. A system restart is
required to complete the installation. 101

Warning, the maximum number of readers supported by this platform has been exceeded. The iKey Device
Driver has been installed with Smart Card Services disabled. 102

Warning, the maximum number of readers supported by this platform has been exceeded. The iKey Device
Driver has been installed with Smart Card Services disabled. A system restart is required to complete the
installation.

 103

 200 Error, administration privileges are required to install this product.

 201 Error, this system does not support USB devices.

 202 Error, the version of this operating system is not supported.

 203 Error, installation canceled.

 204 Error, invalid command line option.

Error, another vendors’ NT 4.0 USB stack exists. The user must uninstall this USB stack before installing this
product. 205

Error, one or more services are marked for deletion. A system restart is required prior to installing this
program. 206

 207 Error, must uninstall previous version of package.

 �1 Error, installation failed. (General error.)

Action codes can only be retrieved if the [LOGPATH] option is specified. Action codes define the actions you, the developer, must take
after the iKey Installers have finished.

Action Code Description
0 No action required.

Insert a token to complete the installation. Windows Device Notification events CANNOT be used to wait for token
insertion. 1

Insert a token to complete the installation. Windows Device Notification events CAN be used to wait for token
insertion. 2

Re�insert the token to complete the installation. Windows Device Notification events CANNOT be used to wait for
token insertion. 3

Re�insert the token to complete the installation. Windows Device Notification events CAN be used to wait for token
insertion. 4

5 Must remove all tokens to install or uninstall the product.

 621

ABBYY FineReader Engine 10 Licensing

Note: Connect an iKey to a USB port on the computer after rebooting at the end of the iKey drivers installation.

See also

Activation
Distribution

ABBYY FineReader Engine 10 Modules
The functionality of ABBYY FineReader Engine 10 is represented by a set of modules. Each module is a group of Engine functions.
Some modules can be included in ABBYY FineReader Engine licenses as predefined modules and others as additional ones.

For additional licensing information, please contact the ABBYY office serving your region. You can find the list of ABBYY offices in the
How to Buy section.

An ABBYY FineReader Engine 10 License allows you to process a certain number of pages per period (usually per month). This means
that the user can process (analyze, recognize, or export to any format) no more pages than is allowed by the user's license. The counter
is incremented by 1 when processing an A4 page or smaller. When processing a page which is n times larger than A4, the counter will
be incremented by n.

The modules available in ABBYY FineReader Engine 10 are listed in the table below.

Module Description
Standard Languages
Natural This module provides access to the all languages supported by ABBYY FineReader Engine

except the ones defined in special groups (see below).
Natural for Data Capture This module is currently not supported.
Artificial This module provides access to the Esperanto, Ido, Interlingua, Occidental recognition

languages.
Programming This module provides access to the following recognition languages: Basic, C/C++, COBOL,

Fortran, Java, Pascal.
E13B This module provides access to E13B language and MICR text type

(TextTypeEnum::TT_MICR_E13B).
CMC7 This module provides access to CMC7 language and MICR text type

(TextTypeEnum::TT_MICR_CMC7).
Additional Languages
Arabic This module provides access to the Arabic recognition language.
Chinese This module provides access to the Chinese (PRC), Chinese (Taiwan) recognition languages.
Japanese This module provides access to the Japanese recognition language.
Korean This module provides access to the Korean, Korean (Hangul) recognition language.
FineReader XIX This module provides access to Gothic text type (TextTypeEnum::TT_Gothic), Latvian language

written in Gothic script and Old European languages: Old English, Old French, Old German, Old
Italian, and Old Spanish.

Thai This module provides access to the Thai recognition language.
Vietnamese This module provides access to the Vietnamese recognition language.
Hebrew This module provides access to the Hebrew recognition language.
Yiddish This module provides access to the Yiddish recognition language.
User (Custom) OCR Languages This module provides access to creating, editing, and using user languages. If this module is not

available, the only way to set the recognition language is to use the
IRecognizerParams::SetPredefinedTextLanguage method.

OCR fonts
Matrix This module provides access to Matrix text type (TextTypeEnum::TT_Matrix)
Normal This module provides access to Normal text type (TextTypeEnum::TT_Normal)
Advanced This module provides access to Normal text type with low resolution

(IRecognizerParams::LowResolutionMode)
OCR A This module provides access to OCR�A text type (TextTypeEnum::TT_OCR_A)
OCR B This module provides access to OCR�B text type (TextTypeEnum::TT_OCR_B)
Typewriter This module provides access to Typewriter text type (TextTypeEnum::TT_Typewriter)

 622

ABBYY FineReader Engine 10 Licensing

User Patterns This module allows you to perform recognition with user patterns and train user patterns using
the IEngine::TrainUserPattern method. In order user patterns training and editing via the GUI
elements are available, your license must support the User Patterns Training module.

Note: Pattern training is not supported for hieroglyphic languages.
Data Capture (ICR/OMR)
ICR This module provides access to Handprinted text type (TextTypeEnum::TT_Handprinted)
Cyrillic ICR This module allows you to recognize Cyrillic hand�printed texts.
Index This module provides access to Index text type (TextTypeEnum::TT_Index)
OMR This module allows you to recognize checkmarks.
Barcodes
Barcode Autolocation This module provides access to the IFRPage::ExtractBarcodes,

IDocumentAnalyzer::ExtractBarcodes methods, and BarcodeRecognition profile.
Note: This module can be used if barcodes of any type are available.

1D Barcodes This module provides access to recognition of 1D barcodes. If this module is included, one�
dimensional barcodes can be recognized in the following ways:

• Create a barcode block manually, set the required parameters and then call one of the
recognition methods that does not perform layout analysis (e.g. the
IFRPage::Recognize, IFRPage::RecognizeBlocks).

• Analyze the page and detect the barcodes by setting the
IPageProcessingParams::DetectBarcodes property to TRUE (only if the Document
Analysis module is available), then call one of the recognition methods that does not
perform layout analysis (e.g. the IFRPage::Recognize, IFRPage::RecognizeBlocks).

• Analyze and recognize the page (e.g. using the AnalyzeAndRecognizePage,
RecognizeImageFile (only if the Document Analysis module is available),
RecognizeImageAsPlainText, or RecognizeImageDocumentAsPlaintText method). To
detect barcodes, set the IPageProcessingParams::DetectBarcodes property to TRUE.

• Call the ExtractBarcodes method (only if the Barcode Autolocation module is
available)

Aztec This module provides access to recognition of 2D barcodes of type Aztec. If this module is
included, the barcodes can be recognized in the same way as 1D barcodes (see description of
1D Barcodes module).

2D Barcodes

DataMatrix This module provides access to recognition of 2D barcodes of type Data Matrix. If this module is
included, the barcodes can be recognized in the same way as 1D barcodes (see description of
1D Barcodes module).

PDF417 This module provides access to recognition of 2D barcodes of type PDF 417. If this module is
included, the barcodes can be recognized in the same way as 1D barcodes (see description of
1D Barcodes module).

QR Code This module provides access to recognition of 2D barcodes of type QR Code. If this module is
included, the barcodes can be recognized in the same way as 1D barcodes (see description of
1D Barcodes module).

MaxiCode This module is currently not supported.
PDF Support
PDF Opening This module allows you to process PDF files.

ImageOnly This mode allows you to export to PDF Image Only format. Recognition is not required, it is
enough to open an image and then export it to PDF Image Only setting
IPDFExportParams::TextExportMode to PEM_ImageOnly and using
FileExportFormatEnum::FEF_PDF to select the export format. If PDF/A module is available, then
this mode also allows you to export to PDF/A Image Only.

PDF Export Modes

All This mode allows you to export to PDF file format (FileExportFormatEnum::FEF_PDF),
including PDF Image Only. If PDF/A module is available, then this mode also allows you to
export to PDF/A in all modes.

PDF/A This module allows you to export to PDF/A file format (FileExportFormatEnum::FEF_PDFA).
Availability of export modes depends on the value of the Modes parameter.

MRC This module allows you to tune Mixed Raster Content parameters during export to PDF
(PDFExportParams::MRCMode, IPDFExportParamsOld::MRCParams). If PDF/A module is

 623

ABBYY FineReader Engine 10 Licensing

available, then this module also allows you to export to PDF/A with MRC
(PDFExportParams::MRCMode, IPDFAExportParamsOld::MRCParams).

Export
RTF, DOC, DOCX This module allows you to export to RTF, DOC, DOCX file formats

(FileExportFormatEnum::FEF_RTF, FileExportFormatEnum::FEF_DOCX).
MS Office

XLS, XLSX This module allows you to export to XLS, XLSX file format (FileExportFormatEnum::FEF_XLS,
FileExportFormatEnum::FEF_XLSX).

PPTX This module allows you to export to PPTX file format (FileExportFormatEnum::FEF_PPTX).
HTML This module allows you to export to HTML file format (FileExportFormatEnum::FEF_HTML).
Text This module allows you to export to TXT file format (FileExportFormatEnum::FEF_Text).
ABBYY XML This module allows you to export to XML file format (FileExportFormatEnum::FEF_XML).
Open Office Document (ODT) This module is currently not supported.
FB2 This module is currently not supported.
EPUB This module is currently not supported.
ALTO This module is currently not supported.
Extended Character Info This module provides access to the following properties and methods:

• the BaseLine, Color, FontName, FontSize, FontType, HorizontalScale, IsBold, IsItalic,
IsSmallCaps, IsStrikeout, IsSubscript, IsSuperscript, IsUnderlined, Spacing,
CharacterRecognitionVariants, CharacterRecognitionVariantIndex,
SelectedCharacterRecognitionVariant, WordRecognitionVariants properties of the
CharParams object;

• the GetWordRecognitionVariants method of the Paragraph object;

• the BaseLine property of the ParagraphLine object;

• the MeanStrokeWidth property of the WordRecognitionVariant object;

• the SerifProbability properties of the CharacterRecоgnitionVariant object;

• the WriteWordRecognitionVariants and WriteCharacterRecognitionVariants
properties of the XMLExportParams object.

Processing
Document Analysis This module provides access to the Layout object obtained as a result of automatic analysis of

the document. The following methods for analysis and recognition are available: Analyze***,
RecognizeImageFile.

Note: If this module is not available, you create a Layout object manually, add blocks to it and
recognize the page.

DA for Full�Text Indexing This module is used to extract data from a document, including text in pictures. Note that the
program retains both the picture and the text in it. Text extracted from a picture block can only
be exported to XML, TXT and PDF formats. This data is used for later full�text indexing and
search. The program retains the logical reading order, pictures and tables. This module provides
access to the IObjectsExtractionParams::FullTextIndexDA property.

DA for Invoices This module is used to preprocess invoices. Usually they are noisy, low�quality images. This
mode extracts all text from the image, including tables, pictures, small text areas, and noise. The
result is plain text without table blocks and picture blocks. This module provides access to the
IObjectsExtractionParams::FlexiFormsDA property.

Balanced Mode This module provides access to the IRecognizerParams::BalancedMode property.
Fast Mode This module provides 2�2.5 times faster recognition speed at the cost of a moderately increased

error rate (1.5�2 times more errors). This module provides access to the
IRecognizerParams::FastMode property.

Camera OCR This module provides access to:

• Blurred images correction (IImageDocument::RemoveCameraBlur)

• ISO noise reduction (IImageDocument::RemoveCameraNoise)

Color Filtering This module provides access to image color filtering (IImageDocument::RemoveColorObjects).

 624

ABBYY FineReader Engine 10 Licensing

ASCII License Basic Modules This module allows you to export to ASCII XML file format. There are two ways of exporting to
ASCII XML:

• Using the IPlainText::SaveToAsciiXMLFile method;

• Setting the IXMLExportParams::WriteCharAttributes property to XCA_Ascii and using
FileExportFormatEnum::FEF_XML to select the export format

Visual Components
Image Viewing and Blocks Drawing This module is currently not supported.
Document Batch Managing This module is currently not supported.
Text Viewing and Editing This module is currently not supported.
Full�Text Verification This module is currently not supported.
Scanning This module provides access to the scanning interfaces of ABBYY FineReader Engine

(ScanOptionsInterfaceTypeEnum::SOIT_Twain).
User Patterns Training This module allows you to train user patterns and edit them via the GUI elements provided by

ABBYY FineReader Engine (IEngine::EditUserPattern method and User Pattern dialog box,
IRecognizerParams::TrainUserPatterns property set to TRUE and Pattern Training dialog box).

License�related errors

When unavailable method is called, unsupported value is assigned to an object property or passed as an argument to an object method,
the operation will fail, and the CO_E_NOT_SUPPORTED error code will be returned.

When number of processed pages exceeds the value allowed by Limited modification, the analysis and recognition methods will fail,
and the E_FAIL error code will be returned.

When the license has been expired or not loaded, only the StartLogging, StopLogging methods and the CurrentLicense and
Licenses properties of the Engine object are available. Other methods of the Engine object will return CLASS_E_NOTLICENSED
error code.

See also

Licensing

Copyright and Trademark Notices
ABBYY FineReader Engine 10 is a version of ABBYY FineReader intended for developers.

© 2010 ABBYY. All rights reserved
ABBYY, FINEREADER, and ABBYY FineReader are either registered trademarks or trademarks of ABBYY Software Ltd.

This program is built on proprietary ABBYY technologies but also includes a number of third�party solutions:

• Windows® is a registered trademark of Microsoft Corporation in the United States and other countries

• Adobe PDF Library is used for opening and processing PDF files:
© 1984�2008 Adobe Systems Incorporated and its licensors. All rights reserved.
Protected by U.S. Patents 5,929,866; 5,943,063; 6,289,364; 6,563,502; 6,185,684; 6,205,549; 6,639,593;7,213,269; 7,246,748;
7,272,628; 7,278,168; 7,343,551; 7,395,503; 7,389,200; 7,406,599;6,754,382; Patents Pending.
Adobe®, the Adobe logo, Acrobat®, the Adobe PDF logo are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries. All other trademarks are the property of their respective owners.

• Using Type 1 fonts for exporting to PDF format:
© 2001 ParaType Inc.
© 2003 ParaType Inc.

• Opening DjVu image format:
Portions of this computer program are copyright © 1996�2007 LizardTech, Inc. All rights reserved. DjVu is protected by U.S.
Patent No. 6,058,214. Foreign Patents Pending.

• Working with JPEG image format:
This software is based in part on the work of the Independent JPEG Group.

• Unicode support:
© 1991�2009 Unicode, Inc. All rights reserved.

 625

ABBYY FineReader Engine 10 Licensing

• Intel® Performance Primitives:
Copyright © 2002�2008 Intel Corporation.

• Font support:
Portions of this software are copyright © 1996�2002, 2006 The FreeType Project (www.freetype.org). All rights reserved.

• U.S. Patent Nos. 5,258,855, 5,369,508, 5,625,465, 5,768,416 and 6,094,505.

Copyright and Trademark Notices for APPLICATION’s Help

You should include these copyright and trademark notices to the Help file of your application:

The application contains recognition technologies of ABBYY® FineReader® Engine 10 for Windows® © 2010.

ABBYY, FINEREADER, and ABBYY FineReader are either registered trademarks or trademarks of ABBYY Software Ltd.

Windows® is a registered trademark of Microsoft Corporation in the United States and other countries

Adobe PDF Library is used for opening and processing PDF files:

© 1984�2008 Adobe Systems Incorporated and its licensors. All rights reserved.
Protected by U.S. Patents 5,929,866; 5,943,063; 6,289,364; 6,563,502; 6,185,684; 6,205,549; 6,639,593;7,213,269; 7,246,748; 7,272,628;
7,278,168; 7,343,551; 7,395,503; 7,389,200; 7,406,599;6,754,382; Patents Pending.
Adobe®, the Adobe logo, Acrobat®, the Adobe PDF logo are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries. All other trademarks are the property of their respective owners.

Opening DjVu image format:

Portions of this computer program are copyright © 1996�2007 LizardTech, Inc. All rights reserved. DjVu is protected by U.S. Patent No.
6,058,214. Foreign Patents Pending.

Working with JPEG image format:

This software is based in part on the work of the Independent JPEG Group.

Unicode support:

© 1991�2009 Unicode, Inc. All rights reserved.

Intel® Performance Primitives:

Copyright © 2002�2008 Intel Corporation.

Font support:

Portions of this software are copyright © 1996�2002, 2006 The FreeType Project (www.freetype.org). All rights reserved.

Copyright and Trademark Notices for APPLICATION’s Marketing Materials

The application contains recognition technologies of ABBYY® FineReader® Engine 10 for Windows® © 2010.

ABBYY, FINEREADER, and ABBYY FineReader are either registered trademarks or trademarks of ABBYY Software Ltd.

Windows® is a registered trademark of Microsoft Corporation in the United States and other countries

Adobe PDF Library is used for opening and processing PDF files:

© 1984�2008 Adobe Systems Incorporated and its licensors. All rights reserved.
Protected by U.S. Patents 5,929,866; 5,943,063; 6,289,364; 6,563,502; 6,185,684; 6,205,549; 6,639,593;7,213,269; 7,246,748; 7,272,628;
7,278,168; 7,343,551; 7,395,503; 7,389,200; 7,406,599;6,754,382; Patents Pending.
Adobe®, the Adobe logo, Acrobat®, the Adobe PDF logo are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries. All other trademarks are the property of their respective owners.

Opening DjVu image format:

Portions of this computer program are copyright © 1996�2007 LizardTech, Inc. All rights reserved. DjVu is protected by U.S. Patent No.
6,058,214. Foreign Patents Pending.

Working with JPEG image format:

This software is based in part on the work of the Independent JPEG Group.

Intel® Performance Primitives:

Copyright © 2002�2008 Intel Corporation.

 626

ABBYY FineReader Engine 10 Licensing

Font support:

Portions of this software are copyright © 1996�2002, 2006 The FreeType Project (www.freetype.org). All rights reserved.

The minimum terms of End User License Agreement (EULA)
The following terms, or substantially similar terms, are required to be included in Sublicensee's End User License Agreement for
products with ABBYY FineReader Engine integrated in:

• EULA Terms

• The EULA must include the following terms and conditions governing the use of the ABBYY SDK or the APPLICATION
as a whole:

• The End User is granted a Runtime License for the ABBYY SDK contained in the APPLICATION on condition that the
End User complies with the terms and conditions of the EULA which apply to the ABBYY SDK or to the APPLICATION
as a whole. The Runtime License may be time�, performance� or function�limited and protected from unauthorized
copying by means of a hardware or software protection key which is an integral part of the ABBYY SDK.

• The End User may not perform or make it possible for other persons to perform any activities included in the list
below:

• Disassemble or decompile (i.e. extract the source code from the object code) the ABBYY SDK (applications,
databases, and other ABBYY SDK components), except, and only to the extent, that such activity is expressly
permitted by applicable law notwithstanding this limitation.

• Modify the ABBYY SDK, including making changes to the object code of the applications and databases contained
in the ABBYY SDK other than those provided for by the ABBYY SDK and described in the documentation.

• Transfer any rights granted to the End User hereby and other rights related to the ABBYY SDK to any other
person, not authorized to use the ABBYY SDK.

• Make it possible for any person not entitled to use the ABBYY SDK and working in the same multi�user system as
the End User to use the ABBYY SDK.

• ABBYY SDK is supplied “as is.” ABBYY does not guarantee that the ABBYY SDK will carry no errors, nor will it be liable
for any damages, either direct or indirect, including, without limitation, damages for loss of business profits, business
interruption, loss of business information, or any other pecuniary loss resulting from the use of ABBYY SDK, or
damages caused by possible errors or misprints in the ABBYY SDK.

• Export Rules. If purchased in the United States, the ABBYY SDK shall not be exported or re�exported in violation of any
export provisions of the United States or any other applicable legislation.

• If any part of the EULA is found void and unenforceable, it will not affect the validity of the balance of the EULA, which
shall remain valid and enforceable according to its terms. The EULA shall not prejudice the statutory rights of any party
dealing as a consumer.

• ADOBE PDF LIBRARY EULA TERMS

• If the APPLICATION(s) includes ABBYY SDK parts which contain components of Adobe® PDF Library™ (APDFL)
functionality then the Developer must comply with APDFL terms and conditions stated in this paragraph below
(provided that “you” means the End User):

• Adobe® PDF Library. “Adobe Software” means Adobe® PDF Library for Windows NT, 2000, XP, 98, Me and
related documentation, and any upgrades, modified versions, updates, additions, and copies thereof. The ABBYY
SDK uses the Adobe Software for converting PDF files into image files.

• License Grant and Restrictions. ABBYY grants you a non�exclusive right to use the Adobe Software
incorporated into the ABBYY SDK under the terms of this EULA. You may make one backup copy of the Adobe
Software incorporated into the ABBYY SDK, provided the backup copy is not installed or used on any computer.

 627

ABBYY FineReader Engine 10 Licensing

• Intellectual Property Rights. The Adobe Software incorporated into the ABBYY SDK is owned by Adobe and
its suppliers, and its structure, organization and code are the valuable trade secrets of Adobe and its suppliers. The
Adobe Software is also protected by the United States Copyright Law and International Treaty provisions. You may
not copy the Adobe Software incorporated into ABBYY SDK, except as provided in this EULA. Any copies that you
are permitted to make pursuant to this EULA must contain the same copyright and other proprietary notices that
appear on or in Adobe Software and the ABBYY SDK. You agree not to modify, adapt, translate, reverse engineer,
decompile, disassemble or otherwise attempt to discover the source code of the Adobe Software incorporated into
ABBYY SDK. Except as stated above, this EULA does not grant you any intellectual property rights in the Adobe
Software.

• Font License. If Adobe Software incorporated into the ABBYY SDK includes font software, you may embed the
font software, or outlines of the font software, into your electronic documents to the extent that the font vendor
copyright owner allows for such embedding. The fonts contained in this package may contain both Adobe and
non�Adobe owned fonts. You may fully embed any font owned by Adobe.

• Warranty. ABBYY AND ITS SUPPLIERS DO NOT AND CANNOT WARRANT THE PERFORMANCE RESULTS YOU
MAY OBTAIN BY USING THE ADOBE SOFTWARE INCORPORATED INTO THE ABBYY SDK.

• THE FOREGOING STATES THE SOLE AND EXCLUSIVE REMEDIES FOR ABBYY’S BREACH OF WARRANTY.
EXCEPT FOR THE FOREGOING LIMITED WARRANTY, ADOBE AND ITS SUPPLIERS MAKE NO WARRANTY,
EXPRESS OR IMPLIED AS TO MERCHENTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR NON�
INFRIGEMENT. IN NO EVENT WILL ADOBE OR ITS SUPPLIERS BE LIABLE TO YOU FOR ANY CONSEQUENTAL,
INCIDENTAL OR SPECIAL DAMAGES, INCLUDING ANY LOST PROFITS OR LOST SAVINGS, EVEN IF AN ADOBE
REPRESENTATIVE HAS BEEN ADVICED OF POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY
THIRD PARTY.
Some states or jurisdictions do not allow the exclusion or limitation of incidental, consequential or special
damages, or the exclusion of implied warranties, or limitations on how long an implied warranty may last, so the
above limitations may not apply to you. To the extent permissible, any implied warranties are limited to thirty (30)
days. This warranty gives you specific legal rights. You may have other rights, which vary from state to state or
jurisdiction to jurisdiction.

• Export Rules. You agree that the Adobe Software incorporated into the ABBYY SDK will not be shipped,
transferred or exported into any country or used in any manner prohibited by the United States Export
Administration Act or any other export laws, restrictions or regulations (collectively the "Export Laws"). In
addition, if the Adobe Software incorporated into the ABBYY SDK is identified as export controlled items under
the Export Laws, you represent and warrant that you are not a citizen, or otherwise located within, an embargoed
nation and that you are not otherwise prohibited under the Export Laws from receiving the Adobe Software
incorporated into ABBYY SDK. All rights to use the Adobe Software incorporated into the ABBYY SDK are granted
on condition that such rights are forfeited if you fail to comply with the terms of this EULA.

• Trademarks. Adobe and Adobe PDF Library are either registered trademarks or trademarks of Adobe Systems
Incorporated in the United States and/or other countries.

• LIZARDTECH EULA Terms

The APPLICATION(s) includes ABBYY SDK parts which contain software licensed by ABBYY from LIZARDTECH, INC and
the Developer must include undermentioned terms and conditions and comply with terms and conditions stated in this
paragraph below (provided that “you” means the End User):

• You have acquired a product (“PRODUCT”) that includes software licensed by ABBYY from LIZARDTECH, INC. Those
installed software products of LIZARDTECH origin, as well as any associated media, printed materials, and “online” or
electronic documentation (“SOFTWARE”) are protected by copyright laws and international copyright treaties, as well
as other intellectual property laws and treaties. The SOFTWARE is licensed, not sold.

• If you do not agree to this End User License Agreement (“EULA”), do not use the PRODUCT. Promptly contact ABBYY
for instructions on return of the unused PRODUCT(S) for a refund. Any use of the SOFTWARE, including but not
limited to use of the PRODUCT, will constitute your agreement to this EULA (or ratification of any previous consent).

• Grant of License. You are granted a personal, nonsublicensable, nontransferable, nonexclusive license to use the
SOFTWARE as integrated in the PRODUCT (as well as any associated documentation). You will not rent, sell, lease or
otherwise distribute the SOFTWARE or any part of it.

• NO WARRANTIES FOR THE SOFTWARE. The SOFTWARE is provided “AS IS” and with all faults. THE ENTIRE RISK AS
TO SATISFACTORY QUALITY, PERFORMANCE, ACCURACY, AND EFFORT (INCLUDING LACK OF NEGLIGENCE) IS
WITH YOU. ALSO, THERE IS NO WARRANTY AGAINST INTERFERENCE WITH YOUR ENJOYMENT OF THE

 628

ABBYY FineReader Engine 10 Licensing

 629

SOFTWARE OR AGAINST INFRINGEMENT. IF YOU HAVE RECEIVED ANY WARRANTIES REGARDING THE PRODUCT
OR THE SOFTWARE, THOSE WARRANTIES DO NOT ORIGINATE FROM, AND ARE NOT BINDING ON, LIZARDTECH.

• NO LIABILITY FOR CERTAIN DAMAGES. EXCEPT AS PROHIBITED BY LAW, LIZARDTECH SHALL HAVE NO LIABILITY
FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL OR INCIDENTAL DAMAGES ARISING FROM OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THE SOFTWARE. THIS LIMITATION SHALL APPLY EVEN IF ANY REMEDY
FAILS OF ITS ESSENTIAL PURPOSE.

• Limitations on Reverse Engineering, Decompilation, and Disassembly. You may not reverse engineer, decompile, or
disassemble the SOFTWARE, except and only to the extent that such activity is expressly permitted by applicable law
notwithstanding this limitation.

• Export Restrictions. You acknowledge that the SOFTWARE, or any part thereof, or any process or service that is the
direct product of the SOFTWARE (the foregoing collectively referred to as the “Restricted Components”) are of U.S.
origin. You agree to comply with all applicable international and national laws that apply to these products, including
the U.S. Export Administration Regulations, as well as end�user, end�use and destination restrictions issued by U.S. and
other governments.

ABBYY FineReader Engine 10 Distribution

Distribution of Applications Which Use the ABBYY
FineReader Engine Library

You developed an application using the ABBYY FineReader Engine functions inside and you want to distribute this application. In this
case you need a Runtime License for distribution. If you plan your application to work locally on a single computer, you must have a
Standalone Runtime License. If your applications work in a network, you will need a Network Runtime License. The Runtime License
should correspond to the Developer License under which your application was compiled. The serial number of the Developer License
is passed as the input parameter of the GetEngineObject function.

Distribution of applications using the ABBYY FineReader Engine library includes two steps:

1. Installing the application and the ABBYY FineReader Engine library on the local disk of the workstation

2. Activating the ABBYY FineReader Engine Library with the Runtime License

The ABBYY FineReader Engine distribution package includes the System Administrator's Guide. This guide contains complete
information about local and network distribution of applications which use the ABBYY FineReader Engine library.

See also

ABBYY FineReader Engine Distribution Kit
Licensing

Installing the ABBYY FineReader Engine Library
The first step of distribution of applications using the ABBYY FineReader Engine library is installation of the application and the
ABBYY FineReader Engine library on the local disk of the workstation.

After installing your application on a workstation, you should install the ABBYY FineReader Engine library. It may be installed in
automatic or manual mode. See for details:

• Installing the ABBYY FineReader Engine Library in Automatic Mode

• Installing the ABBYY FineReader Engine Library in Manual Mode

On the workstation, the following components should be installed:

• Microsoft
®
 Internet Explorer 5.0 or higher

• If your application uses any of the ABBYY FineReader Engine methods producing user interface elements (dialogs), e.g.
Pattern Training, User Pattern, Dictionary dialogs

1. Windows Common Controls must have version 5.80 or later.

2. Rich Edit Control must have version 3.0 or later.

The following folders and registry branches should be accessible from the workstation:

• folder with ABBYY FineReader Engine binary files – full control

• %TEMP% folder – full control

• %ALLUSERSPROFILE%\Application Data\ABBYY\SDK\10\FineReader Engine – full control

• "HKEY_CURRENT_USER\Software\ABBYY\SDK\10\FineReader Engine" – full control

• "HKEY_CURRENT_USER\Software\ABBYY\SDK\10" – full control for installation only

• "HKEY_LOCAL_MACHINE\Software\ABBYY\SDK\10" – full control for installation only

Important! Never redistribute ABBYY FineReader Engine type library and files with API description (FREngine.tlb, FREngine.h,
FREngine_i.c).

 630

ABBYY FineReader Engine 10 Distribution

See also

Installing the ABBYY FineReader Engine Library in Automatic Mode
Installing the ABBYY FineReader Engine Library in Manual Mode
ABBYY FineReader Engine Distribution Kit
Licensing

Installing the ABBYY FineReader Engine Library in Automatic Mode
The runtime installation of the ABBYY FineReader Engine library in automatic mode can be performed only from the command line in
silent mode. Run the setup.exe file from the installation CD�ROM with the command line options described below.

Option Default Value Description
%ProgramFiles%\ABBYY
SDK\10\FineReader
Engine\

INSTALLDIR="<destination
path>"

The path to the folder where the ABBYY FineReader Engine library
will be installed.

SN=<serial number> The ABBYY FineReader Engine 10 serial number

The list of library modules that you want to install. The list of available
modules see below. The modules must be separated by a comma (,).
For example, MODULES=ICR,PDF,BasicLang. If you do not want to
install any of these modules, set this option to No. If you want to
install all the modules, set this option to All.

MODULES=<list of library
modules> | None | All All

IKEYDR = Yes | No No Specifies whether hardware key drivers must be installed.

Specifies whether License Service must be installed. If the IKEYDR =
Yes, the License Service is installed automatically and cannot be
excluded from the installation.

Important! If you have a Standalone license, you should install the
License Service on the same computer on which ABBYY
FineReader Engine is installed. In the case of Network license, you
should install the License Service on a network server – a computer
which will manage and distribute licenses among workstations in a
network.

LICENSESRV = Yes | No Yes

SERVERNAME=<the DNS
name or IP address>

The DNS name or IP address of the computer where the License
Service is installed.

/v The start of the installation. This is mandatory option.

Silent mode. This is mandatory option because the runtime
installation can be performed only in silent mode. Use the /qb option
if you want a progress bar to be displayed during the installation. No
other dialog boxes will be displayed.

/q

Library modules

Each library module determines the license modules which must be available in a Runtime License, and resource files which will be
installed (see the ABBYY FineReader Engine Distribution Kit). The license modules and resource files corresponding to each library
module are listed in the table below:

The license modules which must be available
in a Runtime License

Library
module The resource files which will be installed

The files for recognition of checkmarks and handprinted
text. ICR Index, Handprinted, OMR

The files which are listed in the ABBYY FineReader Engine
Distribution Kit: PDF section. PDF PDF Opening

VC Scanning, User Patterns Training The files for scanning and user patterns training.

The files for basic predefined languages, except the ones
defined in special groups.

Natural BasicLang

Natural for Data Capture DataCaptureLang The module is currently not supported.

Arabic Arabic The files for recognition of texts in Arabic language.

 631

ABBYY FineReader Engine 10 Distribution

Chinese Chinese The files for recognition of texts in Chinese language.

Japan Japanese The files for recognition of texts in Japanese language.

Korean Korean The files for recognition of texts in Korean language.

The files for recognition of texts in Old European
languages. FRXIX FineReader XIX

Hebrew Hebrew The files for recognition of texts in Hebrew language.

Thai Thai The files for recognition of texts in Thai language.

Vietnamese Vietnamese The files for recognition of texts in Vietnamese language.

Note: When you use silent mode, the /q option must precede the /v option, for example: setup.exe /q /v or setup.exe /qb /v

For example
setup.exe /q /v MODULES=PDF,ICR IKEYDR = Yes SN=XXXX-XXXX-XXXX-XXXX-XXXX

This command line will install (in silent mode) the PDF and ICR library modules into the %ProgramFiles%\ABBYY SDK\10\FineReader
Engine\ folder using the serial number XXXX�XXXX�XXXX�XXXX�XXXX of the Standalone Runtime License. The hardware protection
key will be used.

setup.exe /qb /v INSTALLDIR="C:\MyFolder" SN=XXXX-XXXX-XXXX-XXXX-XXXX

This command line will install (in silent mode) all library modules into the C:\MyFolder folder using the serial number XXXX�XXXX�
XXXX�XXXX�XXXX of the Standalone Runtime License, a progress bar will be displayed. The software protection key will be used.

setup.exe /q /v SERVERNAME=MyServer

This command line will install all library modules into the %ProgramFiles%\ABBYY SDK\10\FineReader Engine\ folder in silent mode,
and the Network Runtime License is stored on the MyServer computer.

See also

Distribution
ABBYY FineReader Engine Distribution Kit
Modules

Installing the ABBYY FineReader Engine Library in Manual Mode
To install the ABBYY FineReader Engine library in manual mode, please do the following:

• Copy files marked as "mandatory" in the table of the ABBYY FineReader Engine Distribution Kit section. They are system
modules and main recognition databases.

• Copy recognition databases for handprinted text, if you want to recognize handprinted text.

• Copy resource files for interface languages that will be used in your application.

• Copy dictionary support files for recognition languages that your application will support. If the recognition languages
include languages with the Latin alphabet, make sure that you copy the Univers.amd and Univers.amm files.

• Copy scanning modules, scanning�specific resources and Twain modules if your application will perform scanning via the
ABBYY FineReader Engine interface.

• Create the %ALLUSERSPROFILE%\Application Data\ABBYY\SDK\10\FineReader Engine folder. All FineReader Engine users
must have read and write permissions to this folder.

Important! Never redistribute ABBYY FineReader Engine type library and files with API description (FREngine.tlb, FREngine.h,
FREngine_i.c).

After you have copied all necessary ABBYY FineReader Engine library files, you need to activate the library.

See also

Distribution
Installing the ABBYY FineReader Engine Library
Activating the Runtime License

 632

ABBYY FineReader Engine 10 Distribution

Activating the ABBYY FineReader Engine Library with the Runtime License
The second step of distribution of applications using the ABBYY FineReader Engine library is activation of the library with the Runtime
License.

If you use a Standalone Runtime License, activation is performed on the workstation where the ABBYY FineReader Engine library is
installed. If you use a Network Runtime License, you should activate ABBYY FineReader Engine on a network server – a computer
which will manage and distribute licenses among workstations in a network.

You will need to use one of the variants described in the table below. The selection depends on the type of your protection key and the
mode of the ABBYY FineReader Engine library installation.

Mode of Library Installation Protection
Key Automatic Manual

1. Install the License Service.
1. Run the License Manager utility.

software 2. Run the License Manager utility and activate a
license. 2. Activate a license.

1. Copy the ikeydrvr.exe file into the ..\USB Drivers
subfolder of your application root folder in the
case of a 32�bit system, or ..\USB Drivers\64
subfolder in the case of a 64�bit system.

2. Install the Hardware Key driver (see Installing
Hardware Key Drivers for details).

License activation is not required. Connect the
hardware protection key to the USB port of the
computer. You can view license properties with the
License Manager utility.

hardware
3. Install the License Service.

4. License activation is not required. Connect the
hardware protection key to the USB port of the
computer. You can view license properties with
the License Manager utility.

Changing the Type of the Protection Key

If you changed a software protection key to a hardware protection key, you must install the USB key driver from the ABBYY
FineReader Engine 10 installation CD�ROM (ABBYY FineReader Engine 10\USB Drivers\Ikeydrvr.exe in the case of a 32�bit system, or
ABBYY FineReader Engine 10\USB Drivers\64\Ikeydrvr.exe in the case of a 64�bit system) on the computer on which the License
Service is installed.

See also

Installing the ABBYY FineReader Engine Library in Automatic Mode
Installing the ABBYY FineReader Engine Library in Manual Mode
ABBYY FineReader Engine Distribution Kit
Licensing

Installing the License Service
For correct operation of applications using the ABBYY FineReader Engine 10 library, the License Service (LicensingService.exe) is
required.

The License Service is installed automatically during the Developer and Runtime installation in automatic mode. If you use manual
installation, follow the instructions below. After the installation of the License Service is complete, run the License Manager to manage
licenses.

The Licensing Service settings are provided in the LicensingSettings.xml file. This file is generated automatically during automatic
installation. When installing manually, you must specify the correct settings in this file. The XML scheme of the settings is located in the
LicensingSettings.xsd file. You can find this file in the Bin folder of the ABBYY FineReader Engine distribution package. The detailed
description of the settings is provided in the Working with the LicensingSettings.xml File section.

Installing in manual mode

Important! Administrator access rights are necessary for the installation.

For Standalone installation:

 633

ABBYY FineReader Engine 10 Distribution

1. Copy the files for the Licensing Service and the License Manager utility on the workstation: AbbyyZlib.dll, FineNet.dll,
FineObj.dll, FObjEventSrc.dll, msvcr90.dll, Protection.dll, LicensingSchema.dll, ProductLicensingSchema.dll,
LicensingService.exe, LicenseManager.exe, LicensingSettings.xml, and the Microsoft.VC90.CRT folder. Copy the resource files
ProtectionRes*.dll for the languages you need and ProtectionResShared.dll. See the ABBYY FineReader Engine Distribution
Kit for details.

Note: You may not copy the LicensingSettings.xml file if you do not use hardware protection and need not specify any
additional parameters.

2. Create the %ALLUSERSPROFILE%\Application Data\ABBYY\SDK\10\Licenses folder. Everyone must have read and write
permissions to this folder.

3. If necessary, specify parameters of the LocalLicenseServer in the LicensingSettings.xml file.

4. Run LicensingService.exe with the "/install" parameter: LicensingService.exe /install. (To uninstall the service, use the
"/uninstall" parameter.)

For Network installation:

1. Copy the files for the Licensing Service and the License Manager utility on the computer which will be used as a license
server: AbbyyZlib.dll, FineNet.dll, FineObj.dll, FObjEventSrc.dll, msvcr90.dll, Protection.dll, LicensingSchema.dll,
ProductLicensingSchema.dll, LicensingService.exe, LicenseManager.exe, LicensingSettings.xml, and the Microsoft.VC90.CRT
folder. Copy the resource files ProtectionRes*.dll for the languages you need and ProtectionResShared.dll. See the ABBYY
FineReader Engine Distribution Kit for details.

2. Create the %ALLUSERSPROFILE%\Application Data\ABBYY\SDK\10\Licenses folder on the server. Everyone must have read
and write permissions to this folder.

3. In the LicensingSettings.xml file specify:

o the ProtocolType attribute of the ConnectionProtocol element of the LocalLicenseServer tag;

o the ServerAddress and ProtocolType attributes of the MainNetworkLicenseServer tag.

4. Copy the LicensingSettings.xml file with the specified settings into the Bin folder of the FineReader Engine library
installation on all the workstations.

5. Run LicensingService.exe with the "/install" parameter: LicensingService.exe /install. (To uninstall the service, use the
"/uninstall" parameter.)

See also

Activation
Distribution of Applications Using the ABBYY FineReader Engine Library

ABBYY FineReader Engine Distribution Kit
ABBYY FineReader Engine library is implemented as a set of dynamic link libraries (DLL) and additional modules. After you’ve installed
the library with Developer License, its type library is registered in the system registry.

The description of the files of the library is given in the table below. The list of files supplied in different ABBYY FineReader Engine
distribution kits may not be the same as in the list below and may vary depending on the product’s version. All paths are given as
relative to the root folder of the ABBYY FineReader Engine distribution package. The root folder is set up during ABBYY FineReader
Engine installation. This table also specifies what files should be distributed as a part of your application, and what should not.

File or folder Description Distribution
Root folder
Readme.htm Readme file. No.

 \Inc
1

Never distribute these files. They are
intended for developer purposes only.

ABBYY FineReader Engine type library
description and API declaration files. FREngine.tlb, FREngine.h, FREngine_i.c Note: Only for script languages, you

must distribute this folder and register
the FREngine.tlb file.

 634

ABBYY FineReader Engine 10 Distribution

FineReader10�schema�v1.xsd Scheme of an XML document. No.
The folder contains .NET wrappers for
FineReader Engine type libraries. These
wrappers are generated for Microsoft .NET
Framework version 1.1, 2.0, and 3.5. The
wrappers corresponding to each version are
placed in the v1.1, v2.0, and v3.5 subfolders,
respectively.

Redistribute the Interop.FREngine.dll
file for suitable .NET Framework
version, if you use .NET developer tools.

\Inc\.Net interops

This folder contains sample code illustrating
ABBYY FineReader Engine usage in C++ with
and without Native COM support, in C#, in
Visual Basic, in Visual Basic .NET, and in Delphi
5.0. See the Description of the ABBYY
FineReader Engine Samples section for details.

\Samples
1 No.

 \Help
FREngine10.chm This manual. No.
FREngine10UserGuide.pdf User’s guide. No.

FREngine10AdminGuide.pdf System administrator’s guide. No.
The list of files in the Bin folder saved in CSV
format. Can be used to create automatically a
list of files to be distributed.

2
FREngine10_Distribution.csv No.

\USB Drivers

Redistribute this file if you choose to use
ABBYY FineReader Engine activation by
the Hardware Key.

Hardware Key drivers installation utility for 32�
bit systems. Ikeydrvr.exe

Redistribute this file if you choose to use
ABBYY FineReader Engine activation by
the Hardware Key.

Hardware Key drivers installation utility for 64�
bit systems. \64\Ikeydrvr.exe

\Bin

ABBYY FineReader Engine system modules. Mandatory. AbbyyZlib.dll, Awl.dll, AwlGdi.dll,
Barcode.dll, DocumentProcessing.dll,
DocumentAnalysis.BarcodesFinder.dll,
DocumentAnalysis.Objects.dll,
DocumentAnalysis.ObjectsExtraction.dll,
DocumentAnalysis.PageServices.dll,
DocumentAnalysis.Segmentation.dll,
Export.dll, FineNet.dll, FineObj.dll,
FObjEventSrc.dll, FontSupport.dll,
FREngine.dll, FREngine.dlp,
FREngineProcessor.exe,
FREngineProcessor.dlp, LangInfo.dll,
LangInfoUnicode.dll, Morphology.dll,
msvcr90.dll, NLCMorphology.dll,
Recognizer.dll, RecPage.dll, RegExp.dll,
Splrt.dll, Synthesis.dll, TextLayout.dll,
Training.dll

RecPageHP.dll ABBYY FineReader Engine system module. Resource file is only necessary if you
intend your application to recognize
checkmarks or handprinted text.

DL90ACE.dll, DL90AdobeXMP.dll,
DL90AGM.dll, DL90ARE.dll,
DL90AXE8SharedExpat.dll, DL90BIB.dll,
DL90BIBUtils.dll, DL90CoolType.dll,
DL90JP2KLib.dll, DL90PDFL.dll,
icucnv36.dll, icudt36.dll, pdfport.dll,
pdfsettings.dll, Image.Format.Pdf.dll,
Image.Helper.Pdf.dll

ABBYY FineReader Engine system modules for
processing files in PDF format.

Resource files are only necessary if you
intend your application to process PDF
files. Note: See detailed list of files
required for PDF processing at ABBYY
FineReader Engine Distribution Kit: PDF
article.

 635

ABBYY FineReader Engine 10 Distribution

Mandatory. ABBYY FineReader Engine system modules for
processing image files.

Image.Codec.AbbyyLossless.dll,
Image.Codec.Ccitt.dll,
Image.Codec.Jbig2.dll,
Image.Codec.Jpeg.dll,
Image.Codec.Lzw.dll,
Image.Codec.Packbits.dll,
Image.Codec.Zip.dll,
Image.Format.Bmp.dll,
Image.Format.DjVu.dll,
Image.Format.Gif.dll,
Image.Format.Jbig2.dll,
Image.Format.Jpeg2k.dll,
Image.Format.Jpeg.dll,
Image.Format.Pcx.dll,
Image.Format.Png.dll,
Image.Format.Tiff.dll,
Image.Format.Wdp.dll,
Image.Format.Wic.dll

3
,

Image.Helper.DjVu.dll,
Image.Services.Advanced.dll,
Image.Services.Core.dll

FREngine0.dll, FREngine1.dll,
FREngine2.dll, FREngine3.dll,
FREngine4.dll, FREngine5.dll,
FREngine6.dll, FREngine7.dll,
FREngine8.dll, FREngine9.dll,
FREngine14.dll, FREngine15.dll,
FREngine16.dll, FREngine17.dll,
FREngine18.dll, FREngine20.dll,
FREngine23.dll, FREngine24.dll,
FREngine27.dll, FREngine63.dll,
FREngine64.dll, FREngine65.dll

ABBYY FineReader Engine resource modules.
Each module name has number as a postfix.
The meaning of these numbers is the same as
that for the Engine*.dll. The meaning of these
numbers is:
0 — for English interface language,
1 — for Russian interface language,
2 — for German interface language,
3 — for French interface language,
4 — for Ukrainian interface language,
5 — for Spanish interface language,
6 — for Italian interface language,
7 — for Dutch interface language,
8 — for Danish interface language,
9 — for Swedish interface language,
14 — for Slovak interface language,
15 — for Polish interface language,
16 — for Czech interface language,
17 — for Hungarian interface language,
18 — for Lithuanian interface language,
20 — for Estonian interface language,
23 — for Bulgarian interface language,
24 — for Turkish interface language,
27 — for Portuguese (Brazil) interface
language,
63 — for Korean interface language,
64 — for Chinese (PRC) interface language,
65 — for Chinese (Taiwan) interface language

Resource files are only necessary if you
intend your application to display
messages in a certain language. You may
redistribute only resource modules
corresponding to the interface language
you want to use.
Note: Corresponding MorphoRes*.dll,
NlcMorphoRes*.dll, TechResources*.dll,
TrainingUI*.dll, FREngineProcessor*.dll
are required.

FREngineProcessor0.dll,
FREngineProcessor1.dll,
FREngineProcessor2.dll,
FREngineProcessor3.dll,
FREngineProcessor4.dll,
FREngineProcessor5.dll,
FREngineProcessor6.dll,
FREngineProcessor7.dll,
FREngineProcessor8.dll,
FREngineProcessor9.dll,
FREngineProcessor14.dll,
FREngineProcessor15.dll,
FREngineProcessor16.dll,
FREngineProcessor17.dll,
FREngineProcessor18.dll,

Resource files are only necessary if you
intend your application to display
messages in a certain language. You may
redistribute only resource modules
corresponding to the interface language
you want to use.
Note: Corresponding FREngine*.dll,
MorphoRes*.dll, NlcMorphoRes*.dll,
TechResources*.dll, TrainingUI*.dll are
required.

ABBYY FineReader Engine resource modules.
Each module name has number as a postfix.
The meaning of these numbers is the same as
that for the FREngine*.dll.

 636

ABBYY FineReader Engine 10 Distribution

FREngineProcessor20.dll,
FREngineProcessor23.dll,
FREngineProcessor24.dll,
FREngineProcessor27.dll,
FREngineProcessor63.dll,
FREngineProcessor64.dll,
FREngineProcessor65.dll

MorphoRes0.dll, MorphoRes1.dll,
MorphoRes2.dll, MorphoRes3.dll,
MorphoRes4.dll, MorphoRes5.dll,
MorphoRes6.dll, MorphoRes7.dll,
MorphoRes8.dll, MorphoRes9.dll,
MorphoRes14.dll, MorphoRes15.dll,
MorphoRes16.dll, MorphoRes17.dll,
MorphoRes18.dll, MorphoRes20.dll,
MorphoRes23.dll, MorphoRes24.dll,
MorphoRes27.dll, MorphoRes63.dll,
MorphoRes64.dll, MorphoRes65.dll,
NlcMorphoRes0.dll, NlcMorphoRes1.dll,
NlcMorphoRes2.dll, NlcMorphoRes3.dll,
NlcMorphoRes4.dll, NlcMorphoRes5.dll,
NlcMorphoRes6.dll, NlcMorphoRes7.dll,
NlcMorphoRes8.dll, NlcMorphoRes9.dll,
NlcMorphoRes14.dll,
NlcMorphoRes15.dll,
NlcMorphoRes16.dll,
NlcMorphoRes17.dll,
NlcMorphoRes18.dll,
NlcMorphoRes20.dll,
NlcMorphoRes23.dll,
NlcMorphoRes24.dll,
NlcMorphoRes27.dll,
NlcMorphoRes63.dll,
NlcMorphoRes64.dll,
NlcMorphoRes65.dll,
TechResources0.dll, TechResources1.dll,
TechResources2.dll, TechResources3.dll,
TechResources4.dll, TechResources5.dll,
TechResources6.dll, TechResources7.dll,
TechResources8.dll, TechResources9.dll,
TechResources14.dll,
TechResources15.dll,
TechResources16.dll,
TechResources17.dll,
TechResources18.dll,
TechResources20.dll,
TechResources23.dll,
TechResources24.dll,
TechResources27.dll,
TechResources63.dll,
TechResources64.dll,
TechResources65.dll, TrainingUI0.dll,
TrainingUI1.dll, TrainingUI2.dll,
TrainingUI3.dll, TrainingUI4.dll,
TrainingUI5.dll, TrainingUI6.dll,
TrainingUI7.dll, TrainingUI8.dll,
TrainingUI9.dll, TrainingUI14.dll,
TrainingUI15.dll, TrainingUI16.dll,
TrainingUI17.dll, TrainingUI18.dll,
TrainingUI20.dll, TrainingUI23.dll,
TrainingUI24.dll, TrainingUI27.dll,
TrainingUI63.dll, TrainingUI64.dll,
TrainingUI65.dll

ABBYY FineReader Engine resource modules.
Each module name has number as a postfix.
The meaning of these numbers is the same as
that for the FREngine*.dll.

Resource files are only necessary if you
intend your application to display
messages in a certain language. You may
redistribute only resource modules
corresponding to the interface language
you want to use.
Note: Corresponding FREngine*.dll,
FREngineProcessor*.dll are required.

Bold.pat, Bold.ptc, Bold.rseg, Bold.str, Recognition databases. Mandatory.

 637

ABBYY FineReader Engine 10 Distribution

Italic.pat, Italic.ptc, Italic.pts, Italic.rseg,
Italic.str, Normal.pat, Normal.pdi,
Normal.ptc, Normal.pts, Normal.spt,
Normal.str, Normal.pseg, Normal.rseg,
Part.pat, Part.ptc, Part.pts, Underlin.pat,
Underlin.ptc, Underlin.rseg, Underlin.str

Normal.arabic Recognition databases. Resource files are only necessary if you
want your application to recognize
texts in Arabic.

Recognition databases. Normal.ccjk, Normal.cjk, Normal.ecjk,
Normal.fcjk, Normal.ssc, Normal.slp,
NrmlPart.ssc, NrmlPart.slp, KrnPart.slp,
KrnPart.ssc, Korean.ccjk, Korean.cjk,
Korean.ecjk, Korean.fcjk, Korean.slp,
Korean.ssc

Resource files are only necessary if you
want your application to recognize
texts in Chinese, Japanese and Korean.

Recognition databases. Mandatory. Default.fch, DefaultBold.fch,
DefaultBoldItalic.fch, DefaultItalic.fch

Recognition databases. Printer.pat, Printer.ptc, Printer.pts,
Printer.rseg, Printer.spt, Printer.str

Resource files are only necessary if you
intend your application to detect text
type (PossibleTextTypes property of the
RecognizerParams object is used).

Recognition databases. Typewrit.pat, Typewrit.ptc, Typewrit.pts,
Typewrit.rseg, Typewrit.str

Resource files are only necessary if you
intend your application to recognize
text printed on a typewriter.

Checkmark.pts, Checkmark.ptv,
Checkmark.spt, Checkmark.str Recognition databases. For recognition of checkmarks only.

Recognition databases. E13B.pat, E13B.ptc, E13B.pts, E13B.rseg,
E13B.spt, E13B.str

For recognition of MICR (Magnetic Ink
Character Recognition) characters only.

Recognition databases. CMC7.pat, CMC7.ptc, CMC7.pts,
CMC7.rseg, CMC7.spt, CMC7.str

For recognition of MICR CMC�7
characters only.

Recognition databases. For recognition of OCR�A font only. OCR_A.pat, OCR_A.ptc, OCR_A.pts,
OCR_A.rseg, OCR_A.spt, OCR_A.str

Recognition databases. For recognition of OCR�B font only. OCR_B.pat, OCR_B.ptc, OCR_B.pts,
OCR_B.rseg, OCR_B.spt, OCR_B.str

Handprin.ptc, Handprin.pte,
Handprin.pto, Handprin.pts,
Handprin.ptv, Handprin.seg,
Handprin.spt, Handprin.str, Erasure.spt,
Erasure.str

Redistribute these files if you only
intend to support handprint
recognition in your application.

Recognition databases for handprinted text.

Fax.pat, Fax.ptc, Fax.pts, Fax.rseg, Fax.str Recognition databases. Resource files are only necessary if you
intend your application to recognize
texts on an image with low resolution
(the
IRecognizerParams::LowResolutionMode
property is used).

Recognition databases. Index.pat, Index.ptc, Index.pts,
Index.rseg, Index.spt, Index.str

Resource files are only necessary if you
intend your application to recognize
Index text type.

Recognition databases. For recognition of Gothic fonts only. Gothic.pat, Gothic.pdi, Gothic.ptc,
Gothic.pts, Gothic.rseg, Gothic.spt,
Gothic.str

StdFonts.mtr Files with font metrics necessary for the
recognized text export in PDF format.

Redistribute these files if you only
intend to support the recognized text
export in PDF format by means of
ABBYY FineReader Engine in your
application.

StdFonts.psa

 638

ABBYY FineReader Engine 10 Distribution

Mandatory. ABBYY FineReader Engine licensing and
protection modules.

LicenseManager.exe,
LicensingSchema.dll,
ProductLicensingSchema.dll,
LicenseManager10.chm

Distribution of this file is mandatory, if
your application works with a network
license, or with a standalone license
with hardware protection. This file includes the ABBYY FineReader

Engine activation and protection settings. LicensingSettings.xml
Note: See detailed description of

LicensingSettings.xml file in Working
with the LicensingSettings.xml file
section.

LicensingSettings.xsd XML schema for the LicensingSettings.xml file. No.

Protection.dll Mandatory. ABBYY FineReader Engine licensing and
protection module. It used for Runtime licenses
only.

Protection.Developer.dll No. ABBYY FineReader Engine licensing and
protection module. It is used for developer
purpose only.

ProtectionRes0.dll, ProtectionRes1.dll,
ProtectionRes2.dll, ProtectionRes3.dll,
ProtectionRes4.dll, ProtectionRes5.dll,
ProtectionRes6.dll, ProtectionRes7.dll,
ProtectionRes8.dll, ProtectionRes9.dll,
ProtectionRes14.dll, ProtectionRes15.dll,
ProtectionRes16.dll, ProtectionRes17.dll,
ProtectionRes18.dll, ProtectionRes20.dll,
ProtectionRes23.dll, ProtectionRes24.dll,
ProtectionRes27.dll, ProtectionRes63.dll,
ProtectionRes64.dll, ProtectionRes65.dll,
ProtectionResShared.dll

ABBYY FineReader Engine licensing and
protection resource modules. Each module
name has number as a postfix. The meaning of
these numbers is the same as that for the
FREngine*.dll.

Resource files are only necessary if you
intend your application to display
messages in a certain language. You may
redistribute only resource modules
corresponding to the interface
languages you want to use.

License.JasPer.txt JasPer Software License (JPEG2000). Mandatory.

Auxiliary utilities for Code Samples Library and
Samples configuration. LinksSetter.exe, SamplesConfig.exe No.

FineUI.dll, FineUIRes.dll,
FREngine.GUI.dll, ScanManager.dll,
ScanTwain.exe, ScanWia.exe, twain.dat,
wia.dat

Redistribute only if you intend to use
scanning. These files are necessary for scanning.

FineUI0.dll, FineUI1.dll, FineUI2.dll,
FineUI3.dll, FineUI4.dll, FineUI5.dll,
FineUI6.dll, FineUI7.dll, FineUI8.dll,
FineUI9.dll, FineUI14.dll, FineUI15.dll,
FineUI16.dll, FineUI17.dll, FineUI18.dll,
FineUI20.dll, FineUI23.dll, FineUI24.dll,
FineUI27.dll, FineUI63.dll, FineUI64.dll,
FineUI65.dll, Scan0.dll, Scan1.dll,
Scan2.dll, Scan3.dll, Scan4.dll, Scan5.dll,
Scan6.dll, Scan7.dll, Scan8.dll, Scan9.dll,
Scan14.dll, Scan15.dll, Scan16.dll,
Scan17.dll, Scan18.dll, Scan20.dll,
Scan23.dll, Scan24.dll, Scan27.dll,
Scan63.dll, Scan64.dll, Scan65.dll

Scanning resource modules. Store scanning�
specific resources in different interface
languages. The codes of the interface languages
are the same as those for the FREngine*.dll.

Redistribute only if you intend to use
scanning and only for the interface
languages you want to use.

Pictures.oce, Cjk.BigLetterVsTrash.oce,
Cjk.BigPunctuationVsTrash.oce,
Cjk.BigWordVsTrash.oce,
Cjk.LettersForWordBuilder.oce,
Cjk.ProbablyLetter.oce,
Cjk.SmallLetterVsTrash.oce,

Recognition databases. Mandatory.

 639

ABBYY FineReader Engine 10 Distribution

Cjk.SmallPunctuationVsTrash.oce,
Cjk.WordsForWordBuilder.oce,
Arabic.Punctuation.oce, Arabic.Text.oce

System modules of ABBYY FineReader Engine
6.0. RecPage.v6.dll, RecPage.v6.Thunk.dll Mandatory.

Redistribute only if your application
uses the IEngine::LoadModule
method.

The files are used by the
IEngine::LoadModule method. Asian.imageDoc, European.imagedoc

Bin\Microsoft.VC90.CRT Microsoft C Run�Time Libraries Mandatory.

Dictionaries and recognition databases of
ABBYY FineReader Engine 6.0. Bin\v6 Mandatory.

We recommend that you redistribute
these files, but they may be excluded to
save space. If the files are excluded, they
will be generated during the first
recognition process. First recognition,
however, will slow down.

Contains files with font metrics. Bin\FontCache

 Bin\Resource
See detailed list of files at ABBYY
FineReader Engine Distribution Kit: PDF
article.

Resource files are only necessary if you
intend your application to process PDF
files.

ABBYY FineReader Engine system modules for
processing files in PDF format.

 Bin\Support
The utility, which allows you to save all
necessary diagnostic information about ABBYY
FineReader Engine to a ZIP file. Please provide
a ZIP file which is created by the utility when
contacting the technical support service.

The utility is only necessary for saving
diagnostic information. AInfo.exe, AInfo.ini

AInfo0.dll, AInfo1.dll, AInfo2.dll,
AInfo3.dll, AInfo4.dll, AInfo5.dll,
AInfo6.dll, AInfo7.dll, AInfo8.dll,
AInfo9.dll, AInfo14.dll, AInfo15.dll,
AInfo16.dll, AInfo17.dll, AInfo18.dll,
AInfo20.dll, AInfo23.dll, AInfo24.dll,
AInfo27.dll, AInfo63.dll, AInfo64.dll,
AInfo65.dll

The resource modules for AInfo utility. Each
resource module name has number as a
postfix. The meaning of these numbers is the
same as that for the FREngine*.dll.

Redistribute only if you intend to use
AInfo utility and only for the interface
languages you want to use.

Bin\ExtendedDictionaries

Arabic.amd, Arabic.amm, Arabic.amt Arabic language support. For recognition of Arabic language only.

For recognition of Chinese (PRC)
language only. ChinesePRC.amd Chinese (PRC) language support.

For recognition of Chinese (Taiwan)
language only. ChineseTaiwan.amd Chinese (Taiwan) language support.

For recognition of Japanese language
only. Japanese.amd, Japanese.amm Japanese language support.

For recognition of Korean and Korean
(Hangul) languages only. Korean.amd, Korean.amm Korean and Korean (Hangul) language support.

For recognition of Vietnamese language
only. Vietnamese.amd, Vietnamese.amm Vietnamese language support.

\Bin

For recognition of all languages. {XXXXXXXX�XXXX�XXXX�XXXX�
XXXXXXXXXXXX}.amd

Additional files with key words for all
languages.

Abkhaz.amd Abkhaz language support. For recognition of Abkhaz language
only.

 640

ABBYY FineReader Engine 10 Distribution

Adyghe.amd Adyghe language support. For recognition of Adyghe language
only.

Afrikns.amd Afrikaans language support. For recognition of Afrikaans language
only.

Agul.amd Agul language support. For recognition of Agul language only.

Albanian.amd Albanian language support. For recognition of Albanian language
only.

Altaic.amd Altaic language support. For recognition of Altaic language only.

Armenian (Eastern) language support. ArmEast.amd, ArmEast.amm,
ArmEast.amt

For recognition of Armenian (Eastern)
language only.

Armenian (Grabar) language support. ArmGrab.amd, ArmGrab.amm,
ArmGrab.amt

For recognition of Armenian (Grabar)
language only.

Armenian (Western) language support. ArmWest.amd, ArmWest.amm,
ArmWest.amt

For recognition of Armenian (Western)
language only.

Awar.amd Awar language support. For recognition of Awar language only.

Aymara.amd Aymara language support. For recognition of Aymara language
only.

AzeriCyr.amd Azerbaijani (Cyrillic) language support. For recognition of Azerbaijani (Cyrillic)
language only.

AzeriLat.amd Azererbaijani (Latin) language support. For recognition of Azererbaijani (Latin)
language only.

Bashkir.amd, Bashkir.amm, Bashkir.amt Bashkir language support. For recognition of Bashkir language
only.

Basic.amd Basic programming language support. For recognition of Basic programming
language only.

Basque.amd Basque language support. For recognition of Basque language
only.

Bemba.amd Bemba language support. For recognition of Bemba language
only.

Blackft.amd Blackfoot language support. For recognition of Blackfoot language
only.

Brazil.amd, Brazil.amm, Brazil.amt Portuguese (Brazilian) language support. For recognition of Portuguese
(Brazilian) language only.

Breton.amd Breton language support. For recognition of Breton language
only.

Bugotu.amd Bugotu language support. For recognition of Bugitu language only.

Bulgar.amd, Bulgar.amm, Bulgar.amt Bulgarian language support. For recognition of Bulgarian language
only.

Buryat.amd Buryat language support. For recognition of Buryat language only.

Byelorus.amd Belarussian language support. For recognition of Belarussian language
only.

C.amd C/C++ programming language support. For recognition of C/C++ programming
language only.

Catalan.amd, Catalan.amm, Catalan.amt Catalan language support. For recognition of Catalan language
only.

Chamorro.amd Chamorro language support. For recognition of Chamorro language
only.

Chechen.amd Chechen language support. For recognition of Chechen language

 641

ABBYY FineReader Engine 10 Distribution

only.

Chemistry.amd "Simple chemical formulas" language support. For recognition of simple chemical
formulas only.

Chukcha.amd Chukchee language support. For recognition of Chukchee language
only.

Chuvash.amd Chuvash language support. For recognition of Chuvash language
only.

CMC7.amd MICR CMC�7 language support. For recognition of MICR CMC�7
language only.

Cobol.amd Cobol programming language support. For recognition of Cobol programming
language only.

Corsican.amd Corsican language support. For recognition of Corsican language
only.

CrimTat.amd Crimean Tatar language support. For recognition of Crimean Tatar
language only.

Croatian language support. Croatian.amd, Croatian.amm,
Croatian.amt

For recognition of Croatian language
only.

Crow.amd Crow language support. For recognition of Crow language only.

Czech.amd, Czech.amm, Czech.amt Czech language support. For recognition of Czech language only.

Danish.amd, Danish.amm, Danish.amt Danish language support. For recognition of Danish language
only.

Dargwa.amd Dargwa language support. For recognition of Dargwa language
only.

Dungan.amd Dungan language support. For recognition of Dungan language
only.

Dutch.amd, Dutch.amm, Dutch.amt Dutch language support. For recognition of Dutch language only.

For recognition of language for MICR
text type. E13B.amd Support of the language for MICR text type.

English.amd, English.amm, English.amt English language support. For recognition of English language
only.

Legal English language support. EnglishLaw.amd, EnglishLaw.amm,
EnglishLaw.amt

For recognition of English language
only.

Medical English language support. EnglishMedical.amd,
EnglishMedical.amm,
EnglishMedical.amt

For recognition of English language
only.

EskimoC.amd Escimo (Cyrillic) language support. For recognition of Escimo (Cyrillic)
language only.

EskimoL.amd Escimo (Latin) language support. For recognition of Escimo (Latin)
language only.

Esperan.amd Esperanto language support. For recognition of Esperanto language
only.

Eston.amd, Eston.amm, Eston.amt Estonian language support. For recognition of Estonian language
only.

Even.amd Even language support. For recognition of Even language only.

Evenki.amd Evenki language support. For recognition of Evenki language
only.

Faeroese.amd Faroese language support. For recognition of Faroese language
only.

Fijian.amd Fijian language support. For recognition of Fijian language only.

 642

ABBYY FineReader Engine 10 Distribution

Finnish.amd, Finnish.amm, Finnish.amt Finnish language support. For recognition of Finnish language
only.

Dutch (Belgian) language support. Flemmish.amd, Flemmish.amm,
Flemmish.amt

For recognition of Dutch (Belgian)
language only.

Fortran.amd Fortran language support. For recognition of Fortran language
only.

French.amd, French.amm, French.amt French language support. For recognition of French language
only.

Frisian.amd Frisian language support. For recognition of Frisian language only.

Friulian.amd Friulian language support. For recognition of Friulian language
only.

GaelicSc.amd Scottish Gaelic language support. For recognition of Scottish Gaelic
language only.

Gagauz.amd Gagauz language support. For recognition of Gagauz language
only.

Galician.amd Galician language support. For recognition of Galician language
only.

Ganda.amd Ganda language support. For recognition of Ganda language only.

German language support. German.amd, German.amm,
German.amt

For recognition of German language
only.

Legal German language support. GermanLaw.amd, GermanLaw.amm,
GermanLaw.amt

For recognition of German language
only.

GermanLx.amd German (Luxembourg) language support. For recognition of German
(Luxembourg) language only.

Medical German language support. GermanMedical.amd,
GermanMedical.amm,
GermanMedical.amt

For recognition of German language
only.

German (new spelling) language support. GermanNS.amd, GermanNS.amm,
GermanNS.amt

For recognition of German (new
spelling) language only.

GermanNSLaw.amd,
GermanNSLaw.amm,
GermanNSLaw.amt

Legal German (new spelling) language support. For recognition of German (new
spelling) language only.

GermanNSMedical.amd,
GermanNSMedical.amm,
GermanNSMedical.amt

Medical German (new spelling) language
support.

For recognition of German (new
spelling) language only.

Greek.amd, Greek.amm, Greek.amt Greek language support. For recognition of Greek language only.

Guarani.amd Guarani language support. For recognition of Guarani language
only.

Hani.amd Hani language support. For recognition of Hani language only.

Hausa.amd Hausa language support. For recognition of Hausa language only.

Hawaiian.amd Hawaiian language support. For recognition of Hawaiian language
only.

Hebrew.amd, Hebrew.amm, Hebrew.amt Hebrew language support. For recognition of Hebrew language
only.

Hungar.amd, Hungar.amm, Hungar.amt Hungarian language support. For recognition of Hungarian language
only.

Iceland.amd Icelandic language support. For recognition of Icelandic language
only.

Ido.amd Ido language support. For recognition of Ido language only.

 643

ABBYY FineReader Engine 10 Distribution

Indonesian language support. For recognition of Indonesian language
only.

Indones.amd, Indones.amm,
Indones.amt

Ingush.amd Ingush language support. For recognition of Ingush language
only.

Interlin.amd Interlingua language support. For recognition of Interlingua language
only.

Irish.amd Irish language support. For recognition of Irish language only.

Italian.amd, Italian.amm, Italian.amt Italian language support. For recognition of Italian language only.

Java.amd Java programming language support. For recognition of Java programming
language only.

Kabard.amd Kabardian language support. For recognition of Kabardian language
only.

Kalmyk.amd Kalmyk language support. For recognition of Kalmyk language
only.

Karachay.amd Karachay�balkar language support. For recognition of Karachay�balkar
language only.

Karakalp.amd Karakalpak language support. For recognition of Karakalpak language
only.

Kasub.amd Kasub language support. For recognition of Kasub language only.

Kawa.amd Kawa language support. For recognition of Kawa language only.

Kazakh.amd Kazakh language support. For recognition of Kazakh language
only.

Khakas.amd Khakass language support. For recognition of Khakass language
only.

Khanty.amd Khanty language support. For recognition of Khanty language
only.

Kikuyu.amd Kikuyu language support. For recognition of Kikuyu language
only.

Kirgiz.amd Kirgiz language support. For recognition of Kirgiz language only.

Kongo.amd Kongo language support. For recognition of Kongo language only.

Koryak.amd Koryak language support. For recognition of Koryak language
only.

Kpelle.amd Kpelle language support. For recognition of Kpelle language only.

Kumyk.amd Kumyk language support. For recognition of Kumyk language
only.

KurdishL.amd Kurdish language support. For recognition of Kurdish language
only.

Lak.amd Lak language support. For recognition of Lak language only.

Lappish.amd Sami (Lappish) language support. For recognition of Sami (Lappish)
language only.

Latin.amd Latin language support. For recognition of Latin language only.

Latvian.amd, Latvian.amm, Latvian.amt Latvian language support. For recognition of Latvian language
only.

Support of Latvian language written in Gothic
script.

For recognition of Latvian language
written in Gothic script only. LatvianGothic.amd

Lezgin.amd Lezgi language support. For recognition of Lezgi language only.

Lithuan.amd, Lithuan.amm, Lithuan.amt Lithuanian language support. For recognition of Lithuanian language

 644

ABBYY FineReader Engine 10 Distribution

only.

Luba.amd Luba language support. For recognition of Luba language only.

Macedon.amd Macedonian language support. For recognition of Macedonian
language only.

Malagasy.amd Malagasy language support. For recognition of Malagasy language
only.

Malay.amd Malay (Malaysian) language support. For recognition of Malay language only.

Malinke.amd Malinke language support. For recognition of Malinke language
only.

Maltese.amd Maltese language support. For recognition of Maltese language
only.

Mansi.amd Mansi language support. For recognition of Mansi language only.

Maori.amd Maori language support. For recognition of Maori language only.

Mari.amd Mari language support. For recognition of Mari language only.

Maya.amd Maya language support. For recognition of Maya language only.

Miao.amd Miao language support. For recognition of Miao language only.

Minankab.amd Minangkabau language support. For recognition of Minangkabau
language only.

Mohawk.amd Mohawk language support. For recognition of Mohawk language
only.

Moldav.amd Moldavian language support. For recognition of Moldavian language
only.

Mongol.amd Mongol language support. For recognition of Mongol language
only.

Mordvin.amd Mordvin language support. For recognition of Mordvin language
only.

Nahuatl.amd Nahuatl language support. For recognition of Nahuatl language
only.

Nenets.amd Nenets language support. For recognition of Nenets language
only.

Nivkh.amd Nivkh language support. For recognition of Nivkh language only.

Nogay.amd Nogay language support. For recognition of Nogay language only.

Norwegian (Bokmal) language support. NorwBok.amd, NorwBok.amm,
NorwBok.amt

For recognition of Norwegian (Bokmal)
language only.

Norwegian (Nynorsk) language support. NorwNyn.amd, NorwNyn.amm,
NorwNyn.amt

For recognition of Norwegian
(Nynorsk) language only.

Numbers.amd Digits language support. For recognition of digits.

Nyanja.amd Nyanja language support. For recognition of Nyanja language
only.

Occident.amd Occidental language support. For recognition of Occidental language
only.

Ojibway.amd Ojibway language support. For recognition of Ojibway language
only.

Old English language support. OldEnglish.amd, OldEnglish.amm,
OldEnglish.amt

For recognition of Old English language
only.

Old French language support. OldFrench.amd, OldFrench.amm,
OldFrench.amt

For recognition of Old French language
only.

 645

ABBYY FineReader Engine 10 Distribution

Old German language support. For recognition of Old German
language only.

OldGerman.amd, OldGerman.amm,
OldGerman.amt

Old Italian language support. OldItalian.amd, OldItalian.amm,
OldItalian.amt

For recognition of Old Italian language
only.

Old Spanish language support. OldSpanish.amd, OldSpanish.amm,
OldSpanish.amt

For recognition of Old Spanish language
only.

Ossetic.amd Ossetian language support. For recognition of Ossetian language
only.

Papiamen.amd Papiamento language support. For recognition of Papiamento language
only.

Pascal.amd Pascal programming language support. For recognition of Pascal programming
language only.

Pidgin.amd Tok Pisin language support. For recognition of Tok Pisin language
only.

Polish.amd, Polish.amm, Polish.amt Polish language support. For recognition of Polish language only.

Portug.amd, Portug.amm, Portug.amt Portuguese language support. For recognition of Portuguese language
only.

Provenc.amd Provencal language support. For recognition of Provencal language
only.

Quechua.amd Quechua language support. For recognition of Quechua language
only.

Rhaetian.amd Rhaeto�Romanic language support. For recognition of Rhaeto�Romanic
language only.

Roman.amd, Roman.amm, Roman.amt Romanian language support. For recognition of Romanian language
only.

Romany.amd Romany language support. For recognition of Romany language
only.

Ruanda.amd Rwanda language support. For recognition of Rwanda language
only.

Rundi.amd Rundi language support. For recognition of Rundi language only.

RusOS.amd Russian (Old Spelling) language support. For recognition of Russian (Old
Spelling) language only.

Russian.amd, Russian.amm, Russian.amt Russian language support. For recognition of Russian language
only.

Samoan.amd Samoan language support. For recognition of Samoan language
only.

Selkup.amd Selkup language support. For recognition of Selkup language only.

For recognition of Serbian (Cyrillic)
language only. Serbian.amd Serbian (Cyrillic) language support.

SerbianL.amd Serbian (Latin) language support. For recognition of Serbian (Latin)
language only.

Shona.amd Shona language support. For recognition of Shona language only.

Sioux.amd Sioux language support. For recognition of Sioux language only.

Slovak.amd, Slovak.amm, Slovak.amt Slovak language support. For recognition of Slovak language only.

Sloven.amd, Sloven.amm, Sloven.amt Slovenian language support. For recognition of Slovenian language
only.

Somali.amd Somali language support. For recognition of Somali language
only.

 646

ABBYY FineReader Engine 10 Distribution

Sorbian.amd Sorbian language support. For recognition of Sorbian language
only.

Sotho.amd Sotho language support. For recognition of Sotho language only.

Spanish.amd, Spanish.amm, Spanish.amt Spanish language support. For recognition of Spanish language
only.

Sunda.amd Sunda language support. For recognition of Sunda language only.

Swahili.amd Swahili language support. For recognition of Swahili language
only.

Swazi.amd Swazi language support. For recognition of Swazi language only.

Swedish language support. Swedish.amd, Swedish.amm,
Swedish.amt

For recognition of Swedish language
only.

Tabassar.amd Tabasaran language support. For recognition of Tabasaran language
only.

Tagalog.amd Tagalog language support. For recognition of Tagalog language
only.

Tahitian.amd Tahitian language support. For recognition of Tahitian language
only.

Tajik.amd Tajik language support. For recognition of Tajik language only.

Tatar.amd, Tatar.amm, Tatar.amt Tatar language support. For recognition of Tatar language only.

Thai.amd, Thai.amm, Thai.amt Thai language support. For recognition of Thai language only.

Tinpo.amd Jingpo language support. For recognition of Jingpo language only.

Tongan.amd Tongan language support. For recognition of Tongan language
only.

Tswana.amd Tswana language support. For recognition of Tswana language
only.

Tun.amd Tun language support. For recognition of Tun language only.

Turkish.amd, Turkish.amm, Turkish.amt Turkish language support. For recognition of Turkish language
only.

Turkmen.amd Turkmen language support. For recognition of Turkmen language
only.

Tuvin.amd Tuvinian language support. For recognition of Tuvinian language
only.

Udmurt.amd Udmurt language support. For recognition of Udmurt language
only.

For recognition of Uighur (Cyrillic)
language only. UighurC.amd Uighur (Cyrillic) language support.

UighurL.amd Uighur (Latin) language support. For recognition of Uighur (Latin)
language only.

Ukrain.amd, Ukrain.amm, Ukrain.amt Ukrainian language support. For recognition of Ukrainian language
only.

Univers.amd, Univers.amm Additional for all languages that include Latin
letters.

Redistribute these files if you use at least
one recognition language with Latin
letters.

UzbekCyr.amd Uzbek (Cyrillic) language support. For recognition of Uzbek (Cyrillic)
language only.

UzbekLat.amd Uzbek (Latin) language support. For recognition of Uzbek (Latin)
language only.

 647

ABBYY FineReader Engine 10 Distribution

Visayan.amd Cebuano language support. For recognition of Cebuano language
only.

Welsh.amd Welsh language support. For recognition of Welsh language only.

Wolof.amd Wolof language support. For recognition of Wolof language only.

Xhosa.amd Xhosa language support. For recognition of Xhosa language only.

Yakut.amd Yakut language support. For recognition of Yakut language only.

For recognition of Yiddish language
only. Yiddish.amd Yiddish language support.

Zapotec.amd Zapotec language support. For recognition of Zapotec language
only.

Zulu.amd Zulu language support. For recognition of Zulu language only.

Extra.amd Additional for special language units. For recognition of all languages.
1
 — You can find this folder in:

• folder %ALLUSERSPROFILE%\Application Data\ABBYY\SDK\10\FineReader Engine — for Windows 2000,
Windows XP, Windows Server 2003;

• folder %ProgramData%\ABBYY\SDK\10\FineReader Engine — for Windows Vista, Windows Server 2008, Windows 7.

2
 — The FREngine10_Distribution.csv file can be used to automatically create a list of files required for your application to function.

This file provides the following data for each file of the Bin folder:

• Path — file path in the root installation folder,

• FileName — file name,

• RequiredByModule — module that uses this file,

• RequiredByLanguage — language, for working with which this file is used,

• Responsibility — file’s area of responsibility providing additional information on file usage (for example, in the case of a file
used for working with a language, it may be stated whether this file is used to display messages in this language or to
recognize texts),

• Optional — whether the file is required for the current module or language.

3
 — The file is provided for Windows Imaging Component support. If your application use it, the COM library must be initialized before

getting the Engine object.

See also

List of the predefined languages in ABBYY FineReader Engine
ABBYY FineReader Engine Distribution Kit: PDF

ABBYY FineReader Engine Distribution Kit: PDF
Resource files listed below are only necessary if you intend your application to process PDF files.

File or folder Distribution
\Bin

Mandatory. DL90ACE.dll,
DL90AdobeXMP.dll,
DL90AGM.dll,
DL90ARE.dll,
DL90AXE8SharedExpat.dll,
DL90BIB.dll,
DL90BIBUtils.dll,
DL90CoolType.dll,
DL90JP2KLib.dll,

 648

ABBYY FineReader Engine 10 Distribution

DL90PDFL.dll,
icucnv36.dll,
icudt36.dll,
pdfport.dll,
pdfsettings.dll,
Image.Format.Pdf.dll,
Image.Helper.Pdf.dll

\Bin\Resource\Cmap

Mandatory. Adobe�GB1�2
Adobe�GB1�4
Adobe�CNS1�0
Adobe�CNS1�3
Adobe�Japan1�2
Adobe�Japan1�4
Adobe�Korea1�1
UniGB�UCS2�H
UniGB�UCS2�V
UniCNS�UCS2�H
UniCNS�UCS2�V
UniJIS�UCS2�H
UniJIS�UCS2�V
UniKS�UCS2�H
UniKS�UCS2�V
Identity�H
Identity�V

\Bin\Resource\Cmap

We recommend that you redistribute these files, but they may be excluded to save space. 78�EUC�H
78�EUC�V
78�H
78ms�RKSJ�H
78ms�RKSJ�V
78�RKSJ�H
78�RKSJ�V
78�V
83pv�RKSJ�H
90msp�RKSJ�H
90msp�RKSJ�V
90ms�RKSJ�H
90ms�RKSJ�UCS2
90ms�RKSJ�V
90pv�RKSJ�H
90pv�RKSJ�UCS2
90pv�RKSJ�UCS2C
90pv�RKSJ�V
Add�H
Add�RKSJ�H
Add�RKSJ�V
Add�V
Adobe�CNS1�1
Adobe�CNS1�2
Adobe�CNS1�4
Adobe�CNS1�5
Adobe�CNS1�B5pc
Adobe�CNS1�ETen�B5
Adobe�CNS1�H�CID
Adobe�CNS1�H�Host
Adobe�CNS1�H�Mac
Adobe�CNS1�UCS2
Adobe�GB1�0
Adobe�GB1�1
Adobe�GB1�3
Adobe�GB1�5
Adobe�GB1�GBK�EUC

 649

ABBYY FineReader Engine 10 Distribution

Adobe�GB1�GBpc�EUC
Adobe�GB1�H�CID
Adobe�GB1�H�Host
Adobe�GB1�H�Mac
Adobe�GB1�UCS2
Adobe�Japan1�0
Adobe�Japan1�1
Adobe�Japan1�3
Adobe�Japan1�5
Adobe�Japan1�6
Adobe�Japan1�90ms�RKSJ
Adobe�Japan1�90pv�RKSJ
Adobe�Japan1�H�CID
Adobe�Japan1�H�Host
Adobe�Japan1�H�Mac
Adobe�Japan1�PS�H
Adobe�Japan1�PS�V
Adobe�Japan1�UCS2
Adobe�Japan2�0
Adobe�Korea1�0
Adobe�Korea1�2
Adobe�Korea1�H�CID
Adobe�Korea1�H�Host
Adobe�Korea1�H�Mac
Adobe�Korea1�KSCms�UHC
Adobe�Korea1�KSCpc�EUC
Adobe�Korea1�UCS2
B5�H
B5pc�H
B5pc�UCS2
B5pc�UCS2C
B5pc�V
B5�V
CNS1�H
CNS1�V
CNS2�H
CNS2�V
CNS�EUC�H
CNS�EUC�V
ETen�B5�H
ETen�B5�UCS2
ETen�B5�V
ETenms�B5�H
ETenms�B5�V
ETHK�B5�H
ETHK�B5�V
EUC�H
EUC�V
Ext�H
Ext�RKSJ�H
Ext�RKSJ�V
Ext�V
GB�EUC�H
GB�EUC�V
GB�H
GBK2K�H
GBK2K�V
GBK�EUC�H
GBK�EUC�UCS2
GBK�EUC�V
GBKp�EUC�H
GBKp�EUC�V
GBpc�EUC�H
GBpc�EUC�UCS2
GBpc�EUC�UCS2C

 650

ABBYY FineReader Engine 10 Distribution

GBpc�EUC�V
GBT�EUC�H
GBT�EUC�V
GBT�H
GBTpc�EUC�H
GBTpc�EUC�V
GBT�V
GB�V
H
Hankaku
Hiragana
HKdla�B5�H
HKdla�B5�V
HKdlb�B5�H
HKdlb�B5�V
HKgccs�B5�H
HKgccs�B5�V
HKm314�B5�H
HKm314�B5�V
HKm471�B5�H
HKm471�B5�V
HKscs�B5�H
HKscs�B5�V
Hojo�EUC�H
Hojo�EUC�V
Hojo�H
Hojo�V
Katakana
KSC�EUC�H
KSC�EUC�V
KSC�H
KSC�Johab�H
KSC�Johab�V
KSCms�UHC�H
KSCms�UHC�HW�H
KSCms�UHC�HW�V
KSCms�UHC�UCS2
KSCms�UHC�V
KSCpc�EUC�H
KSCpc�EUC�UCS2
KSCpc�EUC�UCS2C
KSCpc�EUC�V
KSC�V
NWP�H
NWP�V
RKSJ�H
RKSJ�V
Roman
UCS2�90ms�RKSJ
UCS2�90pv�RKSJ
UCS2�B5pc
UCS2�ETen�B5
UCS2�GBK�EUC
UCS2�GBpc�EUC
UCS2�KSCms�UHC
UCS2�KSCpc�EUC
UniCNS�UTF8�H
UniCNS�UTF8�V
UniCNS�UTF16�H
UniCNS�UTF16�V
UniCNS�UTF32�H
UniCNS�UTF32�V
UniGB�UTF8�H
UniGB�UTF8�V
UniGB�UTF16�H

 651

ABBYY FineReader Engine 10 Distribution

UniGB�UTF16�V
UniGB�UTF32�H
UniGB�UTF32�V
UniHojo�UCS2�H
UniHojo�UCS2�V
UniHojo�UTF8�H
UniHojo�UTF8�V
UniHojo�UTF16�H
UniHojo�UTF16�V
UniHojo�UTF32�H
UniHojo�UTF32�V
UniJIS2004�UTF8�H
UniJIS2004�UTF8�V
UniJIS2004�UTF16�H
UniJIS2004�UTF16�V
UniJIS2004�UTF32�H
UniJIS2004�UTF32�V
UniJISB�UCS2�H
UniJISPro�UCS2�HW�V
UniJISPro�UCS2�V
UniJISPro�UTF8�V
UniJIS�UCS2�HW�H
UniJIS�UCS2�HW�V
UniJIS�UTF8�H
UniJIS�UTF8�V
UniJIS�UTF16�H
UniJIS�UTF16�V
UniJIS�UTF32�H
UniJIS�UTF32�V
UniJISX0213�UTF32�H
UniJISX0213�UTF32�V
UniJISX02132004�UTF32�H
UniJISX02132004�UTF32�V
UniKS�UTF8�H
UniKS�UTF8�V
UniKS�UTF16�H
UniKS�UTF16�V
UniKS�UTF32�H
UniKS�UTF32�V
V
WP�Symbol

\Bin\Resource\Font

Mandatory. AdobePiStd.otf
CourierStd.otf
CourierStd�Bold.otf
CourierStd�BoldOblique.otf
CourierStd�Oblique.otf
sy______.pfb
sy______.pfm
zx______.mmm
zx______.pfb
zx______.pfm
zy______.mmm
zy______.pfb
zy______.pfm

\Bin\Resource\Font

AdobeHeitiStd�Regular.otf
AdobeMingStd�Light.otf
AdobeMyungjoStd�
Medium.otf
AdobeSongStd�Light.otf
KozGoPr6N�Medium.otf
KozMinPr6N�Regular.otf

We recommend that you redistribute these files especially if you intend your application to process
PDF files in Chinese, Japanese, or Korean.

 652

ABBYY FineReader Engine 10 Distribution

 653

\Bin\Resource\Unicode\ICU
ctl_gb18030.cnv
icudt26l.dat

Mandatory.

\Bin\Resource\Unicode\Mappings\Adobe
HKSCS.txt
Japanese83pv.txt
JISX0208.txt
JISX0213.txt
readme.txt
stdenc.txt
symbol.txt
zdingbat.txt

Mandatory.

\Bin\Resource\Unicode\Mappings\Mac
ARABIC.TXT
CENTEURO.TXT
CHINSIMP.TXT
CHINTRAD.TXT
CORPCHAR.TXT
CROATIAN.TXT
CYRILLIC.TXT
DEVANAGA.TXT
DINGBATS.TXT
FARSI.TXT
GREEK.TXT
GUJARATI.TXT
GURMUKHI.TXT
HEBREW.TXT
ICELAND.TXT
JAPANESE.TXT
KOREAN.TXT
README.TXT
ROMAN.TXT
ROMANIAN.TXT
SYMBOL.TXT
THAI.TXT
TURKISH.TXT
UKRAINE.TXT

Mandatory.

\Bin\Resource\Unicode\Mappings\Win
CP874.TXT
CP932.TXT
CP936.TXT
CP949.TXT
CP950.TXT
CP1250.TXT
CP1251.TXT
CP1252.TXT
CP1253.TXT
CP1254.TXT
CP1255.TXT
CP1256.TXT
CP1257.TXT
CP1258.TXT

Mandatory.

See also

ABBYY FineReader Engine Distribution Kit

ABBYY FineReader Engine 10 Specifications

Specifications

This section contains the descriptions of ABBYY FineReader Engine 10 general features:

• Supported Image Formats

• List of the Predefined Languages

• Text Types

• Barcode Types

• Export Formats

• What's New in ABBYY FineReader Engine 10

• Compatibility with ABBYY FineReader Engine 9.0

• Version History

• System Requirements

Supported Image Formats
The ABBYY FineReader Engine 10 opens and saves image files in the following formats:

Format Open Save Extension

bmp + + BMP:
uncompressed black and white
4� and 8�bit — uncompressed Palette
16�bit — uncompressed, uncompressed Mask
24�bit — uncompressed
32�bit — uncompressed, uncompressed Mask

bmp + BMP:
4� and 8�bit — RLE compressed Palette

dcx + + DCX:
black and white
2�, 4� and 8�bit palette
24�bit color

pcx + + PCX:
black and white
2�, 4� and 8�bit palette
24�bit color

png + + PNG:
black and white, gray, color

jp2, jpc + + JPEG 2000:
gray — Part 1
color — Part 1

JPEG:
gray, color + + jpg, jpeg, jfif

pdf + + PDF (Version 1.7 or earlier)

TIFF:
black and white — uncompressed, CCITT3, CCITT3FAX, CCITT4, Packbits, ZIP, LZW
gray — uncompressed, Packbits, JPEG, ZIP, LZW
24�bit color — uncompressed, JPEG, ZIP, LZW
1�, 4�, 8�bit palette — uncompressed, Packbits, ZIP, LZW

tif, tiff + +

 654

ABBYY FineReader Engine 10 Specifications

(including multipage TIFF)

GIF:
black and white — LZW�compressed
2�, 3�, 4�, 5�, 6�, 7�, 8�bit palette — LZW�compressed

+ gif

DjVu:
black and white, gray, color djvu, djv +

JBIG2:
black and white jb2 + +

WDP:
black and white, gray, color
(WIC or Microsoft .NET Framework 3.0 required)

wdp +

Note: The ABBYY FineReader Engine will not open images larger than 32512*32512 pixels.

See also

Image Quality Requirements

Predefined Languages in ABBYY FineReader Engine
Here is the list of internal names of the predefined languages that are supported in ABBYY FineReader Engine. Availability of this or
that predefined recognition language depends on the availability of the corresponding modules among ABBYY FineReader Engine files.
See the Installation section to know which recognition languages correspond to which ABBYY FineReader Engine modules. In
addition, not all recognition languages are available for Handprint recognition. These languages are marked by special comment. The
most of the predefined languages are simple ones. Comments are given for the group languages. Comments are also given for the
languages that have full built�in dictionary support. ABBYY FineReader Engine provides its own system dictionaries for the languages
that has full built�in dictionary support.

Can be
used for
ICR

Full dictionary
support available

Can be used for ICR with
full dictionary support Internal name Recognition language

 Abkhaz Abkhaz

 Adyghe Adyghe

 + Afrikaans Afrikaans

 Agul Agul

 + Albanian Albanian

 Altaic Altaic

+ Arabic Arabic (Saudi Arabia)

+ ArmenianEastern Armenian (Eastern)

+ ArmenianGrabar Armenian (Grabar)

+ ArmenianWestern Armenian (Western)

 Awar Avar

 + Aymara Aymara

AzeriCyrillic Azerbaijani (Cyrillic)

AzeriLatin Azerbaijani (Latin) +

+ Bashkir Bashkir

 + Basque Basque

 Belarusian Belarussian

 + Bemba Bemba

 + Blackfoot Blackfoot

 655

ABBYY FineReader Engine 10 Specifications

 + Breton Breton

 + Bugotu Bugotu

+ + Bulgarian Bulgarian

 + Buryat Buryat

+ Catalan Catalan

 + Chamorro Chamorro

 Chechen Chechen

ChinesePRC Chinese Simplified

 ChineseTaiwan Chinese Traditional

 Chukcha Chukcha

 Chuvash Chuvash

 + Corsican Corsican

 + CrimeanTatar Crimean Tatar

+ + Croatian Croatian

 + Crow Crow

+ + Czech Czech

+ Danish Danish

 Dargwa Dargwa

 Dungan Dungan

Dutch Dutch (Netherlands) + +

DutchBelgian Dutch (Belgium) + +

+ + English English

 EskimoCyrillic Eskimo (Cyrillic)

 EskimoLatin Eskimo (Latin)

 Esperanto Esperanto

+ + Estonian Estonian

 + Even Even

 + Evenki Evenki

 Faeroese Faeroese

 + Fijian Fijian

+ + Finnish Finnish

+ + French French

 + Frisian Frisian

 + Friulian Friulian

 + GaelicScottish Scottish Gaelic

 Gagauz Gagauz

 + Galician Galician

 + Ganda Ganda

+ + German German

+ + GermanNewSpelling German (new spelling)

 656

ABBYY FineReader Engine 10 Specifications

 + GermanLuxembourg German (Luxembourg)

+ + Greek Greek

 + Guarani Guarani

 + Hani Hani

 Hausa Hausa

 + Hawaiian Hawaiian

+ Hebrew Hebrew

+ + Hungarian Hungarian

 Icelandic Icelandic

 + Ido Ido

+ + Indonesian Indonesian

 Ingush Ingush

 + Interlingua Interlingua

 + Irish Irish

+ + Italian Italian

+ Japanese Japanese

 Kabardian Kabardian

 Kalmyk Kalmyk

 + KarachayBalkar Karachay�Balkar

 Karakalpak Karakalpak

 + Kasub Kasub

 + Kawa Kawa

 + Kazakh Kazakh

 Khakas Khakas

 Khanty Khanty

 Kikuyu Kikuyu

 + Kirgiz Kirghiz

 + Kongo Kongo

+ Korean Korean

+ KoreanHangul Korean (Hangul)

 Koryak Koryak

 + Kpelle Kpelle

 + Kumyk Kumyk

 + Kurdish Kurdish

 Lak Lak

Lappish Sami (Lappish) +

 + Latin Latin

+ + Latvian Latvian

Latvian language written in
Gothic script LatvianGothic

 657

ABBYY FineReader Engine 10 Specifications

 Lezgin Lezgin

+ + Lithuanian Lithuanian

 + Luba Luba

 Macedonian Macedonian

 + Malagasy Malagasy

 Malay Malay

 + Malinke Malinke

 Maltese Maltese

 Mansi Mansi

 + Maori Maori

 Mari Mari

 + Maya Maya

 + Miao Miao

 + Minankabaw Minangkabau

 + Mohawk Mohawk

 + Mongol Mongol

 + Mordvin Mordvin

 + Nahuatl Nahuatl

 + Nenets Nenets

 + Nivkh Nivkh

 + Nogay Nogay

NorwegianNynorsk +
NorwegianBokmal

+ Norwegian

+ NorwegianBokmal Norwegian (Bokmal)

+ NorwegianNynorsk Norwegian (Nynorsk)

 + Nyanja Nyanja

 Occidental Occidental

 + Ojibway Ojibway

+ OldEnglish Old English

+ + OldFrench Old French

+ + OldGerman Old German

+ + OldItalian Old Italian

+ + OldSpanish Old Spanish

 Ossetic Ossetian

 + Papiamento Papiamento

 + PidginEnglish Tok Pisin

+ + Polish Polish

+ PortugueseBrazilian Portuguese (Brazil)

+ PortugueseStandard Portuguese (Portugal)

 Provencal Provencal

 658

ABBYY FineReader Engine 10 Specifications

 + Quechua Quechua

 + RhaetoRomanic Rhaeto�Romanic

+ + Romanian Romanian

 + RomanianMoldavia Romanian (Moldavia)

 + Romany Romany

 + Ruanda Ruanda

 + Rundi Rundi

 RussianOldSpelling Russian (old spelling)

+ + Russian Russian

 + Samoan Samoan

 + Selkup Selkup

 SerbianCyrillic Serbian (Cyrillic)

 + SerbianLatin Serbian (Latin)

 Shona Shona

Sioux Sioux (Dakota) +

+ + Slovak Slovak

+ + Slovenian Slovenian

 + Somali Somali

 Sorbian Sorbian

 + Sotho Sotho

+ + Spanish Spanish

 Sunda Sunda

 + Swahili Swahili

 + Swazi Swazi

+ Swedish Swedish

 Tabassaran Tabassaran

 + Tagalog Tagalog

 + Tahitian Tahitian

 Tajik Tajik

+ Tatar Tatar

+ Thai Thai

 + Tinpo Jingpo

 + Tongan Tongan

 + Tswana Tswana

 + Tun Tun

+ + Turkish Turkish

 Turkmen Turkmen

 + Tuvin Tuvan

 Udmurt Udmurt

 UighurCyrillic Uighur (Cyrillic)

 659

ABBYY FineReader Engine 10 Specifications

 + UighurLatin Uighur (Latin)

+ + Ukrainian Ukrainian

 UzbekCyrillic Uzbek (Cyrillic)

 UzbekLatin Uzbek (Latin)

+ Vietnamese Vietnamese

 + Visayan Cebuano

 Welsh Welsh

 + Wolof Wolof

 + Xhosa Xhosa

 Yakut Yakut

 Yiddish Yiddish

 + Zapotec Zapotec

 Zulu Zulu

+ Mixed * Russian and English

Chinese Simplified and
English

 ChinesePRC+English

Chinese Traditional and
English

 ChineseTaiwan+English

+ Japanese+English Japanese and English

 Basic Basic programming language

C/C++ programming
language

 C++

Cobol programming
language

 Cobol

Fortran programming
language

 Fortran

 Java Java programming language

Pascal programming
language

 Pascal

Chemistry Simple chemical formulas

 E13B For MICR (E�13B) text type

 CMC7 For MICR CMC�7 text type

 + Digits Numbers

* — The language is available only if Russian locale is selected on the user's computer.

See also

LanguageIdEnum
Working with Languages

Text Types
The ABBYY FineReader Engine 10 recognizes the following types of text:

• Common typographic text

• Text typed on a typewriter

 660

ABBYY FineReader Engine 10 Specifications

• Text printed on a dot�matrix printer

• Special set of characters including only digits written in ZIP�code style. They look as follows:

• Handprinted text. It may look as follows:

• Text in monospaced font designed specifically for Optical Character Recognition. It is largely used by banks, credit card
companies and similar businesses. It may look as follows:

• Text printed in a font designed specifically for Optical Character Recognition. It may look as follows:

• Special numeric characters printed in magnetic ink. MICR (Magnetic Ink Character Recognition) characters are found in a
variety of places, including personal checks. They may look as follows:

• Special MICR barcode font (CMC�7). It may look as follows:

• Text printed in Gothic type. It may look as follows:

For this text type, the ABBYY FineReader Engine currently supports only the "Fraktur" font.

See also

IRecognizerParams::TextTypes
TextTypeEnum

Barcode Types
ABBYY FineReader Engine 10 recognizes the following types of barcodes:

Barcode Type Description
Aztec is a high density two�dimensional matrix style bar code symbology that can encode up to 3750 characters
from the entire 256 byte ASCII character set. The symbol is built on a square grid with a bulls�eye pattern at its
center.

Aztec

Codabar is a self�checking, variable length barcode that can encode 16 data characters. It is used primarily for
numeric data, but also encodes six special characters. Codabar is useful for encoding dollar and mathematical
figures because a decimal point, plus sign, and minus sign can be encoded.

Codabar

Code 128 is an alphanumeric, very high�density, compact, variable length barcode scheme that can encode the
full 128 ASCII character set. Each character is represented by three bars and three spaces totaling 11 modules.
Each bar or space is one, two, three, or four modules wide with the total number of modules representing bars
an even number and the total number of modules representing a space an odd number. Three different start
characters are used to select one of three character sets.

Code 128

Code 39, also referred to as Code 3 of 9, is an alphanumeric, self�checking, variable length barcode that uses five
black bars and four spaces to define a character. Three of the elements are wide and six are narrow. Code 39

 661

ABBYY FineReader Engine 10 Specifications

Code 93 is a variable length bar code that encodes 47 characters. It is named Code 93 because every character is
constructed from nine elements arranged into three bars with their adjacent spaces. Code 93 is a compressed
version of Code 39 and was designed to complement Code 39.

Code 93

Data Matrix is a two�dimensional matrix barcode consisting of black and white modules arranged in either a
square or rectangular pattern. Every Data Matrix is composed of two solid adjacent borders in an "L" shape and
two other borders consisting of alternating dark and light modules. Within these borders are rows and columns
of cells encoding information. A Data Matrix barcode can store up to 2335 alphanumeric characters.

Data Matrix

The European Article Numbering (EAN) system is used for products that require a country origin. This is a fixed�
length barcode used to encode either eight or thirteen characters. The first two characters identify the country
of origin, the next characters are data characters, and the last character is the checksum. These barcodes may
include an additional barcode to the right of the main barcode. This second barcode, which is usually not as tall
as the primary barcode, is used to encode additional information for newspapers, books, and other periodicals.
The supplemental barcode may either encoded 2 or 5 digits of information.

EAN 8 and 13

IATA 2 of 5 is a barcode standard designed by the IATA (International Air Transport Association). This standard
is used for all boarding passes. IATA 2 of 5

Industrial 2 of 5 is numeric�only barcode that has been in use a long time. Unlike Interleaved 2 of 5, all of the
information is encoded in the bars; the spaces are fixed width and are used only to separate the bars. The code
is self�checking and does not include a checksum.

Industrial 2 of 5

Interleaved 2 of 5 is a variable length (must be a multiple of two), high�density, self�checking, numeric barcode
that uses five black bars and five white bars to define a character. Two digits are encoded in every character;
one in the black bars and one in the white bars. Two of the black bars and two of the white bars are wide. The
other bars are narrow.

Interleaved 2 of 5

Standard 2 of 5 is self�checking numeric�only barcode. Unlike Interleaved 2 of 5, all of the information is
encoded in the bars; the spaces are fixed width and are used only to separate the bars. Matrix 2 of 5 is used
primarily for warehouse sorting, photo finishing, and airline ticket marking.

Matrix 2 of 5

A pattern of horizontal black bars separated by spaces. Typically, a patch code is placed near the top center of a
paper document to be scanned and used as a document separator. Patch

PDF417 is a variable length, two�dimensional (2D), stacked symbology that can store up to 1,850 printable
ASCII characters or 1,100 binary characters per symbol. PDF417 is designed with selectable levels of error
correction. Its high data capacity can be helpful in applications where a large amount of data must travel with a
labeled document or item.

PDF417

The Postnet (Postal Numeric Encoding Technique) is a fixed length symbology (5, 6, 9, or 11 characters) which
uses constant bar and space width. Information is encoded by varying the bar height between the two values.
Postnet barcodes are placed on the lower right of envelopes or postcards, and are used to expedite the
processing of mail with automatic equipment and provide reduced postage rates.

PostNet

QR Code is a two�dimensional matrix barcode. The barcode has 3 large squares (registration marks) in the
corners which define the top of the barcode. The black and white squares in the area between the registration
marks are the encoded data and error correction keys. QR Codes can encode over 4000 ASCII characters.

QR Code

This type of barcode is a 19 digit barcode with a 20th check digit. For a total of 20 digits. It typically is used for
carton identification. Both for internal carton numbering and also for using the UCC�128 barcode on your
cartons being shipped out to your customers.

UCC�128

The UPC�A (Universal Product Code) barcode is 12 digits long, including its checksum. Each digit is represented
by a seven�bit sequence, encoded by a series of alternating bars and spaces. UPC�A is used for marking products
which are sold at retail in the USA.

UPC�A

The UPC�E barcode is a shortened version of UPC�A barcode. It compresses the data characters and the
checksum into six characters. This bar code is ideal for small packages because it is the smallest bar code. UPC�E

See also

BarcodeTypeEnum
BarcodeParams

Export Formats
The ABBYY FineReader Engine allows export recognized text in the following formats:

 662

ABBYY FineReader Engine 10 Specifications

• RTF/DOC/DOCX

• XLS/XLSX

• PDF

• PDF/A

• HTML

• PPTX

• TXT/CSV

• XML*

* – XML file format contains recognized text which structure is described with the help of XML.

See also

FileExportFormatEnum

What's New in ABBYY FineReader Engine 10
Here you can find the list of new features in ABBYY FineReader Engine 10.

New and improved language recognition

• Arabic language recognition

• Improved CJK languages recognition:

o Chinese Simplified (PRC)

o Chinese Traditional (Taiwan)

o Japanese

o Korean

• Improved Thai, Vietnamese, and Hebrew recognition

• Improved recognition of Old European languages (Fraktur font)

See the list of predefined languages in ABBYY FineReader Engine.

Speed improvements

• Normal recognition mode has become faster

• Multi�core support improvements (the MultiProcessingParams object)

FineReader Engine usage scenarios and profiles

• Document conversion scenarios:

o Document archiving

o Book archiving

o Document conversion for content reuse

• Scenarios for data capture:

o Text extraction

 663

ABBYY FineReader Engine 10 Specifications

o Field�level recognition

o Barcode recognition

• For each usage scenario, the best settings are provided with the predefined profiles

Recognition improvements

• Improved OCR of low resolution documents (the IRecognizerParams::LowResolutionMode property)

• ICR improvements for European languages (English, French, German)

• Improved barcode recognition

PDF conversion improvements

• PDF (PDF/A) export may be adjusted much easier by setting only a few parameters (the new PDFExportParams object)

• Improved PDF MRC export

Image preprocessing improvements

• Improved image binarization (more text can be found on low�contrast images and images with complicated backgrounds)

• Image color filtering (IImageDocument::RemoveColorObjects)

• Improved image preprocessing for images received from a digital camera:

o Automatic correction of 3D perspective distortions (IFRPage::RemoveGeometricalDistortions,
IPageProcessingParams::RemoveGeometricalDistortions, IDocumentAnalyzer::RemoveGeometricalDistortions)

o Blur correction (IImageDocument::RemoveCameraBlur)

o ISO noise reduction (IImageDocument::RemoveCameraNoise)

Adaptive Document Recognition Technology (ADRT) improvements

• Processing picture captions

• Constructing a document map and table of contents

• New API for the results of document structure synthesis

New messages languages

• Brazilian

• Korean

• Chinese (RPC)

• Chinese (Taiwan)

• Danish

See the list of supported interface languages.

Please visit our website at www.abbyy.com for the most up�to�date information about ABBYY FineReader Engine and other ABBYY
products.

See also

ABBYY FineReader Engine 10 and 9.0 compatibility

 664

ABBYY FineReader Engine 10 Specifications

ABBYY FineReader Engine 10 and 9.0 compatibility
ABBYY FineReader Engine 10 is not binary compatible with ABBYY FineReader Engine 9.0. Applications that were compiled using
ABBYY FineReader Engine 9.0 should be recompiled using ABBYY FineReader Engine 10 headers and library. Some changes of the
source code may be necessary because of the ABBYY FineReader Engine API improvements.

Below is the full list of changes.

Layout and blocks

Object/Enumeration Property/Method/Constant Comment What has
happened?
The type of
the property
has been
changed.

In this version separators are marked as
blocks during page processing. Therefore,
the type of the property is LayoutBlocks.

BlackSeparators

LoadBlocks Removed This functionality is no longer supported.

Text of barcode blocks is not included into
the output text line. TextAsString

Layout
Layout resolution is equal to the resolution
of the black�and�white plane of the image
for which the Layout object is defined. To
view the resolution of the image, you can
use the XResolution and YResolution
properties of the corresponding Image
object.

Resolution Removed

In this version all the block type interfaces
are derived from the IBlock interface and
inherit all its properties. The following
methods of the Block object provide access
to extended attributes of blocks of these
types:
GetAsBarcodeBlock,
GetAsCheckmarkBlock,
GetAsCheckmarkGroup,
GetAsRasterPictureBlock,
GetAsTableBlock,
GetAsTextBlock.

BarcodeBlockProperties,
CheckmarkBlockProperties,
CheckmarkGroupProperties,
PictureBlockProperties,
TableBlockProperties,
TextBlockProperties

Removed
Block

RecognitionStatus Removed This functionality is no longer supported.

The same functionality is provided via the
LayoutBlocks object with the following
exceptions:

• The Add and Insert methods for
the collection received using the
ILayout::Blocks property
cannot be called. To add or insert
a block into the collection, use
the AddBlock or InsertBlock
methods of the corresponding
Layout object.

BlocksCollection Removed

This type of block is no longer supported.
To analyze an image zone, you can use the
AnalyzeRegion method of the FRPage or
DocumentAnalyzer object.

AutoAnalysisBlockProperties Removed

The same functionality is provided via the
BarcodeBlock object with the following
exceptions: BarcodeBlockProperties Removed

• BarcodeOrientation — the
barcode orientation is defined

 665

ABBYY FineReader Engine 10 Specifications

with the help of the
ImageProcessingParams
property.

• Text — the property returns a
string instead of the Text object.
The text is also accessible via the
BarcodeText property.

• BarcodeSupplementType —
the property has been renamed.
The new name of the property is
SupplementType.

CheckmarkBlockProperties Removed Use the CheckmarkBlock object instead.

The same functionality is provided via the
CheckmarkGroup object with the
following exceptions:

• MaximumCheckedInGroup —
the default value of this property
has been changed.

• Add — the method has been
removed. Use the
AddCheckmark method
instead.

CheckmarkGroupProperties Removed

• Insert — the method has been
removed. Use the
InsertCheckmark method
instead.

The same functionality is provided via the
RasterPictureBlock and
VectorPictureBlock objects with the
following exceptions:

• DescriptionText — use the
IBlock::Description property
instead.

PictureBlockProperties Removed
• ImageEnhancerValues — the

properties of this subobject are
provided via the
RasterPictureBlock object.

• IsEmbeddedInText — use the
ITextPicture::IsInlinePicture
property instead.

TableBlockProperties Removed Use the TableBlock object instead.

The same functionality is provided via the
TextBlock object with the following
exceptions: TextBlockProperties Removed

• Text — the property is read�only.

Two types of picture blocks are supported
in this version: BT_RasterPicture and
BT_VectorPicture.

BT_Picture Removed
BlockTypeEnum

BT_AutoAnalysis Removed This type of block is no longer supported.

BlackSeparator Removed The same functionality is provided via the

 666

ABBYY FineReader Engine 10 Specifications

SeparatorBlock object with the following
exceptions:

• Direction — the property is no
longer supported as separators
can be slanting.

• Type — use the SeparatorType
property instead.

• Left, Top, Right, Bottom — the
coordinates of the start and end
points of the separator is
provided instead.

The same functionality is provided via the
SeparatorGroup object. BlackSeparators Removed

 Removed These constants are no longer in use. BlackSeparatorDirectionEnum

BlackSeparatorTypeEnum Removed These constants are no longer in use.

Text,
ImagePreprocessingParams,
RecognizerParams,
ContainsPicture

Use the ITableCell::Block property
instead. Properties and methods of the
Block sub�object of the TableCell object
provides similar functionality.

TableCell Removed

The names
and number
of
enumeration
constants
have been
changed.

Use TST_Invisible instead of TST_White and
TST_Explicit instead of TST_Black. TableSeparatorTypeEnum

The
properties
are no
longer read�
only.

Position,
Type TableSeparator

Processing parameters

Object/Enumeration Property/Method/Constant Comment What has
happened?

The corresponding properties are
available through the
IPageAnalysisParams::TableAn
alysisParams subobject.

TableAnalysisParams Removed

PageProcessingParams The PageSynthesisParams object
is no longer supported. The same
functionality is provided via the
SynthesisParamsForPage and
SynthesisParamsForDocument
objects.

PageSynthesisParams Removed

Use the DetectOrientation and
OrientationDetectionParams
properties of the
PageProcessingParams object.

DetectOrientation Removed PageAnalysisParams

DetectBarcodes,
DetectInvertedImage,

Use the corresponding properties
of the PageProcessingParams
object.

Removed

DetectInvertedTexture Removed Use the RemoveTexture property
of the ObjectsExtractionParams

 667

ABBYY FineReader Engine 10 Specifications

object instead.

DetectMatrixPrinter,
DetectPorousText,
FastObjectsExtraction,
FlexiFormsDA,
FullTextIndexDA,
ProhibitColorImage,
RemoveTexture

Use the corresponding properties
of the ObjectsExtractionParams
object instead.

Removed

The corresponding properties are
available through the
OrientationDetectionParams
subobject of the
PageAnalysisParams object.

ProhibitClockwiseRotation,
ProhibitCounterclockwiseRotation,
ProhibitUpsidedownRotation

Removed

The same functionality is provided
via the SynthesisParamsForPage
and
SynthesisParamsForDocument
objects.

PageSynthesisParams Removed

The corresponding properties are
available through the
DocumentStructureDetectionP
arams subobject of the
SynthesisParamsForDocument
object.

DetectCaptions,
DetectColumns,
DetectFootnotes,
DetectRunningTitles

Removed

DetectBold,
DetectDropCaps,
DetectFontSize,
DetectItalic,
DetectSerifs,
DetectSmallCaps,
DetectSubscriptsSuperscripts,
DetectUnderlineStrikeout,
MonospaceDetectionMode

The corresponding properties are
available through the
FontFormattingDetectionPara
ms subobject of the
SynthesisParamsForDocument
object.

Removed SynthesisParamsForDocument

DontReplaceBullets,
UseVisualOrderForBidirectionalText

These properties are no longer
supported. Removed

Use the DetectScaling and
DetectSpacing properties of the
SynthesisParamsForDocument
object instead.

DetectScaleSpacing Removed

This property is no longer
supported. SynthesisParamsForPage DoNotExtractSeparators Removed

The same functionality is provided
via the BarcodeParams and
ObjectsExtractionParams
objects.

BarcodeAnalysisParams Removed

The UPC�A barcode type can be
specified explicitly: use the
BT_UPCA enumeration constant in
the value of the Type property of
the BarcodeParams object.

BarcodeParams IsEAN13InterpretedAsUPCA Removed

This property is no longer
supported. TableAnalysisParams RectangularTables Removed

BlackGarbageSize
WhiteGarbageSize

These properties are no longer
supported. Removed ImageProcessingParams

Removed ProhibitCorrectLocalSkew Use the SkewCorrectionMode
property of the
TextBlockAnalysisParams

 668

ABBYY FineReader Engine 10 Specifications

object instead.
Use the corresponding properties
of the ObjectsExtractionParams
object instead.

RemoveGarbage,
RemoveTexture Removed

Use the AutodetectInversion
property of the
TextBlockAnalysisParams
object instead.

Removed AutodetectInversion

Text�related objects

Object/Enumeration Property/Method/Constant Comment What has
happened?

Currently the background color is an
attribute of a paragraph or a block. Use
the corresponding properties of the
ParagraphParams and Block objects.

BackgroundColor Removed

Use the IsVerticalMirrored property
of the TextOrientation subobject of
the Text object.

IsMirrored Removed

IsPlain,
Append,
CopyFrom

The functionality is no longer
supported. Removed

The ExtendedRecAttributes object is
no longer in use. Removed DiscardExtendedRecAttributes

DiscardRectangles Removed
Use the properties and methods of the
CharParams object to edit characters
rectangles.

Text

The type of
the property
has been
changed.

This property provides access to the
TextOrientation object. TextOrientation

Use the InsertText and
InsertParagraphBreak methods of
the Paragraph object respectively.

Insert,
InsertParagraphBreak Removed

SeparateHorz,
SeparateVert

The functionality is no longer
supported. Removed

TextOrientationEnum Removed These constants are no longer in use.

The property receives as an input
parameter the index of the bookmark
in the internal collection of the
paragraph's bookmarks instead of its
position inside the paragraph.

Input
parameter has
been changed.

Bookmark Paragraph

The method receives as an input
parameter the name of the bookmark
instead of its position inside the
paragraph.

Input
parameter has
been changed.

GetBookmarkRange

The new name of the property is
ExtendedParams. Renamed Params

TabLeaderInfo Removed Use the TabPositions property instead.

These properties are no longer
supported. ParentText Removed

Id Removed Use the IPageElement::Id instead.

SetCharParams The number
of input

The method takes an OR combination
of the StyleParamsEnum constants as

 669

ABBYY FineReader Engine 10 Specifications

one of the input parameters. parameters
has been
changed.

Left
Top
Right
Bottom

The coordinates of the paragraph
borders are not available for the
paragraphs of barcodes.

This functionality is no longer
supported. Removed SetRect

Image enhancement is no longer
supported. To access the properties of
an inline picture:

1. Use the IParagraph::
InlinePictureID property
to receive the ID of the
PageElement object which
describes the embedded
image.

ImageEnhancerValues Removed

2. Find the corresponding
PageElement object by its
ID.

3. Receive its TextPicture
object using the
GetAsPicture method and
work with its properties.

Use the TabPositions, TabPosition
objects and the
IParagrapgh::TabPositions property
instead.

ChangeParagraphTabInfo,
GetParagraphTabInfoCopy Removed

HasUncertainAlignment,
Width Removed These properties are obsolete.

ParagraphParams

This functionality is no longer
supported. UserProperty Removed

 The property becomes read�only. BaseLine
Left
Top
Right
Bottom

The coordinates of the line borders are
not available for the paragraphs of
barcodes.

 ParagraphLine

This functionality is no longer
supported. Removed SetRect

Renamed Paragraphs Find Use the GetIndex method instead.

The same functionality is provided via
the TabPosition object. ParagraphTabInfo Removed

IsHidden Removed This property is no longer supported.

Use the IsStartStopSymbol property
of the BarcodeSymbol object instead. IsStartStopSymbol Removed

This object is no longer in use. Similar
properties are available via the
CharacterRecîgnitionVariant and
WordRecognitionVariant object.

ExtendedRecAttributes Removed
CharParams

CharacterHeight,
HasUncertainHeight

These properties are no longer
supported. Removed

ExtendedRecAttributes Removed Use the CharacterRecîgnitionVariant,

 670

ABBYY FineReader Engine 10 Specifications

WordRecognitionVariant, and
CharParams objects instead:

• CharConfidence,
SerifProbability — use the
corresponding properties of
the
CharacterRecîgnitionVari
ant object.

• IsWordFromDictionary,
MeanStrokeWidth — use
the corresponding properties
of the
WordRecognitionVariant
object.

• IsWordIdentifier,
IsWordNormal,
IsWordNumeric — use the
ModelType property of the
WordRecognitionVariant
object:

o IsWordNormal set
to TRUE is equal to
the ModelType
property set to
WMT_MonoLingua
lWord |
WMT_RegExpWor
d

o IsWordNumeric set
to TRUE — to
WMT_Number |
WMT_NumberWit
hQualifier |
WMT_RomanNum
ber |
WMT_PhoneNumb
er |
WMT_UrlOrEmail

o IsWordNormal set
to TRUE — to
WMT_BilingualCo
mposit |
WMT_Acronym |
NumberWithQualif
ier |
WMT_WordNumb
erComposite |
WMT_BilingualWo
rdNumberComposi
te |
WMT_RomanNum
ber |
WMT_MixedForm
DictionaryWord |
WMT_PhoneNumb
er |
WMT_Punctuation
| WMT_FileNumber
| WMT_UrlOrEmail

 671

ABBYY FineReader Engine 10 Specifications

• WordPenalty — use the
WordConfidence property
of the
WordRecognitionVariant
object.

• IsWordStart — use the
corresponding property of
the CharParams object.

The
corresponding
module has
been
renamed.

The new name of the module is
CharacterFlags.

CFL_Bold,
CFL_Italic,
CFL_Underlined,
CFL_Strikeout,
CFL_SmallCaps
CFL_FontSize,
CFL_FontName,
CFL_Scale,
CFL_Spacing,
CFL_Color,
CFL_BaseLine

Use the corresponding constants of the
StyleParamsEnum enumeration. Removed CFL_ prefixed flags

CFL_Hidden,
CFL_UncertainCharHeight,
CFL_CharacterHeight,
CFL_ExtRecAttributes,
CFL_Rectangle,
CFL_IsStartStopSymbol

Removed These constants are no longer in use.

The number
of input
parameters
has been
changed.

The following input parameters have
been added: encoding type and code
page of the output file.

PlainText SaveToTextFile

Language�related objects

Object/Enumeration Comment Property/Method/Constant What has
happened?

The new name of the property is
CanUseTrigrams. Renamed StandardDictionaryDescription CanUseTrigramms

The confidence of the word is an output
parameter and is no longer an input
parameter.

EnumDictionaryWords Next

Export

Object/Enumeration Comment Property/Method/Constant What has
happened?

DBFExportParams Removed Export to DBF format is no longer supported.

Use the corresponding properties of the
DocumentContentInfo subobject of the
FRDocument or DocumentInfo object. In order
these properties are written into HTML file, set the
values of the WriteAuthor, WriteKeywords,
WriteSubject, WriteTitle properties to TRUE.

Author,
Keywords,
Subject,
Title

Removed HTMLExportParams

CodePageType Removed This property is no longer supported.

Renamed Quality The new name of the property is

 672

ABBYY FineReader Engine 10 Specifications

PictureJpegQuality.

This property is no longer supported. Output HTML
document can be split into files (use the
SplitDocumentToFiles property).

SeparatePages Removed

This property is no longer supported. Similar
functionality is provided via the EncodingType
property.

UseUnicode Removed

Page structure is no longer retained in the output
HTML document. Logical structure of the document
can be saved using the HSM_FlexibleLayout
constant.

HTMLSynthesisModeEnum HSM_PageLayout Removed

HTMLFormatModeEnum HFM_TwoFormats32_40 Removed This format is no longer supported.

CodePageType Removed This property is no longer supported.

To export to CSV format, use the ExportFormat
property:

• select the TEF_CSVFullLayout constant as
the value of this property to retain full
layout in the output CSV file

TextExportParams TXTIsCSV
CSVTablesOnly Removed

• set the property to TEF_CSVTablesOnly to
export recognized text from table blocks
only

Use the corresponding properties of the
DocumentContentInfo subobject of the
FRDocument or DocumentInfo object. In order
these properties are written into RTF/DOC/DOCX
file, set the values of the WriteAuthor,
WriteKeywords, WriteSubject, WriteTitle
properties to TRUE.

Author,
Keywords,
Subject,
Title

Removed

FormatWord95 Removed This property is no longer supported.

PictureFormat

The EPF_BmpColor, EPF_BmpGray,
EPF_BmpBlackWhite constants cannot be used as
the values of this property as the Word95 format is
no longer supported.

RTFExportParams

The new name of the property is
PictureJpegQuality. Renamed Quality

EnhanceImages Removed Image enhancement is no longer supported.

WriteWordXML,
WriteCustomXMLTags Removed Export to WordXML format is no longer supported.

The new name of the object is
PDFAExportParamsOld. This object is obsolete.
We recommend you to use the new
PDFExportParams object instead.

The PDFAExportParamsOld object provides the
same functionality with the following exceptions:

• Author, Creator, Keywords, Producer,
Subject, Title — the properties have been
removed. Use the corresponding
properties of the
DocumentContentInfo subobject of the
FRDocument or DocumentInfo object.
In order these properties are written into
PDF/A file, set the values of the
WriteAuthor, WriteKeywords,
WriteSubject, WriteTitle properties to

 Renamed PDFAExportParams

 673

ABBYY FineReader Engine 10 Specifications

TRUE.

• PictureResolution — the default value
has been changed. The new default value
is 150 dpi.

• ExportMode — the default value has
been changed. The new default value is
PEM_ImageOnText dpi.

The new name of the object is
PDFExportParamsOld. This object is obsolete. We
recommend you to use the new
PDFExportParams object instead.

The PDFExportParamsOld object provides the
same functionality with the following exceptions:

• Author, Creator, Keywords, Producer,
Subject, Title — the properties have been
removed. Use the corresponding
properties of the
DocumentContentInfo subobject of the
FRDocument or DocumentInfo object.
In order these properties are written into
PDF file, set the values of the
WriteAuthor, WriteKeywords,
WriteSubject, WriteTitle properties to
TRUE.

 Renamed PDFExportParams

• ReplaceUncertainWordsWithImage —
the default value has been changed. The
new default value is FALSE.

• PictureResolution — the default value
has been changed. The new default value
is 150 dpi.

Use the EnableMRC property of the
PDFExportParams or PDFAExportParams
object instead.

MRCEnabled Removed

BackgroundDownSampling,
BackgroundFormat,
BackgroundQuality,
ColorMaskDownSampling,
MonochromeText,
TextMaskQuality

PDFMRCParams

 The default values have been changed.

The new name of the constant is
PEM_TextWithPictures. PEM_TextOnly Renamed PDFExportModeEnum

Use the corresponding properties of the
DocumentContentInfo subobject of the
FRDocument or DocumentInfo object. In order
these properties are written into XLS/XLSX file, set
the values of the WriteAuthor, WriteKeywords,
WriteSubject, WriteTitle properties to TRUE.

Author,
Keywords,
Subject,
Title

XLExportParams Removed

Export to PPT format is no longer supported. These
parameters are used for export to PPTX. PPTExportParams

Removed Author,
Keywords,
Subject,
Title

Use the corresponding properties of the
DocumentContentInfo subobject of the
FRDocument or DocumentInfo object. In order
these properties are written into PPTX file, set the

 674

ABBYY FineReader Engine 10 Specifications

values of the WriteAuthor, WriteKeywords,
WriteSubject, WriteTitle properties to TRUE.
The new name of the property is
PictureJpegQuality. Renamed Quality

The value of this property is no longer ignored when
exporting to PPTX format. WrapTextInBlock

Export to PPT format is no longer supported. For
export to PPTX use the FEF_PPTX constant. FileExportFormatEnum FEF_PPT Removed

CodePageTypeEnum Removed These constants are no longer in use.

Count Removed Use the PageIds property instead.

Input
parameter
has been
changed.

IRecognizedPages ImageDocument,
Layout,
ReleasePage

These properties and method receive as an input
parameter the page ID instead of a page number.

The parameter, which defines a mode of export, has
been removed, therefore the exported file cannot be
put into the clipboard.

The
number of
input and
output
parameters
has been
changed.

ExportPages,
ExportPagesEx Exporter These methods have two output parameters, which

provide the full paths to the additional files and the
additional directories that were generated during
export.

Image�related objects

Image document internal format has been changed. It is a folder with files.

Object/Enumeration Comment Property/Method/Constant What has
happened?

An open image, so�called "image in
internal format", is represented by a
folder with files. Therefore, all the
methods, which work with images
in internal format (e.g.
IEngine::OpenImage), work with
folders.

Internal
representation
has been
changed.

SaveImage Removed Use the SaveTo method instead.

Use the SaveToMemory method
instead. SaveImageDocToMemory Renamed

The new name of the method is
SaveImageRegionTo. The method
saves the parts of an image into a
folder on disk. The saved image is
in the ABBYY FineReader Engine
internal format.

Renamed WriteRectImage
ImageDocument

The method does not overwrite the
source image file. It saves the
current image document state on
disk.

SaveModified

The new name of the property is
IsSkewCorrected. Renamed IsSkewCorrect

This property is obsolete. All
modification methods work
correctly with all image documents.

IsReadOnly Removed

This property is obsolete. Any image
document represents an image in
internal format.

IsInternalFormat Removed

 675

ABBYY FineReader Engine 10 Specifications

These properties are obsolete. Use
the CorrectSkewMode property
instead.

CalcSkewByBlackSquares,
CorrectSkew Removed

Similar functionality is provided via
the corresponding methods of the
ImageDocument object.

RemoveGarbage,
SmoothColorImage Removed

PrepareImageMode

ColorJpegQuality
GrayJpegQuality Removed These properties are obsolete.

The
enumeration
constants
have been
changed.

In this version ZIP compression is
used. ImageCompressionEnum

This object's methods work with
regions instead of rectangles. All the
methods were renamed.

ImageModification

EnhancedImage,
ImageEnhancerValues

Image enhancement is no longer
supported. Removed

This object is no longer in use. Use
the
RemoveGeometricalDistortions
method of the
DocumentAnalyzer or FRPage
object, the
RemoveGeometricalDistortions
property of the
PageProcessingParams object
instead.

StraightenLinesParams Removed

Document�related objects

Object/Enumeration Property/Method/Constant Comment What has
happened?

The
number of
input
parameters
has been
changed.

Recognize,
RecognizePages

The ObjectsExtractionParams object is new in the
set of input parameters.

FRDocument

Use the IFRDocument::PageFlushingPolicy property
instead. AutoFlush Removed

These methods were generally used to perform layout
analysis inside blocks of the autoanalysis type. As this
type of block is no longer supported the methods have
been removed. You can use the AnalyzeRegion
method, if layout analysis must be performed in an
image zone, and then call the RecognizeBlocks
method.

AnalyzeAndRecognizeBlocks,
AnalyzeBlock Removed

FRPage
The
number of
input
parameters
has been
changed.

Recognize
RecognizeBlocks

The ObjectsExtractionParams object is new in the
set of input parameters.

DocumentContentInfo
 DocumentInformationDictionary The property does not return a copy of the object any

more, it returns a constant object. To change the
document information dictionary, you must first receive
an intermediate DocumentInformationDictionary
object with the help of the 676

ABBYY FineReader Engine 10 Specifications

IEngine::CreateDocumentInformationDictionary
method, change the necessary parameters, and then
assign this object to the property.

The default
value has
been
changed.

The new default value is "ABBYY FineReader Engine
10". Creator

This object is created using the special
IEngine::CreateDocumentInfo method. The
IEngine::PrepareImage and
IEngine::PrepareAndOpenImage methods do not
create this object, but take a reference to this object as
an input parameter.

DocumentInfo

PageSplitDirectionEnum PSD_NoneSplit Renamed The new name of the constant is PSD_NoSplit.

Engine object

The following methods and properties of the Engine object have been changed:

Property/Method Comment What has
happened?

MaxMemoryImageByteSize Removed This property is obsolete.

The ML_Portuguese and ML_Latvian constants have been
removed from the MessagesLanguageEnum enumeration.
These messages languages are no longer supported.

MessagesLanguage

MultiProcessingMode,
RecognitionProcessesCount

Use the corresponding properties of the
MultiProcessingParams subobject of the Engine object. Removed

CreateBarcodeAnalysisParams,
CreateBlocksCollection,
CreateParagraphTabInfo,
CreateStraightenLinesParams

Corresponding objects have been removed or have no effect on
the operation of ABBYY FineReader Engine. Removed

Use the AddBlock or InsertBlock method of the Layout
object, to create a new block and add or insert it into the
desired layout.

CreateBlock Removed

CreateText Removed Currently the Text object cannot be created.

The collection of available (activated) licenses you can receive
using the Licenses property of the Engine object. CreateLicense Removed

Use the
IDocumentInformationDictionary::CreateDocumentInformation
DictionaryItem method instead.

CreateDocumentInformationDictionaryIte
m Removed

Image in internal format is represented by a folder with files.
Therefore, this method takes as an input parameter a path to a
folder.

The
number of
input
parameters
has been
changed.

OpenImage
You do not need to pass the DocumentInfo object as an input
parameter.

OpenBitmapImage,
OpenDib,
OpenMemoryImage

The resulting image document is not read�only. All modification
methods work correctly with it.

PrepareDib,
PrepareBitmap,
PrepareMemoryImage

Image in internal format is represented by a folder with files.
Therefore, these methods take as an input parameter a path to a
folder for prepared images.

PrepareImage
 Image in internal format is represented by a folder with files.

 677

ABBYY FineReader Engine 10 Specifications

Therefore, this method returns as the output parameter a set of
paths to folders.

The DocumentInfo object is an input parameter and is no
longer an output parameter. The DocumentInfo object can be
created using the CreateDocumentInfo method of the
Engine object.

The DocumentInfo object is an input parameter and is no
longer an output parameter. The DocumentInfo object can be
created using the CreateDocumentInfo method of the
Engine object.

PrepareAndOpenImage

AnalyzeAndRecognizeBlocks,
AnalyzeRegion,
AnalyzeTable,
ExtractBarcodes,
FindPageSplitPosition,
RecognizeBlocks

Use the corresponding methods of the DocumentAnalyzer or
FRPage object instead. Removed

The
number of
input
parameters
has been
changed.

AnalyzeAndRecognizePage,
RecognizeImageDocumentAsPlainText,
RecognizeImageAsPlainText

The SynthesisParamsForPage object is new in the set of
input parameters.

The input
parameters
have been
changed.

The SynthesisParamsForPage and
ObjectsExtractionParams objects are new in the set of input
parameters.

RecognizePage

The SynthesisParamsForPage and
ObjectsExtractionParams objects are new in the set of input
parameters. The PageProcessingParams object is no longer
used as the input parameter.

The input
parameters
have been
changed.

RecognizePages

The
number of
input
parameters
has been
changed.

The SynthesisParamsForPage and
SynthesisParamsForDocument objects are new in the set of
input parameters.

RecognizeImageFile

The
number of
input
parameters
has been
changed.

The DocumentInfo object is new in the set of input
parameters. ExportPage

This method is obsolete. To release recognition session, use the
IFRPage::CleanRecognizerSession method. To release the
whole document, simply release all the references to the
FRDocument and DocumentInfo objects.

CleanDocumentAnalyzer Removed

Use the RemoveGeometricalDistortions method of the
DocumentAnalyzer, FRPage, or PageAnalysisParams object
instead.

StraightenLines Removed

PerformEnhancement,
EnhanceImageBlocks Removed Image enhancement is no longer supported.

Document Analyzer

Object/Enumeration Property/Method/Constant Comment What has
happened?

DocumentAnalyzer
AnalyzeAndRecognizeBlocks Removed This method was generally

used to perform layout analysis

 678

ABBYY FineReader Engine 10 Specifications

inside blocks of the
autoanalysis type. As this type
of block is no longer
supported, the method has
been removed. You can use the
AnalyzeRegion method, if
layout analysis must be
performed in an image zone,
and then call the
RecognizeBlocks method.

The
number of
input
parameters
has been
changed.

The
SynthesisParamsForPage
object is new in the set of
input parameters.

AnalyzeAndRecognizePage,
AnalyzeAndRecognizePages,
RecognizeImageDocumentAsPlainText

The BarcodeParams object is
used as an input parameter
instead of the
BarcodeAnalysisParams
object. The
ObjectsExtractionParams
object is new in the set of
input parameters.

The input
parameters
have been
changed.

ExtractBarcodes

The
SynthesisParamsForPage
and LayoutBlocks objects are
used as input parameters
instead of the
PageSynthesisParams and
BlocksCollection objects,
respectively. The
ObjectsExtractionParams
object is new in the set of
input parameters.

The input
parameters
have been
changed.

RecognizeBlocks

The
SynthesisParamsForPage
object is used as input
parameter instead of the
PageSynthesisParams
object. The
ObjectsExtractionParams
object is new in the set of
input parameters.

The input
parameters
have been
changed.

RecognizePage

The
SynthesisParamsForPage
and
ObjectsExtractionParams
objects are new in the set of
input parameters. The
PageProcessingParams
object is no longer used as the
input parameter.

The input
parameters
have been
changed.

RecognizePages

Use the
RemoveGeometricalDistortions
method of the
DocumentAnalyzer object
instead.

StraightenLines Removed

PerformEnhancement,
EnhanceImageBlocks

Image enhancement is no
longer supported. Removed

 679

ABBYY FineReader Engine 10 Specifications

Use the OnProgress,
OnRecognizerTip,
OnRegionProcessed methods
of the
IDocumentAnalyzerEvents
object instead.

ReportPercentage,
ReportRecognizerTip,
ReportRecognizedRect

IDocumentAnalyzerEvents Removed

Scanning

Object/Enumeration Comment Property/Method/Constant What has
happened?

In this version the scanning area rectangle is not set
(all the properties PaperBottom, PaperLeft,
PaperRight, PaperTop are set to 0 by default). In
this case, the scanning area will be selected by the
scanner. In most cases it will be the whole available
scanning area.

The default
values have
been changed.

PaperBottom,
PaperRight ScanSourceSettings

License�related objects

The collection of available (activated) licenses you can receive using the Licenses property of the Engine object. The
IEngine::CreateLicense method is no longer supported.

Object/Enumeration Property/Method/Constant Comment What has
happened?

Only activated licenses are
available. IsActivated Removed

IsAbsoluteTimeLimitationUsed
IsRelativeTimeLimitationUsed
RelativeDays

For activated licenses use the
ExpirationDate method of the
License object.

Removed

A license may have several counters
with different measuring units. CounterMeasureUnit Removed

License Use the
VolumeRefreshingPeriod,
VolumeRemaining, Volume
properties instead, respectively.
These properties take as the input
parameter a
LicenseCounterTypeEnum
constant as a license may have
several counters with different
measuring units.

LimitationPeriod
RemainingUnits
UnitsPerPeriod

Removed

The
corresponding
module has
been
renamed.

The new name of the module is
AvailableEngineModulesFlags.

These flags have been renamed to
AEM_PDF417 and
AEM_FullTextIndexDA,
respectively.

AEM_2DBarcodePDF417
AEM_FullTextSeachDA Renamed AEM_ prefixed flags

AEM_CJK
AEM_Thai
AEM_Vietnames
AEM_Hebrew
AEM_FineReaderXIX
AEM_LanguageDatabase

The corresponding ALS_ prefixed
flags are used. Removed

AEF_ prefixed flags
 The

corresponding
module has
been

The new name of the module is
AvailableExportFormatesFlags.

 680

ABBYY FineReader Engine 10 Specifications

renamed.

Export to DBF format is no longer
supported. AEF_DBF Removed

The
corresponding
module has
been
renamed.

The new name of the module is
AvailableTextTypesFlags. ATT_ prefixed flags

The
corresponding
module has
been
renamed.

The new name of the module is
AvailableVisualComponentsFlags. AVC_ prefixed flags

The new name is
VolumeRefreshingPeriodEnum.
It provides the same functionality
with the following exception:

 Renamed LicenseLimitationPeriodEnum
• LLP_Hour — removed.

This volume refreshing
period is no longer
supported.

The new name is
LicenseCounterTypeEnum. Renamed LicenseCounterMeasuringUnitEnum

See also

Specifications
What's New in ABBYY FineReader Engine 10

Version History
Below you can find features overview from version 5.0 to 9.0.

What's New in ABBYY FineReader Engine 5.0 (Released: 05/2001)

• Recognition quality improved by 1.5�2 times compared
to 4.0 version

• 176 recognition languages, including programming
languages Basic, C/C++, COBOL, Fortran, JAVA, Pascal,
and new language dictionaries

• Saves in HTML and PDF format with full page layout
retention • Component Object Model (COM) API accessible from

any development environment supporting COM
interface (Visual Basic, C/C++ etc.) • Full text color retention

• API to create user languages and dictionaries • Recognition of subscript characters and simple
chemical formulas

• Tools for training of user patterns for machine print
characters via FineReader training dialog • Vertical text recognition and recognition of pictures

"embedded" in table cells
• New HTML Help with context�sensitive topics

accessible
directly from VB Object Browser

• Dual page splitting

What's New in ABBYY FineReader Engine 6.0 (Released: 08/2002)

• Improved algorithm for the recognition of poor print
quality documents. The improved algorithm
incorporates a new adaptive image binarization
method and a new method of background removal,
and is particularly effective in the
case of images scanned in "gray" mode.

• New recognition fonts are supported: OCR�A, OCR�B
and MICR (E13B).

• Fast mode available in all FineReader 6.0 Engine
versions except the FineReader 6.0 Engine Standard.
This mode provides faster recognition with worse
image quality

 681

ABBYY FineReader Engine 10 Specifications

• New features in ASCII version: the ability to preprocess
image files, to recognize multipage image files, to work
with memory images

• New PDF saving mode — "Image only"

• Save text alignment in Excel format

• New Licence Manager utility • Save nonrectangular pictures in RTF format, recreate
bullets and numbering

• 177 recognition languages

What's New in ABBYY FineReader Engine 7.0/7.1 (Released: 07/2004)

• Improved detection and analysis of tables, particularly
of tables without printed grid lines and tables with
color rows and columns

• Recognition quality improved by approximately 25%

• Opening and processing of PDF files

• Improved adaptive binarization and background
filtering

• New recognition languages: Traditional Chinese,
Simplified Chinese and Japanese languages

• New dictionaries added: law and medical dictionaries
for the languages English and German

• Old European languages have been added: Old English,
Old French, Old German, Old Italian, and Old Spanish

• Saving recognition results as linearized PDF files: the
user will see the first pages of a PDF before the entire
file has been downloaded

• Recognition of Fraktur/Black Letter fonts

• Support for JPEG2000 part 1

• Improved saving of edited texts in PDF format • Opening a selected page from a multipage TIFF or PDF
file

• Numerous improvements of export to HTML and RTF
formats • New method for analysis and recognition of barcodes

• Network runtime licences available • Support for new types of 1D barcodes: CODABAR
without checksum, UCC Code 128, Industrial 2of5,
IATA 2of5,
Matrix 2of5, Code 93, UPC�A, and UPC�E

• Support for form and semi�structured document
processing with support for ABBYY FormReader and
FlexiCapture

• Microsoft Word XML and ASCII XML output
• New recognition languages for ICR: Hungarian, Greek,

and Croatian • Export to MS PowerPoint

• Arabic ICR digits • Improved DA for invoices; detection of page
orientation; 1D barcode detection, including detection
of barcodes at any angle • Fast Mode for ICR

What's New in ABBYY FineReader Engine 8.0/8.1 (Released: 09/2005)

• Support for New Barcode Type – EAN 13
Supplemental

• Voting API support

• Field�level recognition enhancements: fast mode for
ICR, better text extraction from underlined fields, text
block
despeckling, better results on fields with spaces,
dictionary with space�containing words

• CMC7 Text Type Support

• Additional Support for external dictionaries

• Forms and semi�structured documents processing
improvements • PDF/A Support

• Up to 30 percent accuracy improvement on low
resolution documents and faxes

• Ability to load Engine's subsystems on demand or
preliminarily

• Up to 40 percent accuracy improvement on
documents captured by using a digital camera

• Ability to get all possible hypotheses for recognized
words and characters

• Ability to straighten text lines on images taken by
digital cameras

• Ability to trace Engine's calls in a log file

 682

ABBYY FineReader Engine 10 Specifications

• New input image formats (GIF and DjVu) • "On the fly" core recognition tuning

• Balanced Processing Mode for OCR • New Language for OCR: Thai

• New Document Analysis for Full Text Indexing • New Language for OCR: Hebrew

• Improved PDF processing and creation, up to 2 times
faster processing, accuracy improvement, enhanced
security options, tagged PDF files, control of PDF page
sizes

• Expanded Asian Language Support for PDF and RTF
Export

• Saving External Data in Engine Profiles

What's New in ABBYY FineReader Engine 9.0 (Released: 10/2008)

• Adaptive Document Recognition Technology
(ADRT):
Documents generated by ADRT have consistent
formatting across all pages of a document since they
are processed as a unit.

• XML�based Office 2007 File Formats: DOCX,
XLSX,
Export recognised documents to the new, open,
interoperable, robust XML based formats that were
introduced in Microsoft Office 2007

• Multi�Page processing through new Document
specific API:
The new API objects allow you to set up the parameters
of page and document synthesis separately.

• MRC (Mixed Raster Content) Compression for
PDF and
PDF/A:
MRC compression achieves significantly better file
compression without visible degradation of document
representation. Significant reduced file size, up to 10
times smaller compared to JPEG compression.

• Multi CPU / Multi Core Recognition
Architecture:
Utilises all CPU cores during analysis and recognition of
multi page documents. • Licensing: Extended CPU Core Support

New licensing scheme allows an unlimited number of
cores with page limited licences. • New 2D barcode types: Aztec 2D, Data Matrix 2D,

QR Code 2D
• Licensing: CPU core based licences

New offer of licences without a page counter, Pricing is
based on the maximum number of CPU cores that can
be used instead

• New Image preprocessing capabilities:
Detection of an image rotation up to 20 degrees,
deskew by horizontal and vertical pairs of black
squares, lines and lines of text

• Licensing: Maximum Speed Limitation

• Visual Components — Scan Interface, Document
Viewer, Image Viewer, Text Editor, Text
Validator:
Developers can give users direct but controlled access
to recognition results and functions for validation or
checking of documents.

• Data capture functionality, which was previously
offered as the FormReader batch and FlexiLayout
processing add�ons will soon be available through a
separate Engine SDK – ABBYY FlexiCapture Engine.
Please contact your ABBYY Sales representative for
more information.

• Improved Asian Language OCR Support for
Chinese, Japanese and Korean

System Requirements
ABBYY FineReader Engine 10 Requirements

• PC with x86�compatible processor (1 GHz or higher).

• Operating System: Microsoft Windows 7, Windows Server 2008, Windows Vista, Windows Server 2003, Windows XP,
Windows 2000, and 64�bit versions of Windows 7, Windows Server 2008, Windows Vista, Windows Server 2003, Windows
XP.

• Memory:

o for processing one�page documents — minimum 400 MB RAM, recommended 1 GB RAM;

o for processing multi�page documents — minimum 1 GB RAM, recommended 1,5 GB RAM.

 683

ABBYY FineReader Engine 10 Specifications

 684

• Hard disk space: 800 MB for library installation and 100 MB for program operation plus additional 15Mb for every
processing page of a multi�page document.

• 100% TWAIN�compatible scanner, digital camera, or fax modem — for scanning only.

• Video card and monitor (min. resolution 1024*768 — for pattern training, dictionary editing, scanning with a GUI displayed)

• Keyboard, mouse or other input device

• The following registry branches should be accessible from the workstation:

o "HKEY_CURRENT_USER\Software\ABBYY\SDK\10\FineReader Engine" — full control

o "HKEY_CURRENT_USER\Software\ABBYY\SDK\10" — full control for installation only

o "HKEY_LOCAL_MACHINE\Software\ABBYY\SDK\10" — full control for installation only

• The following folders should be accessible from the workstation:

o Folder with ABBYY FineReader Engine binary files — access for reading

o %TEMP% folder — full control access

o %ALLUSERSPROFILE%\Application Data\ABBYY\SDK\10\Licenses — full control access

o %ALLUSERSPROFILE%\Application Data\ABBYY\SDK\10\FineReader Engine — full control access

• The following components should be installed:

o Microsoft Internet Explorer 5.0 or higher

o If your application uses pattern training, dictionary editing, scanning with a GUI displayed, Windows Common
Controls must have version 5.80 or later and Rich Edit Control must have version 3.0 or later

ABBYY SDK 10 License Server Requirements

• PC with x86�compatible processor (1 GHz or higher).

• Operating System: Microsoft Windows 7, Windows Server 2008, Windows Vista, Windows Server 2003, Windows XP,
Windows 2000, and 64�bit versions of Windows 7, Windows Server 2008, Windows Vista, Windows Server 2003, Windows
XP.

• 25 MB of free hard�disk space

• The folder %ALLUSERSPROFILE%\Application Data\ABBYY\SDK\10\Licenses must have full control access

ABBYY FineReader Engine 10 Frequently Asked Questions

Frequently Asked Questions

Licensing and distribution

Is there a special installation program for distribution ABBYY FineReader Engine on a workstation?

ABBYY FineReader Engine 10 does not have special installation program for distribution. See Distribution of Applications Which Use
the ABBYY FineReader Engine Library.

What license is required for compiling an application?

Your application must be compiled with a Developer License rather than a Runtime License. See Distribution of Applications Which
Use the ABBYY FineReader Engine Library.

What license is required for activating ABBYY FineReader Engine on a workstation?

You should activate a Runtime License on the workstation. See Activating the ABBYY FineReader Engine Library with the Runtime
License.

What ABBYY FineReader Engine files should be copied on a workstation?

See Installing the ABBYY FineReader Engine Library in Manual Mode.

Which folders should be accessible from the workstation?

The following folders should be accessible from the workstation:

See Installing the ABBYY FineReader Engine Library.

The application is run on a workstation with an activated Runtime License. The message saying "ABBYY FineReader Engine is not
licensed." is displayed. What should I do?

Please, make sure that the Runtime Licenses corresponds to the Developer License. If the licenses do not match, the application will
not work.
The GetEngineObject function requires a developer serial number to work. Make sure that the serial number used by the
GetEngineObject function is the developer serial number.

See also Licensing, Distribution of Applications Which Use the ABBYY FineReader Engine Library.

Image�related questions

How can I remove background noise from each block separately?

Use the methods of the ImageDocument object, which improves image quality. These methods allow you to select an image region
to work with.

Why does the OpenImage method not open an image file?

This method allows you to open images in ABBYY FineReader Engine internal format. Images in other formats cannot be opened using
this method.

What's the difference between the ChangeResolution method of the ImageDocument object and the OverwriteResolution property of
the PrepareImageMode object?

The ChangeResolution method changes the resolution of an already opened image. If the OverwriteResolution property of the
PrepareImageMode object is set to TRUE, upon opening the image the program will use the resolution set in the
XResolutionToOverwrite and YResolutionToOverwrite properties for image preprocessing (i.e. for binarization, deskewing, etc.).

See also ImageDocument.

How to open one page of a multi�page file?

You can use PrepareImage method of Engine object to open one page of a multi�page file:
Method PrepareImage(

 fileName As String,

 destinationFolder As String,

 prepareMode As PrepareImageMode,

 pageNumber As Long,

 passwordCallback As ImagePasswordCallback,

 documentInfo As DocumentInfo

) As StringsCollection

 685

ABBYY FineReader Engine 10 Frequently Asked Questions

The fourth parameter is pageNumber. This parameter contains the number of page to process (zero�based). This parameter is optional
and may be �1, in which case all pages of the image file are extracted.

Using the Engine object

What should I do if I have got problems creating the Engine object in C#.NET?

You must make sure to specify [STAThread] (single�thread apartment model) as an attribute on your app's main function:

[STAThread]

public static void Main()

{

 ...

}

What should I do if the Engine object cannot be deinitialized in Delphi?

See Using ABBYY FineReader Engine in Delphi

How to work with read�only object properties in raw C++?

Certain ABBYY FineReader Engine objects (for example, ILayout::Blocks) have read�only object properties. Such properties cannot
be changed directly in raw C++. If you want to change such a property, you need to pass a reference to the property object to a new
variable, and then use this variable to change it. Below you can see a C++ sample for the ILayout::Blocks property which is
represented by a read�only collection:

ILayout* pLayout = 0;

ILayoutBlocks* pLayoutBlocks = 0;

long blockIndex;

...

// The pLayoutBlocks variable receives a reference to the blocks collection from Layout

pLayout->get_Blocks(&pLayoutBlocks);

// Remove an element from the blocks collection

pLayoutBlocks->Remove(blockIndex);

Is it possible to run and use Engine object in several threads?

No, it is impossible. The Engine object is singleton, so only one object of this type may be created in a single instance of the
application that uses ABBYY FineReader Engine. The methods of all ABBYY FineReader Engine objects should be called only from the
thread in which Engine object was created.

See also the description of the GetEngineObject function and the Engine object.

Is it possible to create and run the Engine object on a multi�processor system?

Yes, it is possible. Please, see the description of the MultiProcessingParams object.

What should I do if the "Engine deinitialization failed" exception is thrown during deinitialization of the Engine object?

This exception is thrown if not all the objects which were created and used by the application have been deleted before the
deinitialization of the Engine object. If all the objects have been deleted the exception may be caused by the scavenger operation.

If the application is developed in Visual Basic .Net:

In this environment, all objects with the Nothing value are not deleted, they are only marked for deletion. The exact moment when the
garbage collector deletes the object is not known. Therefore, you should call the following methods before deinitializing the Engine
object so that the garbage collector deletes the object:
 GC.Collect()
 GC.WaitForPendingFinalizers()

If the application is developed in Delphi:

See the Using ABBYY FineReader Engine in Delphi section.

You can use the StartLogging method of the Engine object to get the list of objects that have not been deleted.

How can I create a log file to keep track of all errors, warnings and method calls of ABBYY FineReader Engine?

To do this, you need to call the StartLogging method of the Engine object. As input parameters, specify the log file name and the
Boolean variable which determines whether method call messages should be logged or not. Once you have called this method, all
messages will be logged. To stop logging, call the StopLogging method of the Engine object.

 686

ABBYY FineReader Engine 10 Frequently Asked Questions

 687

Recognition�related questions

What should I do if I get an access violation error when working with recognition results?

Make sure that the FRDocument object has not been released before the method which leads to the error is called. Pointers to child
object's interfaces are valid until the FRDocument object exists. An attempt to access a child object after its parent object has been
destroyed may result in error. Please, see for details Working with Properties.

What recognition language is used by default?

English is the default recognition language. If you want to change the default recognition language, you must use the
SetPredefinedTextLanguage method of the RecognizerParams object.

How can I improve the quality of recognition of blocks which contain different types of text?

If a block contains text of different types, ABBYY FineReader Engine will still treat it as text of the same type. To improve the quality of
OCR, draw a separate block for text of each type.

See also Using Text Type Autodetection.

Why italic fonts and superscript/subscript are not recognized by autodetection?

If the TextTypes property of the RecognizerParams object contains any combination of TT_MATRIX, TT_TYPEWRITER, TT_OCR_A,
and TT_OCR_B, then italic fonts and superscript/subscript will not be recognized, regardless of the values of the ProhibitItalic,
ProhibitSubscript and ProhibitSuperscript properties of the RecognizerParams object.

See also Using Text Type Autodetection.

What is the difference between the CharConfidence and the IsSuspicious properties?

The CharConfidence property of the PlainText and the CharacterRecognitionVariant objects is the read�only long property
which stores the value of character confidence. It is in the range from 0 to 100, and 255 means that confidence is undefined. It
represents an estimate of recognition confidence of a character in percentage points. The greater its value, the greater the confidence.
Character confidence can be undefined, for example, for characters which were added during text editing.

Recognition confidence of a character image is a numerical estimate of the similarity of this image and the "ideal" whose recognition
confidence would be 100%. When recognizing a character, the program provides several recognition variants which are ranked by
their confidence values. For example, an image of the letter "e" may be recognized

The sum total of the confidence values of all the recognition variants of a character need not be 100%. The hypothesis with a higher
confidence rating is selected as the recognition result. But the choice also depends on the context (i.e. the word to which the character
belongs) and the results of a differential comparison. For example, if the word with the “e” hypothesis is not a dictionary word while
the word with the “c” hypothesis is a dictionary word, the latter will be selected as the recognition result, and its confidence rating will
be 85%. The rest of the recognition variants can be obtained as hypotheses.

The IsSuspicious property of the CharParams object is the Boolean property. This property set to TRUE means that the character
was recognized unreliably. This property is determined by an algorithm which takes into account a number of parameters, such as
recognition confidence of a character, neighboring characters and their recognition confidence, hypotheses and their recognition
confidence, the geometric parameters of a character, and context (i.e. the word to which a character belongs).

Other questions

Where do the scan log files locate?

There are two scan log files: scantwain.txt and scanwia.txt. They are stored in the %userprofile%\Local Settings\Application
Data\ABBYY\ScanManager\11.00 folder.

How to change scanning settings?

You can use the ScanSourceSettings property of the ScanManager object to access to the ScanSourceSettings object. This object
provides access to the scanning settings of a source.

See also Setting up Scanning Options.

Which PDF versions can recognized text be exported to?

A minimal version of the PDF file which matches the specified properties of the PDFEncryptionInfo object and the
IPDFExportParamsOld::WriteTaggedPDF property is selected as the version of the PDF file.

See also ABBYY FineReader Engine 10 Modules, PDFExportParamsOld.

If you cannot find the answer to your question, please contact the ABBYY Technical Support.

Contact ABBYY

Contact ABBYY

In this section you can find the contacts of ABBYY sales offices and technical support:

• How to Buy

• Technical Support

How to Buy ABBYY FineReader Engine 10
You can order ABBYY FineReader Engine by contacting our offices at the following addresses:

• ABBYY Russia: engine@abbyy.com

• ABBYY USA: sales@abbyyusa.com

• ABBYY Europe: engine_eu@abbyy.com

• ABBYY Ukraine: engine@abbyy.ua

You can purchase additional language support applications and fonts at www.paratype.com/shop.

Technical Support
If you have any questions regarding the use of ABBYY FineReader Engine 10, first of all consult the documentation provided with this
product (this Developer's Help and the Readme file). Useful information can also be found in the technical support section of our Web
site at www.abbyy.com.

If you cannot find the answer to your question, please contact the ABBYY office serving your region by e�mail. Please provide the
following information when contacting technical support:

• your first and last name;

• the name of your organization;

• your phone number (or fax, or e�mail);

• the serial number of your ABBYY FineReader Engine 10 package;

• the protection type of your ABBYY FineReader Engine 10 package (software or hardware);

• the build number (to determine the build number, see the Introducing ABBYY FineReader Engine 10 page of this Help, or
Properties in the FREngine.dll local menu);

• a description of the problem;

• a project that demonstrates the problem (with the necessary data files). This may be a slightly modified ABBYY FineReader
Engine sample. We recommend that you compress the files using any popular archiving program (WinZIP, WinRAR, etc.);

• the name of your development tool;

• the type of your computer and processor;

• the version of your Windows operating system.

You can gather some of the above information automatically:

1. Run the AInfo utility (AInfo.exe) from the <Installation folder>/Bin/Support folder.

2. A dialog box will open displaying some of the above information. Save this information to a ZIP file.
Note: No personal information or information about the user’s computer is collected. You can view all the saved

information in the created archive.

 688

Contact ABBYY

 689

You can also provide any additional information you consider important.

Support contacts:

Customers from USA, Canada, Japan, Mexico or other Central American countries, please contact:
 ABBYY USA at dev_support@abbyyusa.com

Customers from Austria, Benelux, Denmark, France, Germany, Greece, Italy, Ireland, Norway, Portugal, Spain, Sweden, Switzerland, the
United Kingdom or other Western European countries, please contact:
 ABBYY Europe GmbH at TechSupport_eu@abbyy.com

Customers from Albania, Bosnia & Herzegovina, Bulgaria, Croatia, Czech Republic, Hungary, Israel, Macedonia, Moldova, Montenegro,
Poland, Romania, Serbia, Slovakia, Slovenia, Turkey or Ukraine, please contact:
 ABBYY Ukraine at engine_support@abbyy.ua

Customers from the countries not mentioned above, please contact:
 ABBYY Russia at SDK_Support@abbyy.com

	Contents
	Introducing ABBYY FineReader Engine 10
	Basic Usage Scenarios Overview
	Key Features
	Document Scanning and Image Import
	Image Preprocessing
	Document Analysis
	OCR and Other Recognition Technologies
	PDF Conversion
	Advanced Development Tools
	Receiving and Exporting Recognized Text
	Multi-CPU Recognition Architecture

	Benefits
	Short Specifications
	Getting Started

	Guided Tour
	Basic Usage Scenarios Implementation
	Document Conversion
	Document Archiving
	Book Archiving
	Text Extraction
	Field-Level Recognition
	Barcode Recognition
	Image Preprocessing
	Scanning

	Advanced Techniques
	Programming Aspects
	Error Handling
	Working with Properties
	Working with Connectable Objects
	Working with COM Interfaces from a Scripting Language
	Using ABBYY FineReader Engine in Delphi
	Working with Profiles
	Tuning Analysis, Recognition, and Synthesis Parameters
	Tuning Export Parameters
	Working with Images
	Working with Languages
	Working with Layout and Blocks
	Working with Text
	Working with the Logical Structure of a Document
	Using Voting API
	Using Text Type Autodetection
	Recognizing Checkmarks
	Recognizing Handprinted Texts
	Recognizing Hieroglyphic Languages
	Recognizing with Training
	Training User Patterns
	Pattern Training Dialog Box
	Working with Dictionaries
	Working with ABBYY FineReader Engine Regular Expressions
	Recognizing Words with Spaces
	Setting up Scanning Options

	Best Practices
	Tips for Document Scanning
	Tips for Taking Photos
	Improving Recognition Quality

	Description of the ABBYY FineReader Engine Samples

	API Reference
	Alphabetical List of the ABBYY FineReader Engine 10 Objects and Interfaces
	ABBYY FineReader Engine 10 Object Diagram
	GetEngineObject Function
	DeinitializeEngine function
	Engine Object (IEngine Interface)
	Properties of the Engine Object
	Creation Methods of the Engine Object
	Creation Methods of the Engine Object
	CreateEmptyUserPattern Method of the Engine Object
	CreateFRDocumentFromImage Method of the Engine Object
	CreateLayoutBlocks Method of the Engine Object
	CreateMultipageImageWriter Method of the Engine Object
	CreateNewDictionary Method of the Engine Object
	Creation DictionaryDescription Methods of the Engine Object
	Supplementary Methods of the Engine Object
	ConvertLanguageIdToLCID Method of the Engine Object
	ConvertLCIDToLanguageId Method of the Engine Object
	EditUserPattern Method of the Engine Object
	The User Pattern Dialog Box
	The Character Properties Dialog Box
	LoadModule Method of the Engine Object
	LoadPredefinedProfile Method of the Engine Object
	LoadProfile Method of the Engine Object
	MergePatterns Method of the Engine Object
	OpenExistingDictionary Method of the Engine Object
	SetCurrentLicense Method of the Engine Object
	StartLogging Method of the Engine Object
	StopLogging Method of the Engine Object
	TrainUserPattern Method of the Engine Object
	Processing Methods of the Engine Object
	GetNumberOfPagesInImageFile Method of the Engine Object
	LoadImageDocFromFile Method of the Engine Object
	LoadImageDocFromMemory Method of the Engine Object
	OpenBitmapImage Method of the Engine Object
	OpenDib Method of the Engine Object
	OpenImage Method of the Engine Object
	OpenMemoryImage Method of the Engine Object
	PrepareAndOpenBitmap Method of the Engine Object
	PrepareAndOpenDib Method of the Engine Object
	PrepareAndOpenImage Method of Engine Object
	PrepareAndOpenMemoryImage Method of the Engine Object
	PrepareBitmap Method of the Engine Object
	PrepareDib Method of the Engine Object
	PrepareImage Method of the Engine Object
	PrepareMemoryImage Method of the Engine Object
	AnalyzeAndRecognizePage Method of the Engine Object
	AnalyzeAndRecognizePages Method of the Engine Object
	AnalyzePage Method of the Engine Object
	AnalyzePages Method of the Engine Object
	RecognizeImageAsPlainText Method of the Engine Object
	RecognizeImageDocumentAsPlainText Method of the Engine Object
	RecognizeImageFile Method of the Engine Object
	RecognizePage Method of the Engine Object
	RecognizePages Method of the Engine Object
	SynthesizePages Method of the Engine Object
	SynthesizePagesEx Method of the Engine Object
	ExportPage Method of the Engine Object
	ExportPages Method of the Engine Object

	Image-Related Objects
	ImageDocument Object (IImageDocument Interface)
	ChangeResolution Method of the ImageDocument Object
	ConvertCoordinates Method of the ImageDocument Object
	CorrectSkew Method of the ImageDocument Object
	GetTextBackgroundColor Method of the ImageDocument Object
	Modify Method of the ImageDocument Object
	RemoveCameraBlur Method of the ImageDocument Object
	RemoveCameraNoise Method of the ImageDocument Object
	RemoveColorObjects Method of the ImageDocument Object
	RemoveGarbage Method of the ImageDocument Object
	SaveTo Method of the ImageDocument Object
	SaveToFile Method of the ImageDocument Object
	SaveToMemory Method of the ImageDocument Object
	SaveModified Method of the ImageDocument Object
	SmoothImage Method of the ImageDocument Object
	SubtractColor Method of the ImageDocument Object
	Transform Method of the ImageDocument Object
	SaveImageRegionTo Method of the ImageDocument Object
	IImageDocumentEvents Interface
	TransformationMade Method of the IImageDocumentEvents Interface
	ImageDocumentsCollection Object (IImageDocumentsCollection Interface)
	Image Object (IImage Interface)
	EstimateBitmapSize Method of the Image Object
	GetPicture Method of the Image Object
	WriteToFile Method of the Image Object
	ImageProcessingParams Object (IImageProcessingParams Interface)
	PrepareImageMode Object (IPrepareImageMode Interface)
	JpegExtendedParams Object (IJpegExtendedParams Interface)
	PdfExtendedParams Object (IPdfExtendedParams Interface)
	ImageModification Object (IImageModification Interface)
	AddClipRegion Method of the ImageModification Object
	AddInvertRegion Method of the ImageModification Object
	AddPaintRegion Method of the ImageModification Object
	AddRemoveGarbageRegion Method of the ImageModification Object
	AddReplaceBlackPixelsRegion Method of the ImageModification Object
	AddReplaceWhitePixelsRegion Method of the ImageModification Object
	ClearClipRegions Method of the ImageModification Object
	ClearInvertRegions Method of the ImageModification Object
	ClearPaintRegions Method of the ImageModification Object
	ClearRemoveGarbageRegions Method of the ImageModification Object
	ClearReplaceBlackPixelsRegions Method of the ImageModification Object
	ClearReplaceWhitePixelsRegions Method of the ImageModification Object
	MultipageImageWriter Object (IMultipageImageWriter Interface)
	AddPage Method of the MultipageImageWriter Object
	IImagePasswordCallback Interface
	GetPassword Method of the IImagePasswordCallback Interface
	TrainingImagesCollection Object (ITrainingImagesCollection Interface)
	TrainingImage Object (ITrainingImage Interface)
	SetImageData Method of the TrainingImage Object

	Layout-Related Objects
	Layout Object (ILayout Interface)
	AddBlock Method of the Layout Object
	InsertBlock Method of the Layout Object
	LayoutsCollection Object (ILayoutsCollection Interface)
	LayoutBlocks Object (ILayoutBlocks Interface)
	Block Object (IBlock Interface)
	GetAsBarcodeBlock Method of the Block Object
	GetAsCheckmarkBlock Method of the Block Object
	GetAsCheckmarkGroup Method of the Block Object
	GetAsRasterPictureBlock Method of the Block Object
	GetAsSeparatorBlock Method of the Block Object
	GetAsSeparatorGroup Method of the Block Object
	GetAsTableBlock Method of the Block Object
	GetAsTextBlock Method of the Block Object
	GetAsVectorPictureBlock Method of the Block Object
	Move Method of the Block Object
	DeleteAllWords Method of the Dictionary Object
	TextBlock Object (ITextBlock Interface)
	TextBlockAnalysisParams Object (ITextBlockAnalysisParams Interface)
	TableBlock Object (ITableBlock Interface)
	FindBaseCellFromPoint Method of the TableBlock Object
	InitializeGrid Method of the TableBlock Object
	TableCells Object (ITableCells Interface)
	FindCellIndex Method of the TableCells Object
	Merge Method of the TableCells Object
	Split Method of the TableCells Object
	TableCell Object (ITableCell Interface)
	ChangeBlockType Method of the TableCell Object
	TableSeparators Object (ITableSeparators Interface)
	TableSeparator Object (ITableSeparator Interface)
	Type Property of the TableSeparator Object
	SetType Method of the TableSeparator Object
	BarcodeBlock Object (IBarcodeBlock Interface)
	BarcodeText Object (IBarcodeText Interface)
	CreateBarcodeSymbol Method of the BarcodeText Object
	BarcodeSymbol Object (IBarcodeSymbol Interface)
	RasterPictureBlock Object (IRasterPictureBlock Interface)
	VectorPictureBlock Object (IVectorPictureBlock Interface)
	CheckmarkGroup Object (ICheckmarkGroup Interface)
	AddCheckmark Method of the CheckmarkGroup Object
	InsertCheckmark Method of the CheckmarkGroup Object
	CheckmarkBlock Object (ICheckmarkBlock Interface)
	SetRect Method of the CheckmarkBlock Object
	SeparatorGroup Object (ISeparatorGroup Interface)

	Language-Related Objects
	TextLanguage Object (ITextLanguage Interface)
	LetterSet Property of the TextLanguage Object
	BaseLanguages Object (IBaseLanguages Interface)
	BaseLanguage Object (IBaseLanguage Interface)
	LetterSet Property of the BaseLanguage Object
	PredefinedLanguages Object (IPredefinedLanguages Interface)
	FindLanguage Method of the PredefinedLanguages Object
	PredefinedLanguage Object (IPredefinedLanguage Interface)
	LanguageDatabase Object (ILanguageDatabase Interface)
	CreateCompoundTextLanguage Method of the LanguageDatabase Object
	CreateTextLanguage Method of the LanguageDatabase Object
	LoadFrom Method of the LanguageDatabase Object
	Dictionary Object (IDictionary Interface)
	AddWord Method of the Dictionary Object
	AddWords Method of the Dictionary Object
	DeleteWord Method of the Dictionary Object
	DeleteWords Method of the Dictionary Object
	Edit Method of the Dictionary Object
	The Dictionary Dialog Box
	EnumWords Method of the Dictionary Object
	EnumDictionaryWords Object (IEnumDictionaryWords Interface)
	Next Method of the EnumDictionaryWords Object
	Reset Method of the EnumDictionaryWords Object
	DictionaryDescriptions Object (IDictionaryDescriptions Interface)
	Add Method of the DictionaryDescriptions Object
	DictionaryDescription Object (IDictionaryDescription Interface)
	StandardDictionaryDescription Object (IStandardDictionaryDescription Interface)
	UserDictionaryDescription Object (IUserDictionaryDescription Interface)
	RegExpDictionaryDescription Object (IRegExpDictionaryDescription Interface)
	SetText Method of the RegExpDictionaryDescription Object
	ExternalDictionaryDescription Object (IExternalDictionaryDescription Interface)
	SetDictionary Method of the ExternalDictionaryDescription Object
	ExternalDictionaryCallback Object (IExternalDictionaryCallback Interface)
	ExternalDictionaryResult Method of the ExternalDictionaryCallback Object
	IExternalDictionary Interface
	CheckPrefix Method of the IExternalDictionary Interface
	CheckWords Method of the IExternalDictionary Interface
	FuzzyStringsCollection Object (IFuzzyStringsCollection Interface)
	FuzzyString Object (IFuzzyString Interface)
	CharacterVariants Property of the FuzzyString Object

	Text-Related Objects
	Text Object (IText Interface)
	AppendEmptyParagraph Method of the Text Object
	GetRange Method of the Text Object
	Remove Method of the Text Object
	RemoveAll Method of the Text Object
	Paragraphs Object (IParagraphs Interface)
	GetIndex Method of the Paragraphs Object
	Paragraph Object (IParagraph Interface)
	Bookmark Property of the Paragraph Object
	ColumnNumber Property of the Paragraph Object
	Hyperlink Property of the Paragraph Object
	InlinePictureID Property of the Paragraph Object
	DeleteBookmark Method of the Paragraph Object
	GetBookmarkRange Method of the Paragraph Object
	GetCharParams Method of the Paragraph Object
	GetDropCapCharParams Method of the Paragraph Object
	GetHyperlinkRange Method of the Paragraph Object
	GetWordRecognitionVariants Method of the Paragraph Object
	Insert Method of the Paragraph Object
	InsertParagraphBreak Method of the Paragraph Object
	InsertText Method of the Paragraph Object
	NextGroup Method of the Paragraph Object
	CFL_ prefixed flags
	Range Method of the Paragraph Object
	Remove Method of the Paragraph Object
	SetBookmark Method of the Paragraph Object
	SetCharParams Method of the Paragraph Object
	SetHyperlink Method of the Paragraph Object
	ParagraphLines Object (IParagraphLines Interface)
	ParagraphLine Object (IParagraphLine Interface)
	ParagraphParams Object (IParagraphParams Interface)
	CharParams Object (ICharParams Interface)
	SetFont Method of the CharParams Object
	SetRect Method of the CharParams Object
	WordRecognitionVariants Object (IWordRecognitionVariants Interface)
	WordRecognitionVariant Object (IWordRecognitionVariant Interface)
	GetCharParams Method of the WordRecognitionVariant Object
	CharacterRecognitionVariants Object (ICharacterRecognitionVariants Interface)
	CharacterRecognitionVariant Object (ICharacterRecognitionVariant Interface)
	Words Object (IWords Interface)
	Word Object (IWord Interface)
	GetRecognitionVariants Method of the Word Object
	Hyperlink Object (IHyperlink Interface)
	ParseTarget Method of the Hyperlink Object
	TabPositions Object (ITabPositions Interface)
	CreateTabPosition Method of the TabPositions Object
	TabPosition Object (ITabPosition Interface)
	TextOrientation Object (ITextOrientation Interface)
	IsEqualTo Method of the TextOrientation Object
	PlainText Object (IPlainText Interface)
	GetCharacterData Method of the PlainText Object
	SaveToAsciiXMLFile Method of the PlainText Object
	SaveToTextFile Method of the PlainText Object

	Document-Related Objects
	Document Organization Objects
	FRDocument Object (IFRDocument Interface)
	AddImage Method of the FRDocument Object
	AddImageFile Method of the FRDocument Object
	AddImageFileWithPassword Method of the FRDocument Object
	AddImageFileWithPasswordCallback Method of the FRDocument Object
	Analyze Method of the FRDocument Object
	AnalyzeAndRecognize Method of the FRDocument Object
	AnalyzeAndRecognizePages Method of the FRDocument Object
	AnalyzePages Method of the FRDocument Object
	Close Method of the FRDocument Object
	Export Method of the FRDocument Object
	ExportPages Method of the FRDocument Object
	Process Method of the FRDocument Object
	Recognize Method of the FRDocument Object
	RecognizePages Method of the FRDocument Object
	Synthesize Method of the FRDocument Object
	SynthesizePages Method of the FRDocument Object
	FRPages Object (IFRPages Interface)
	Find Method of the FRPages Object
	Renumber Method of the FRPages Object
	Swap Method of the FRPages Object
	FRPage Object (IFRPage Interface)
	Analyze Method of the FRPage Object
	AnalyzeAndRecognize Method of the FRPage Object
	AnalyzeRegion Method of the FRPage Object
	AnalyzeTable Method of the FRPage Object
	CleanRecognizerSession Method of the FRPage Object
	DetectOrientation Method of the FRPage Object
	Export Method of the FRPage Object
	ExtractBarcodes Method of the FRPage Object
	FindPageSplitPosition Method of the FRPage Object
	Flush Method of the FRPage Object
	Recognize Method of the FRPage Object
	RecognizeBlocks Method of the FRPage Object
	RemoveGeometricalDistortions Method of the FRPage Object
	Redo Method of the FRPage Object
	Undo Method of the FRPage Object
	Update Method of the FRPage Object
	IFRDocumentEvents Interface
	OnPageProcessed Method of the IFRDocumentEvents Interface
	OnProgress Method of the IFRDocumentEvents Interface
	OnRecognizerTip Method of the IFRDocumentEvents Interface
	IFRPagesEvents Interface
	PageAdded Method of the IFRPagesEvents Interface
	PageRemoved Method of the IFRPagesEvents Interface
	PagesRenumbered Method of the IFRPagesEvents Interface
	IFRPageEvents Interface
	OnPageProcessed Method of the IFRPageEvents Interface
	OnProgress Method of the IFRPageEvents Interface
	OnRecognizerTip Method of the IFRPageEvents Interface
	OnRegionProcessed Method of the IFRPageEvents Interface

	Document Synthesis Objects
	DocumentStructure Object (IDocumentStructure Interface)
	DocumentSection Property of the DocumentStructure Object
	FindFirstSectionOnPage Method of the DocumentStructure Object
	FindFootnoteByHyperlinkTarget Method of the DocumentStructure Object
	GetAllFootnoteTargets Method of the DocumentStructure Object
	UnloadUnusedPages Method of the DocumentStructure Object
	UnloadAllPages Method of the DocumentStructure Object
	DocumentSection Object (IDocumentSection Interface)
	DocumentStream Property of the DocumentSection Object
	AddNewStream Method of the DocumentSection Object
	DocumentStream Object (IDocumentStream Interface)
	NextElement Property of the DocumentStream Object
	PrevElement Property of the DocumentStream Object
	FindFirstObjectOnPage Method of the DocumentStream Object
	GetAllPageElements Method of the DocumentStream Object
	GetAsFootnote Method of the DocumentStream Object
	GetAsIncut Method of the DocumentStream Object
	GetAsMainText Method of the DocumentStream Object
	DocumentElement Object (IDocumentElement Interface)
	OccupiedPage Property of the DocumentElement Object
	GetAsBarcode Method of the DocumentElement Object
	GetAsParagraph Method of the DocumentElement Object
	GetAsPicture Method of the DocumentElement Object
	GetAsTable Method of the DocumentElement Object
	PageStructure Object (IPageStructure Interface)
	Artefact Property of the PageStructure Object
	BackgroundLayer Property of the PageStructure Object
	BlackSeparator Property of the PageStructure Object
	AddArtefact Method of the PageStructure Object
	AddBackgroundLayer Method of the PageStructure Object
	AddBlackSeparator Method of the PageStructure Object
	DeleteRunningTitles Method of the PageStructure Object
	RemoveBackgroundLayer Method of the PageStructure Object
	RemoveBlackSeparator Method of the PageStructure Object
	PageSections Object (IPageSections Interface)
	Add Method of the PageSections Object
	PageSection Object (IPageSection Interface)
	AddFootnote Method of the PageSection Object
	AddIncut Method of the PageSection Object
	CreateMainStream Method of the PageSection Object
	RemoveMainStream Method of the PageSection Object
	PageStreams Object (IPageStreams Interface)
	PageStream Object (IPageStream Interface)
	GetAsArtefact Method of the PageStream Object
	GetAsFootnote Method of the PageStream Object
	GetAsIncut Method of the PageStream Object
	GetAsMainText Method of the PageStream Object
	PageElements Object (IPageElements Interface)
	PageElement Object (IPageElement Interface)
	GetAsBarcode Method of the PageElement Object
	GetAsPicture Method of the PageElement Object
	GetAsTable Method of the PageElement Object
	GetAsText Method of the PageElement Object
	StreamElementLocationParams Object (IStreamElementLocationParams Interface)
	MainText Object (IMainText Interface)
	AddColumn Method of the MainText Object
	RemoveColumn Method of the MainText Object
	FootnoteSeriesArray Object (IFootnoteSeriesArray Interface)
	CreateFootnoteSeries Method of the FootnoteSeriesArray Object
	DeleteAll Method of the FootnoteSeriesArray Object
	DeleteEmptySeries Method of the FootnoteSeriesArray Object
	FootnoteSeries Object (IFootnoteSeries Interface)
	SetPosition Method of the FootnoteSeries Object
	Footnote Object (IFootnote Interface)
	Incut Object (IIncut Interface)
	HorizontalOffset Property of the Incut Object
	VerticalOffset Property of the Incut Object
	SetVerticalOffsetFromParagraph Method of the Incut Object
	SetVerticalOffsetFromSectionTop Method of the Incut Object
	Artefact Object (IArtefact Interface)
	TextPicture Object (ITextPicture Interface)
	DeleteCaptions Method of the TextPicture Object
	TextBarcode Object (ITextBarcode Interface)
	TextTable Object (ITextTable Interface)
	Cell Property of the TextTable Object
	HSeparatorPos Property of the TextTable Object
	HSeparatorType Property of the TextTable Object
	HSeparatorWidth Property of the TextTable Object
	VSeparatorPos Property of the TextTable Object
	VSeparatorType Property of the TextTable Object
	VSeparatorWidth Property of the TextTable Object
	CreateCell Method of the TextTable Object
	DeleteCaptions Method of the TextTable Object
	DeleteHSeparator Method of the TextTable Object
	DeleteVSeparator Method of the TextTable Object
	GetCellIndexByPos Method of the TextTable Object
	GetCellByPos Method of the TextTable Object
	InsertHSeparator Method of the TextTable Object
	InsertVSeparator Method of the TextTable Object
	SetHSeparator Method of the TextTable Object
	SetHSeparatorPos Method of the TextTable Object
	SetVSeparator Method of the TextTable Object
	SetVSeparatorPos Method of the TextTable Object
	TextTableCell Object (ITextTableCell Interface)
	Captions Object (ICaptions Interface)
	CreateCaption Method of the Captions Object
	DeleteAll Method of the Captions Object
	Caption Object (ICaption Interface)
	RunningTitleSeriesArray Object (IRunningTitleSeriesArray Interface)
	CreateRunningTitleSeries Method of the RunningTitleSeriesArray Object
	DeleteAll Method of the RunningTitleSeriesArray Object
	DeleteEmptySeries Method of the RunningTitleSeriesArray Object
	RunningTitleSeries Object (IRunningTitleSeries Interface)
	Page Property of the RunningTitleSeries Object
	RunningTitle Property of the RunningTitleSeries Object
	AddPage Method of the RunningTitleSeries Object
	CreateFooter Method of the RunningTitleSeries Object
	CreateFooterOnEven Method of the RunningTitleSeries Object
	CreateFooterOnOdd Method of the RunningTitleSeries Object
	CreateHeader Method of the RunningTitleSeries Object
	CreateHeaderOnEven Method of the RunningTitleSeries Object
	CreateHeaderOnOdd Method of the RunningTitleSeries Object
	DeletePage Method of the RunningTitleSeries Object
	RunningTitle Object (IRunningTitle Interface)
	RunningTitleSeriesText Object (IRunningTitleSeriesText Interface)
	PageBlackSeparator Object (IPageBlackSeparator Interface)
	BackgroundLayer Object (IBackgroundLayer Interface)
	GlobalStyleStorage Object (IGlobalStyleStorafge Interface)
	BaseStyleForParagraphRole Property of the GlobalStyleStorage Object
	ParagraphStyle Property of the GlobalStyleStorage Object
	Clean Method of the GlobalStyleStorage Object
	CreateParagraphStyle Method of the GlobalStyleStorage Object
	DeleteAllStyles Method of the GlobalStyleStorage Object
	DeleteAndReplaceParagraphStyle Method of the GlobalStyleStorage Object
	ParagraphStyle Object (IParagraphStyle Interface)
	FontStyle Object (IFontStyle Interface)
	SetFont Method of the FontStyle Object
	List Object (IList Interface)
	AddLevel Method of the List Object
	ListLevel Object (IListLevel Interface)
	ListParams Object (IListParams Interface)
	AddToList Method of the ListParams Object
	RemoveFromList Method of the ListParams Object

	Document Supplementary Objects
	DocumentContentInfo Object (IDocumentContentInfo Interface)
	DocumentInformationDictionary Object (IDocumentInformationDictionary Interface)
	Value Property of the DocumentInformationDictionary Object
	DocumentInformationDictionaryItem Object (IDocumentInformationDictionaryItem Interface)

	Mechanism Objects
	DocumentAnalyzer Object (IDocumentAnalyzer Interface)
	AddWordsToCacheDictionary Method of the DocumentAnalyzer Object
	AddWordToCacheDictionary Method of the DocumentAnalyzer Object
	AnalyzeAndRecognizePage Method of the DocumentAnalyzer Object
	AnalyzeAndRecognizePages Method of the DocumentAnalyzer Object
	AnalyzePage Method of the DocumentAnalyzer Object
	AnalyzePages Method of the DocumentAnalyzer Object
	AnalyzeRegion Method of the DocumentAnalyzer Object
	AnalyzeTable Method of the DocumentAnalyzer Object
	CleanCacheDictionary Method of the DocumentAnalyzer Object
	DetectOrientation Method of the DocumentAnalyzer Object
	ExtractBarcodes Method of the DocumentAnalyzer Object
	FindPageSplitPosition Method of the DocumentAnalyzer Object
	RecognizeBlocks Method of the DocumentAnalyzer Object
	RecognizeImageDocumentAsPlainText Method of the DocumentAnalyzer Object
	RecognizePage Method of the DocumentAnalyzer Object
	RecognizePages Method of the DocumentAnalyzer Object
	RemoveGeometricalDistortions Method of the DocumentAnalyzer Object
	Exporter Object (IExporter Interface)
	ExportPages Method of the Exporter Object
	ExportPagesEx Method of the Exporter Object
	ScanManager Object (IScanManager Interface)
	ScanSourceSettings Property of the ScanManager Object
	Scan Method of the ScanManager Object
	ScanSourceSettings Object (IScanSourceSettings Interface)
	IDocumentAnalyzerEvents Interface
	OnProgress Method of the IDocumentAnalyzerEvents Interface
	OnRegionProcessed Method of the IDocumentAnalyzerEvents Interface
	OnRecognizerTip Method of the IDocumentAnalyzerEvents Interface
	IExporterEvents Interface
	ReportPercentage Method of the IExporterEvents Interface
	IScanManagerEvents Interface
	NewImage Method of the IScanManagerEvents Interface
	ScanStopped Method of the IScanManagerEvents Interface

	Parameter Objects
	MultiProcessingParams Object (IMultiProcessingParams Interface)
	PageProcessingParams Object (IPageProcessingParams Interface)
	PageAnalysisParams Object (IPageAnalysisParams Interface)
	TableAnalysisParams Object (ITableAnalysisParams Interface)
	BarcodeParams Object (IBarcodeParams Interface)
	RecognizerParams Object (IRecognizerParams Interface)
	SetPredefinedTextLanguage Method of the RecognizerParams Object
	ObjectsExtractionParams Object (IObjectsExtractionParams Interface)
	OrientationDetectionParams Object (IOrientationDetectionParams Interface)
	SynthesisParamsForDocument Object (ISynthesisParamsForDocument Interface)
	AddRecognizedTextFontName Method of the SynthesisParamsForDocument Object
	CleanRecognizedTextFontNames Method of the SynthesisParamsForDocument Object
	GetRecognizedTextFontName Method of the SynthesisParamsForDocument Object
	DocumentStructureDetectionParams Object (IDocumentStructureDetectionParams Interface)
	FontFormattingDetectionParams Object (IFontFormattingDetectionParams Interface)
	SynthesisParamsForPage Object (ISynthesisParamsForPage Interface)
	FontFormattingDetectionParamsForPage Object (IFontFormattingDetectionParamsForPage Interface)
	HTMLExportParams Object (IHTMLExportParams Interface)
	PPTExportParams Object (IPPTExportParams Interface)
	RTFExportParams Object (IRTFExportParams Interface)
	TextExportParams Object (ITextExportParams Interface)
	XLExportParams Object (IXLExportParams Interface)
	XMLExportParams Object (IXMLExportParams Interface)
	PDFExportParams Object (IPDFExportParams Interface)
	PDFExportParamsOld Object (IPDFExportParamsOld Interface)
	PDFAExportParamsOld Object (IPDFAExportParamsOld Interface)
	PDFEncryptionInfo Object (IPDFEncryptionInfo Interface)
	PDFMRCParams Object (IPDFMRCParams Interface)

	License-Related Objects
	License Object (ILicense Interface)
	Volume Property of the License Object
	VolumeRefreshingPeriod Property of the License Object
	VolumeRemaining Property of the License Object
	ExpirationDate Method of the License Object
	LicenseCollection Object (ILicenseCollection Interface)
	FindLicense Method of the LicenseCollection Object

	Supplementary Objects
	StringsCollection Objects (IStringsCollection Interface)
	LongsCollection Object (ILongsCollection Interface)
	Element Property
	Add Method
	Insert Method of Collection Objects
	Item Method
	Remove Method
	RemoveAll Method
	DocumentInfo Object (IDocumentInfo Interface)
	Region Object (IRegion Interface)
	Bottom Property of the Region Object
	Left Property of the Region Object
	Right Property of the Region Object
	Top Property of the Region Object
	AddRect Method of the Region Object
	FRRectangle Object (IFRRectangle Interface)
	SetRectangle Method of the FRRectangle Object
	IRecognizedPages Interface
	UserProperty Property
	CopyFrom Method
	LoadFromFile Method
	LoadFromMemory Method
	SaveToFile Method
	SaveToMemory Method

	Enumerations
	AEF_ prefixed flags
	AEM_ prefixed flags
	ALS_ prefixed flags
	ATT_ prefixed flags
	AVC_ prefixed flags
	BF_ prefixed flags
	BackgroundColorModeEnum
	BaseLanguageLetterSetEnum
	BarcodeOrientationEnum
	BarcodeSupplementTypeEnum
	BarcodeTypeEnum
	BlockLayerTypeEnum
	BlockRoleEnum
	BlockTypeEnum
	CaptionPositionEnum
	CaseRecognitionModeEnum
	CheckmarkCheckStateEnum
	CheckmarkTypeEnum
	CJKTextDirectionEnum
	CodePageEnum
	CorrectSkewModeEnum
	DictionaryTypeEnum
	DocumentElementTypeEnum
	EnhancedImageColorVarietyEnum
	ErrorHiliteLevelEnum
	ExportPictureFormatEnum
	FieldMarkingTypeEnum
	FileExportFormatEnum
	FontModeEnum
	FontTypeEnum
	FootnotePositionOnPageTypeEnum
	FootnoteNumberingTypeEnum
	FootnotePositionInDocumentTypeEnum
	FrameHorizontalReferenceEnum
	FrameVerticalReferenceEnum
	FREngineModuleEnum
	HTMLFormatModeEnum
	HTMLDocumentSplittingModeEnum
	HTMLSynthesisModeEnum
	HyperlinkSchemeEnum
	ImageColorTypeEnum
	ImageCompressionEnum
	ImageFileFormatEnum
	ImageTypeEnum
	LanguageCategoryEnum
	LanguageIdEnum
	LicenseCounterTypeEnum
	MemoryImageFormatEnum
	MessagesLanguageEnum
	MonospaceDetectionModeEnum
	MultiProcessingModeEnum
	NumberingStyleEnum
	ObjectsColorEnum
	ObjectsTypeEnum
	OrientationDetectionModeEnum
	PageBlackSeparatorRoleEnum
	PageBlackSeparatorTypeEnum
	PageElementTypeEnum
	PageFlushingPolicyEnum
	PageSplitDirectionEnum
	ParagraphAlignmentEnum
	ParagraphExtractionModeEnum
	ParagraphRoleEnum
	ParagraphTabAlignmentEnum
	PDFAComplianceModeEnum
	PDFColorityModeEnum
	PDFExportModeEnum
	PDFExportScenarioEnum
	PDFKeyLengthEnum
	PDFMRCCompressionLevelEnum
	PDFMRCCompressionLevelEnum
	PDFMRCModeEnum
	PDFResolutionTypeEnum
	PDFVersionEnum
	ReadingTypeEnum
	RotationTypeEnum
	RTFPageOrientationEnum
	RTFPageSynthesisModeEnum
	RunningTitleModeEnum
	ScanBrightnessControlEnum
	ScanOptionsInterfaceTypeEnum
	ScanPageRotationAngleEnum
	ScanPaperSizeEnum
	ScanPictureModeEnum
	SkewCorrectionModeEnum
	SeparatorTypeEnum
	StreamElementAlignmentEnum
	StreamTypeEnum
	StyleParamsEnum
	TabLeaderTypeEnum
	TableCellVertAlignmentEnum
	TableSeparatorTypeEnum
	TextCategoryEnum
	TextEncodingTypeEnum
	TextLanguageLetterSetEnum
	TextRoleEnum
	TextWrappingEnum
	TextTableSeparatorTypeEnum
	TextTypeEnum
	TrainingImageFormatEnum
	TXTExportFormatEnum
	WordModelTypeEnum
	WritingStyleEnum
	XLFileFormatEnum
	XLSXPaperSizeEnum
	XMLCharAttributesEnum
	VolumeRefreshingPeriodEnum

	Standard Return Codes

	Licensing
	About ABBYY FineReader Engine 10 Activation
	License Manager Utility
	License Parameters

	Working with the LicensingSettings.xml File
	Installing the Hardware Key Drivers
	ABBYY FineReader Engine 10 Modules
	Copyright and Trademark Notices
	The minimum terms of End User License Agreement (EULA)

	Distribution of Applications Which Use the ABBYY FineReader Engine Library
	Installing the ABBYY FineReader Engine Library
	Installing the ABBYY FineReader Engine Library in Automatic Mode
	Installing the ABBYY FineReader Engine Library in Manual Mode
	Activating the ABBYY FineReader Engine Library with the Runtime License
	Installing the License Service
	ABBYY FineReader Engine Distribution Kit
	ABBYY FineReader Engine Distribution Kit: PDF

	Specifications
	Supported Image Formats
	Predefined Languages in ABBYY FineReader Engine
	Text Types
	Barcode Types
	Export Formats
	What's New in ABBYY FineReader Engine 10
	ABBYY FineReader Engine 10 and 9.0 compatibility
	Version History
	System Requirements

	Frequently Asked Questions
	Contact ABBYY
	How to Buy ABBYY FineReader Engine 10
	Technical Support

