
Product Documentation

Delphi Language Guide
Version 10.3 Rio

Latest version is found on online docwiki.embarcadero.com/RADStudio/en/Delphi_Language_Guide_Index

http://docwiki.embarcadero.com/RADStudio/en/Delphi_Language_Guide_Index

Embarcadero Technologies 2

© 2019 Embarcadero Technologies, Inc. Embarcadero, the Embarcadero
Technologies logos, and all other Embarcadero Technologies product or
service names are trademarks or registered trademarks of Embarcadero
Technologies, Inc. All other trademarks are property of their respective owners.

Embarcadero tools are built for elite developers who build and maintain the
world’s most critical applications. Our customers choose Embarcadero
because we are the champion of developers, and we help them build more
secure and scalable enterprise applications faster than any other tools on the
market. In fact, ninety of the Fortune 100 and an active community of more
than three million users worldwide have relied on Embarcadero's award-winning
products for over 30 years.

If you’re trying to build a business-critical application in a demanding vertical,
Embarcadero is for you. If you’re looking to write steadfast code quickly that will
pass stringent code reviews faster than any other, Embarcadero is for you.
We’re here to support elite developers who understand the scalability and
stability of C++ and Delphi and depend on the decades of innovation those
languages bring to development.

We invite you to try our products for free and see for yourself.
www.embarcadero.com/products/rad-studio/start-for-free

Embarcadero is an Idera, Inc. company. Idera, Inc. is the parent company of
global B2B software productivity brands whose solutions enable technical users
to do more with less, faster. Idera, Inc. brands span three divisions – Database
Tools, Developer Tools, and Test Management Tools – with products that are
evangelized by millions of community members and more than 50,000
customers worldwide, including some of the world’s largest healthcare,
financial services, retail, and technology companies. Embarcadero and Idera
are online at www.embarcadero.com and www.ideracorp.com

November, 2019

In support of the education of new developers, and as part of
LearnDelphi.org, this document is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)
creativecommons.org/licenses/by-sa/4.0/

Please link back to embarcadero.com and learndelphi.org

http://www.embarcadero.com/
http://www.embarcadero.com/products/rad-studio/start-for-freeEmbarcadero
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.learndelphi.org/
https://www.ideracorp.com/
https://www.embarcadero.com/
https://www.learndelphi.org/

Embarcadero Technologies 3

CONTENTS
Language Overview... 15

Program Organization .. 15
Delphi Source Files ... 16
Other Files Used to Build Applications .. 16
Compiler-Generated Files .. 17

Example Programs .. 17
A Simple Console Application ... 18
A More Complicated Example ... 19
A VCL Application ... 20

Programs and Units Index .. 23
Topics .. 23

Programs and Units (Delphi) .. 24
Program Structure and Syntax .. 24

The Program Heading ... 24
The Program Uses Clause ... 25
The Block ... 25

Unit Structure and Syntax ... 26
The Unit Heading ... 27
The Interface Section .. 27
The Implementation Section .. 27
The Initialization Section .. 28
The Finalization Section ... 28

Unit References and the Uses Clause .. 29
The Syntax of a Uses Clause ... 29
Multiple and Indirect Unit References .. 30
Circular Unit References ... 31

Using Namespaces with Delphi .. 32
Declaring Namespaces ... 33
Searching Namespaces ... 34

Namespace search order .. 34
A namespace search example .. 34

Using Namespaces ... 35
Fully qualified unit names ... 35
Multi-unit Namespaces ... 36

Fundamental Syntactic Elements Index .. 37
Topics .. 37

Fundamental Syntactic Elements (Delphi) ... 38
The Delphi Character Set ... 38
Tokens .. 39

Special Symbols ... 39
Identifiers ... 40

Embarcadero Technologies 4

Reserved Words ... 41
Directives ... 42
Numerals ... 44
Labels... 45
Character Strings ... 45

Comments and Compiler Directives .. 46
in .. 47
Expressions (Delphi) ... 48

Expressions .. 48
Operators .. 49

Arithmetic Operators .. 49
Boolean Operators .. 50
Complete Versus Short-Circuit Boolean Evaluation ... 51
Logical (Bitwise) Operators .. 52
String Operators ... 54
Pointer Operators .. 54
Set Operators ... 55
Relational Operators ... 56
Class and Interface Operators .. 58
The @ Operator .. 58
Operator Precedence .. 58

Function Calls ... 60
Set Constructors ... 61
Indexes .. 61
Typecasts .. 62

Value Typecasts ... 62
Variable Typecasts .. 62

Declarations and Statements (Delphi) .. 64
Declarations ... 64

Hinting Directives ... 65
Statements ... 66
Simple Statements ... 66

Assignment Statements .. 66
Procedure and Function Calls ... 67
Goto Statements ... 67

Structured Statements .. 69
Compound Statements .. 70
With Statements ... 70
If Statements ... 74
Case Statements ... 76
Control Loops ... 77

Blocks and Scope .. 86
Blocks ... 86
Scope .. 87

Embarcadero Technologies 5

Naming Conflicts ... 87

Data Types, Variables, and Constants Index ... 88

Topics .. 88

About Data Types (Delphi) .. 89

Simple Types (Delphi) ... 91

Ordinal Types ... 91

Integer Types .. 92

Character Types .. 95

Boolean Types .. 96

Enumerated Types ... 97

Subrange Types.. 102

Real Types ... 104

String Types (Delphi) ... 105

About String Types ... 106

Short Strings... 108

AnsiString ... 109

UnicodeString (the Default String Type) ... 110

WideString ... 111

Working with null-Terminated Strings .. 111

Using Pointers, Arrays, and String Constants .. 112

Mixing Delphi Strings and Null-Terminated Strings .. 113

Structured Types (Delphi) ... 115

Alignment of Structured Types .. 115

Sets ... 115

Arrays ... 117

Static Arrays .. 117

Dynamic Arrays .. 118

Multidimensional Dynamic Arrays ... 121

Array Types and Assignments .. 122

String-Like Operations Supported on Dynamic Arrays 122

Records (traditional) ... 123

Variant Parts in Records .. 125

Records (advanced) .. 127

File Types (Win32)... 128

Code Samples ... 129

Pointers and Pointer Types (Delphi) .. 130

Overview of pointers ... 130

Using Extended Syntax with Pointers .. 132

Pointer Types .. 132

Character Pointers .. 133

Byte Pointer ... 133

Type-checked Pointers ... 133

Other Standard Pointer Types .. 133

Procedural Types (Delphi) ... 134

Embarcadero Technologies 6

About Procedural Types ... 135

Method Pointers ... 135

Procedural Types in Statements and Expressions ... 137

Variant Types (Delphi) .. 138

Variants Overview ... 138

Variant Type Conversions .. 140

Variants in Expressions... 142

Variant Arrays ... 142

OleVariant .. 143

Type Compatibility and Identity (Delphi) .. 143

Type Identity ... 144

Type Compatibility .. 144

Assignment Compatibility .. 145

Data Types, Variables, and Constants Index (Delphi) .. 146

Type Declaration Syntax .. 146

Variables (Delphi) ... 148

Declaring Variables .. 148

Absolute Addresses ... 149

Dynamic Variables .. 150

Thread-local Variables .. 150

Declared Constants.. 151

True Constants ... 151

Constant Expressions ... 154

Resource Strings ... 155

Typed Constants .. 155

Array Constants.. 155

Record Constants .. 156

Procedural Constants ... 157

Pointer Constants ... 157

Writeable Typed Constants .. 158

Procedures and Functions Index .. 159

Topics .. 159

Procedures and Functions (Delphi) .. 160

About Procedures and Functions ... 160

Declaring Procedures and Functions ... 160

Procedure Declarations ... 161

Function Declarations ... 161

Calling Conventions.. 163

Forward and Interface Declarations .. 165

External Declarations .. 165

Linking to Object Files ... 166

Importing Functions from Libraries .. 166

Overloading Procedures and Functions .. 168

Local Declarations .. 171

Embarcadero Technologies 7

Nested Routines ... 171

Parameters (Delphi) .. 172

About Parameters ... 172

Parameter Semantics ... 173

Value and Variable Parameters ... 173

Constant Parameters .. 174

Out Parameters .. 175

Untyped Parameters ... 176

String Parameters .. 177

Array Parameters ... 177

Open Array Parameters ... 178

Variant Open Array Parameters ... 180

Default Parameters ... 181

Default Parameters and Overloaded Functions .. 182

Default Parameters in Forward and Interface Declarations 183

Calling Procedures and Functions (Delphi) .. 183

Program Control and Parameters .. 183

Open Array Constructors ... 184

Using the inline Directive .. 184

Anonymous Methods in Delphi ... 186

Syntax .. 186

Using Anonymous Methods ... 188

Anonymous Methods Variable Binding ... 189

Variable Binding Illustration .. 189

Anonymous Methods as Events .. 190

Variable Binding Mechanism ... 191

Utility of Anonymous Methods ... 193

Variable Binding... 193

Ease of Use .. 194

Using Code for a Parameter .. 195

Classes and Objects Index .. 197

Topics .. 197

Classes and Objects (Delphi) .. 198

Class Types ... 198

Inheritance and Scope .. 200

TObject and TClass .. 201

Compatibility of Class Types .. 201

Object Types .. 201

Visibility of Class Members ... 202

Private, Protected, and Public Members .. 203

Strict Visibility Specifiers ... 203

Published Members ... 204

Automated Members (Win32 Only) .. 205

Forward Declarations and Mutually Dependent Classes 205

Embarcadero Technologies 8

Fields (Delphi) .. 206

About Fields .. 206

Class Fields .. 207

Methods (Delphi) .. 208

About Methods .. 209

Inherited .. 210

Self .. 210

Method Binding ... 211

Static Methods ... 211

Virtual and Dynamic Methods .. 212

Class Methods .. 215

Ordinary Class Methods ... 215

Class Static Methods ... 216

Overloading Methods .. 216

Constructors ... 217

Destructors .. 219

Class Constructors ... 220

Class Destructors .. 221

Message Methods ... 222

Implementing Message Methods ... 223

Message Dispatching ... 223

Properties (Delphi) .. 224

About Properties .. 224

Property Access ... 225

Array Properties ... 227

Index Specifiers .. 229

Storage Specifiers .. 229

Property Overrides and Redeclarations .. 230

Class Properties .. 232

Events (Delphi) ... 233

About Events .. 233

Event Properties and Event Handlers ... 233

Triggering Multiple Event Handlers ... 235

Class References ... 236

Class-Reference Types ... 236

Constructors and Class References .. 237

Class Operators ... 238

The is Operator ... 238

The as Operator ... 238

Code Examples ... 239

Exceptions (Delphi) ... 240

About Exceptions .. 240

When To Use Exceptions ... 240

Declaring Exception Types .. 241

Embarcadero Technologies 9

Raising and Handling Exceptions ... 242

Try...except Statements .. 243

Re-raising Exceptions .. 245

Nested Exceptions ... 246

Try...finally Statements ... 247

Standard Exception Classes and Routines .. 247

Class and Record Helpers (Delphi) .. 248

About Class and Record Helpers.. 248

Helper Syntax ... 248

Using Helpers .. 249

Nested Type Declarations ... 250

Declaring Nested Types ... 250

Declaring and Accessing Nested Classes ... 251

Nested Constants .. 251

Operator Overloading (Delphi) .. 252

About Operator Overloading ... 252

Declaring Operator Overloads ... 255

Code Samples ... 256

Standard Routines and Input-Output .. 257

File Input and Output .. 257

Text Files ... 260

Untyped Files .. 261

Text File Device Drivers ... 261

The Open function .. 262

The InOut function ... 262

The Flush function .. 263

The Close function ... 263

Handling null-Terminated Strings ... 263

Null-Terminated String Functions ... 263

Wide-Character Strings ... 265

Other Standard Routines .. 265

Libraries and Packages Index ... 270

Topics .. 270

Libraries and Packages (Delphi) ... 271

Calling Dynamically Loadable Libraries .. 271

Static Loading .. 271

Delayed Loading (Windows-only) .. 272

Dynamic Loading .. 272

Writing Dynamically Loaded Libraries ... 274

Using Export Clause in Libraries ... 274

Library Initialization Code ... 276

Global Variables in a Library ... 277

Libraries and System Variables .. 277

Exceptions and Runtime Errors in Libraries ... 278

Embarcadero Technologies 10

Shared-Memory Manager ... 278

Packages (Delphi) .. 279

Understanding Packages .. 279

Package Declarations and Source Files .. 280

Naming packages .. 281

The requires clause .. 281

Avoiding circular package references .. 281

Duplicate package references .. 282

The contains clause... 282

Avoiding redundant source code uses ... 282

Compiling Packages .. 282

Generated Files .. 282

Package-Specific Compiler Directives .. 283

Package-Specific Command-Line Compiler Switches 284

Object Interfaces Index ... 284

Topics .. 284

Object Interfaces (Delphi) ... 285

Interface Types .. 285

IInterface and Inheritance ... 286

Interface Identification and GUIDs ... 287

Calling Conventions for Interfaces ... 288

Interface Properties ... 288

Forward Declarations ... 288

Implementing Interfaces .. 288

Class Declarations ... 289

Method Resolution Clause ... 290

Changing Inherited Implementations .. 290

Implementing Interfaces by Delegation ... 291

Delegating to an Interface-Type Property .. 291

Delegating to a Class-Type Property .. 293

Interface References (Delphi) .. 293

Implementing Interface References .. 293

Interface Assignment Compatibility ... 295

Interface Typecasts ... 295

Interface Querying .. 296

Casting Interface References to Objects ... 296

Automation Objects (Win32 Only) ... 298

Dispatch Interface Types ... 298

Dispatch interface methods .. 298

Dispatch interface properties ... 299

Accessing Automation Objects .. 299

Automation Object Method-Call Syntax .. 299

Dual Interfaces .. 300

Memory Management Index .. 301

Embarcadero Technologies 11

Topics .. 301

Memory Management .. 301

Default memory manager ... 301

The FastMM Memory Manager (Win32 and Win64) .. 301

The Posix Memory Manager (Posix platforms) .. 303

Variables ... 303

Internal Data Formats (Delphi) .. 304

Integer Types .. 304

Platform-Independent Unsigned Integer Types .. 304

Platform-Independent Signed Integer Types .. 305

Platform-Dependent Integer Types .. 307

Integer Subrange Types ... 308

Character Types .. 308

Boolean Types .. 309

Enumerated Types .. 309

Real Types ... 309

The Real48 type ... 309

The Single type ... 310

The Double type .. 310

The Extended type .. 311

The Comp type .. 311

The Currency type ... 311

Pointer Types .. 311

Short String Types ... 312

Long String Types ... 312

Wide String Types ... 313

Set Types ... 314

Static Array Types .. 314

Dynamic Array Types .. 315

Record Types.. 315

File Types ... 317

Procedural Types ... 319

Class Types ... 319

Class Reference Types .. 323

Variant Types .. 323

Program Control (Delphi)... 324

Passing Parameters ... 324

By Value vs. By Reference .. 324

Pascal, cdecl, stdcall, and safecall Conventions .. 325

Register Convention .. 326

Register saving conventions .. 326

Handling Function Results .. 326

Handling Method Calls ... 327

Understanding Exit Procedures ... 328

Embarcadero Technologies 12

Inline Assembly Code Index .. 330

Topics .. 330

Using Inline Assembly Code .. 331

Using the asm Statement ... 331

Using Registers .. 332

32-bit .. 332

64-bit .. 332

Using Conditional Defines for Cross-Platform Code .. 332

Assembler Syntax .. 333

Statements ... 333

Labels .. 334

Instruction Opcodes ... 334

Automatic jump sizing... 335

Directives .. 335

Operands .. 339

Assembly Expressions .. 340

Differences between Delphi and Assembler Expressions 340

Expression Elements .. 341

Numeric Constants .. 341

String Constants ... 342

Registers .. 343

Symbols ... 345

Expression Classes ... 347

Expression Types... 349

Expression Operators .. 350

Assembly Procedures and Functions ... 353

Compiler Optimizations .. 353

Function Results ... 354

32-bit .. 354

64-bit .. 354

Intel 64 Specifics (Pseudo-Ops) ... 354

Stack Unwinding for PC-mapped Exceptions .. 355

Generics Index .. 355

Topics .. 355

Overview of Generics ... 356

How Generics Work ... 356

Code Examples ... 356

Platform Requirements and Differences.. 358

Run-time type identification .. 358

Interface GUID ... 358

Parameterized method in interface ... 358

Instantiation timing .. 358

Dynamic instantiation ... 358

Interface constraints ... 358

Embarcadero Technologies 13

Terminology for Generics ... 359
Declaring Generics ... 360

Type Argument .. 360
Nested Types .. 361
Base Types .. 362
Class, Interface, and Record Types.. 362
Procedural Types ... 362
Parameterized Methods ... 363
Scope of Type Parameters .. 364

Overloads and Type Compatibility in Generics ... 365
Overloads ... 365
Type Compatibility .. 365

Constraints in Generics... 366
Specifying Generics with Constraints ... 366

Declaring Constraints .. 366
Multiple Type Parameters ... 366
Multiple Constraints ... 367

Types of Constraints .. 367
Interface Type Constraints ... 367
Class Type Constraints .. 368
Constructor Constraints .. 368
Class Constraint ... 368
Record Constraint ... 368

Type Inferencing .. 369
Class Variable in Generics ... 369
Attributes and RTTI ... 371

Introduction .. 371
Attributes and RTTI ... 371
Topics .. 371

Declaring Custom Attributes (RTTI) ... 372
Declaring an Attribute .. 372

Attribute Names that End with 'Attribute' are Implicitly Shortened 372
Constructors in Attributes ... 373

Annotating Types and Type Members .. 373
General Syntax .. 373
You Can Only Use Constant Expressions as Attribute Parameters 374

Extracting Attributes at Run Time .. 375
Attribute Instantiation ... 376
Exceptions .. 377

Using Virtual Method Interceptors .. 378
Compiler Attributes ... 378

Ref .. 378
Unsafe ... 379
Volatile .. 379

Embarcadero Technologies 14

Weak ... 379
Writing C++-friendly Delphi Code ... 379

DOs .. 380
Redeclaring All Inhereted Contructors .. 380
Ensuring Distinct Signature for Each Constructor in a Hierarchy 380

DON'Ts ... 382
Overloading Index Properties .. 382
Calling Virtual Mehtods from Constructors .. 382
Using Generics in Aliases .. 382
Using Generics in Closures .. 382
Using Records with Constructors ... 383
Using Non-Empty Default String Parameters ... 383

Embarcadero Technologies 15

Language Overview

Delphi is a high-level, compiled, strongly typed language that supports structured
and object-oriented design. Based on Delphi, its benefits include easy-to-read
code, quick compilation, and the use of multiple unit files for modular
programming. Delphi has special features that support the RAD Studio
component framework and environment. For the most part, descriptions and
examples in this language guide assume that you are using Embarcadero
development tools.

Most developers using Embarcadero software development tools write and
compile their code in the integrated development environment (IDE).
Embarcadero development tools handle many details of setting up projects and
source files, such as maintenance of dependency information among units. The
product also places constraints on program organization that are not, strictly
speaking, part of the Delphi language specification. For example, Embarcadero
development tools enforce certain file- and program-naming conventions that
you can avoid if you write your programs outside of the IDE and compile them
from the command prompt.

This language guide generally assumes that you are working in the IDE and that
you are building applications that use the Visual Component Library (VCL).
Occasionally, however, Delphi-specific rules are distinguished from rules that
apply to all Delphi programming.

This section covers the following topics:

o Program Organization. Covers the basic language features that allow you
to partition your application into units and namespaces.

o Example Programs. Small examples of both console and GUI applications
are shown, with basic instructions on running the compiler from the
command-line.

Program Organization

Delphi programs are usually divided into source-code modules called units. Most
programs begin with a program heading, which specifies a name for the
program. The program heading is followed by an optional uses clause, then a
block of declarations and statements. The uses clause lists units that are linked
into the program; these units, which can be shared by different programs, often
have uses clauses of their own.

The uses clause provides the compiler with information about dependencies
among modules. Because this information is stored in the modules themselves,
most Delphi language programs do not require makefiles, header files, or
preprocessor "include" directives.

Embarcadero Technologies 16

Delphi Source Files

The compiler expects to find Delphi source code in files of three kinds:

o Unit source files (which end with the .pas extension)

o Project files (which end with the .dpr extension)

o Package source files (which end with the .dpk extension)

Unit source files typically contain most of the code in an application. Each
application has a single project file and several unit files; the project file, which
corresponds to the program file in traditional Pascal, organizes the unit files into
an application. Embarcadero development tools automatically maintain a
project file for each application.

If you are compiling a program from the command line, you can put all your
source code into unit (.pas) files. If you use the IDE to build your application, it will
produce a project (.dpr) file.

Package source files are similar to project files, but they are used to construct
special dynamically linkable libraries called packages.

Other Files Used to Build Applications

In addition to source-code modules, Embarcadero products use several non-
Pascal files to build applications. These files are maintained automatically by the
IDE, and include

o VCL form files (which have a .dfm extension on Win32)

o Resource files (which end with .res)

o Project options files (which end with .dof)

A VCL form file contains the description of the properties of the form and the
components it owns. Each form file represents a single form, which usually
corresponds to a window or dialog box in an application. The IDE allows you to
view and edit form files as text, and to save form files as either text (a format very
suitable for version control) or binary. Although the default behavior is to save
form files as text, they are usually not edited manually; it is more common to use
Embarcadero's visual design tools for this purpose. Each project has at least one
form, and each form has an associated unit (.pas) file that, by default, has the
same name as the form file.

In addition to VCL form files, each project uses a resource (.res) file to hold the
application's icon and other resources such as strings. By default, this file has the
same name as the project (.dpr) file.

A project options (.dof) file contains compiler and linker settings, search path
information, version information, and so forth. Each project has an associated

http://docwiki.embarcadero.com/RADStudio/Rio/en/Delphi_Package_Source_File_(*.dpk)

Embarcadero Technologies 17

project options file with the same name as the project (.dpr) file. Usually, the
options in this file are set from Project Options dialog.

Various tools in the IDE store data in files of other types. Desktop settings (.dsk)
files contain information about the arrangement of windows and other
configuration options; desktop settings can be project-specific or environment-
wide. These files have no direct effect on compilation.

Compiler-Generated Files

The first time you build an application or a package, the compiler produces a
compiled unit file (.dcu on Win32) for each new unit used in your project; all
the .dcu files in your project are then linked to create a single executable or
shared package. The first time you build a package, the compiler produces a file
for each new unit contained in the package, and then creates both a .dcp and
a package file. If you use the GD compiler switch, the linker generates a map file
and a .drc file; the .drc file, which contains string resources, can be compiled
into a resource file.

When you build a project, individual units are not recompiled unless their source
(.pas) files have changed since the last compilation, their .dcu/.dpu files cannot
be found, you explicitly tell the compiler to reprocess them, or the interface of
the unit depends on another unit which has been changed. In fact, it is not
necessary for a unit's source file to be present at all, as long as the compiler can
find the compiled unit file and that unit has no dependencies on other units that
have changed.

Example Programs

The examples that follow illustrate basic features of Delphi programming. The
examples show simple applications that would not normally be compiled from
the IDE; you can compile them from the command line.

http://docwiki.embarcadero.com/RADStudio/Rio/en/DCC32.EXE,_the_Delphi_Command_Line_Compiler
http://docwiki.embarcadero.com/RADStudio/Rio/en/Delphi_Resource_String_File_(*.drc)

Embarcadero Technologies 18

A Simple Console Application

The program below is a simple console application that you can compile and
run from the command prompt:

 program Greeting;

 {$APPTYPE CONSOLE}

 var

 MyMessage: string;

 begin

 MyMessage := 'Hello world!';

 Writeln(MyMessage);

 end.

The first line declares a program called Greeting. The {$APPTYPE CONSOLE}
directive tells the compiler that this is a console application, to be run from the
command line. The next line declares a variable called MyMessage, which holds
a string. (Delphi has genuine string data types.) The program then assigns the
string "Hello world!" to the variable MyMessage, and sends the contents of
MyMessage to the standard output using the Writeln procedure. (Writeln is
defined implicitly in the System unit, which the compiler automatically includes in
every application.)

You can type this program into a file called greeting.pas or greeting.dpr
and compile it by entering:

dcc32 greeting

to produce a Win32 executable.

The resulting executable prints the message Hello world!

Aside from its simplicity, this example differs in several important ways from
programs that you are likely to write with Embarcadero development tools. First,
it is a console application. Embarcadero development tools are most often used
to write applications with graphical interfaces; hence, you would not ordinarily
call Writeln. Moreover, the entire example program (save for Writeln) is in a single
file. In a typical GUI application, the program heading the first line of the
example would be placed in a separate project file that would not contain any
of the actual application logic, other than a few calls to routines defined in unit
files.

Embarcadero Technologies 19

A More Complicated Example

The next example shows a program that is divided into two files: a project file
and a unit file. The project file, which you can save as greeting.dpr, looks like
this:

 program Greeting;

 {$APPTYPE CONSOLE}

 uses

 Unit1;

 begin

 PrintMessage('Hello World!');

 end.

The first line declares a program called greeting, which, once again, is a console
application. The uses Unit1; clause tells the compiler that the program greeting
depends on a unit called Unit1. Finally, the program calls the PrintMessage
procedure, passing to it the string Hello World! The PrintMessage procedure is
defined in Unit1. Here is the source code for Unit1, which must be saved in a file
called Unit1.pas:

 unit Unit1;

 interface

 procedure PrintMessage(msg: string);

 implementation

 procedure PrintMessage(msg: string);

 begin

 Writeln(msg);

 end;

 end.

Unit1 defines a procedure called PrintMessage that takes a single string as an
argument and sends the string to the standard output. (In Delphi, routines that
do not return a value are called procedures. Routines that return a value are
called functions.)

Notice that PrintMessage is declared twice in Unit1. The first declaration, under
the reserved word interface, makes PrintMessage available to other modules
(such as greeting) that use Unit1. The second declaration, under the reserved
word implementation, actually defines PrintMessage.

You can now compile Greeting from the command line by entering

dcc32 greeting

to produce a Win32 executable.

Embarcadero Technologies 20

There is no need to include Unit1 as a command-line argument. When the
compiler processes greeting.dpr, it automatically looks for unit files that the
greeting program depends on. The resulting executable does the same thing as
our first example: it prints the message Hello world!

A VCL Application

Our next example is an application built using the Visual Component Library
(VCL) components in the IDE. This program uses automatically generated form
and resource files, so you won't be able to compile it from the source code
alone. But it illustrates important features of the Delphi Language. In addition to
multiple units, the program uses classes and objects.

The program includes a project file and two new unit files. First, the project file:

 program Greeting;

 uses

 Forms, Unit1, Unit2;

 {$R *.res} { This directive links the project's resource file. }

 begin

 { Calls to global Application instance }

 Application.Initialize;

 Application.CreateForm(TForm1, Form1);

 Application.CreateForm(TForm2, Form2);

 Application.Run;

 end.

Once again, our program is called greeting. It uses three units: Forms, which is
part of VCL; Unit1, which is associated with the application's main form (Form1);
and Unit2, which is associated with another form (Form2).

The program makes a series of calls to an object named Application, which is an
instance of the Vcl.Forms.TApplication class defined in the Forms unit. (Every
project has an automatically generated Application object.) Two of these calls
invoke a Vcl.Forms.TApplication method named CreateForm. The first call to
CreateForm creates Form1, an instance of the TForm1 class defined in Unit1. The
second call to CreateForm creates Form2, an instance of the TForm2 class
defined in Unit2.

http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.Forms.TApplication
http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.Forms.TApplication
http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.Forms.TApplication.CreateForm
http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.Forms.TApplication.CreateForm
http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.Forms.TApplication.CreateForm

Embarcadero Technologies 21

Unit1 looks like this:

 unit Unit1;

 interface

 uses SysUtils, Types, Classes, Graphics, Controls, Forms, Dialogs;

 type

 TForm1 = class(TForm)

 Button1: TButton;

 procedure Button1Click(Sender: TObject);

 end;

 var

 Form1: TForm1;

 implementation

 uses Unit2;

 {$R *.dfm}

 procedure TForm1.Button1Click(Sender: TObject);

 begin

 Form2.ShowModal;

 end;

 end.

Unit1 creates a class named TForm1 (derived from Vcl.Forms.TForm) and an
instance of this class Form1. The TForm1 class includes a button -- Button1, an
instance of Vcl.StdCtrls.TButton -- and a procedure named Button1Click that is
called when the user presses Button1. Button1Click hides Form1 and displays
Form2 (the call to Form2.ShowModal).

Note: In the previous example, Form2.ShowModal relies on the use
of auto-created forms. While this is fine for example code, using
auto-created forms is actively discouraged.

http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.Forms.TForm
http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.StdCtrls.TButton

Embarcadero Technologies 22

Form2 is defined in Unit2:

 unit Unit2;

 interface

 uses SysUtils, Types, Classes, Graphics, Controls, Forms, Dialogs;

 type

 TForm2 = class(TForm)

 Label1: TLabel;

 CancelButton: TButton;

 procedure CancelButtonClick(Sender: TObject);

 end;

 var

 Form2: TForm2;

 implementation

 uses Unit1;

 {$R *.dfm}

 procedure TForm2.CancelButtonClick(Sender: TObject);

 begin

 Form2.Close;

 end;

 end.

Unit2 creates a class named TForm2 and an instance of this class, Form2. The
TForm2 class includes a button (CancelButton, an instance of Vcl.StdCtrls.TButton)
and a label (Label1, an instance of Vcl.StdCtrls.TLabel). You can not see this from
the source code, but Label1 displays a caption that reads Hello world! The
caption is defined in Form2's form file, Unit2.dfm.

TForm2 declares and defines a method CancelButtonClick that will be invoked
at run time whenever the user presses CancelButton. This procedure (along with
Unit1's TForm1.Button1Click) is called an event handler because it responds to
events that occur while the program is running. Event handlers are assigned to
specific events by the form files for Form1 and Form2.

When the greeting program starts, Form1 is displayed and Form2 is invisible. (By
default, only the first form created in the project file is visible at run time. This is
called the project's main form.) When the user presses the button on Form1, Form2
displays the Hello world! greeting. When the user presses the CancelButton or
the Close button on the title bar, Form2 closes.

http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.StdCtrls.TButton
http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.StdCtrls.TLabel

Embarcadero Technologies 23

Programs and Units Index
This chapter provides a more detailed look at Delphi program organization.

Topics

o Programs and Units (Delphi)

o Using Namespaces with Delphi

Embarcadero Technologies 24

Programs and Units (Delphi)
This topic covers the overall structure of a Delphi application: the program
header, unit declaration syntax, and the uses clause.

o Divide large programs into modules that can be edited separately.

o Create libraries that you can share among programs.

o Distribute libraries to other developers without making the source code
available.

Program Structure and Syntax

A complete, executable Delphi application consists of multiple unit modules, all
tied together by a single source code module called a project file. In traditional
Pascal programming, all source code, including the main program, is stored
in .pas files. Embarcadero tools use the file extension .dpr to designate the
main program source module, while most other source code resides in unit files
having the traditional .pas extension. To build a project, the compiler needs the
project source file, and either a source file or a compiled unit file for each unit.

Note: Strictly speaking, you need not explicitly use any units in a
project, but all programs automatically use the System unit and the
SysInit unit.

The source code file for an executable Delphi application contains:

o a program heading,

o a uses clause (optional), and

o a block of declarations and executable statements.

The compiler, and hence the IDE, expect to find these three elements in a single
project (.dpr) file.

The Program Heading

The program heading specifies a name for the executable program. It consists of
the reserved word program, followed by a valid identifier, followed by a
semicolon. For applications developed using Embarcadero tools, the identifier
must match the project source file name.

The following example shows the project source file for a program called
Editor. Since the program is called Editor, this project file is called
Editor.dpr.

Embarcadero Technologies 25

program Editor;

 uses Forms, REAbout, // An "About" box

 REMain; // Main form

 {$R *.res}

 begin

 Application.Title := 'Text Editor';

 Application.CreateForm(TMainForm, MainForm);

 Application.Run;

 end.

The first line contains the program heading. The uses clause in this example
specifies a dependency on three additional units: Forms, REAbout, and REMain.
The $R compiler directive links the project's resource file into the program. Finally,
the block of statements between the begin and end keywords are executed
when the program runs. The project file, like all Delphi source files, ends with a
period (not a semicolon).

Delphi project files are usually short, since most of a program's logic resides in its
unit files. A Delphi project file typically contains only enough code to launch the
application's main window, and start the event processing loop. Project files are
generated and maintained automatically by the IDE, and it is seldom necessary
to edit them manually.

In standard Pascal, a program heading can include parameters after the
program name:

program Calc(input, output);

Embarcadero's Delphi ignores these parameters.

In RAD Studio, the program heading introduces its own namespace, which is
called the project default namespace.

The Program Uses Clause

The uses clause lists those units that are incorporated into the program. These
units may in turn have uses clauses of their own. For more information on the uses
clause within a unit source file, see Unit References and the Uses Clause, below.

The uses clause consists of the keyword uses, followed by a comma delimited list
of units the project file directly depends on.

The Block

The block contains a simple or structured statement that is executed when the
program runs. In most program files, the block consists of a compound statement
bracketed between the reserved words begin and end, whose component

Embarcadero Technologies 26

statements are simply method calls to the project's Application object. Most
projects have a global Application variable that holds an instance of
Vcl.Forms.TApplication, Web.WebBroker.TWebApplication, or
Vcl.SvcMgr.TServiceApplication. The block can also contain declarations of
constants, types, variables, procedures, and functions; these declarations must
precede the statement part of the block. Note that the end that represents the
end of the program source must be followed by a period (.):

begin

 .

 .

 .

end.

Unit Structure and Syntax

A unit consists of types (including classes), constants, variables, and routines
(functions and procedures). Each unit is defined in its own source (.pas) file.

A unit file begins with a unit heading, which is followed by the interface keyword.
Following the interface keyword, the uses clause specifies a list of unit
dependencies. Next comes the implementation section, followed by the
optional initialization, and finalization sections. A skeleton unit source file looks
like this:

unit Unit1;

interface

uses // List of unit dependencies goes here...

 // Interface section goes here

implementation

uses // List of unit dependencies goes here...

// Implementation of class methods, procedures, and functions goes here...

initialization

// Unit initialization code goes here...

finalization

// Unit finalization code goes here...

end.

The unit must conclude with the reserved word end followed by a period.

http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.Forms.TApplication
http://docwiki.embarcadero.com/Libraries/Rio/en/Web.WebBroker.TWebApplication
http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.SvcMgr.TServiceApplication

Embarcadero Technologies 27

The Unit Heading

The unit heading specifies the unit's name. It consists of the reserved word unit,
followed by a valid identifier, followed by a semicolon. For applications
developed using Embarcadero tools, the identifier must match the unit file
name. Thus, the unit heading:

unit MainForm;

would occur in a source file called MainForm.pas, and the file containing the
compiled unit would be MainForm.dcu. Unit names must be unique within a
project. Even if their unit files are in different directories, two units with the same
name cannot be used in a single program.

The Interface Section

The interface section of a unit begins with the reserved word interface and
continues until the beginning of the implementation section. The interface
section declares constants, types, variables, procedures, and functions that are
available to clients. That is, to other units or programs that wish to use elements
from this unit. These entities are called public because code in other units can
access them as if they were declared in the unit itself.

The interface declaration of a procedure or function includes only the routine's
signature. That is, the routine's name, parameters, and return type (for functions).
The block containing executable code for the procedure or function follows in
the implementation section. Thus procedure and function declarations in the
interface section work like forward declarations.

The interface declaration for a class must include declarations for all class
members: fields, properties, procedures, and functions.

The interface section can include its own uses clause, which must appear
immediately after the keyword interface.

The Implementation Section

The implementation section of a unit begins with the reserved word
implementation and continues until the beginning of the initialization section or,
if there is no initialization section, until the end of the unit. The implementation
section defines procedures and functions that are declared in the interface
section. Within the implementation section, these procedures and functions may
be defined and called in any order. You can omit parameter lists from public
procedure and function headings when you define them in the implementation
section; but if you include a parameter list, it must match the declaration in the
interface section exactly.

In addition to definitions of public procedures and functions, the implementation
section can declare constants, types (including classes), variables, procedures,

Embarcadero Technologies 28

and functions that are private to the unit. That is, unlike the interface section,
entities declared in the implementation section are inaccessible to other units.

The implementation section can include its own uses clause, which must appear
immediately after the keyword implementation. The identifiers declared within
units specified in the implementation section are only available for use within the
implementation section itself. You cannot refer to such identifiers in the interface
section.

The Initialization Section

The initialization section is optional. It begins with the reserved word initialization
and continues until the beginning of the finalization section or, if there is no
finalization section, until the end of the unit. The initialization section contains
statements that are executed, in the order in which they appear, on program
start-up. So, for example, if you have defined data structures that need to be
initialized, you can do this in the initialization section.

For units in the interface uses list, the initialization sections of the units used by a
client are executed in the order in which the units appear in the client's uses
clause.

The older "begin ... end." syntax still functions. Basically, the reserved word "begin"
can be used in place of initialization followed by zero or more execution
statements. Code using the older "begin ... end." syntax cannot specify a
finalization section. In this case, finalization is accomplished by providing a
procedure to the ExitProc variable. This method is not recommended for code
going forward, but you might see it used in older source code.

The Finalization Section

The finalization section is optional and can appear only in units that have an
initialization section. The finalization section begins with the reserved word
finalization and continues until the end of the unit. It contains statements that are
executed when the main program terminates (unless the Halt procedure is used
to terminate the program). Use the finalization section to free resources that are
allocated in the initialization section.

Finalization sections are executed in the opposite order from initialization
sections. For example, if your application initializes units A, B, and C, in that order,
it will finalize them in the order C, B, and A.

Once a unit's initialization code starts to execute, the corresponding finalization
section is guaranteed to execute when the application shuts down. The
finalization section must therefore be able to handle incompletely initialized
data, since, if a runtime error occurs, the initialization code might not execute
completely.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.ExitProc

Embarcadero Technologies 29

Unit References and the Uses Clause

A uses clause lists units used by the program, library, or unit in which the clause
appears. A uses clause can occur in

o the project file for a program, or library

o the interface section of a unit

o the implementation section of a unit

Most project files contain a uses clause, as do the interface sections of most
units. The implementation section of a unit can contain its own uses clause as
well.

The System unit and the SysInit unit are used automatically by every application
and cannot be listed explicitly in the uses clause. (System implements routines for
file I/O, string handling, floating point operations, dynamic memory allocation,
and so forth.) Other standard library units, such as SysUtils, must be explicitly
included in the uses clause. In most cases, all necessary units are placed in the
uses clause by the IDE, as you add and remove units from your project.

Case Sensitivity: In unit declarations and uses clauses, unit names must match
the file names in case. In other contexts (such as qualified identifiers), unit names
are case insensitive. To avoid problems with unit references, refer to the unit
source file explicitly:

uses MyUnit in "myunit.pas";

If such an explicit reference appears in the project file, other source files can
refer to the unit with a simple uses clause that does not need to match case:

uses Myunit;

The Syntax of a Uses Clause

A uses clause consists of the reserved word uses, followed by one or more
comma delimited unit names, followed by a semicolon. Examples:

uses Forms, Main;

uses

 Forms,

 Main;

uses Windows, Messages, SysUtils, Strings, Classes, Unit2, MyUnit;

In the uses clause of a program or library, any unit name may be followed by the
reserved word in and the name of a source file, with or without a directory path,
in single quotation marks; directory paths can be absolute or relative. Examples:

Embarcadero Technologies 30

uses

 Windows, Messages, SysUtils,

 Strings in 'C:\Classes\Strings.pas', Classes;

Use the keyword in after a unit name when you need to specify the unit's source
file. Since the IDE expects unit names to match the names of the source files in
which they reside, there is usually no reason to do this. Using in is necessary only
when the location of the source file is unclear, for example when:

o You have used a source file that is in a different directory from the project
file, and that directory is not in the compiler's search path.

o Different directories in the compiler's search path have identically named
units.

o You are compiling a console application from the command line, and
you have named a unit with an identifier that doesn't match the name of
its source file.

The compiler also relies on the in ... construction to determine which units are
part of a project. Only units that appear in a project (.dpr) file's uses clause
followed by in and a file name are considered to be part of the project; other
units in the uses clause are used by the project without belonging to it. This
distinction has no effect on compilation, but it affects IDE tools like the Project

Manager.

In the uses clause of a unit, you cannot use in to tell the compiler where to find a
source file. Every unit must be in the compiler's search path. Moreover, unit
names must match the names of their source files.

Multiple and Indirect Unit References

The order in which units appear in the uses clause determines the order of their
initialization and affects the way identifiers are located by the compiler. If two
units declare a variable, constant, type, procedure, or function with the same
name, the compiler uses the one from the unit listed last in the uses clause. (To
access the identifier from the other unit, you would have to add a qualifier:
UnitName.Identifier.)

A uses clause need include only units used directly by the program or unit in
which the clause appears. That is, if unit A references constants, types, variables,
procedures, or functions that are declared in unit B, then A must use B explicitly. If
B in turn references identifiers from unit C, then A is indirectly dependent on C; in
this case, C needn't be included in a uses clause in A, but the compiler must still
be able to find both B and C in order to process A.

Embarcadero Technologies 31

The following example illustrates indirect dependency:

program Prog;

uses Unit2;

const a = b;

// ...

unit Unit2;

interface

uses Unit1;

const b = c;

// ...

unit Unit1;

interface

const c = 1;

// ...

In this example, Prog depends directly on Unit2, which depends directly on Unit1.
Hence Prog is indirectly dependent on Unit1. Because Unit1 does not appear in
Prog's uses clause, identifiers declared in Unit1 are not available to Prog.

To compile a client module, the compiler needs to locate all units that the client
depends on, directly or indirectly. Unless the source code for these units has
changed, however, the compiler needs only their .dcu files, not their source
(.pas) files.

When a change is made in the interface section of a unit, other units that
depend on the change must be recompiled. But when changes are made only
in the implementation or other sections of a unit, dependent units don't have to
be recompiled. The compiler tracks these dependencies automatically and
recompiles units only when necessary.

Circular Unit References

When units reference each other directly or indirectly, the units are said to be
mutually dependent. Mutual dependencies are allowed as long as there are no
circular paths connecting the uses clause of one interface section to the uses
clause of another. In other words, starting from the interface section of a unit, it
must never be possible to return to that unit by following references through
interface sections of other units. For a pattern of mutual dependencies to be
valid, each circular reference path must lead through the uses clause of at least
one implementation section.

Embarcadero Technologies 32

In the simplest case of two mutually dependent units, this means that the units
cannot list each other in their interface uses clauses. So the following example
leads to a compilation error:

unit Unit1;

interface

uses Unit2;

// ...

unit Unit2;

interface

uses Unit1;

// ...

However, the two units can legally reference each other if one of the references
is moved to the implementation section:

unit Unit1;

interface

uses Unit2;

// ...

unit Unit2;

interface

//...

implementation

uses Unit1;

// ...

To reduce the chance of circular references, it's a good idea to list units in the
implementation uses clause whenever possible. Only when identifiers from
another unit are used in the interface section is it necessary to list that unit in the
interface uses clause.

Using Namespaces with Delphi
Important: RAD Studio now supports a unit scope name or prefix in
addition to the namespace or unit name. In order for a name to be
considered fully qualified, the unit scope name must be included.
For more details, see Unit Scope Names.

In Delphi, a unit is the basic container for types. In Delphi, a namespace is a
container of Delphi units.

Unlike traditional Delphi units, namespaces can be nested to form a
containment hierarchy. Nested namespaces provide a way to organize
identifiers and types, and are used to disambiguate types with the same name.
Since they are a container for Delphi units, namespaces may also be used to
differentiate between units of the same name, that reside in different packages.

http://docwiki.embarcadero.com/RADStudio/Rio/en/Unit_Scope_Names

Embarcadero Technologies 33

For example, the class MyClass in MyNameSpace, is different from the class
MyClass in YourNamespace.

This topic describes the following:

o Project default namespaces, and namespace declaration.

o Namespace search scope.

o Using namespaces in Delphi units.

Declaring Namespaces

In RAD Studio, a project file (program, library, or package) implicitly introduces its
own namespace, called the project default namespace. A unit may be a
member of the project default namespace, or it may explicitly declare itself to
be a member of a different namespace. In either case, a unit declares its
namespace membership in its unit header. For example, consider the following
explicit namespace declaration:

unit MyCompany.MyWidgets.MyUnit;

First, notice that the parts of namespaces are separated by dots. Namespaces
do not introduce new symbols for the identifiers between the dots; the dots are
part of the unit name. The source file name for this example is
MyCompany.MyWidgets.MyUnit.pas, and the compiled output file name is
MyCompany.MyWidgets.MyUnit.dcu.

Second, notice that the dots imply the conceptual nesting, or containment, of
one namespace within another. The example above declares the unit MyUnit to
be a member of the MyWidgets namespace, which itself is contained in the
MyCompany namespace. Again, it should be noted that this containment is for
documentation purposes only.

A project default namespace declares a namespace for all of the units in the
project. Consider the following declarations:

Program MyCompany.Programs.MyProgram;

Library MyCompany.Libs.MyLibrary;

Package MyCompany.Packages.MyPackage;

These statements establish the project default namespace for the program,
library, and package, respectively. The namespace is determined by removing
the rightmost identifier (and dot) from the declaration.

A unit that omits an explicit namespace is called a generic unit. A generic unit
automatically becomes a member of the project default namespace. Given the
preceding program declaration, the following unit declaration would cause the
compiler to treat MyUnit as a member of the MyCompany.Programs
namespace.

Embarcadero Technologies 34

unit MyUnit;

The project default namespace does not affect the name of the Delphi source
file for a generic unit. In the preceding example, the Delphi source file name
would be MyUnit.pas. The same rule applies for the dcu file name. The resulting
dcu file in the current example would be MyUnit.dcu.

Namespace strings are not case-sensitive. The compiler considers two
namespaces that differ only in case to be equivalent. However, the compiler
does preserve the case of a namespace, and will use the preserved casing in
output file names, error messages, and RTTI unit identifiers. RTTI for class and type
names will include the full namespace specification.

Searching Namespaces

A unit must declare the other units on which it depends. The compiler must
search these units for identifiers. For units in explicit namespaces the search
scope is already known, but for generic units, the compiler must establish a
namespace search scope.

Consider the following unit and uses declarations:

unit MyCompany.ProjectX.ProgramY.MyUnit1;

uses MyCompany.Libs.Unit2, Unit3, Unit4;

These declarations establish MyUnit1 as a member of the
MyCompany.ProjectX.ProgramY namespace. MyUnit1 depends on three other
units: MyCompany.Libs.Unit2, and the generic units, Unit3, and Unit4. The
compiler can resolve identifier names in Unit2, since the uses clause specified the
fully qualified unit name. To resolve identifier names in Unit3 and Unit4, the
compiler must establish a namespace search order.

Namespace search order

Search locations can come from three possible sources: compiler options, the
project default namespace, and the current unit's namespace.

The compiler resolves identifier names in the following order:

1. The current unit namespace (if any)

2. The project default namespace (if any)

3. Namespaces specified by compiler options.

A namespace search example

The following example project and unit files demonstrate the namespace search
order:

Embarcadero Technologies 35

// Project file declarations...

program MyCompany.ProjectX.ProgramY;

// Unit source file declaration...

unit MyCompany.ProjectX.ProgramY.MyUnit1;

Given this program example, the compiler would search namespaces in the
following order:

1. MyCompany.ProjectX.ProgramY

2. MyCompany.ProjectX

3. Namespaces specified by compiler options.

Note that if the current unit is generic (i.e. it does not have an explicit
namespace declaration in its unit statement), then resolution begins with the
project default namespace.

Using Namespaces

Delphi's uses clause brings a module into the context of the current unit. The uses
clause must either refer to a module by its fully qualified name (i.e. including the
full namespace specification), or by its generic name, thereby relying on the
namespace resolution mechanisms to locate the unit.

Fully qualified unit names

The following example demonstrates the uses clause with namespaces:

unit MyCompany.Libs.MyUnit1；
uses MyCompany.Libs.Unit2, // Fully qualified name.

 UnitX; // Generic name.

Once a module has been brought into context, source code can refer to
identifiers within that module either by the unqualified name, or by the fully
qualified name (if necessary, to disambiguate identifiers with the same name in
different units). The following Writeln statements are equivalent:

uses MyCompany.Libs.Unit2;

begin

 Writeln(MyCompany.Libs.Unit2.SomeString);

 Writeln(SomeString);

end.

A fully qualified identifier must include the full namespace specification. In the
preceding example, it would be an error to refer to SomeString using only a
portion of the namespace:

Embarcadero Technologies 36

Writeln(Unit2.SomeString); // ERROR!

Writeln(Libs.Unit2.SomeString); // ERROR!

Writeln(MyCompany.Libs.Unit2.SomeString); // Correct.

Writeln(SomeString); // Correct.

It is also an error to refer to only a portion of a namespace in the uses clause.
There is no mechanism to import all units and symbols in a namespace. The
following code does not import all units and symbols in the MyCompany
namespace:

uses MyCompany; // ERROR!

This restriction also applies to the with-do statement. The following will produce a
compiler error:

with MyCompany.Libs do // ERROR!

Multi-unit Namespaces

Multiple units can belong to the same namespace, if the unit declarations refer
to the same namespace. For example, one can create two files, unit1.pas and
unit2.pas, with the following unit declarations:

// in file 'unit1.pas'

unit MyCompany.ProjectX.ProgramY.Unit1

// in file 'unit2.pas'

unit MyCompany.ProjectX.ProgramY.Unit2

In this example, the namespace MyCompany.ProjectX.ProgramY logically
contains all of the interface symbols from unit1.pas and unit2.pas.

Symbol names in a namespace must be unique, across all units in the
namespace. In the example above, it is an error for Unit1 and Unit2 to both
define a global interface symbol named mySymbol.

The individual units aggregated in a namespace are not available to source
code unless the individual units are explicitly used in the file's uses clause. In other
words, if a source file uses only the namespace, then fully qualified identifier
expressions referring to a symbol in a unit in that namespace must use the
namespace name, not just the name of the unit that defines that symbol.

A uses clause may refer to a namespace as well as individual units within that
namespace. In this case, a fully qualified expression referring to a symbol from a
specific unit listed in the uses clause may be referred to using the actual unit
name or the fully-qualified name (including namespace and unit name) for the
qualifier. The two forms of reference are identical and refer to the same symbol.

Embarcadero Technologies 37

Note: Explicitly using a unit in the uses clause will only work when
you are compiling from source or dcu files. If the namespace units
are compiled into an assembly and the assembly is referenced by
the project instead of the individual units, then the source code
that explicitly refers to a unit in the namespace will fail.

Fundamental Syntactic Elements Index
This section describes the fundamental syntactic elements, or the building blocks
of the Delphi language.

Topics

o Fundamental Syntactic Elements (Delphi)

o Expressions (Delphi)

o Declarations and Statements (Delphi)

Embarcadero Technologies 38

Fundamental Syntactic Elements (Delphi)

Fundamental syntactic elements, called tokens, combine to form expressions,
declarations, and statements. A statement describes an algorithmic action that
can be executed within a program. An expression is a syntactic unit that occurs
within a statement and denotes a value. A declaration defines an identifier
(such as the name of a function or variable) that can be used in expressions and
statements, and, where appropriate, allocates memory for the identifier.

This topic introduces the Delphi language character set, and describes the
syntax for declaring:

o Identifiers

o Numbers

o Character strings

o Labels

o Source code comments

The Delphi Character Set

The Delphi language uses the Unicode character encoding for its character set,
including alphabetic and alphanumeric Unicode characters and the
underscore. Delphi is not case-sensitive. The space character and control
characters (U+0000 through U+001F including U+000D, the return or end-of-line
character) are blanks.

The RAD Studio compiler will accept a file encoded in UCS-2 or UCS-4 if the file
contains a byte order mark. The speed of compilation may be penalized by the
use for formats other than UTF-8, however. All characters in a UCS-4 encoded
source file must be representable in UCS-2 without surrogate pairs. UCS-2
encodings with surrogate pairs (including GB18030) are accepted only if the
codepage compiler option is specified.

Embarcadero Technologies 39

Tokens

On the simplest level, a program is a sequence of tokens delimited by
separators. A token is the smallest meaningful unit of text in a program. A
separator is either a blank or a comment. Strictly speaking, it is not always
necessary to place a separator between two tokens; for example, the code
fragment:

 Size:=20;Price:=10;

Is perfectly legal. Convention and readability, however, dictate that we write this
in two lines, as:

 Size := 20;

 Price := 10;

Tokens are categorized as special symbols, identifiers, reserved words, directives,
numerals, labels, and character strings. A separator can be part of a token only if
the token is a character string. Adjacent identifiers, reserved words, numerals,
and labels must have one or more separators between them.

Special Symbols

Special symbols are non-alphanumeric characters, or pairs of such characters,
that have fixed meanings. The following single characters are special symbols:

$ & ' () * + , - . / : ; < = > @ [] ^ { }

The following character pairs are also special symbols:

(* (. *) .) .. // := <= >= <>

The following table shows pairs of symbols used in Delphi that have similar
meanings (the symbol pairs {} and (* *) are comment characters that are further
described in Comments and Compiler Directives):

Special Symbols

Similar Special Symbols

[] (. .)

{ } (* *)

The left bracket [is similar to the character pair of left parenthesis and period (..

The right bracket] is similar to the character pair of period and right
parenthesis .).

The left brace { is similar to the character pair of left parenthesis and asterisk (*.

Embarcadero Technologies 40

The right brace } is similar to the character pair of asterisk and right parenthesis *).

Note: %, ?, \, !, " (double quotation marks), _ (underscore), | (pipe), and ~ (tilde) are not

special symbols.

Identifiers

Identifiers denote constants, variables, fields, types, properties, procedures,
functions, programs, units, libraries, and packages. An identifier can be of any
length, but only the first 255 characters are significant. An identifier must begin
with an alphabetic character, a Unicode character, or an underscore (_) and
cannot contain spaces. Alphanumeric characters, Unicode characters, digits,
and underscores are allowed after the first character. Reserved words cannot be
used as identifiers. Since the Delphi Language is case-insensitive, an identifier like
CalculateValue could be written in any of these ways:

 CalculateValue

 calculateValue

 calculatevalue

 CALCULATEVALUE

Since unit names correspond to file names, inconsistencies in case can
sometimes affect compilation. For more information, see the section Unit
References and the Uses Clause in Programs and Units (Delphi).

Qualified Identifiers

When you use an identifier that has been declared in more than one place, it is
sometimes necessary to qualify the identifier. The syntax for a qualified identifier
is:

identifier1.identifier2

Where identifier1 qualifies identifier2. For example, if two units each declare a
variable called CurrentValue, you can specify that you want to access the
CurrentValue in Unit2 by writing:

 Unit2.CurrentValue

Qualifiers can be iterated. For example:

 Form1.Button1.Click

calls the Click method in Button1 of Form1.

If you do not qualify an identifier, its interpretation is determined by the rules of
scope described in Blocks and scope inside Declarations and Statements
(Delphi).

Embarcadero Technologies 41

Extended Identifiers

You might encounter identifiers (e.g. types, or methods in a class) having the
same name as a Delphi language reserved word. For example, a class might
have a method called begin. Delphi reserved words such as begin cannot be
used for an identifier name.

If you fully qualify the identifier, then there is no problem. For example, if you
want to use the Delphi reserved word type for an identifer name, you must use its
fully qualified name:

 var TMyType.type

 // Using a fully qualified name avoids ambiguity with {{Delphi}} language

keyword.

As a shorter alternative, the ampersand (&) operator can be used to resolve
ambiguities between identifiers and Delphi language reserved words. The &
prevents a keyword from being parsed as a keyword (that is, a reserved word). If
you encounter a method or type that is the same name as a Delphi keyword,
you can omit the namespace specification if you prefix the identifier name with
an ampersand. But when you are declaring an identifier that has the same
name as a keyword, you must use the &:

 type

 &Type = Integer;

 // Prefix with '&' is ok.

Reserved Words

The following reserved words cannot be redefined or used as identifiers.

Embarcadero Technologies 42

Delphi Reserved Words:

and end interface record var

array except is repeat while

as exports label resourcestring with

asm file library3 set xor

begin finalization mod shl

case finally nil shr

class for not string

const function object then

constructor goto of threadvar

destructor if or to

dispinterface implementation packed try

div in procedure type

do inherited program unit

downto initialization property until

else inline raise uses

Note: In addition to the words in the preceding table, private, protected, public,

published, and automated act as reserved words within class type declarations, but are

otherwise treated as directives. The words at and on also have special meanings, and

should be treated as reserved words. The keywords of object are used to define method

pointers.

Directives

Delphi has more than one type of directive. One meaning for "directive" is a
word that is sensitive in specific locations within source code. This type of
directive has special meaning in the Delphi language, but, unlike a reserved
word, appears only in contexts where user-defined identifiers cannot occur.
Hence -- although it is inadvisable to do so -- you can define an identifier that
looks exactly like a directive.

http://docwiki.embarcadero.com/RADStudio/Rio/en/String
http://docwiki.embarcadero.com/RADStudio/Rio/en/In

Embarcadero Technologies 43

Directives:

absolute export12 name public stdcall

abstract external near1 published strict

assembler12 far1 nodefault read stored

automated final operator10 readonly unsafe

cdecl forward out reference9 varargs

contains7 helper8 overload register virtual

default implements override reintroduce winapi6

delayed index package7 requires7 write

deprecated11 inline2 pascal resident1 writeonly

dispid library311 platform11 safecall

dynamic local4 private sealed5

experimental11 message protected static

Note:

1. far, near, and resident are obsolete.

2. inline is used directive-style at the end of procedure and function

declaration to mark the procedure or function for inlining , but became a

reserved word for Turbo Pascal.

3. library is also a keyword when used as the first token in project source

code; it indicates a DLL target. Otherwise, it marks a symbol so that it

produces a library warning when used.

4. local was a Kylix directive and is ignored for Delphi for Win32.

5. sealed is a class directive with odd syntax: 'class sealed'. A sealed class

cannot be extended or derived (like final in C++).

6. winapi defines the default platform calling convention. For example, on

Win32 winapi is the same as stdcall.

7. package, when used as the first token, indicates a package target and

enables package syntax. requires and contains are directives only in

package syntax.

8. helper indicates "class helper for".

http://docwiki.embarcadero.com/RADStudio/Rio/en/Automatic_Reference_Counting_in_Delphi_Mobile_Compilers
http://docwiki.embarcadero.com/RADStudio/Rio/en/Using_Implements_for_Delegation
http://docwiki.embarcadero.com/RADStudio/Rio/en/Overriding_Methods
http://docwiki.embarcadero.com/RADStudio/Rio/en/Dynamic_Methods

Embarcadero Technologies 44

9. reference indicates a reference to a function or procedure.

10. operator indicates class operator.

11. platform, deprecated, experimental, and library are hinting (or warning)

directives. These directives produce warnings at compile time.

12. assembler and export directives have no meaning. They exist only for the

backward compatibility.

Types of Directives

Delphi has two types of directives, including the context-sensitive type of
directive listed in the Directives table above.

A context-sensitive directive can be an identifier -- not typically a keyword -- that
you place at the end of a declaration to modify the meaning of the declaration.
For example:

 procedure P; forward;

Or:

 procedure M; virtual; override;

Or:

 property Foo: Integer read FFoo write FFoo default 42;

The last type of directive is the official compiler directive, which is a switch or
option that affects the behavior of the compiler. A compiler directive is
surrounded by braces ({}) and begins with a dollar-sign ($), like this:

 {$POINTERMATH ON}

 {$D+} // DEBUGINFO ON

Like the other types of directives, compiler directives are not keywords. For a list
of the compiler directives, see the Delphi compiler directives list.

Numerals

Integer and real constants can be represented in decimal notation as
sequences of digits without commas or spaces, and prefixed with the + or -
operator to indicate sign. Values default to positive (so that, for example, 67258 is

http://docwiki.embarcadero.com/RADStudio/Rio/en/Delphi_Compiler_Directives_(List)_Index
http://docwiki.embarcadero.com/RADStudio/Rio/en/Delphi_Compiler_Directives_(List)_Index

Embarcadero Technologies 45

equivalent to +67258) and must be within the range of the largest predefined
real or integer type.

Numerals with decimal points or exponents denote reals, while other numerals
denote integers. When the character E or e occurs within a real, it means "times
ten to the power of". For example, 7E2 means 7 * 10^2, and 12.25e+6 and
12.25e6 both mean 12.25 * 10^6.

The dollar-sign prefix indicates a hexadecimal numeral, for example, $8F.
Hexadecimal numbers without a preceding - unary operator are taken to be
positive values. During an assignment, if a hexadecimal value lies outside the
range of the receiving type an error is raised, except in the case of the Integer
(32-bit integer) where a warning is raised. In this case, values exceeding the
positive range for Integer are taken to be negative numbers in a manner
consistent with two's complement integer representation.

For more information about real and integer types, see About Data Types
(Delphi). For information about the data types of numerals, see Declared
Constants.

Labels

You can use either an identifier or a non-negative integer number as a label. The
Delphi compiler allows numeric labels from 0 to 4294967295 (uint32 range).

Labels are used in goto statements. For more information about goto statements
and labels, see Goto Statements in Declarations and Statements (Delphi).

Character Strings

A character string, also called a string literal or string constant, consists of a
quoted string, a control string, or a combination of quoted and control strings.
Separators can occur only within quoted strings.

A quoted string is a sequence of characters, from an ANSI or multibyte character
set, written on one line and enclosed by apostrophes. A quoted string with
nothing between the apostrophes is a null string. Two sequential apostrophes in a
quoted string denote a single character, namely an apostrophe.

The string is represented internally as a Unicode string encoded as UTF-16.
Characters in the Basic Multilingual Plane (BMP) take 2 bytes, and characters not
in the BMP require 4 bytes.

For example:

 'Embarcadero' { Embarcadero }

 'You''ll see' { You'll see }

 'アプリケーションを Unicode 対応にする'
 '''' { ' }

 '' { null string }

 ' ' { a space }

Embarcadero Technologies 46

A control string is a sequence of one or more control characters, each of which
consists of the # symbol followed by an unsigned integer constant from 0 to
65,535 (decimal) or from $0 to $FFFF (hexadecimal) in UTF-16 encoding, and
denotes the character corresponding to a specified code value. Each integer is
represented internally by 2 bytes in the string. This is useful for representing control
characters and multibyte characters. The control string:

#89#111#117

Is equivalent to the quoted string:

'You'

You can combine quoted strings with control strings to form larger character
strings. For example, you could use:

'Line 1'#13#10'Line 2'

To put a carriage-return line-feed between 'Line 1' and 'Line 2'. However, you
cannot concatenate two quoted strings in this way, since a pair of sequential
apostrophes is interpreted as a single character. (To concatenate quoted strings,
use the + operator or simply combine them into a single quoted string.)

A character string is compatible with any string type and with the PChar type.
Since an AnsiString type may contain multibyte characters, a character string
with one character, single or multibyte, is compatible with any character type.
When extended syntax is enabled (with compiler directive {$X+}), a nonempty
character string of length n is compatible with zero-based arrays and packed
arrays of n characters. For more information, see About Data Types (Delphi).

Comments and Compiler Directives

Comments are ignored by the compiler, except when they function as
separators (delimiting adjacent tokens) or compiler directives.

There are several ways to construct comments:

 { Text between left and right braces is a comment. }

 (* Text between left-parenthesis-plus-asterisk and an

 asterisk-plus-right-parenthesis is also a comment *)

 // Text between double-slash and end of line is a comment.

Comments that are alike cannot be nested. For instance, (*{}*) will. This latter
form is useful for commenting out sections of code that also contain comments.

Here are some recommendations about how and when to use the three types of
comment characters:

Embarcadero Technologies 47

o Use the double-slash (//) for commenting out temporary changes made
during development. You can use the Code Editor convenient CTRL+/
(slash) mechanism to quickly insert the double-slash comment character
while you are working.

o Use the parenthesis-star "(*...*)" both for development comments and for
commenting out a block of code that contains other comments. This
comment character permits multiple lines of source, including other types
of comments, to be removed from consideration by the compiler.

o Use the braces ({}) for in-source documentation that you intend to remain
with the code.

A comment that contains a dollar sign ($) immediately after the opening { or (* is
a compiler directive. For example,

 {$WARNINGS OFF}

Tells the compiler not to generate warning messages.

in
in is a Delphi reserved word that may be used to:

o Check if an item exists in a set

o Iterate over the items of a container

Embarcadero Technologies 48

Expressions (Delphi)

This topic describes syntax rules of forming Delphi expressions.

The following items are covered in this topic:

o Valid Delphi Expressions

o Operators

o Function calls

o Set constructors

o Indexes

o Typecasts

Expressions

An expression is a construction that returns a value. The following table shows
examples of Delphi expressions:
X variable

@X address of the variable X

15 integer constant

InterestRate variable

Calc(X, Y) function call

X * Y product of X and Y

Z / (1 - Z) quotient of Z and (1 - Z)

X = 1.5 Boolean

C in Range1 Boolean

not Done negation of a Boolean

['a', 'b', 'c'] set

Char(48) value typecast

The simplest expressions are variables and constants (described in About Data

Embarcadero Technologies 49

Types (Delphi)). More complex expressions are built from simpler ones using
operators, function calls, set constructors, indexes, and typecasts.

Operators

Operators behave like predefined functions that are part of the Delphi
language. For example, the expression (X + Y) is built from the variables X and Y,
called operands, with the + operator; when X and Y represent integers or reals,
(X + Y) returns their sum. Operators include @, not, ^, *, /, div, mod, and, shl, shr,
as, +, -, or, xor, =, >, <, <>, <=, >=, in, and is.

The operators @, not, and ^ are unary (taking one operand). All other operators
are binary (taking two operands), except that + and - can function as either a
unary or binary operator. A unary operator always precedes its operand (for
example, -B), except for ^, which follows its operand (for example, P^). A binary
operator is placed between its operands (for example, A = 7).

Some operators behave differently depending on the type of data passed to
them. For example, not performs bitwise negation on an integer operand and
logical negation on a Boolean operand. Such operators appear below under
multiple categories.

Except for ^, is, and in, all operators can take operands of type Variant; for
details, see Variant Types (Delphi).

The sections that follow assume some familiarity with Delphi data types; for more
information, see About Data Types (Delphi).

For information about operator precedence in complex expressions, see
Operator Precedence Rules, later in this topic.

Arithmetic Operators

Arithmetic operators, which take real or integer operands, include +, -, *, /, div,
and mod.

Binary Arithmetic Operators:

Embarcadero Technologies 50

Operator Operation Operand Types Result Type Example

+ addition integer, real integer, real X + Y

- subtraction integer, real integer, real Result -1

* multiplication integer, real integer, real P * InterestRate

/ real division integer, real real X / 2

div integer division integer integer Total div UnitSize

mod remainder integer integer Y mod 6

Unary arithmetic operators:

Operator Operation Operand Type Result Type Example

+ sign identity integer, real integer, real +7

- sign negation integer, real integer, real -X

The following rules apply to arithmetic operators:

o The value of x / y is of type Extended, regardless of the types of x and y.
For other arithmetic operators, the result is of type Extended whenever at
least one operand is a real; otherwise, the result is of type Int64 when at
least one operand is of type Int64; otherwise, the result is of type Integer. If
an operand's type is a subrange of an integer type, it is treated as if it
were of the integer type.

o The value of x div y is the value of x / y rounded in the direction of zero
to the nearest integer.

o The mod operator returns the remainder obtained by dividing its
operands. In other words,
x mod y = x - (x div y) * y.

o A run-time error occurs when y is zero in an expression of the form x / y, x
div y, or x mod y.

Boolean Operators

The Boolean operators not, and, or, and xor take operands of any Boolean type
and return a value of type Boolean.

Boolean Operators:

Embarcadero Technologies 51

Operator Operation Operand Types Result Type Example

not negation Boolean Boolean not (C in MySet)

and conjunction Boolean Boolean Done and (Total >0)

or disjunction Boolean Boolean A or B

xor exclusive disjunction Boolean Boolean A xor B

These operations are governed by standard rules of Boolean logic. For example,
an expression of the form x and y is True if and only if both x and y are True.

Complete Versus Short-Circuit Boolean Evaluation

The compiler supports two modes of evaluation for the and and or operators:
complete evaluation and short-circuit (partial) evaluation. Complete evaluation
means that each conjunct or disjunct is evaluated, even when the result of the
entire expression is already determined. Short-circuit evaluation means strict left-
to-right evaluation that stops as soon as the result of the entire expression is
determined. For example, if the expression A and B is evaluated under short-
circuit mode when A is False, the compiler will not evaluate B; it knows that the
entire expression is False as soon as it evaluates A.

Short-circuit evaluation is usually preferable because it guarantees minimum
execution time and, in most cases, minimum code size. Complete evaluation is
sometimes convenient when one operand is a function with side effects that
alter the execution of the program.

Embarcadero Technologies 52

Short-circuit evaluation also allows the use of constructions that might otherwise
result in illegal run-time operations. For example, the following code iterates
through the string S, up to the first comma.

while (I <= Length(S)) and (S[I] <> ',') do

begin

 ...

 Inc(I);

end;

In the case where S has no commas, the last iteration increments I to a value
which is greater than the length of S. When the while condition is next tested,
complete evaluation results in an attempt to read S[I], which could cause a
run-time error. Under short-circuit evaluation, in contrast, the second part of the
while condition (S[I] <> ',') is not evaluated after the first part fails.

Use the $B compiler directive to control evaluation mode. The default state is
{$B}, which enables short-circuit evaluation. To enable complete evaluation
locally, add the {$B+} directive to your code. You can also switch to complete
evaluation on a project-wide basis by selecting Complete Boolean Evaluation in
the Compiler Options dialog (all source units will need to be recompiled).

Note: If either operand involves a variant, the compiler always
performs complete evaluation (even in the {$B} state).

Logical (Bitwise) Operators

The following logical operators perform bitwise manipulation on integer
operands. For example, if the value stored in X (in binary) is 001101 and the value
stored in Y is 100001, the statement:

Z := X or Y;

assigns the value 101101 to Z.

Logical (Bitwise) Operators:

Embarcadero Technologies 53

Operator Operation Operand Types Result Type Example

not bitwise negation integer integer not X

and bitwise and integer integer X and Y

or bitwise or integer integer X or Y

xor bitwise xor integer integer X xor Y

shl bitwise shift left integer integer X shl 2

shr bitwise shift right integer integer Y shr I

The following rules apply to bitwise operators:

o The result of a not operation is of the same type as the operand.

o If the operands of an and, or, or xor operation are both integers, the result
is of the predefined integer type with the smallest range that includes all
possible values of both types.

o The operations x shl y and x shr y shift the value of x to the left or right
by y bits, which (if x is an unsigned integer) is equivalent to multiplying or
dividing x by 2^y; the result is of the same type as x. For example, if N stores
the value 01101 (decimal 13), then N shl 1 returns 11010 (decimal 26).
Note that the value of y is interpreted modulo the size of the type of x.
Thus for example, if x is an integer, x shl 40 is interpreted as x shl 8
because an integer is 32 bits and 40 mod 32 is 8.

Example

If x is a negative integer, the shl and shr operations are made clear in the
following example:

var

 x: integer;

 y: string;

...

begin

 x := -20;

 x := x shr 1;

 //As the number is shifted to the right by 1 bit, the sign bit's value

replaced is with 0 (all negative numbers have the sign bit set to 1).

 y := IntToHex(x, 8);

 writeln(y);

 //Therefore, x is positive.

 //Decimal value: 2147483638

 //Hexadecimal value: 7FFFFFF6

 //Binary value: 0111 1111 1111 1111 1111 1111 1111 0110

end.

Embarcadero Technologies 54

String Operators

The relational operators =, <>, <, >, <=, and >= all take string operands (see
Relational operators later in this section). The + operator concatenates two
strings.

String Operators:

Operator Operation Operand Types Result Type Example

+ concatenation string, packed string, character string S + '.'

The following rules apply to string concatenation:

o The operands for + can be strings, packed strings (packed arrays of type
Char), or characters. However, if one operand is of type WideChar, the
other operand must be a long string (UnicodeString, AnsiString, or
WideString).

o The result of a + operation is compatible with any string type. However, if
the operands are both short strings or characters, and their combined
length is greater than 255, the result is truncated to the first 255 characters.

Pointer Operators

o The relational operators <, >, <=, and >= can take operands of type
PAnsiChar and PWideChar (see Relational operators). The following
operators also take pointers as operands. For more information about
pointers, see Pointers and Pointer Types (Delphi) in About Data Types
(Delphi).

Character-pointer operators:

Embarcadero Technologies 55

Operator Operation Operand Types Result Type Example

+ pointer addition character pointer,
integer

character pointer P + I

- pointer subtraction character pointer,
integer

character pointer,
integer

P - Q

^ pointer
dereference

pointer base type of pointer P^

= equality pointer Boolean P = Q

<> inequality pointer Boolean P <> Q

The ^ operator dereferences a pointer. Its operand can be a pointer of any type
except the generic Pointer, which must be typecast before dereferencing.

P = Q is True just in case P and Q point to the same address; otherwise, P <> Q is
True.

You can use the + and - operators to increment and decrement the offset of a
character pointer. You can also use - to calculate the difference between the
offsets of two character pointers. The following rules apply:

o If I is an integer and P is a character pointer, then P + I adds I to the
address given by P; that is, it returns a pointer to the address I characters
after P. (The expression I + P is equivalent to P + I.) P - I subtracts I
from the address given by P; that is, it returns a pointer to the address I
characters before P. This is true for PAnsiChar pointers; for PWideChar
pointers P + I adds I * SizeOf(WideChar) to P.

o If P and Q are both character pointers, then P - Q computes the
difference between the address given by P (the higher address) and the
address given by Q (the lower address); that is, it returns an integer
denoting the number of characters between P and Q.

P + Q is not defined.

Set Operators

The following operators take sets as operands.

Set Operators:

Embarcadero Technologies 56

Operator Operation Operand Types Result Type Example

+ union set set Set1 + Set2

- difference set set S - T

* intersection set set S * T

<= subset set Boolean Q <= MySet

>= superset set Boolean S1 >= S2

= equality set Boolean S2 = MySet

<> inequality set Boolean MySet <> S1

in membership ordinal, set Boolean A in Set1

The following rules apply to +, -, and *:

o An ordinal O is in X + Y if and only if O is in X or Y (or both). O is in X - Y if
and only if O is in X but not in Y. O is in X * Y if and only if O is in both X and
Y.

o The result of a +, -, or * operation is of the type set of A..B, where A is the
smallest ordinal value in the result set and B is the largest.

The following rules apply to <=, >=, =, <>, and in:

o X <= Y is True just in case every member of X is a member of Y; Z >= W is
equivalent to W <= Z. U = V is True just in case U and V contain exactly the
same members; otherwise, U <> V is True.

o For an ordinal O and a set S, O in S is True just in case O is a member of S.

Relational Operators

Relational operators are used to compare two operands. The operators =, <>, <=,
and >= also apply to sets.

Relational Operators:

Embarcadero Technologies 57

Operator Operation Operand Types
Result

Type
Example

= equality simple, class, class reference,
interface, string, packed string

Boolean I = Max

<> inequality simple, class, class reference,
interface, string, packed string

Boolean X <> Y

< less-than simple, string, packed string, PChar Boolean X < Y

> greater-than simple, string, packed string, PChar Boolean Len > 0

<= less-than-or-
equal-to

simple, string, packed string, PChar Boolean Cnt <=

I

>= greater-than-or-
equal-to

simple, string, packed string, PChar Boolean I >= 1

For most simple types, comparison is straightforward. For example, I = J is True
just in case I and J have the same value, and I <> J is True otherwise. The
following rules apply to relational operators.

o Operands must be of compatible types, except that a real and an integer
can be compared.

o Strings are compared according to the ordinal values that make up the
characters that make up the string. Character types are treated as strings
of length 1.

o Two packed strings must have the same number of components to be
compared. When a packed string with n components is compared to a
string, the packed string is treated as a string of length n.

o Use the operators <, >, <=, and >= to compare PAnsiChar (and
PWideChar) operands only if the two pointers point within the same
character array.

o The operators = and <> can take operands of class and class-reference
types. With operands of a class type, = and <> are evaluated according
the rules that apply to pointers: C = D is True just in case C and D point to
the same instance object, and C <> D is True otherwise. With operands of
a class-reference type, C = D is True just in case C and D denote the same
class, and C <> D is True otherwise. This does not compare the data stored
in the classes. For more information about classes, see Classes and
Objects (Delphi).

Embarcadero Technologies 58

Class and Interface Operators

The operators as and is take classes and instance objects as operands; as
operates on interfaces as well. For more information, see Classes and Objects
(Delphi), Object Interfaces (Delphi) and Interface References (Delphi).

The relational operators = and <> also operate on classes.

The @ Operator

The @ operator returns the address of a variable, or of a function, procedure, or
method; that is, @ constructs a pointer to its operand. For more information
about pointers, see "Pointers and Pointer Types" in About Data Types (Delphi). The
following rules apply to @.

o If X is a variable, @X returns the address of X. (Special rules apply when X is
a procedural variable; see "Procedural Types in Statements and
Expressions" in About Data Types (Delphi).) The type of @X is Pointer if the
default {$T} compiler directive is in effect. In the {$T+} state, @X is of type
^T, where T is the type of X (this distinction is important for assignment
compatibility, see Assignment-compatibility).

o If F is a routine (a function or procedure), @F returns F's entry point. The
type of @F is always Pointer.

o When @ is applied to a method defined in a class, the method identifier
must be qualified with the class name. For example,

@TMyClass.DoSomething

points to the DoSomething method of TMyClass. For more information about
classes and methods, see Classes and Objects (Delphi).

Note: When using the @ operator, it is not possible to take the
address of an interface method, because the address is not known
at compile time and cannot be extracted at run time.

Operator Precedence

In complex expressions, rules of precedence determine the order in which
operations are performed.

Precedence of operators

Embarcadero Technologies 59

Operators Precedence

@
not

first (highest)

*
/
div
mod
and
shl
shr
as

second

+
-
or
xor

third

=
<>
<
>
<=
>=
in
is

fourth (lowest)

An operator with higher precedence is evaluated before an operator with lower
precedence, while operators of equal precedence associate to the left. Hence
the expression:

X + Y * Z

multiplies Y times Z, then adds X to the result; * is performed first, because is has a
higher precedence than +. But:

X - Y + Z

first subtracts Y from X, then adds Z to the result; - and + have the same
precedence, so the operation on the left is performed first.

You can use parentheses to override these precedence rules. An expression
within parentheses is evaluated first, then treated as a single operand. For
example:

(X + Y) * Z

Embarcadero Technologies 60

multiplies Z times the sum of X and Y.

Parentheses are sometimes needed in situations where, at first glance, they seem
not to be. For example, consider the expression:

X = Y or X = Z

The intended interpretation of this is obviously:

(X = Y) or (X = Z)

Without parentheses, however, the compiler follows operator precedence rules
and reads it as:

(X = (Y or X)) = Z

which results in a compilation error unless Z is Boolean.

Parentheses often make code easier to write and to read, even when they are,
strictly speaking, superfluous. Thus the first example could be written as:

X + (Y * Z)

Here the parentheses are unnecessary (to the compiler), but they spare both
programmer and reader from having to think about operator precedence.

Function Calls

Because functions return a value, function calls are expressions. For example, if
you have defined a function called Calc that takes two integer arguments and
returns an integer, then the function call Calc(24,47) is an integer expression. If I
and J are integer variables, then I + Calc(J,8) is also an integer expression.
Examples of function calls include:

Sum(A, 63)

Maximum(147, J)

Sin(X + Y)

Eof(F)

Volume(Radius, Height)

GetValue

TSomeObject.SomeMethod(I,J);

For more information about functions, see Procedures and Functions (Delphi).

Embarcadero Technologies 61

Set Constructors

A set constructor denotes a set-type value. For example:

[5, 6, 7, 8]

denotes the set whose members are 5, 6, 7, and 8. The set constructor:

[5..8]

could also denote the same set.

The syntax for a set constructor is:

[item1, ..., itemn]

where each item is either an expression denoting an ordinal of the set's base
type or a pair of such expressions with two dots (..) in between. When an item
has the form x..y, it is shorthand for all the ordinals in the range from x to y,
including y; but if x is greater than y, then x..y, the set [x..y], denotes nothing
and is the empty set. The set constructor [] denotes the empty set, while [x]
denotes the set whose only member is the value of x.

Examples of set constructors:

[red, green, MyColor]

[1, 5, 10..K mod 12, 23]

['A'..'Z', 'a'..'z', Chr(Digit + 48)]

For more information about sets, see Structured Types (Delphi) in About Data
Types (Delphi).

Indexes

Strings, arrays, array properties, and pointers to strings or arrays can be indexed.
For example, if FileName is a string variable, the expression FileName[3] returns
the third character in the string denoted by FileName, while FileName[I + 1]
returns the character immediately after the one indexed by I. For information
about strings, see Data Types, Variables and Constants. For information about
arrays and array properties, see Arrays in Data Types, Variables, and Constants
and "Array Properties" in Properties (Delphi) page.

Embarcadero Technologies 62

Typecasts

It is sometimes useful to treat an expression as if it belonged to different type. A
typecast allows you to do this by, in effect, temporarily changing an expression's
type. For example, Integer('A') casts the character A as an integer.

The syntax for a typecast is:

typeIdentifier(expression)

If the expression is a variable, the result is called a variable typecast; otherwise,
the result is a value typecast. While their syntax is the same, different rules apply
to the two kinds of typecast.

Value Typecasts

In a value typecast, the type identifier and the cast expression must both be
ordinal or pointer types. Examples of value typecasts include:

Integer('A')

Char(48)

Boolean(0)

Color(2)

Longint(@Buffer)

The resulting value is obtained by converting the expression in parentheses. This
may involve truncation or extension if the size of the specified type differs from
that of the expression. The expression's sign is always preserved.

The statement:

I := Integer('A');

assigns the value of Integer('A'), which is 65, to the variable I.

A value typecast cannot be followed by qualifiers and cannot appear on the
left side of an assignment statement.

Variable Typecasts

You can cast any variable to any type, provided their sizes are the same and
you do not mix integers with reals. (To convert numeric types, rely on standard
functions like Int and Trunc.) Examples of variable typecasts include:

Char(I)

Boolean(Count)

TSomeDefinedType(MyVariable)

Embarcadero Technologies 63

Variable typecasts can appear on either side of an assignment statement. Thus:

var MyChar: char;

 ...

 Shortint(MyChar) := 122;

assigns the character z (ASCII 122) to MyChar.

You can cast variables to a procedural type. For example, given the
declarations:

type Func = function(X: Integer): Integer;

var

 F: Func;

 P: Pointer;

 N: Integer;

you can make the following assignments:

F := Func(P); { Assign procedural value in P to F }

Func(P) := F; { Assign procedural value in F to P }

@F := P; { Assign pointer value in P to F }

P := @F; { Assign pointer value in F to P }

N := F(N); { Call function via F }

N := Func(P)(N); { Call function via P }

Variable typecasts can also be followed by qualifiers, as illustrated in the
following example:

type

 TByteRec = record

 Lo, Hi: Byte;

 end;

 TWordRec = record

 Low, High: Word;

 end;

 PByte = ^Byte;

var

 B: Byte;

 W: Word;

 L: Longint;

 P: Pointer;

begin

 W := $1234;

 B := TByteRec(W).Lo;

 TByteRec(W).Hi := 0;

 L := $1234567;

 W := TWordRec(L).Low;

 B := TByteRec(TWordRec(L).Low).Hi;

 B := PByte(L)^;

end;

Embarcadero Technologies 64

In this example, TByteRec is used to access the low- and high-order bytes of a
word, and TWordRec to access the low- and high-order words of a long integer.
You could call the predefined functions Lo and Hi for the same purpose, but a
variable typecast has the advantage that it can be used on the left side of an
assignment statement.

For information about typecasting pointers, see Pointers and Pointer Types
(Delphi). For information about casting class and interface types, see "The as
Operator" in Class References and Interface References (Delphi).

Declarations and Statements (Delphi)
This topic describes the syntax of Delphi declarations and statements.

Aside from the uses clause (and reserved words like implementation, which
demarcate parts of a unit), a program consists entirely of declarations and
statements, that are organized into blocks.

This topic covers the following items:

o Declarations

o Simple statements such as assignment

o Structured statements such as conditional tests (for example, if-then, and
case), iteration (for example, for, and while).

Declarations

The names of variables, constants, types, fields, properties, procedures, functions,
programs, units, libraries, and packages are called identifiers. (Numeric constants
like 26057 are not identifiers.) Identifiers must be declared before you can use
them; the only exceptions are a few predefined types, routines, and constants
that the compiler understands automatically, the variable Result when it occurs
inside a function block, and the variable Self when it occurs inside a method
implementation.

A declaration defines an identifier and, where appropriate, allocates memory for
it. For example:

var Size: Extended;

declares a variable called Size that holds an Extended (real) value, while:

function DoThis(X, Y: string): Integer;

declares a function called DoThis that takes two strings as arguments and returns
an integer. Each declaration ends with a semicolon. When you declare several

Embarcadero Technologies 65

variables, constants, types, or labels at the same time, you need only write the
appropriate reserved word once:

 var

 Size: Extended;

 Quantity: Integer;

 Description: string;

The syntax and placement of a declaration depend on the kind of identifier you
are defining. In general, declarations can occur only at the beginning of a block
or at the beginning of the interface or implementation section of a unit (after the
uses clause). Specific conventions for declaring variables, constants, types,
functions, and so forth are explained in the documentation for those topics.

Hinting Directives

The 'hint' directives platform, deprecated, and library may be appended to any
declaration. These directives will produce warnings at compile time. Hint
directives can be applied to type declarations, variable declarations, class,
interface, and structure declarations, field declarations within classes or records,
procedure, function, and method declarations, and unit declarations.

When a hint directive appears in a unit declaration, it means that the hint applies
to everything in the unit. For example, the Windows 3.1 style OleAuto.pas unit on
Windows is completely deprecated. Any reference to that unit or any symbol in
that unit produces a deprecation message.

The platform hinting directive on a symbol or unit indicates that it may not exist or
that the implementation may vary considerably on different platforms. The
library hinting directive on a symbol or unit indicates that the code may not exist
or the implementation may vary considerably on different library architectures.

The platform and library directives do not specify which platform or library. If your
goal is writing platform-independent code, you do not need to know which
platform a symbol is specific to; it is sufficient that the symbol be marked as
specific to some platform to let you know it may cause problems for your goal of
portability.

Embarcadero Technologies 66

In the case of a procedure or function declaration, the hint directive should be
separated from the rest of the declaration with a semicolon. Examples:

 procedure SomeOldRoutine; stdcall deprecated;

 var

 VersionNumber: Real library;

 type

 AppError = class(Exception)

 ...

 end platform;

When source code is compiled in the {$HINTS ON} {$WARNINGS ON} state, each
reference to an identifier declared with one of these directives generates an
appropriate hint or warning. Use platform to mark items that are specific to a
particular operating environment (such as Windows), deprecated to indicate
that an item is obsolete or supported only for backward compatibility, and
library to flag dependencies on a particular library or component framework.

The Delphi compiler also recognizes the hinting directive experimental. You can
use this directive to designate units that are in an unstable development state.
The compiler will emit a warning when it builds an application that uses the unit.

For more information about the Delphi hinting directives, see warning directives

in method declarations. All the Delphi directives are listed in Directives.

Statements

Statements define algorithmic actions within a program. Simple statements like
assignments and procedure calls can combine to form loops, conditional
statements, and other structured statements.

Multiple statements within a block and in the initialization or finalization section of
a unit are separated by semicolons.

Simple Statements

A simple statement does not contain any other statements. Simple statements
include assignments, calls to procedures and functions, and goto jumps.

Assignment Statements

An assignment statement has the form:

variable := expression

where variable is any variable reference, including a variable, variable typecast,
dereferenced pointer, or component of a structured variable. The expression is
any assignment-compatible expression (within a function block, the variable can

Embarcadero Technologies 67

be replaced with the name of the function being defined. See Procedures and
Functions (Delphi).) The := symbol is sometimes called the assignment operator.

An assignment statement replaces the current value of the variable with the
value of the expression. For example:

I := 3;

assigns the value 3 to the variable I. The variable reference on the left side of the
assignment can appear in the expression on the right. For example:

I := I + 1;

increments the value of I. Other assignment statements include:

 X := Y + Z;

 Done := (I >= 1) and (I < 100);

 Hue1 := [Blue, Succ(C)];

 I := Sqr(J) - I * K;

 Shortint(MyChar) := 122;

 TByteRec(W).Hi := 0;

 MyString[I] := 'A';

 SomeArray[I + 1] := P^;

 TMyObject.SomeProperty := True;

Procedure and Function Calls

A procedure call consists of the name of a procedure (with or without qualifiers),
followed by a parameter list (if required). Examples include:

 PrintHeading;

 Transpose(A, N, M);

 Find(Smith, William);

 Writeln('Hello world!');

 DoSomething();

 Unit1.SomeProcedure;

 TMyObject.SomeMethod(X,Y);

With extended syntax enabled ({$X+}), function calls such as calls to procedures
can be treated as statements in their own right:

MyFunction(X);

When you use a function call this way, its return value is discarded.

For more information about procedures and functions, see Procedures and
Functions (Delphi).

Goto Statements

A goto statement, which has the form:

Embarcadero Technologies 68

goto label

transfers program execution to the statement marked by the specified label. To
mark a statement, you must first declare the label. Then, you must precede the
statement you want to mark with the label and a colon:

label: statement

Declare labels like this:

label label;

You can declare several labels at once:

label label1, ..., labeln;

A label can be any valid identifier or any numeral from 0 through 4294967295.

The label declaration, marked statement, and goto statement must belong to
the same block. (See Blocks and Scope, below.) Hence, it is not possible to jump
into or out of a procedure or function. Do not mark more than one statement in
a block with the same label.

For example:

 label StartHere;

 ...

 StartHere: Beep;

 goto StartHere;

creates an infinite loop that calls the Beep procedure repeatedly.

Additionally, it is not possible to jump into or out of a try - finally or try -except
statement.

Embarcadero Technologies 69

The goto statement is generally discouraged in structured programming. It is,
however, sometimes used as a way of exiting from nested loops, as in the
following example:

 procedure FindFirstAnswer;

 var X, Y, Z, Count: Integer;

 label FoundAnAnswer;

 begin

 Count := SomeConstant;

 for X := 1 to Count do

 for Y := 1 to Count do

 for Z := 1 to Count do

 if ... { some condition holds on X, Y, and Z } then

 goto FoundAnAnswer;

 ... { Code to execute if no answer is found }

 Exit;

 FoundAnAnswer:

 ... { Code to execute when an answer is found }

 end;

Notice that we are using goto to jump out of a nested loop. Never jump into a
loop or other structured statement, because this can have unpredictable
effects.

Structured Statements

Structured statements are built from other statements. Use a structured statement
when you want to execute other statements sequentially, conditionally, or
repeatedly.

o A compound or with statement simply executes a sequence of
constituent statements.

o A conditional statement that is an if or case statement executes at most
one of its constituents, depending on specified criteria.

o Loop statements including repeat, while, and for loops execute a
sequence of constituent statements repeatedly.

o A special group of statements including raise, try...except, and try...finally
constructions create and handle exceptions. For information about
exception generation and handling, see Exceptions (Delphi).

Embarcadero Technologies 70

Compound Statements

A compound statement is a sequence of other (simple or structured) statements
to be executed in the order in which they are written. The compound statement
is bracketed by the reserved words begin and end, and its constituent
statements are separated by semicolons. For example:

 begin

 Z := X;

 X := Y;

 X := Y;

 end;

The last semicolon before end is optional. So this could have been written as:

 begin

 Z := X;

 X := Y;

 Y := Z

 end;

Compound statements are essential in contexts where Delphi syntax requires a
single statement. In addition to program, function, and procedure blocks, they
occur within other structured statements, such as conditionals or loops. For
example:

 begin

 I := SomeConstant;

 while I > 0 do

 begin

 ...

 I := I - 1;

 end;

 end;

You can write a compound statement that contains only a single constituent
statement; like parentheses in a complex term, begin and end sometimes serve
to disambiguate and to improve readability. You can also use an empty
compound statement to create a block that does nothing:

begin

end;

With Statements

A with statement is a shorthand for referencing the fields of a record or the fields,
properties, and methods of an object. The syntax of a with statement is:

with obj do statement

Embarcadero Technologies 71

or:

with obj1, ..., objn do statement

where obj is an expression yielding a reference to a record, object instance,
class instance, interface or class type (metaclass) instance, and statement is any
simple or structured statement. Within the statement, you can refer to fields,
properties, and methods of obj using their identifiers alone, that is, without
qualifiers.

For example, given the declarations:

 type

 TDate = record

 Day: Integer;

 Month: Integer;

 Year: Integer;

 end;

 var

 OrderDate: TDate;

you could write the following code using a with statement:

 with OrderDate do

 if Month = 12 then

 begin

 Month := 1;

 Year := Year + 1;

 end

 else

 Month := Month + 1;

or you could write the following code without using a with statement:

 if OrderDate.Month = 12 then

 begin

 OrderDate.Month := 1;

 OrderDate.Year := OrderDate.Year + 1;

 end

 else

 OrderDate.Month := OrderDate.Month + 1;

If the interpretation of obj involves indexing arrays or dereferencing pointers,
these actions are performed once, before statement is executed. This makes
with statements efficient as well as concise. It also means that assignments to a
variable within statement cannot affect the interpretation of obj during the
current execution of the with statement.

Each variable reference or method name in a with statement is interpreted, if
possible, as a member of the specified object or record. If there is another

Embarcadero Technologies 72

variable or method of the same name that you want to access from the with
statement, you need to prepend it with a qualifier, as in the following example:

 with OrderDate do

 begin

 Year := Unit1.Year;

 ...

 end;

When multiple objects or records appear after with, the entire statement is
treated like a series of nested with statements. Thus:

with obj1, obj2, ..., objn do statement

is equivalent to:

 with obj1 do

 with obj2 do

 ...

 with objn do

 // statement

In this case, each variable reference or method name in statement is
interpreted, if possible, as a member of objn; otherwise it is interpreted, if
possible, as a member of objn1; and so forth. The same rule applies to
interpreting the objs themselves, so that, for instance, if objn is a member of both
obj1 and obj2, it is interpreted as obj2.objn.

Since a with statement requires a variable or a field to operate upon, using it with
properties can be tricky at times. A with statement expects variables it operates
on to be available by reference.

The most important things to note when you are using with:

o You can use with on read-only properties only for reading. Trying to modify
a field in the exposed record or object results in a compile-time error.

o Even though the property allows write access to the field, you still cannot
use with to modify its fields.

The following code exemplifies the problem in using the with statement on read-
only properties exposing a record. Assuming you have the following class:

 TShape = class

 private

 FCenter: TPoint;

 public

 property Center: TPoint read FCenter;

 end;

Embarcadero Technologies 73

where TPoint is a records declared as follows:

 TPoint = record

 X, Y: Integer;

 end;

Normally, the Center property is read-only and does not allow you to modify the
value or the fields of FCenter field. In this case, using a with statement like the
following will fail with a compile-time error since Shape.Center is not a variable
and you cannot have a reference to it:

 with Shape.Center do

 begin

 X := 100;

 Y := 100;

 end;

The tricky part when using the with statement comes for read/write properties.
We have changed the original TShape class to allow write access to its FCenter
field:

 TShape = class

 private

 FCenter: TPoint;

 public

 property Center: TPoint read FCenter '''write FCenter''';

 end;

Even though the Center property is not read-only, the same compile-time error is
emitted. The solution to this problem is to change code that looks like this:

 with Shape.Center do

 begin

 X := 100;

 Y := 100;

 end;

into code that looks like this:

 { Copy the value of Center to a local variable. }

 TempPoint := Shape.Center;

 with TempPoint do

 begin

 X := 100;

 Y := 100;

 end;

 { Set the value back. }

 Shape.Center := TempPoint;

Embarcadero Technologies 74

If Statements

There are two forms of the if statement: if...then and the if...then...else. The syntax
of an if...then statement is:

if expression then statement

where expression returns a Boolean value. If expression is True, then statement is
executed; otherwise it is not. For example:

if J <> 0 then Result := I / J;

The syntax of an if...then...else statement is:

if expression then statement1 else statement2

where expression returns a Boolean value. If expression is True, then statement1 is
executed; otherwise statement2 is executed. For example:

 if J = 0 then

 Exit

 else

 Result := I / J;

The then and else clauses contain one statement each, but it can be a
structured statement. For example:

 if J <> o then

 begin

 Result := I / J;

 Count := Count + 1;

 end

 else if Count = Last then

 Done := True

 else

 Exit;

Notice that a semicolon between the then clause and the word else is never
used. You can place a semicolon after an entire if statement to separate it from
the next statement in its block, but the then and else clauses require nothing
more than a space or carriage return between them. Placing a semicolon
immediately before else (in an if statement) is a common programming error.

Embarcadero Technologies 75

A special difficulty arises in connection with nested if statements. This happens
because some if statements have else clauses while others do not, but the
syntax for the two kinds of statement is otherwise the same. In a series of nested
conditionals where there are fewer else clauses than if statements, it may not
seem clear which else clauses are bound to which ifs. Consider a statement of
the form:

if expression1 then if expression2 then statement1 else statement2;

It appears that there are two ways to parse this:

if expression1 then [if expression2 then statement1 else statement2];

if expression1 then [if expression2 then statement1] else statement2;

However, the compiler always parses in the first way. That is, in real code, the
statement:

 if ... { expression1} then

 if ... {expression2} then

 ... {statement1}

 else

 ... {statement2}

is equivalent to:

 if ... {expression1} then

 begin

 if ... {expression2} then

 ... {statement1}

 else

 ... {statement2}

 end;

The rule is that nested conditionals are parsed starting from the innermost
conditional, with each else bound to the nearest available if on its left. To force
the compiler to read our example in the second way, you have to write it
explicitly as:

 if ... {expression1} then

 begin

 if ... {expression2} then

 ... {statement1}

 end

 end

 else

 ... {statement2};

Embarcadero Technologies 76

Case Statements

The case statement may provide a readable alternative to deeply nested if
conditionals. A case statement has the form:

 case selectorExpression of

 caseList1: statement1;

 ...

 caseListn: statementn;

 end

where selectorExpression is any expression of an ordinal type smaller than 32 bits
(string types and ordinals larger than 32 bits are invalid) and each caseList is one
of the following:

o A numeral, declared constant, or other expression that the compiler can
evaluate without executing your program. It must be of an ordinal type
compatible with selectorExpression. Thus, 7, True, 4 + 5 * 3, 'A', and
Integer('A') can all be used as caseLists, but variables and most function
calls cannot. (A few built-in functions like Hi and Lo can occur in a
caseList. See Declared Constants.)

o A subrange having the form First..Last, where First and Last both satisfy the
criterion above and First is less than or equal to Last.

o A list having the form item1, ..., itemn, where each item satisfies one of the
criteria above.

Each value represented by a caseList must be unique in the case statement;
subranges and lists cannot overlap. A case statement can have a final else
clause:

 case selectorExpression of

 caseList1: statement1;

 ...

 caselistn: statementn;

 else

 statements;

 end

where statements is a semicolon-delimited sequence of statements. When a
case statement is executed, at most one of statement1 ... statementn is
executed. Whichever caseList has a value equal to that of selectorExpression
determines the statement to be used. If none of the caseLists has the same value
as selectorExpression, then the statements in the else clause (if there is one) are
executed.

Embarcadero Technologies 77

The case statement

 case I of

 1..5: Caption := 'Low';

 6..9: Caption := 'High';

 0, 10..99: Caption := 'Out of range';

 else

 Caption := '';

 end

is equivalent to the nested conditional:

 if I in [1..5] then

 Caption := 'Low';

 else if I in [6..10] then

 Caption := 'High';

 else if (I = 0) or (I in [10..99]) then

 Caption := 'Out of range'

 else

 Caption := '';

Other examples of case statements

 case MyColor of

 Red: X := 1;

 Green: X := 2;

 Blue: X = 3;

 Yellow, Orange, Black: X := 0;

 end;

 case Selection of

 Done: Form1.Close;

 Compute: calculateTotal(UnitCost, Quantity);

 else

 Beep;

 end;

Control Loops

Loops allow you to execute a sequence of statements repeatedly, using a
control condition or variable to determine when the execution stops. Delphi has
three kinds of control loops: repeat statements, while statements, and for
statements.

You can use the standard Break and Continue procedures to control the flow of
a repeat, while, or for statement. Break terminates the statement in which it
occurs, while Continue begins executing the next iteration of the sequence.

Repeat Statements

The syntax of a repeat statement is:

repeat statement1; ...; statementn; until expression

Embarcadero Technologies 78

where expression returns a Boolean value. (The last semicolon before until is
optional.) The repeat statement executes its sequence of constituent statements
continually, testing expression after each iteration. When expression returns True,
the repeat statement terminates. The sequence is always executed at least
once, because expression is not evaluated until after the first iteration.

Examples of repeat statements include:

 repeat

 K := I mod J;

 I := J;

 J := K;

 until J = 0;

 repeat

 Write('Enter a value (0..9): ');

 Readln(I);

 until (I >= 0) and (I <= 9);

While Statements

A while statement is similar to a repeat statement, except that the control
condition is evaluated before the first execution of the statement sequence.
Hence, if the condition is false, the statement sequence is never executed.

The syntax of a while statement is:

while expression do statement

where expression returns a Boolean value and statement can be a compound
statement. The while statement executes its constituent statement repeatedly,
testing expression before each iteration. As long as expression returns True,
execution continues.

Examples of while statements include:

 while Data[I] <> X do I := I + 1;

 while I > 0 do

 begin

 if Odd(I) then Z := Z * X;

 I := I div 2;

 X := Sqr(X);

 end;

 while not Eof(InputFile) do

 begin

 Readln(InputFile, Line);

 Process(Line);

 end;

Embarcadero Technologies 79

For Statements

A for statement, unlike a repeat or while statement, requires you to specify
explicitly the number of iterations you want the loop to go through. The syntax of
a for statement is:

 for counter := initialValue to finalValue do statement

or:

 for counter := initialValue downto finalValue do statement

where:

o counter is a local variable (declared in the block containing the for
statement) of ordinal type, without any qualifiers.

o initialValue and finalValue are expressions that are assignment-
compatible with counter.

o statement is a simple or structured statement that does not change the
value of counter.

The for statement assigns the value of initialValue to counter, then executes
statement repeatedly, incrementing or decrementing counter after each
iteration. (The for...to syntax increments counter, while the for...downto syntax
decrements it.) When counter returns the same value as finalValue, statement is
executed once more and the for statement terminates. In other words,
statement is executed once for every value in the range from initialValue to
finalValue. If initialValue is equal to finalValue, statement is executed exactly
once. If initialValue is greater than finalValue in a for...to statement, or less than
finalValue in a for...downto statement, then statement is never executed. After
the for statement terminates (provided this was not forced by a Break or an Exit
procedure), the value of counter is undefined.

Warning: The iteration variable counter cannot be modified within the loop. This
includes assignment and passing the variable to a var parameter of a
procedure. Doing so results in a compile-time warning.

Embarcadero Technologies 80

For purposes of controlling the execution of the loop, the expressions initialValue
and finalValue are evaluated only once, before the loop begins. Hence, the
for...to statement is almost, but not quite, equivalent to this while construction:

 begin

 counter := initialValue;

 while counter <= finalValue do

 begin

 ... {statement};

 counter := Succ(counter);

 end;

 end.

The difference between this construction and the for...to statement is that the
while loop reevaluates finalValue before each iteration. This can result in
noticeably slower performance if finalValue is a complex expression, and it also
means that changes to the value of finalValue within statement can affect the
execution of the loop.

Examples of for statements

 for I := 2 to 63 do

 if Data[I] > Max then

 Max := Data[I];

 for I := ListBox1.Items.Count - 1 downto 0 do

 ListBox1.Items[I] := UpperCase(ListBox1.Items[I]);

 for I := 1 to 10 do

 for J := 1 to 10 do

 begin

 X := 0;

 for K := 1 to 10 do

 X := X + Mat1[I,K] * Mat2[K,J];

 Mat[I,J] := X;

 end;

for C := Red to Blue do Check(C);

Iteration Over Containers Using For Statements

Delphi supports for-element-in-collection style iteration over containers. The
following container iteration patterns are recognized by the compiler:

o for Element in ArrayExpr do Stmt;

o for Element in StringExpr do Stmt;

o for Element in SetExpr do Stmt;

o for Element in CollectionExpr do Stmt;

o for Element in Record do Stmt;

Embarcadero Technologies 81

The type of the iteration variable Element must match the type held in the
container. With each iteration of the loop, the iteration variable holds the current
collection member. As with regular for-loops, the iteration variable must be
declared within the same block as the for statement.

Warning: The iteration variable cannot be modified within the loop.
This includes assignment and passing the variable to a var
parameter of a procedure. Doing so results in a compile-time
warning.

Array expressions can be single or multidimensional, fixed length, or dynamic
arrays. The array is traversed in increasing order, starting at the lowest array
bound and ending at the array size minus one. The following code shows an
example of traversing single, multidimensional, and dynamic arrays:

 type

 TIntArray = array[0..9] of Integer;

 TGenericIntArray = array of Integer;

 var

 IArray1: array[0..9] of Integer = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

 IArray2: array[1..10] of Integer = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

 IArray3: array[1..2] of TIntArray = ((11, 12, 13, 14, 15, 16, 17, 18, 19,

20),

 (21, 22, 23, 24, 25, 26, 27, 28, 29,

30));

 MultiDimTemp: TIntArray;

 DynArray: TGenericIntArray;

 I: Integer;

 begin

 for I in IArray1 do

 begin

 { Do something with I... }

 end;

 { Indexing begins at lower array bound of 1. }

 for I in IArray2 do

 begin

 { Do something with I... }

 end;

 { Iterating a multidimensional array }

 for MultiDimTemp in IArray3 do // Indexing from 1..2

 for I in MultiDimTemp do // Indexing from 0..9

 begin

 { Do something with I... }

 end;

 { Iterating over a dynamic array }

 DynArray := TGenericIntArray.Create(1, 2, 3, 4);

 for I in DynArray do

 begin

 { Do something with I... }

 end;

 end.

Embarcadero Technologies 82

The following example demonstrates iteration over string expressions:

 var

 C: Char;

 S1, S2: String;

 Counter: Integer;

 OS1, OS2: ShortString;

 AC: AnsiChar;

 begin

 S1 := 'Now is the time for all good men to come to the aid of their

country.';

 S2 := ''''''';

 for C in S1 do

 S2 := S2 + C;

 if S1 = S2 then

 Writeln('SUCCESS #1')

 else

 Writeln('FAIL #1');

 OS1 := 'When in the course of human events it becomes necessary to

dissolve...';

 OS2 := ''''''';

 for AC in OS1 do

 OS2 := OS2 + AC;

 if OS1 = OS2 then

 Writeln('SUCCESS #2')

 else

 Writeln('FAIL #2');

 end.

Embarcadero Technologies 83

The following example demonstrates iteration over set expressions:

 type

 TMyThing = (one, two, three);

 TMySet = set of TMyThing;

 TCharSet = set of Char;

 var

 MySet: TMySet;

 MyThing: TMyThing;

 CharSet: TCharSet;

 C: Char;

 begin

 MySet := [one, two, three];

 for MyThing in MySet do

 begin

 // Do something with MyThing...

 end;

 CharSet := [#0..#255];

 for C in CharSet do

 begin

 // Do something with C...

 end;

 end.

To use the for-in loop construct on a class or interface, the class or interface must
implement a prescribed collection pattern. A type that implements the
collection pattern must have the following attributes:

o The class or interface must contain a public instance method called
GetEnumerator(). The GetEnumerator() method must return a class,
interface, or record type.

o The class, interface, or record returned by GetEnumerator() must contain
a public instance method called MoveNext(). The MoveNext() method
must return a Boolean. The for-in loop calls this method first to ensure that
the container is not empty.

o The class, interface, or record returned by GetEnumerator() must contain
a public instance, read-only property called Current. The type of the
Current property must be the type contained in the collection.

Embarcadero Technologies 84

The following code demonstrates iterating over an enumerable container in
Delphi.

type

 TMyIntArray = array of Integer;

 TMyContainerEnumerator = class;

 TMyContainer = class

 public

 Values: TMyIntArray;

 function GetEnumerator: TMyContainerEnumerator;

 end;

 TMyContainerEnumerator = class

 Container : TMyContainer;

 Index : Integer;

 public

 constructor Create(AContainer : TMyContainer);

 function GetCurrent: Integer;

 function MoveNext: Boolean;

 property Current: Integer read GetCurrent;

 end;

constructor TMyContainerEnumerator.Create(AContainer : TMyContainer);

begin

 inherited Create;

 Container := AContainer;

 Index := - 1;

end;

function TMyContainerEnumerator.MoveNext: Boolean;

begin

 Result := Index < High(Container.Values);

 if Result then

 Inc(Index);

end;

function TMyContainerEnumerator.GetCurrent: Integer;

begin

 Result := Container.Values[Index];

end;

function TMyContainer.GetEnumerator: TMyContainerEnumerator;

begin

 Result := TMyContainerEnumerator.Create(Self);

end;

var

 MyContainer : TMyContainer;

 I : Integer;

 Counter : Integer;

begin

 MyContainer := TMyContainer.Create;

 MyContainer.Values := TMyIntArray.Create(100, 200, 300);

 Counter := 0;

 for I in MyContainer do

 Inc(Counter, I);

 Writeln('Counter = ', Counter, ' (should be 600)');

 ReadLn;

end.

Embarcadero Technologies 85

Iteration Over Datasets Using For Statements

Delphi supports for-in syntax construction to iterate over datasets. The compiler
recognizes the following dataset iteration pattern:

o for Record in Dataset do Smth;

where Record is represented by the TDataSet API. It is safe to assume, that
Record is equal to Dataset.

The following code snippet iterates over a dataset in Delphi. This sample code
explains how to output the values of the Name column to a Memo control.

var

 ds: TDataSet;

//

FQuery1.SQL.Text := 'SELECT Name FROM Table1';

Memo1.Lines.Clear;

for ds in FDQuery1 do

 Memo1.Lines.Add(ds.FieldByName('Name').AsString);

Note The dataset enumeration is not a reenterable operation. This
means that for a dataset you can use only one enumeration at
each moment. If you need to simultaneously execute several for-in
loops for the same dataset, use the TDataSet.View method instead
(see later in this topic). In this scenario, in the for-in loop, a Record
may be not equal to a Dataset.

The following code snippet illustrates how to use the TDataSet.View method to
enumerate a dataset.

var

 ds: TDataSet;

//...

Memo1.Lines.Clear;

for ds in FDQuery1.View(dmAllowClone) do

 Memo1.Lines.Add(ds.FieldByName('name').AsString);

List of Supported Classes

The following classes and their descendants support the for-in syntax:

o System.Classes.TList

o System.Classes.TCollection

o System.Classes.TStrings

o System.Classes.TInterfaceList

o System.Classes.TComponent

http://docwiki.embarcadero.com/Libraries/Rio/en/Data.DB.TDataSet
http://docwiki.embarcadero.com/Libraries/Rio/en/Data.DB.TDataSet.View
http://docwiki.embarcadero.com/Libraries/Rio/en/Data.DB.TDataSet.View
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TList
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TCollection
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TStrings
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TInterfaceList
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TComponent

Embarcadero Technologies 86

o Vcl.Menus.TMenuItem

o Vcl.ActnList.TCustomActionList

o Vcl.ComCtrls.TListItems

o Vcl.ComCtrls.TTreeNodes

o Vcl.ComCtrls.TToolBar

o Data.DB.TFields

o Data.DB.TDataSet

Blocks and Scope

Declarations and statements are organized into blocks that define local
namespaces (or scopes) for labels and identifiers. Blocks allow a single identifier,
such as a variable name, to have different meanings in different parts of a
program. Each block is part of the declaration of a program, function, or
procedure; each program, function, or procedure declaration has one block.

Blocks

A block consists of a series of declarations followed by a compound statement.
All declarations must occur together at the beginning of the block. So the form
of a block is:

{declarations}

begin

 {statements}

end

The declarations section can include, in any order, declarations for variables,
constants (including resource strings), types, procedures, functions, and labels. In
a program block, the declarations section can also include one or more exports
clauses (see Libraries and Packages (Delphi).)

For example, in a function declaration like this:

 function UpperCase(const S: string): string;

 var

 Ch: Char;

 L: Integer;

 Source, Dest: PChar;

 begin

 ...

 end;

the first line of the declaration is the function heading and all of the succeeding
lines make up the block. Ch, L, Source, and Dest are local variables; their
declarations apply only to the UpperCase function block and override, in this

http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.Menus.TMenuItem
http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.ActnList.TCustomActionList
http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.ComCtrls.TListItems
http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.ComCtrls.TTreeNodes
http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.ComCtrls.TToolBar
http://docwiki.embarcadero.com/Libraries/Rio/en/Data.DB.TFields
http://docwiki.embarcadero.com/Libraries/Rio/en/Data.DB.TDataSet

Embarcadero Technologies 87

block only, any declarations of the same identifiers that may occur in the
program block or in the interface or implementation section of a unit.

Scope

An identifier such as a variable or function name can be used only within the
scope of its declaration. The location of a declaration determines its scope. An
identifier declared within the declaration of a program, function, or procedure
has a scope limited to the block in which it is declared. An identifier declared in
the interface section of a unit has a scope that includes any other units or
programs that use the unit where the declaration occurs. Identifiers with
narrower scope, especially identifiers declared in functions and procedures, are
sometimes called local, while identifiers with wider scope are called global.

The rules that determine identifier scope are summarized below.

If the identifier is declared in ... its scope extends ...

the declaration section of a
program, function, or procedure

from the point where it is declared to the end of the
current block, including all blocks enclosed within
that scope.

the interface section of a unit from the point where it is declared to the end of the
unit, and to any other unit or program that uses that
unit. (See Programs and Units (Delphi).)

the implementation section of a
unit, but not within the block of
any function or procedure

from the point where it is declared to the end of the
unit. The identifier is available to any function or
procedure in the unit, including the initialization and
finalization sections, if present.

the definition of a record type
(that is, the identifier is the name
of a field in the record)

from the point of its declaration to the end of the
record-type definition. (See "Records" in Structured
Types (Delphi).)

the definition of a class (that is,
the identifier is the name of a
data field property or method in
the class)

from the point of its declaration to the end of the
class-type definition, and also includes descendants
of the class and the blocks of all methods in the class
and its descendants. (See Classes and Objects
(Delphi).)

Naming Conflicts

When one block encloses another, the former is called the outer block and the
latter, the inner block. If an identifier declared in an outer block is redeclared in
an inner block, the inner declaration takes precedence over the outer one and
determines the meaning of the identifier for the duration of the inner block. For
example, if you declare a variable called MaxValue in the interface section of a
unit, and then declare another variable with the same name in a function
declaration within that unit, any unqualified occurrences of MaxValue in the

Embarcadero Technologies 88

function block are governed by the second, local declaration. Similarly, a
function declared within another function creates a new, inner scope in which
identifiers used by the outer function can be redeclared locally.

The use of multiple units further complicates the definition of scope. Each unit
listed in a uses clause imposes a new scope that encloses the remaining units
used and the program or unit containing the uses clause. The first unit in a uses
clause represents the outermost scope and each succeeding unit represents a
new scope inside the previous one. If two or more units declare the same
identifier in their interface sections, an unqualified reference to the identifier
selects the declaration in the innermost scope, that is, in the unit where the
reference itself occurs, or, if that unit does not declare the identifier, in the last
unit in the uses clause that does declare the identifier.

The System and SysInit units are used automatically by every program or unit. The
declarations in System, along with the predefined types, routines, and constants
that the compiler understands automatically, always have the outermost scope.

You can override these rules of scope and bypass an inner declaration by using
a qualified identifier (see "Qualified Identifiers" in Fundamental Syntactic
Elements (Delphi)) or a with statement (see "With Statements" above.)

Data Types, Variables, and Constants Index

This section describes the fundamental data types of the Delphi language.

Topics

o About Data Types (Delphi)

o Simple Types (Delphi)

o String Types (Delphi)

o Structured Types (Delphi)

o Pointers and Pointer Types (Delphi)

o Procedural Types (Delphi)

o Variant Types (Delphi)

o Type Compatibility and Identity (Delphi)

o Data Types, Variables, and Constants Index (Delphi)

o Variables (Delphi)

o Declared Constants

Embarcadero Technologies 89

About Data Types (Delphi)
This topic presents a high-level overview of Delphi data types.

A type is essentially a name for a kind of data. When you declare a variable you
must specify its type, which determines the set of values the variable can hold
and the operations that can be performed on it. Every expression returns data of
a particular type, as does every function. Most functions and procedures require
parameters of specific types.

The Delphi language is a 'strongly typed' language, which means that it
distinguishes a variety of data types and does not always allow you to substitute
one type for another. This is usually beneficial because it lets the compiler treat
data intelligently and validate your code more thoroughly, preventing hard-to-
diagnose run-time errors. When you need greater flexibility, however, there are
mechanisms to circumvent strong typing. These include typecasting, pointers,
variants, variant parts in records, and absolute addressing of variables.

There are several ways to categorize Delphi data types:

o Some types are predefined (or built-in); the compiler recognizes these
automatically, without the need for a declaration. Almost all of the types
documented in this language reference are predefined. Other types are
created by declaration; these include user-defined types and the types
defined in the product libraries.

o Types can be classified as either fundamental or general. The range and
format of a fundamental type is the same in all implementations of the
Delphi language, regardless of the underlying CPU and operating system.
The range and format of a general type is platform-specific and could
vary across different implementations. Most predefined types are
fundamental, but a handful of integer, character, string, and pointer types
are general. It is a good idea to use general types when possible, since
they provide optimal performance and portability. However, changes in
storage format from one implementation of a general type to the next
could cause compatibility problems - for example, if you are streaming
content to a file as raw, binary data, without type and versioning
information.

o Types can be classified as simple, string, structured, pointer, procedural, or
variant. In addition, type identifiers themselves can be regarded as
belonging to a special 'type' because they can be passed as parameters
to certain functions (such as High, Low, and SizeOf).

o Types can be parameterized, or generic, as well. Types can be generic in
that they are the basis of a structure or procedure that operates in
concert with different types determined later. For more information about
generics or parameterized types, see the Generics Index.

Embarcadero Technologies 90

The outline below shows the taxonomy of Delphi data types:

o simple

ordinal

integer

character

Boolean

enumerated

subrange

real

o string

o structured

set

array

record

file

class

class reference

interface

o pointer

o procedural

o Variant

o type identifier

The standard function SizeOf operates on all variables and type identifiers. It
returns an integer representing the amount of memory (in bytes) required to store
data of the specified type. For example:

o In 32-bit platforms and 64-bit Windows SizeOf(LongInt) returns 4, since a
LongInt variable uses four bytes of memory.

o In 64-bit iOS SizeOf(LongInt) returns 8, since a LongInt variable uses eight
bytes of memory.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Longint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Longint

Embarcadero Technologies 91

Type declarations are illustrated in the topics that follow. For general information
about type declarations, see Data Types, Variables, and Constants Index
(Delphi).

Simple Types (Delphi)
Simple types - which include ordinal types and real types - define ordered sets of
values.

Ordinal Types

Ordinal types include integer, character, Boolean, enumerated, and subrange
types. An ordinal type defines an ordered set of values in which each value
except the first has a unique predecessor and each value except the last has a
unique successor. Further, each value has an ordinality, which determines the
ordering of the type. In most cases, if a value has ordinality n, its predecessor has
ordinality n-1 and its successor has ordinality n+1.

For integer types, the ordinality of a value is the value itself. Subrange types
maintain the ordinalities of their base types. For other ordinal types, by default
the first value has ordinality 0, the next value has ordinality 1, and so forth. The
declaration of an enumerated type can explicitly override this default.

Several predefined functions operate on ordinal values and type identifiers. The
most important of them are summarized below.

Function Parameter Return value Remarks

Ord Ordinal expression Ordinality of
expression's value

Does not take Int64
arguments.

Pred Ordinal expression Predecessor of
expression's value

Succ Ordinal expression Successor of
expression's value

High

Ordinal type identifier or
variable of ordinal type Highest value in type Also operates on short-

string types and arrays.

Low

Ordinal type identifier or
variable of ordinal type Lowest value in type Also operates on short-

string types and arrays.

For example, High(Byte) returns 255 because the highest value of type Byte is
255, and Succ(2) returns 3 because 3 is the successor of 2.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Ord
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Pred
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Succ
http://docwiki.embarcadero.com/Libraries/Rio/en/System.High
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Low
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Byte

Embarcadero Technologies 92

The standard procedures Inc and Dec increment and decrement the value of
an ordinal variable. For example, Inc(I) is equivalent to I := Succ(I) and, if I is
an integer variable, to I := I + 1.

Integer Types

An integer type represents a subset of the integral numbers.

Integer types can be platform-dependent and platform-independent.

Platform-Dependent Integer Types

The platform-dependent integer types are transformed to fit the bit size of the
current compiler platform. The platform-dependent integer types are NativeInt,
NativeUInt, LongInt, and LongWord. Using these types whenever possible, since
they result in the best performance for the underlying CPU and operating system,
is desirable. The following table illustrates their ranges and storage formats for the
Delphi compiler.

Platform-dependent integer types

Type Platform Range Format Alias

NativeInt

32-bit
platform
s

-2147483648..2147483647
(-231..2^31-1)

Signed
32-bit Integer

64-bit
platform
s

-

9223372036854775808..92233720368547758

07
(-263..263-1)

Signed
64-bit Int64

NativeUIn
t

32-bit
platform
s

0..4294967295
(0..232-1)

Unsigne
d 32-bit

Cardina
l

64-bit
platform
s

0..18446744073709551615
(0..264-1)

Unsigne
d 64-bit UInt64

http://docwiki.embarcadero.com/Libraries/Rio/en/System.NativeInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.NativeUInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Longint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.LongWord
http://docwiki.embarcadero.com/Libraries/Rio/en/System.NativeInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Integer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.NativeUInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.NativeUInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Cardinal
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Cardinal
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UInt64

Embarcadero Technologies 93

LongInt

32-bit
platform
s and
64-bit
Windows
platform
s

-2147483648..2147483647
(-231..231-1)

Signed
32-bit Integer

64-bit
POSIX
platform
s include
iOS and
Linux

-

9223372036854775808..92233720368547758

07
(-263..263-1)

Signed
64-bit Int64

LongWor
d

32-bit
platform
s and
64-bit
Windows
platform
s

0..4294967295
(0..232-1)

Unsigne
d 32-bit

Cardina
l

64-bit
POSIX
platform
s include
iOS and
Linux

0..18446744073709551615
(0..264-1)

Unsigne
d 64-bit UInt64

Note: 32-bit platforms include 32-bit Windows, 32-bit macOS, 32-bit iOS, iOS
Simulator and Android.

Platform-Independent Integer Types

Platform-independent integer types always have the same size, regardless of
what platform you use. Platform-independent integer types include ShortInt,
SmallInt, LongInt, Integer, Int64, Byte, Word, LongWord, Cardinal, and UInt64.

Platform-independent integer types

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Longint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Integer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.LongWord
http://docwiki.embarcadero.com/Libraries/Rio/en/System.LongWord
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Cardinal
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Cardinal
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UInt64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Shortint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Smallint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Longint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Integer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Byte
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Word
http://docwiki.embarcadero.com/Libraries/Rio/en/System.LongWord
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Cardinal
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UInt64

Embarcadero Technologies 94

Type Range Format Alias

ShortInt

-128..127 Signed 8-bit Int8

SmallInt

-32768..32767 Signed 16-bit Int16

FixedInt

-2147483648..2147483647 Signed 32-bit Int32

Integer

-2147483648..2147483647 Signed 32-bit Int32

Int64

-9223372036854775808..9223372036854775807
(-263..263-1) Signed 64-bit

Byte

0..255 Unsigned 8-bit UInt8

Word

0..65535 Unsigned 16-bit UInt16

FixedUInt

0..4294967295 Unsigned 32-bit UInt32

Cardinal

0..4294967295 Unsigned 32-bit UInt32

UInt64

0..18446744073709551615
(0..264-1) Unsigned 64-bit

In general, arithmetic operations on integers return a value of type Integer,
which is equivalent to the 32-bit LongInt. Operations return a value of type Int64
only when performed on one or more Int64 operands. Therefore, the following
code produces incorrect results:

var

 I: Integer;

 J: Int64;

...

 I := High(Integer);

 J := I + 1;

To get an Int64 return value in this situation, cast I as Int64:

...

 J := Int64(I) + 1;

For more information, see Arithmetic Operators.

Note: Some standard routines that take integer arguments truncate
Int64 values to 32 bits. However, the High, Low, Succ, Pred, Inc, Dec,
IntToStr, and IntToHex routines fully support Int64 arguments. Also,
the Round, Trunc, StrToInt64, and StrToInt64Def functions return Int64
values. A few routines cannot take Int64 values at all.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Shortint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int8
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Smallint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int16
http://docwiki.embarcadero.com/Libraries/Rio/en/System.FixedInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int32
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Integer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int32
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Byte
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UInt8
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Word
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UInt16
http://docwiki.embarcadero.com/Libraries/Rio/en/System.FixedUInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UInt32
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Cardinal
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UInt32
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UInt64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Integer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Longint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64
http://docwiki.embarcadero.com/RADStudio/Rio/en/Arithmetic_Operators
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64

Embarcadero Technologies 95

When you increment the last value or decrement the first value of an integer
type, the result wraps around the beginning or end of the range. For example,
the ShortInt type has the range -128..127; hence, after execution of the code:

var

 I: Shortint;

...

 I := High(Shortint);

 I := I + 1;

the value of I is -128. If compiler range-checking is enabled, however, this code
generates a runtime error.

Character Types

The character types are Char, AnsiChar, WideChar, UCS2Char, and UCS4Char:

o Char in the current implementation is equivalent to WideChar, since now
the default string type is UnicodeString. Because the implementation of
Char can change in future releases, it is a good idea to use the standard
function SizeOf rather than a hard-coded constant when writing programs
that may need to handle characters of different sizes.

o AnsiChar values are byte-sized (8-bit) characters ordered according to
the locale character set, which is possibly multibyte.

o WideChar characters use more than one byte to represent every
character. In the current implementations, WideChar is word-sized (16-bit)
characters ordered according to the Unicode character set (note that it
could be longer in future implementations). The first 256 Unicode
characters correspond to the ANSI characters.

o UCS2Char is an alias for WideChar.

o UCS4Char is used for working with 4–byte Unicode characters.

A string constant of length 1, such as 'A', can denote a character value. The
predefined function Chr returns the character value for any integer in the range
of WideChar; for example, Chr(65) returns the letter A.

AnsiChar and WideChar values, like integers, wrap around when decremented
or incremented past the beginning or end of their range (unless range-checking
is enabled). For example, after execution of the code:

var

 Letter: AnsiChar;

 I: Integer;

begin

 Letter := High(Letter);

 for I := 1 to 66 do Inc(Letter);

end;

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Shortint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Char
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UCS2Char
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UCS4Char
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Char
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Char
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SizeOf
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UCS2Char
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UCS4Char
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideChar

Embarcadero Technologies 96

Letter has the value A (ASCII 65).

Note: The AnsiChar type is not supported by the Delphi mobile
compilers, but is used by the Delphi desktop compilers. For more
information, see Migrating Delphi Code to Mobile from Desktop.

Boolean Types

The 4 predefined Boolean types are Boolean, ByteBool, WordBool, and LongBool.
Boolean is the preferred type. The others exist to provide compatibility with other
languages and operating system libraries.

A Boolean variable occupies one byte of memory, a ByteBool variable also
occupies one byte, a WordBool variable occupies 2 bytes (one word), and a
LongBool variable occupies 4 bytes (2 words).

Boolean values are denoted by the predefined constants True and False. The
following relationships hold:

Boolean ByteBool, WordBool, LongBool

False < True False <> True

Ord(False) = 0 Ord(False) = 0

Ord(True) = 1 Ord(True) <> 0

Succ(False) = True Succ(False) = True

Pred(True) = False Pred(False) = True

A value of type ByteBool, LongBool, or WordBool is considered True when its
ordinality is nonzero. If such a value appears in a context where a Boolean is
expected, the compiler automatically converts any value of nonzero ordinality
to True.

The previous remarks refer to the ordinality of Boolean values, not to the values
themselves. In Delphi, Boolean expressions cannot be equated with integers or
reals. Hence, if X is an integer variable, the statement:

if X then ...;

http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiChar
http://docwiki.embarcadero.com/RADStudio/Rio/en/Migrating_Delphi_Code_to_Mobile_from_Desktop
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Boolean
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ByteBool
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WordBool
http://docwiki.embarcadero.com/Libraries/Rio/en/System.LongBool
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Boolean
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Boolean
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ByteBool
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WordBool
http://docwiki.embarcadero.com/Libraries/Rio/en/System.LongBool
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ByteBool
http://docwiki.embarcadero.com/Libraries/Rio/en/System.LongBool
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WordBool
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Boolean

Embarcadero Technologies 97

generates a compilation error. Casting the variable to a Boolean type is
unreliable, but each of the following alternatives will work.

 if X <> 0 then ...; { use an expression that returns a Boolean value }

 ...

 var OK: Boolean; { use a Boolean variable }

 ...

 if X <> 0 then

 OK := True;

 if OK then ...;

Enumerated Types

An enumerated type defines an ordered set of values by simply listing identifiers
that denote these values. The values have no inherent meaning. To declare an
enumerated type, use the syntax:

 type typeName = (val1, ...,valn)

where typeName and each val are valid identifiers. For example, the declaration:

type Suit = (Club, Diamond, Heart, Spade);

defines an enumerated type called Suit, whose possible values are Club,
Diamond, Heart, and Spade, where Ord(Club) returns 0, Ord(Diamond) returns 1,
and so on.

When you declare an enumerated type, you are declaring each val to be a
constant of type typeName. If the val identifiers are used for another purpose
within the same scope, naming conflicts occur. For example, suppose you
declare the type:

type TSound = (Click, Clack, Clock)

Unfortunately, Click is also the name of a method defined for TControl and all of
the objects in VCL that descend from it. So if you are writing an application and
you create an event handler like:

 procedure TForm1.DBGridEnter(Sender: TObject);

 var

 Thing: TSound;

 begin

 ...

 Thing := Click;

 end;

you will get a compilation error; the compiler interprets Click within the scope of
the procedure as a reference to a Click method of a TForm. You can work

Embarcadero Technologies 98

around this by qualifying the identifier; thus, if TSound is declared in MyUnit, you
would use:

Thing := MyUnit.Click;

A better solution, however, is to choose constant names that are not likely to
conflict with other identifiers. Examples:

type

 TSound = (tsClick, tsClack, tsClock);

 TMyColor = (mcRed, mcBlue, mcGreen, mcYellow, mcOrange);

 Answer = (ansYes, ansNo, ansMaybe)

You can use the (val1, ..., valn) construction directly in variable
declarations, as if it were a type name:

var MyCard: (Club, Diamond, Heart, Spade);

But if you declare MyCard this way, you cannot declare another variable within
the same scope using these constant identifiers. Thus:

 var Card1: (Club, Diamond, Heart, Spade);

 var Card2: (Club, Diamond, Heart, Spade);

generates a compilation error. But:

var Card1, Card2: (Club, Diamond, Heart, Spade);

compiles cleanly, as does:

type

 Suit = (Club, Diamond, Heart, Spade);

var

 Card1: Suit;

 Card2: Suit;

Enumerated Types with Explicitly Assigned Ordinality

By default, the ordinalities of enumerated values start from 0 and follow the
sequence in which their identifiers are listed in the type declaration. You can
override this by explicitly assigning ordinalities to some or all of the values in the
declaration. To assign an ordinality to a value, follow its identifier with =

constantExpression, where constantExpression is a constant expression that
evaluates to an integer. For example:

type Size = (Small = 5, Medium = 10, Large = Small + Medium);

Embarcadero Technologies 99

defines a type called Size whose possible values include Small, Medium, and
Large, where Ord(Small) returns 5, Ord(Medium) returns 10, and Ord(Large)
returns 15.

An enumerated type is, in effect, a subrange whose lowest and highest values
correspond to the lowest and highest ordinalities of the constants in the
declaration. In the previous example, the Size type has 11 possible values whose
ordinalities range from 5 to 15. (Hence the type array[Size] of Char represents
an array of 11 characters.) Only three of these values have names, but the
others are accessible through typecasts and through routines such as Pred, Succ,
Inc, and Dec. In the following example, "anonymous" values in the range of Size
are assigned to the variable X.

var

 X: Size;

begin

 X := Small; // Ord(X) = 5

 X := Size(6); // Ord(X) = 6

 Inc(X); // Ord(X) = 7

Any value that is not explicitly assigned an ordinality has the ordinality one
greater than that of the previous value in the list. If the first value is not assigned
an ordinality, its ordinality is 0. Hence, given the declaration:

type SomeEnum = (e1, e2, e3 = 1);

SomeEnum has only two possible values: Ord(e1) returns 0, Ord(e2) returns 1, and
Ord(e3) also returns 1; because e2 and e3 have the same ordinality, they
represent the same value.

Enumerated constants without a specific value have RTTI:

type SomeEnum = (e1, e2, e3);

whereas enumerated constants with a specific value, such as the following, do
not have RTTI:

type SomeEnum = (e1 = 1, e2 = 2, e3 = 3);

Scoped Enumerations

You can use scoped enumerations in Delphi code if you enable the
{$SCOPEDENUMS ON} compiler directive.

The {$SCOPEDENUMS ON or OFF} compiler directive enables or disables the use
of scoped enumerations in Delphi code. {$SCOPEDENUMS ON} defines that
enumerations are scoped. {$SCOPEDENUMS ON} affects declarations of
enumeration types until the nearest {$SCOPEDENUMS OFF} directive. The
identifiers of the enumeration introduced in enumeration types declared after

http://docwiki.embarcadero.com/RADStudio/Rio/en/Scoped_Enums_(Delphi)
http://docwiki.embarcadero.com/RADStudio/Rio/en/Scoped_Enums_(Delphi)

Embarcadero Technologies 100

the {$SCOPEDENUMS ON} directive are not added to the global scope. To use a
scoped enumeration identifier, you should qualify it with the name of the
enumeration type introducing this identifier.

For instance, let us define the following unit in the Unit1.pas file

unit Unit1;

interface

// {$SCOPEDENUMS ON} // clear comment from this directive

 type

 TMyEnum = (First, Second, Third);

implementation

end.

and the following program using this unit

program Project1;

{$APPTYPE CONSOLE}

uses

 SysUtils, Unit1 in 'Unit1.pas';

var

 // First: Integer; // clear comment from this variable

 Value: TMyEnum;

begin

 try

 Value := First;

// Value := TMyEnum.First;

// Value := unit1.First;

 except

 on E:Exception do

 Writeln(E.Classname, ': ', E.Message);

 end;

end.

Now we can investigate effects of the {$SCOPEDENUMS} compiler directive on
the scopes in which the First, Second, and Third identifiers, defined in the
TMyEnum enumeration, are visible.

First, Run (F9) on this code. The code runs successfully. This means that the First
identifier, used in the

Value := First;

variable, is the global scope identifier introduced in the

TMyEnum = (First, Second, Third);

enumeration type.

http://docwiki.embarcadero.com/RADStudio/Rio/en/Scoped_Enums_(Delphi)
http://docwiki.embarcadero.com/RADStudio/Rio/en/Scoped_Enums_(Delphi)

Embarcadero Technologies 101

Now clear comment from the

{$SCOPEDENUMS ON}

compiler directive in the unit1 unit. This directive enforces the TMyEnum
enumeration to be scoped. Execute Run. The E2003 Undeclared identifier 'First'
error is generated on the

Value := First;

line. It informs that the {$SCOPEDENUMS ON} compiler directive prevents the First
identifier, introduced in the scoped TMyEnum enumeration, to be added to the
global scope.

To use identifiers introduced in scoped enumerations, prefix a reference to an
enumeration's element with its type name. For example, clear comment in the
second

Value := TMyEnum.First;

version of the Value variable (and comment the first version of Value). Execute
Run. The program runs successfully. This means that the First identifier is known
in the TMyEnum scope.

Now comment the

// {$SCOPEDENUMS ON}

compiler directive in unit1. Then clear comment from the declaration of the
First variable

First: Integer;

and again use the

Value := First;

variable. Now the code in the program Project1 looks like this:

var

 First: Integer;

 Value: TMyEnum;

begin

 try

 Value := First;

http://docwiki.embarcadero.com/RADStudio/Rio/en/E2003_Undeclared_identifier_%27%25s%27_(Delphi)

Embarcadero Technologies 102

Execute Run. The

 First: Integer;

line causes the E2010 Incompatible types - 'TMyEnum' and 'Integer' error. This
means that the naming conflict occurs between the global scope First
identifier introduced in the TMyEnum enumeration and the First variable. You
can work around this conflict by qualifying the First identifier with the unit1 unit
in which it is defined. For this, comment again the first version of Value variable
and clear comment from the third one:

Value := unit1.First;

Execute Run. The program runs successfully. That is, now the First identifier can
be qualified with the unit1 unit scope. But what happens if we again enable the

{$SCOPEDENUMS ON}

compiler directive in unit1. The compiler generates the E2003 Undeclared
identifier 'First' error on the

Value := unit1.First;

line. This means that {$SCOPEDENUMS ON} prevents adding the First
enumeration's identifier in the unit1 scope. Now the First identifier is added
only in the TMyEnum enumeration's scope. To check this, let us again use the

Value := TMyEnum.First;

version of the Value variable. Execute Run and the code succeeds.

Subrange Types

A subrange type represents a subset of the values in another ordinal type (called
the base type). Any construction of the form Low..High, where Low and High are
constant expressions of the same ordinal type and Low is less than High, identifies
a subrange type that includes all values between Low and High. For example, if
you declare the enumerated type:

type

 TColors = (Red, Blue, Green, Yellow, Orange, Purple, White, Black);

you can then define a subrange type like:

type

 TMyColors = Green..White;

http://docwiki.embarcadero.com/RADStudio/Rio/en/E2010_Incompatible_types_-_%27%25s%27_and_%27%25s%27_(Delphi)
http://docwiki.embarcadero.com/RADStudio/Rio/en/E2003_Undeclared_identifier_%27%25s%27_(Delphi)
http://docwiki.embarcadero.com/RADStudio/Rio/en/E2003_Undeclared_identifier_%27%25s%27_(Delphi)

Embarcadero Technologies 103

Here TMyColors includes the values Green, Yellow, Orange, Purple, and White.

You can use numeric constants and characters (string constants of length 1) to
define subrange types:

type

 SomeNumbers = -128..127;

 Caps = 'A'..'Z';

When you use numeric or character constants to define a subrange, the base
type is the smallest integer or character type that contains the specified range.

The LowerBound..UpperBound construction itself functions as a type name, so you
can use it directly in variable declarations. For example:

var SomeNum: 1..500;

declares an integer variable whose value can be anywhere in the range from 1
through 500.

The ordinality of each value in a subrange is preserved from the base type. (In
the first example, if Color is a variable that holds the value Green, Ord(Color)
returns 2 regardless of whether Color is of type TColors or TMyColors.) Values do
not wrap around the beginning or end of a subrange, even if the base is an
integer or character type; incrementing or decrementing past the boundary of a
subrange simply converts the value to the base type. Hence, while:

 type Percentile = 0..99;

 var I: Percentile;

 ...

 I := 100;

produces an error, the following code:

 ...

 I := 99;

 Inc(I);

assigns the value 100 to I (unless compiler range-checking is enabled).

The use of constant expressions in subrange definitions introduces a syntactic
difficulty. In any type declaration, when the first meaningful character after = is a
left parenthesis, the compiler assumes that an enumerated type is being
defined. Hence the code:

 const X = 50; Y = 10;

 type Scale = (X - Y) * 2..(X + Y) * 2;

Embarcadero Technologies 104

produces an error. Work around this problem by rewriting the type declaration to
avoid the leading parenthesis:

 type Scale = 2 * (X - Y)..(X + Y) * 2;

Real Types

A real type defines a set of numbers that can be represented with the floating-
point notation. The table below gives the ranges and storage formats for the real
types on 64-bit and 32-bit platforms.

Real types

Type Platform Approximate Positive Range
Significant

decimal digits

Size in

bytes

Real48 all 2.94e-39 .. 1.70e+38 11-12 6

Single all 1.18e-38 .. 3.40e+38 7-8 4

Double all 2.23e-308 .. 1.79e+308 15-16 8

Real all 2.23e-308 .. 1.79e+308 15-16 8

Extended

32bit Intel
Windows

3.37e-4932 .. 1.18e+4932 10-20 10

64-bit Intel
Linux
32-bit Intel
macOS
32-bit Intel iOS
Simulator

3.37e-4932 .. 1.18e+4932 10-20 16

other
platforms

2.23e-308 .. 1.79e+308 15-16 8

Comp all
-9223372036854775807..

9223372036854775807
(-263+1.. 263-1)

10-20 8

Currency all
-922337203685477.5807..

922337203685477.5807 10-20 8

The following remarks apply to real types:

o Real is equivalent to Double, in the current implementation.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Real48
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Single
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Double
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Real
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Extended
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Comp
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Currency
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Real
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Double

Embarcadero Technologies 105

o Real48 is maintained for backward compatibility. Since its storage format
is not native to the Intel processor architecture, it results in slower
performance than other floating-point types.

The 6-byte Real48 type was called Real in earlier versions of Object Pascal. If you
are recompiling code that uses the older, 6-byte Real type in Delphi, you may
want to change it to Real48. You can also use the {$REALCOMPATIBILITY ON}
compiler directive to turn Real back into the 6-byte type.

o Extended offers greater precision on 32-bit platforms than other real types.

On 64-bit platforms Extended is an alias for a Double; that is, the size of the
Extended data type is 8 bytes. Thus you have less precision using an Extended on
64-bit platforms compared to 32-bit platforms, where Extended is 10 bytes.
Therefore, if your applications use the Extended data type and you rely on
precision for floating-point operations, this size difference might affect your data.
Be careful using Extended if you are creating data files to share across platforms.
For more information, see The Extended Data Type Is 2 Bytes Smaller on 64-bit
Windows Systems.

o The Comp (computational) type is native to the Intel processor
architecture and represents a 64-bit integer. It is classified as a real,
however, because it does not behave like an ordinal type. (For example,
you cannot increment or decrement a Comp value.) Comp is maintained
for backward compatibility only. Use the Int64 type for better
performance.

o Currency is a fixed-point data type that minimizes rounding errors in
monetary calculations. It is stored as a scaled 64-bit integer with the 4
least significant digits implicitly representing decimal places. When mixed
with other real types in assignments and expressions, Currency values are
automatically divided or multiplied by 10000.

String Types (Delphi)
This topic describes the string data types available in the Delphi language. The
following types are covered:

o Short strings (ShortString)

o ANSI strings (AnsiString)

o Unicode strings (UnicodeString and WideString)

All the string types described in this topic are supported by Delphi compilers for
desktop platforms, but Delphi compilers for mobile platforms only support
UTF8String, RawByteString and the default string type (UnicodeString). Also, with
Delphi compilers for mobile platforms, strings are 0-based and immutable; to
manipulate strings, use the TStringHelper functions, which are provided for this

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Real48
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Real48
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Real
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Real
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Real48
http://docwiki.embarcadero.com/RADStudio/Rio/en/Real48_compatibility_(Delphi)
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Real
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Extended
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Extended
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Double
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Extended
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Extended
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Extended
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Extended
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Extended
http://docwiki.embarcadero.com/RADStudio/Rio/en/Delphi_Considerations_for_Multi-Device_Applications#The_Extended_Data_Type_Is_2_Bytes_Smaller_on_64-bit_Windows_Systems
http://docwiki.embarcadero.com/RADStudio/Rio/en/Delphi_Considerations_for_Multi-Device_Applications#The_Extended_Data_Type_Is_2_Bytes_Smaller_on_64-bit_Windows_Systems
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Comp
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Comp
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Comp
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Currency
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Currency
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideString
http://docwiki.embarcadero.com/RADStudio/Rio/en/Delphi_Toolchains
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UTF8String
http://docwiki.embarcadero.com/Libraries/Rio/en/System.RawByteString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.TStringHelper

Embarcadero Technologies 106

purpose. For more information, see Migrating Delphi Code to Mobile from

Desktop.

About String Types

A string represents a sequence of characters. Delphi supports the following
predefined string types.

String types

Type
Maximum

length

Memory

required
Used for

ShortString 255
characters

2 to 256
bytes

Backward compatibility.

AnsiString ~2^31
characters

4 bytes
to 2GB

8-bit (ANSI) characters, DBCS ANSI, MBCS
ANSI, Unicode characters, etc.

UnicodeString
Note: In RAD
Studio, string is
an alias for
UnicodeString.

~2^30
characters

4 bytes
to 2GB

Unicode characters, 8-bit (ANSI) characters,
multiuser servers and multilanguage
applications
UnicodeString is the default string type.

WideString ~2^30
characters

4 bytes
to 2GB

Unicode characters; multiuser servers and
multilanguage applications. WideString is
not supported by the Delphi compilers for
mobile platforms, but is supported by the
Delphi compilers for desktop platforms.
Using UnicodeString is preferred to
WideString.

Note: The default string type is UnicodeString. WideString is provided to be
compatible with the COM BSTR type. You should generally use UnicodeString for
non-COM applications. For most purposes UnicodeString is the preferred type.
The type string is an alias for UnicodeString.

String types can be mixed in assignments and expressions; the compiler
automatically performs required conversions. But strings passed by reference to
a function or procedure (as the var and out parameters) must be of the
appropriate type. Strings can be explicitly cast to a different string type.
However, casting a multibyte string to a single byte string may result in data loss.

There are some special string types worth mentioning:

o Code paged AnsiStrings are defined like this:

Type mystring = type AnsiString(CODEPAGE)

http://docwiki.embarcadero.com/RADStudio/Rio/en/Migrating_Delphi_Code_to_Mobile_from_Desktop
http://docwiki.embarcadero.com/RADStudio/Rio/en/Migrating_Delphi_Code_to_Mobile_from_Desktop
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.String
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString

Embarcadero Technologies 107

It is an AnsiString that has an affinity to maintaining its internal data in a specific
code page.

o The RawByteString type is type AnsiString($FFFF). RawByteString enables
the passing of string data of any code page without doing any code
page conversions. RawByteString should only be used as a const or value
type parameter or a return type from a function. It should never be
passed by reference (passed by var), and should never be instantiated as
a variable.

o UTF8String represents a string encoded using UTF-8 (variable number of
bytes Unicode). It is a code paged AnsiString type with a UTF-8 code
page.

The reserved word string functions like a general string type identifier. For
example:

var S: string;

creates a variable S that holds a string. On the Win32 platform, the compiler
interprets string (when it appears without a bracketed number after it) as
UnicodeString.

On the Win32 platform, you can use the {$H-} directive to turn string into
ShortString. This is a potentially useful technique when using older 16-bit Delphi
code or Turbo Pascal code with your current programs.

Note that the keyword string is also used when declaring ShortString types of
specific lengths (see Short Strings, below).

Comparison of strings is defined by the ordering of the elements in corresponding
positions. Between strings of unequal length, each character in the longer string
without a corresponding character in the shorter string takes on a greater-than
value. For example, 'AB' is greater than 'A'; that is, 'AB' > 'A' returns True. Zero-
length strings represent the lowest values.

You can index a string variable just as you would an array. If S is a non-
UnicodeString string variable and i, an integer expression, S[i] represents the ith
byte in S, which may not be the ith character or an entire character at all for a
multibyte character string (MBCS). Similarly, indexing a UnicodeString variable
results in an element that may not be an entire character. If the string contains
characters in the Basic Multilingual Plane (BMP), all characters are 2 bytes, so
indexing the string gets characters. However, if some characters are not in the
BMP, an indexed element may be a surrogate pair - not an entire character.

The standard function Length returns the number of elements in a string. As noted
above, the number of elements is not necessarily the number of characters. The
SetLength procedure adjusts the length of a string. Note that the SizeOf function
returns the number of bytes used to represent a variable or type. Note that
SizeOf returns the number of characters in a string only for a short string. SizeOf

http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.RawByteString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.RawByteString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.RawByteString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UTF8String
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.String
http://docwiki.embarcadero.com/Libraries/Rio/en/System.String
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.String
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.String
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString

Embarcadero Technologies 108

returns the number of bytes in a pointer for all other string types, since they are
pointers.

For a short string or AnsiString, S[i] is of type AnsiChar. For a WideString, S[i] is of
type WideChar. For single-byte (Western) locales, MyString[2] := 'A'; assigns
the value A to the second character of MyString. The following code uses the
standard UpCase function to convert MyString to uppercase:

var I: Integer;

begin

 I := Length(MyString);

 while I > 0 do

 begin

 MyString[I] := UpCase(MyString[I]);

 I := I - 1;

 end;

end;

Be careful indexing strings in this way, since overwriting the end of a string can
cause access violations. Also, avoid passing string indexes as var parameters,
because this results in inefficient code.

You can assign the value of a string constant - or any other expression that
returns a string - to a variable. The length of the string changes dynamically when
the assignment is made. Examples:

MyString := 'Hello world!';

MyString := 'Hello' + 'world';

MyString := MyString + '!';

MyString := ' '; { space }

MyString := ''; { empty string }

Short Strings

A ShortString is 0 to 255 single-byte characters long. While the length of a
ShortString can change dynamically, its memory is a statically allocated 256
bytes; the first byte stores the length of the string, and the remaining 255 bytes
are available for characters. If S is a ShortString variable, Ord(S[0]), like
Length(S), returns the length of S; assigning a value to S[0], like calling
SetLength, changes the length of S. ShortString is maintained for backward
compatibility only.

The Delphi language supports short-string types - in effect, subtypes of ShortString
- whose maximum length is anywhere from 0 to 255 characters. These are
denoted by a bracketed numeral appended to the reserved word string. For
example:

var MyString: string[100];

http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.String

Embarcadero Technologies 109

creates a variable called MyString, whose maximum length is 100 characters.
This is equivalent to the declarations:

type CString = string[100];

var MyString: CString;

Variables declared in this way allocate only as much memory as the type
requires - that is, the specified maximum length plus one byte. In our example,
MyString uses 101 bytes, as compared to 256 bytes for a variable of the
predefined ShortString type.

When you assign a value to a short-string variable, the string is truncated if it
exceeds the maximum length for the type.

The standard functions High and Low operate on short-string type identifiers and
variables. High returns the maximum length of the short-string type, while Low
returns zero.

AnsiString

AnsiString represents a dynamically allocated string whose maximum length is
limited only by available memory.

An AnsiString variable is a structure containing string information. When the
variable is empty - that is, when it contains a zero-length string, the pointer is nil
and the string uses no additional storage. When the variable is nonempty, it
points to a dynamically allocated block of memory that contains the string
value. This memory is allocated on the heap, but its management is entirely
automatic and requires no user code. The AnsiString structure contains a 32-bit
length indicator, a 32-bit reference count, a 16-bit data length indicating the
number of bytes per character, and a 16-bit code page.

An AnsiString represents a single byte string. With a single-byte character set
(SBCS), each byte in a string represents one character. In a multibyte character
set (MBCS), the elements are still single bytes, but some characters are
represented by one byte and others by more than one byte. Multibyte character
sets - especially double-byte character sets (DBCS) - are widely used for Asian
languages. An AnsiString can contain MBCS characters.

Indexing of AnsiString is 1-based. Indexing multibyte strings is not reliable, since
S[i] represents the ith byte (not necessarily the ith character) in S. The ith byte
may be a single character or part of a character. However, the standard
AnsiString string handling functions have multibyte-enabled counterparts that
also implement locale-specific ordering for characters. (Names of multibyte
functions usually start with Ansi-. For example, the multibyte version of StrPos is
AnsiStrPos.) Multibyte character support is operating-system dependent and
based on the current locale.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.ShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString

Embarcadero Technologies 110

Because AnsiString variables have pointers, two or more of them can reference
the same value without consuming additional memory. The compiler exploits this
to conserve resources and execute assignments faster. Whenever an AnsiString
variable is destroyed or assigned a new value, the reference count of the old
AnsiString (the variable's previous value) is decremented and the reference
count of the new value (if there is one) is incremented; if the reference count of
a string reaches zero, its memory is deallocated. This process is called reference
counting. When indexing is used to change the value of a single character in a
string, a copy of the string is made if - but only if - its reference count is greater
than one. This is called copy-on-write semantics.

UnicodeString (the Default String Type)

The UnicodeString type is the default string type and represents a dynamically
allocated Unicode string whose maximum length is limited only by available
memory.

In a Unicode character set, each character is represented by one or more bytes.
Unicode has several Unicode Transformation Formats that use different but
equivalent character encodings that can be easily transformed into each other.

o In UTF-8, for instance, characters may be one to 4 bytes. In UTF-8, the first
128 Unicode characters map to the US-ASCII characters.

o UTF-16 is another commonly used Unicode encoding in which characters
are either 2 bytes or 4 bytes. The majority of the world's characters are in
the Basic Multilingual Plane and can be represented in 2 bytes. The
remaining characters require two 2 byte characters known as surrogate

pairs.

o UTF-32 represents each character with 4 bytes.

The Win32 platform supports single-byte and multibyte character sets as well as
Unicode. The Windows operating system supports UTF-16.

See the Unicode Standard for more information.

The UnicodeString type has exactly the same structure as the AnsiString type.
UnicodeString data is encoded in UTF-16.

Since UnicodeString and AnsiString have the same structure, they function very
similarly. When a UnicodeString variable is empty, it uses no additional memory.
When it is not empty, it points to a dynamically allocated block of memory that
contains the string value, and the memory handling for this is transparent to the
user. UnicodeString variables are reference counted, and two or more of them
can reference the same value without consuming additional memory.

Instances of UnicodeString can index characters. Indexing is 1-based, just as for
AnsiString.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://www.unicode.org/standard/standard.html
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString

Embarcadero Technologies 111

UnicodeString is assignment compatible with all other string types. However,
assignments between AnsiString and UnicodeString do the appropriate up or
down conversions. Note that assigning a UnicodeString type to an AnsiString type
is not recommended and can result in data loss.

Delphi can also support Unicode characters and strings through the WideChar,
PWideChar, and WideString types.

For more information on using Unicode, see Unicode in RAD Studio and Enabling
Applications for Unicode.

WideString

The WideString type represents a dynamically allocated string of 16-bit Unicode
characters. In some respects it is similar to AnsiString. On Win32, WideString is
compatible with the COM BSTR type.

WideString is appropriate for use in COM applications. However, WideString is not
reference counted, and so UnicodeString is more flexible and efficient in other
types of applications.

Indexing of WideString multibyte strings is not reliable, since S[i] represents the
ith element (not necessarily the ith character) in S.

For Delphi, Char and PChar types are WideChar and PWideChar types,
respectively.

Note:

WideString is not supported by the Delphi compilers for mobile platforms, but is
used by the Delphi compilers for desktop platforms.

Working with null-Terminated Strings

Many programming languages, including C and C++, lack a dedicated string
data type. These languages, and environments that are built with them, rely on
null-terminated strings. A null-terminated string is a zero-based array of
characters that ends with NUL (#0); since the array has no length indicator, the
first NUL character marks the end of the string. You can use Delphi constructions
and special routines in the SysUtils unit (see Standard Routines and Input-
Output) to handle null-terminated strings when you need to share data with
systems that use them.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PWideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideString
http://docwiki.embarcadero.com/RADStudio/Rio/en/Unicode_in_RAD_Studio
http://docwiki.embarcadero.com/RADStudio/Rio/en/Enabling_Applications_for_Unicode
http://docwiki.embarcadero.com/RADStudio/Rio/en/Enabling_Applications_for_Unicode
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Char
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PWideChar

Embarcadero Technologies 112

For example, the following type declarations could be used to store null-
terminated strings:

type

 TIdentifier = array[0..15] of Char;

 TFileName = array[0..259] of Char;

 TMemoText = array[0..1023] of WideChar;

With extended syntax enabled ({$X+}), you can assign a string constant to a
statically allocated zero-based character array. (Dynamic arrays won't work for
this purpose.) If you initialize an array constant with a string that is shorter than the
declared length of the array, the remaining characters are set to #0.

Using Pointers, Arrays, and String Constants

To manipulate null-terminated strings, it is often necessary to use pointers. (See
Pointers and Pointer Types (Delphi).) String constants are assignment-compatible
with the PChar and PWideChar types, which represent pointers to null-
terminated arrays of Char and WideChar values. For example:

var P: PChar;

 ...

P := 'Hello world!'

points P to an area of memory that contains the original constant string 'Hello
world!' This is equivalent to:

const TempString: array[0..12] of Char = 'Hello world!';

var P: PChar;

 ...

P := @TempString[0];

You can also pass string constants to any function that takes value or const
parameters of type PChar or PWideChar - for example StrUpper('Hello
world!'). As with assignments to a PChar, the compiler generates a null-
terminated copy of the string and gives the function a pointer to that copy.
Finally, you can initialize PChar or PWideChar constants with string literals, alone
or in a structured type. Examples:

const

 Message: PChar = 'Program terminated';

 Prompt: PChar = 'Enter values: ';

 Digits: array[0..9] of PChar =

 ('Zero', 'One', 'Two', 'Three', 'Four', 'Five',

 'Six', 'Seven', 'Eight', 'Nine');

Zero-based character arrays are compatible with PChar and PWideChar. When
you use a character array in place of a pointer value, the compiler converts the
array to a pointer constant whose value corresponds to the address of the first
element of the array. For example:

http://docwiki.embarcadero.com/RADStudio/Rio/en/Extended_syntax_(Delphi)
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PWideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Char
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PWideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PWideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PWideChar

Embarcadero Technologies 113

var

 MyArray: array[0..32] of Char;

 MyPointer: PChar;

begin

 MyArray := 'Hello';

 MyPointer := MyArray;

 SomeProcedure(MyArray);

 SomeProcedure(MyPointer);

end;

This code calls SomeProcedure twice with the same value.

A character pointer can be indexed as if it were an array. In the previous
example, MyPointer[0] returns H. The index specifies an offset added to the
pointer before it is dereferenced. (For PWideChar variables, the index is
automatically multiplied by two.) Thus, if P is a character pointer, P[0] is
equivalent to P^ and specifies the first character in the array, P[1] specifies the
second character in the array, and so forth; P[-1] specifies the 'character'
immediately to the left of P[0]. The compiler performs no range checking on
these indexes.

The StrUpper function illustrates the use of pointer indexing to iterate through a
null-terminated string:

function StrUpper(Dest, Source: PChar; MaxLen: Integer): PChar;

var

 I: Integer;

begin

 I := 0;

 while (I < MaxLen) and (Source[I] <> #0) do

 begin

 Dest[I] := UpCase(Source[I]);

 Inc(I);

 end;

 Dest[I] := #0;

 Result := Dest;

end;

Mixing Delphi Strings and Null-Terminated Strings

You can mix strings (AnsiString and UnicodeString values) and null-terminated
strings (PChar values) in expressions and assignments, and you can pass PChar
values to functions or procedures that take string parameters. The assignment
S := P, where S is a string variable and P is a PChar expression, copies a null-
terminated string into a string.

In a binary operation, if one operand is a string and the other a PChar, the PChar
operand is converted to a UnicodeString.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.PWideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString

Embarcadero Technologies 114

You can cast a PChar value as a UnicodeString. This is useful when you want to
perform a string operation on two PChar values. For example:

S := string(P1) + string(P2);

You can also cast a UnicodeString or AnsiString string as a null-terminated string.
The following rules apply:

o If S is a UnicodeString, PChar(S) casts S as a null-terminated string; it returns
a pointer to the first character in S. Such casts are used for the Windows
API. For example, if Str1 and Str2 are UnicodeString, you could call the
Win32 API MessageBox function like this:

MessageBox(0, PChar(Str1), PChar(Str2), MB_OK);

Use PAnsiChar(S) if S is an AnsiString.

o You can also use Pointer(S) to cast a string to an untyped pointer. But if S
is empty, the typecast returns nil.

o PChar(S) always returns a pointer to a memory block; if S is empty, a
pointer to #0 is returned.

o When you cast a UnicodeString or AnsiString variable to a pointer, the
pointer remains valid until the variable is assigned a new value or goes out
of scope. If you cast any other string expression to a pointer, the pointer is
valid only within the statement where the typecast is performed.

o When you cast a UnicodeString or AnsiString expression to a pointer, the
pointer should usually be considered read-only. You can safely use the
pointer to modify the string only when all of the following conditions are
satisfied:

The expression cast is a UnicodeString or AnsiString variable.

The string is not empty.

The string is unique - that is, has a reference count of one. To guarantee that the string is
unique, call the SetLength, SetString, or UniqueString procedures.

The string has not been modified since the typecast was made.

The characters modified are all within the string. Be careful not to use an out-of-range
index on the pointer.

The same rules apply when mixing WideString values with PWideChar values.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SetLength
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SetString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UniqueString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PWideChar

Embarcadero Technologies 115

Structured Types (Delphi)
Instances of a structured type hold more than one value. Structured types
include sets, arrays, records, and files as well as class, class-reference, and
interface types. Except for sets, which hold ordinal values only, structured types
can contain other structured types; a type can have unlimited levels of
structuring.

This topic covers the following structured types:

o Sets

o Arrays, including static and dynamic arrays

o Records

o File types

Alignment of Structured Types

By default, the values in a structured type are aligned on word- or double-word
boundaries for faster access.

You can, however, specify byte alignment by including the reserved word
packed when you declare a structured type. The packed word specifies
compressed data storage. Here is an example declaration:

 type TNumbers = packed array [1..100] of Real;

Using packed is not a recommended practice, because it can prevent
compatibility with other languages or platforms, it slows data access, and, in the
case of a character array, it affects type compatibility. For more information, see
Memory management and Implicit Packing of Fields with a Common Type
Specification.

Sets

A set is a collection of values of the same ordinal type. The values have no
inherent order, nor is it meaningful for a value to be included twice in a set.

Embarcadero Technologies 116

The range of a set type is the power set of a specific ordinal type, called the
base type; that is, the possible values of the set type are all the subsets of the
base type, including the empty set. The base type can have no more than 256
possible values, and their ordinalities must fall between 0 and 255. Any
construction of the form:

set of baseType

where baseType is an appropriate ordinal type, identifies a set type.

Because of the size limitations for base types, set types are usually defined with
subranges. For example, the declarations:

 type

 TSomeInts = 1..250;

 TIntSet = set of TSomeInts;

create a set type called TIntSet whose values are collections of integers in the
range from 1 to 250. You could accomplish the same thing with:

 type TIntSet = set of 1..250;

Given this declaration, you can create a set like this:

 var Set1, Set2: TIntSet;

 ...

 Set1 := [1, 3, 5, 7, 9];

 Set2 := [2, 4, 6, 8, 10]

You can also use the set of ... construction directly in variable declarations:

 var MySet: set of 'a'..'z';

 ...

 MySet := ['a','b','c'];

Note: For more information, see the following warning message: W1050 WideChar

reduced to byte char in set expressions (Delphi).

Other examples of set types include:

set of Byte

set of (Club, Diamond, Heart, Spade)

set of Char;

The in operator tests set membership:

 if 'a' in MySet then ... { do something } ;

http://docwiki.embarcadero.com/RADStudio/Rio/en/W1050_WideChar_reduced_to_byte_char_in_set_expressions_(Delphi)
http://docwiki.embarcadero.com/RADStudio/Rio/en/W1050_WideChar_reduced_to_byte_char_in_set_expressions_(Delphi)

Embarcadero Technologies 117

Every set type can hold the empty set, denoted by []. For more information
about sets, see "Set Constructors" and "Set Operators" in Expressions (Delphi).

Arrays

An array represents an indexed collection of elements of the same type (called
the base type). Because each element has a unique index, arrays, unlike sets,
can meaningfully contain the same value more than once. Arrays can be
allocated statically or dynamically.

Static Arrays

Static array types are denoted by constructions of the form:

array[indexType1, ..., indexTypen] of baseType;

where each indexType is an ordinal type whose range does not exceed 2GB.
Since the indexTypes index the array, the number of elements an array can hold
is limited by the product of the sizes of the indexTypes. In practice, indexTypes
are usually integer subranges.

In the simplest case of a one-dimensional array, there is only a single indexType.
For example:

 var MyArray: array [1..100] of Char;

declares a variable called MyArray that holds an array of 100 character values.
Given this declaration, MyArray[3] denotes the third character in MyArray. If you
create a static array but don't assign values to all its elements, the unused
elements are still allocated and contain random data; they are like uninitialized
variables.

A multidimensional array is an array of arrays. For example:

 type TMatrix = array[1..10] of array[1..50] of Real;

is equivalent to:

 type TMatrix = array[1..10, 1..50] of Real;

Whichever way TMatrix is declared, it represents an array of 500 real values. A
variable MyMatrix of type TMatrix can be indexed like this: MyMatrix[2,45]; or like
this: MyMatrix[2][45]. Similarly:

 packed array[Boolean, 1..10, TShoeSize] of Integer;

is equivalent to:

Embarcadero Technologies 118

 packed array[Boolean] of packed array[1..10] of packed array[TShoeSize] of

Integer;

The standard functions Low and High operate on array type identifiers and
variables. They return the low and high bounds of the array's first index type. The
standard function Length returns the number of elements in the array's first
dimension.

A one-dimensional, packed, static array of Char values is called a packed string.
Packed-string types are compatible with string types and with other packed-
string types that have the same number of elements. See Type Compatibility and
Identity (Delphi).

An array type of the form array[0..x] of Char is called a zero-based character
array. Zero-based character arrays are used to store null-terminated strings and
are compatible with PChar values. See "Working with null-terminated strings" in
String Types (Delphi).

Dynamic Arrays

Dynamic arrays do not have a fixed size or length. Instead, memory for a
dynamic array is reallocated when you assign a value to the array or pass it to
the SetLength procedure. Dynamic-array types are denoted by constructions of
the form:

array of baseType

For example:

 var MyFlexibleArray: array of Real;

declares a one-dimensional dynamic array of reals. The declaration does not
allocate memory for MyFlexibleArray. To create the array in memory, call
SetLength. For example, given the previous declaration:

 SetLength(MyFlexibleArray, 20);

allocates an array of 20 reals, indexed 0 to 19. An alternative method of
allocating memory for dynamic arrays is to invoke the array constructor:

 type

 TMyFlexibleArray = array of Integer;

 begin

 MyFlexibleArray := TMyFlexibleArray.Create(1, 2, 3 {...});

 end;

which allocates memory for three elements and assigns each element the given
value.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.DynamicArray.Low
http://docwiki.embarcadero.com/Libraries/Rio/en/System.DynamicArray.High
http://docwiki.embarcadero.com/Libraries/Rio/en/System.DynamicArray.Length
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Char
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SetLength
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SetLength

Embarcadero Technologies 119

Similar to the array constructor, a dynamic array may also be initialized from an
array constant expression as below.

 procedure MyProc;

 var

 A: array of Integer;

 begin

 A := [1, 2, 3];

 end;

Notice that unlike with an array constructor, an array constant can be applied to
unnamed dynamic array type directly. This syntax is specific to dynamic arrays;
applying this technique to other array types is likely to result in the constant being
interpreted as a set, leading to an incompatible types error at compile-time.

Dynamic arrays are always integer-indexed, always starting from 0.

Dynamic-array variables are implicitly pointers and are managed by the same
reference-counting technique used for long strings. To deallocate a dynamic
array, assign nil to a variable that references the array or pass the variable to
Finalize; either of these methods disposes of the array, provided there are no
other references to it. Dynamic arrays are automatically released when their
reference-count drops to zero. Dynamic arrays of length 0 have the value nil. Do
not apply the dereference operator (^) to a dynamic-array variable or pass it to
the New or Dispose procedure.

If X and Y are variables of the same dynamic-array type, X := Y points X to the
same array as Y. (There is no need to allocate memory for X before performing
this operation.) Unlike strings and static arrays, copy-on-write is not employed for
dynamic arrays, so they are not automatically copied before they are written to.
For example, after this code executes:

 var

 A, B: array of Integer;

 begin

 SetLength(A, 1);

 A[0] := 1;

 B := A;

 B[0] := 2;

 end;

the value of A[0] is 2. (If A and B were static arrays, A[0] would still be 1.)

Assigning to a dynamic-array index (for example, MyFlexibleArray[2] := 7) does
not reallocate the array. Out-of-range indexes are not reported at compile time.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Finalize
http://docwiki.embarcadero.com/Libraries/Rio/en/System.New
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Dispose

Embarcadero Technologies 120

In contrast, to make an independent copy of a dynamic array, you must use the
global Copy function:

 var

 A, B: array of Integer;

 begin

 SetLength(A, 1);

 A[0] := 1;

 B := Copy(A);

 B[0] := 2; { B[0] <> A[0] }

 end;

When dynamic-array variables are compared, their references are compared,
not their array values. Thus, after execution of the code:

 var

 A, B: array of Integer;

 begin

 SetLength(A, 1);

 SetLength(B, 1);

 A[0] := 2;

 B[0] := 2;

 end;

A = B returns False but A[0] = B[0] returns True.

To truncate a dynamic array, pass it to SetLength, or pass it to Copy and assign
the result back to the array variable. (The SetLength procedure is usually faster.)
For example, if A is a dynamic array, either of the following truncates all but the
first 20 elements of A:

 SetLength(A, 20)

 A := Copy(A, 0, 20)

Once a dynamic array has been allocated, you can pass it to the standard
functions Length, High, and Low. Length returns the number of elements in the
array, High returns the array's highest index (that is, Length - 1), and Low returns 0.
In the case of a zero-length array, High returns -1 (with the anomalous
consequence that High < Low).

Note: In some function and procedure declarations, array
parameters are represented as array of baseType, without any
index types specified. For example,function CheckStrings(A: array
of string): Boolean;

This indicates that the function operates on all arrays of the specified base type,
regardless of their size, how they are indexed, or whether they are allocated
statically or dynamically.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Copy
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SetLength
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Copy
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Length
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Low
http://docwiki.embarcadero.com/Libraries/Rio/en/System.High

Embarcadero Technologies 121

Multidimensional Dynamic Arrays

To declare multidimensional dynamic arrays, use iterated array of ...
constructions. For example:

 type TMessageGrid = array of array of string;

 var Msgs: TMessageGrid;

declares a two-dimensional array of strings. To instantiate this array, call
SetLength with two integer arguments. For example, if I and J are integer-valued
variables:

 SetLength(Msgs,I,J);

allocates an I-by-J array, and Msgs[0,0] denotes an element of that array.

You can create multidimensional dynamic arrays that are not rectangular. The
first step is to call SetLength, passing it parameters for the first n dimensions of the
array. For example:

 var Ints: array of array of Integer;

 SetLength(Ints,10);

allocates ten rows for Ints but no columns. Later, you can allocate the columns
one at a time (giving them different lengths); for example:

 SetLength(Ints[2], 5);

makes the third column of Ints five integers long. At this point (even if the other
columns haven't been allocated) you can assign values to the third column - for
example, Ints[2,4] := 6.

The following example uses dynamic arrays (and the IntToStr function declared in
the SysUtils unit) to create a triangular matrix of strings.

 var

 A : array of array of string;

 I, J : Integer;

 begin

 SetLength(A, 10);

 for I := Low(A) to High(A) do

 begin

 SetLength(A[I], I);

 for J := Low(A[I]) to High(A[I]) do

 A[I,J] := IntToStr(I) + ',' + IntToStr(J) + ' ';

 end;

 end;

Embarcadero Technologies 122

Array Types and Assignments

Arrays are assignment-compatible only if they are of the same type. Because the
Delphi language uses name-equivalence for types, the following code will not
compile.

 var

 Int1: array[1..10] of Integer;

 Int2: array[1..10] of Integer;

 ...

 Int1 := Int2;

To make the assignment work, declare the variables as:

 var Int1, Int2: array[1..10] of Integer;

or:

 type IntArray = array[1..10] of Integer;

 var

 Int1: IntArray;

 Int2: IntArray;

String-Like Operations Supported on Dynamic Arrays

Dynamic arrays can be manipulated similarly to strings. For example:

var

 A: array of integer;

 B: TBytes = [1,2,3,4]; //Initialization can be done from declaration

begin

 ...

 A:=[1,2,3]; // assignation using constant array

 A:=A+[4,5]; // addition - A will become [1,2,3,4,5]

 ...

end;

String-like Support Routines

Some of the Delphi Intrinsic Routines support operations on dynamic arrays in
addition to operations on strings.

http://docwiki.embarcadero.com/RADStudio/Rio/en/Delphi_Intrinsic_Routines

Embarcadero Technologies 123

System.Insert The Insert function inserts a dynamic array at the beginning at the
position index. It returns the modified array:

var

 A: array of integer;

begin

 ...

 A:=[1,2,3,4];

 Insert(5,A,2); // A will become [1,2,5,3,4]

 ...

end;

System.Delete

The Delete function eliminates elements from a dynamic array and returns the
modified array:

var

 A: array of integer;

begin

 ...

 A:=[1,2,3,4];

 Delete(A,1,2); //A will become [1,4]

 ...

end;

System.Concat The Concat function can be used to put together two different
dynamic arrays:

 A := Concat([1,2,3],[4,5,6]); //A will become [1,2,3,4,5,6]

Records (traditional)

A record (analogous to a structure in some languages) represents a
heterogeneous set of elements. Each element is called a field; the declaration of
a record type specifies a name and type for each field. The syntax of a record
type declaration is:

 type recordTypeName = record

 fieldList1: type1;

 ...

 fieldListn: typen;

 end

where recordTypeName is a valid identifier, each type denotes a type, and
each fieldList is a valid identifier or a comma-delimited list of identifiers. The final
semicolon is optional.

For example, the following declaration creates a record type called TDateRec.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Insert
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Delete
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Concat

Embarcadero Technologies 124

 type

 TDateRec = record

 Year: Integer;

 Month: (Jan, Feb, Mar, Apr, May, Jun,

 Jul, Aug, Sep, Oct, Nov, Dec);

 Day: 1..31;

 end;

Each TDateRec contains three fields: an integer value called Year, a value of an
enumerated type called Month, and another integer between 1 and 31 called
Day. The identifiers Year, Month, and Day are the field designators for TDateRec,
and they behave like variables. The TDateRec type declaration, however, does
not allocate any memory for the Year, Month, and Day fields; memory is
allocated when you instantiate the record, like this:

 var Record1, Record2: TDateRec;

This variable declaration creates two instances of TDateRec, called Record1 and
Record2.

You can access the fields of a record by qualifying the field designators with the
record's name:

 Record1.Year := 1904;

 Record1.Month := Jun;

 Record1.Day := 16;

Or use a with statement:

 with Record1 do

 begin

 Year := 1904;

 Month := Jun;

 Day := 16;

 end;

You can now copy the values of Record1's fields to Record2:

 Record2 := Record1;

Because the scope of a field designator is limited to the record in which it occurs,
you don't have to worry about naming conflicts between field designators and
other variables.

Embarcadero Technologies 125

Instead of defining record types, you can use the record ... construction directly
in variable declarations:

 var S: record

 Name: string;

 Age: Integer;

 end;

However, a declaration like this largely defeats the purpose of records, which is
to avoid repetitive coding of similar groups of variables. Moreover, separately
declared records of this kind will not be assignment-compatible, even if their
structures are identical.

Variant Parts in Records

A record type can have a variant part, which looks like a case statement. The
variant part must follow the other fields in the record declaration.

To declare a record type with a variant part, use the following syntax:

 type recordTypeName = record

 fieldList1: type1;

 ...

 fieldListn: typen;

 case tag: ordinalType of

 constantList1: (variant1);

 ...

 constantListn: (variantn);

 end;

The first part of the declaration - up to the reserved word case - is the same as
that of a standard record type. The remainder of the declaration - from case to
the optional final semicolon - is called the variant part. In the variant part,

o tag is optional and can be any valid identifier. If you omit tag, omit the
colon (:) after it as well.

o ordinalType denotes an ordinal type.

o Each constantList is a constant denoting a value of type ordinalType, or a
comma-delimited list of such constants. No value can be represented
more than once in the combined constantLists.

o Each variant is a semicolon-delimited list of declarations resembling the
fieldList: type constructions in the main part of the record type. That is, a
variant has the form:

 fieldList1: type1;

 ...

 fieldListn: typen;

Embarcadero Technologies 126

where each fieldList is a valid identifier or comma-delimited list of identifiers,
each type denotes a type, and the final semicolon is optional. The types must
not be long strings, dynamic arrays, variants (that is, Variant types), or interfaces,
nor can they be structured types that contain long strings, dynamic arrays,
variants, or interfaces; but they can be pointers to these types.

Records with variant parts are complicated syntactically but deceptively simple
semantically. The variant part of a record contains several variants which share
the same space in memory. You can read or write to any field of any variant at
any time; but if you write to a field in one variant and then to a field in another
variant, you may be overwriting your own data. The tag, if there is one, functions
as an extra field (of type ordinalType) in the non-variant part of the record.

Variant parts have two purposes. First, suppose you want to create a record type
that has fields for different kinds of data, but you know that you will never need
to use all of the fields in a single record instance. For example:

 type

 TEmployee = record

 FirstName, LastName: string[40];

 BirthDate: TDate;

 case Salaried: Boolean of

 True: (AnnualSalary: Currency);

 False: (HourlyWage: Currency);

 end;

The idea here is that every employee has either a salary or an hourly wage, but
not both. So when you create an instance of TEmployee, there is no reason to
allocate enough memory for both fields. In this case, the only difference
between the variants is in the field names, but the fields could just as easily have
been of different types. Consider some more complicated examples:

 type

 TPerson = record

 FirstName, LastName: string[40];

 BirthDate: TDate;

 case Citizen: Boolean of

 True: (Birthplace: string[40]);

 False: (Country: string[20];

 EntryPort: string[20];

 EntryDate, ExitDate: TDate);

 end;

 type

 TShapeList = (Rectangle, Triangle, Circle, Ellipse, Other);

 TFigure = record

 case TShapeList of

 Rectangle: (Height, Width: Real);

 Triangle: (Side1, Side2, Angle: Real);

 Circle: (Radius: Real);

 Ellipse, Other: ();

 end;

Embarcadero Technologies 127

For each record instance, the compiler allocates enough memory to hold all the
fields in the largest variant. The optional tag and the constantLists (like
Rectangle, Triangle, and so forth in the last example) play no role in the way the
compiler manages the fields; they are there only for the convenience of the
programmer.

The second reason for variant parts is that they let you treat the same data as
belonging to different types, even in cases where the compiler would not allow a
typecast. For example, if you have a 64-bit Real as the first field in one variant
and a 32-bit Integer as the first field in another, you can assign a value to the
Real field and then read back the first 32 bits of it as the value of the Integer field
(passing it, say, to a function that requires integer parameters).

Records (advanced)

In addition to the traditional record types, the Delphi language allows more
complex and "class-like" record types. In addition to fields, records may have
properties and methods (including constructors), class properties, class methods,
class fields, and nested types. For more information on these subjects, see the
documentation on Classes and Objects (Delphi). Here is a sample record type
definition with some "class-like" functionality.

 type

 TMyRecord = record

 type

 TInnerColorType = Integer;

 var

 Red: Integer;

 class var

 Blue: Integer;

 procedure printRed();

 constructor Create(val: Integer);

 property RedProperty: TInnerColorType read Red write Red;

 class property BlueProp: TInnerColorType read Blue write Blue;

 end;

 constructor TMyRecord.Create(val: Integer);

 begin

 Red := val;

 end;

 procedure TMyRecord.printRed;

 begin

 Writeln('Red: ', Red);

 end;

Though records can now share much of the functionality of classes, there are
some important differences between classes and records.

o Records do not support inheritance.

o Records can contain variant parts; classes cannot.

Embarcadero Technologies 128

o Records are value types, so they are copied on assignment, passed by
value, and allocated on the stack unless they are declared globally or
explicitly allocated using the New and Dispose function. Classes are
reference types, so they are not copied on assignment, they are passed
by reference, and they are allocated on the heap.

o Records allow operator overloading on the Win32 platform; classes,
however, do not allow operator overloading.

o Records are constructed automatically, using a default no-argument
constructor, but classes must be explicitly constructed. Because records
have a default no-argument constructor, any user-defined record
constructor must have one or more parameters.

o Record types cannot have destructors.

o Virtual methods (those specified with the virtual, dynamic, and message
keywords) cannot be used in record types.

o Unlike classes, record types on the Win32 platform cannot implement
interfaces.

File Types (Win32)

File types, as available on the Win32 platform, are sequences of elements of the
same type. Standard I/O routines use the predefined TextFile or Text type, which
represents a file containing characters organized into lines. For more information
about file input and output, see Standard Routines and Input-Output under the
"File Input and Output" section.

To declare a file type, use the syntax:

type fileTypeName = file of type

where fileTypeName is any valid identifier and type is a fixed-size type. Pointer
types - whether implicit or explicit - are not allowed, so a file cannot contain
dynamic arrays, long strings, classes, objects, pointers, variants, other files, or
structured types that contain any of these.

For example:

 type

 PhoneEntry = record

 FirstName, LastName: string[20];

 PhoneNumber: string[15];

 Listed: Boolean;

 end;

 PhoneList = file of PhoneEntry;

declares a file type for recording names and telephone numbers.

Embarcadero Technologies 129

You can also use the file of ... construction directly in a variable declaration. For
example,

 var List1: file of PhoneEntry;

The word file by itself indicates an untyped file:

 var DataFile: file;

For more information, see "Untyped Files" in Standard Routines and Input-Output.

Files are not allowed in arrays or records.

Code Samples

o ComplexNumbers Sample (Records)

http://docwiki.embarcadero.com/CodeExamples/Rio/en/RTL.ComplexNumbers_Sample

Embarcadero Technologies 130

Pointers and Pointer Types (Delphi)
A pointer is a variable that denotes a memory address. When a pointer holds the
address of another variable, we say that it points to the location of that variable
in memory or to the data stored there. In the case of an array or other structured
type, a pointer holds the address of the first element in the structure. If that
address is already taken, then the pointer holds the address to the first element.

Pointers are typed to indicate the kind of data stored at the addresses they hold.
The general-purpose Pointer type can represent a pointer to any data, while
more specialized pointer types reference only specific types of data. The PByte
type is used for any byte data that is not character data.

On 32-bit platforms, a pointer occupies four bytes of memory as a 32-bit address.
On 64-bit platforms, a pointer occupies eight bytes of memory as a 64-bit
address.

This topic contains information on the following:

o General overview of pointer types.

o Declaring and using the pointer types supported by Delphi.

Overview of pointers

To see how pointers work, look at the following example:

 1 var

 2 X, Y: Integer; // X and Y are Integer variables

 3 P: ^Integer; // P points to an Integer

 4 begin

 5 X := 17; // assign a value to X

 6 P := @X; // assign the address of X to P

 7 Y := P^; // dereference P; assign the result to Y

 8 end;

Line 2 declares X and Y as variables of type Integer. Line 3 declares P as a
pointer to an Integer value; this means that P can point to the location of X or Y.
Line 5 assigns a value to X, and line 6 assigns the address of X (denoted by @X) to
P. Finally, line 7 retrieves the value at the location pointed to by P (denoted by
^P) and assigns it to Y. After this code executes, X and Y have the same value,
namely 17.

The @ operator, which is used here to take the address of a variable, also
operates on functions and procedures. For more information, see The @
Operator and Procedural Types in Statements and Expressions.

The caret symbol ^ has two purposes, both of which are illustrated in our
example. When it appears before a type identifier:

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Pointer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PByte
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Integer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Integer

Embarcadero Technologies 131

^typeName

the caret symbol denotes a type that represents pointers to variables of type
typeName.

When the caret symbol appears after a pointer variable:

pointer^

the caret dereferences the pointer; that is, it returns the value stored at the
memory address held by the pointer.

This example might seem like a roundabout way of copying the value of one
variable to another - something that we could have accomplished with a simple
assignment statement. But pointers are useful for several reasons. First,
understanding pointers will help you to understand the Delphi language, since
pointers often operate behind the scenes in code where they don't appear
explicitly. Any data type that requires large, dynamically allocated blocks of
memory uses pointers. Long-string variables, for instance, are implicitly pointers,
as are class instance variables. Moreover, some advanced programming
techniques require the use of pointers.

Finally, pointers are sometimes the only way to circumvent Delphi's strict data
typing. By referencing a variable with an all-purpose Pointer, casting the Pointer
to a more specific type, and then dereferencing it, you can treat the data
stored by any variable as if it belonged to any type. For example, the following
code assigns data stored in a real variable to an integer variable:

type

 PInteger = ^Integer;

var

 R: Single;

 I: Integer;

 P: Pointer;

 PI: PInteger;

begin

 ...

 P := @R;

 PI := PInteger(P);

 I := PI^;

end;

Of course, reals and integers are stored in different formats. This assignment
simply copies raw binary data from R to I, without converting it.

In addition to assigning the result of an @ operation, you can use several
standard routines to give a value to a pointer. The New and GetMem
procedures assign a memory address to an existing pointer, while the Addr and
Ptr functions return a pointer to a specified address or variable.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Pointer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Pointer

Embarcadero Technologies 132

Dereferenced pointers can be qualified and can function as qualifiers, as in the
expression P1^.Data^.

The reserved word nil is a special constant that can be assigned to any pointer.
When nil is assigned to a pointer, the pointer doesn't reference anything.

Using Extended Syntax with Pointers

The {$EXTENDED} compiler directive affects the use of the caret (^). When {$X+} is
in effect (the default), you can omit the caret when referencing pointers. The
caret is still required when declaring a pointer and for resolving the ambiguity
when a pointer points to another pointer. For more information, see Extended
syntax (Delphi).

With extended syntax enabled, you can omit the caret when referring to a
pointer, as in the following example:

{$X+}

 type

 PMyRec = ^TMyRec;

 TMyRec = record

 Data: Integer;

 end;

 var

 MyRec: PMyRec;

 begin

 New(MyRec);

 MyRec.Data := 42; {#1}

 end.

When extended syntax is not enabled, the line marked {#1} would typically be
expressed as:

 MyRec^.Data := 42;

Pointer Types

You can declare a pointer to any type, using the syntax:

type pointerTypeName = ^type

When you define a record or other data type, it might be useful to also define a
pointer to that type. This makes it easy to manipulate instances of the type
without copying large blocks of memory.

Note: You can declare a pointer type before you declare the type
it points to.

http://docwiki.embarcadero.com/RADStudio/Rio/en/Extended_syntax_(Delphi)
http://docwiki.embarcadero.com/RADStudio/Rio/en/Extended_syntax_(Delphi)

Embarcadero Technologies 133

Standard pointer types exist for many purposes. The most versatile is Pointer,
which can point to data of any kind. But a Pointer variable cannot be
dereferenced; placing the ^ symbol after a Pointer variable causes a
compilation error. To access the data referenced by a Pointer variable, first cast
it to another pointer type and then dereference it.

Character Pointers

The fundamental types PAnsiChar and PWideChar represent pointers to AnsiChar
and WideChar values, respectively. The generic PChar represents a pointer to a
Char (that is, in its current implementation, to a WideChar). These character
pointers are used to manipulate null-terminated strings. (See "Working with null-
terminated strings" in String Types (Delphi).)

Note: Do not cast non-character pointer types to PChar to do
pointer arithmetic. Instead, use the PByte pointer type, which is
declared with the {$POINTERMATH ON} compiler directive.

Byte Pointer

The fundamental type PByte represents a pointer to any byte data that is not
character data. This type is declared with the {$POINTERMATH ON} compiler
directive:

function TCustomVirtualStringTree.InternalData(Node: PVirtualNode): Pointer;

begin

 if (Node = FRoot) or (Node = nil) then

 Result := nil

 else

 Result := PByte(Node) + FInternalDataOffset;

end;

Type-checked Pointers

The $T compiler directive controls the types of pointer values generated by the @
operator. This directive takes the form of:

{$T+} or {$T-}

In the {$T-} state, the result type of the @ operator is always an untyped pointer
that is compatible with all other pointer types. When @ is applied to a variable
reference in the {$T+} state, the type of the result is ^T, where T is compatible only
with pointers to the type of the variable.

Other Standard Pointer Types

The System and SysUtils units declare many standard pointer types that are
commonly used.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Pointer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Pointer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Pointer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Pointer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PAnsiChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PWideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Char
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PByte
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PByte
http://docwiki.embarcadero.com/RADStudio/Rio/en/Pointer_Math_(Delphi)

Embarcadero Technologies 134

Use the {POINTERMATH <ON|OFF>} directive to turn pointer arithmetic on or off for
all typed pointers, so that increment/decrement is by element size.

Selected pointer types declared in System and SysUtils

Pointer type Points to variables of type

PString UnicodeString

PAnsiString AnsiString

PByteArray TByteArray (declared in SysUtils). Used to typecast
dynamically allocated memory for array access.

PCurrency, PDouble,
PExtended, PSingle

Currency, Double, Extended, Single

PInteger Integer

POleVariant OleVariant

PShortString ShortString. Useful when porting legacy code that uses the
old PString type.

PTextBuf TTextBuf (declared in SysUtils). TTextBuf is the internal buffer
type in a TTextRec file record.)

PVarRec TVarRec (declared in System)

PVariant Variant

PWideString WideString

PWordArray TWordArray (declared in SysUtils). Used to typecast
dynamically allocated memory for arrays of 2-byte values.

Procedural Types (Delphi)
Procedural types allow you to treat procedures and functions as values that can
be assigned to variables or passed to other procedures and functions.

This topic does not refer to the newer type of procedural type used with
anonymous methods, that is, a "reference to a procedure". See Anonymous
Methods in Delphi.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.PString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PAnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.PByteArray
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.TByteArray
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PCurrency
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PDouble
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PExtended
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PSingle
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Currency
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Double
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Extended
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Single
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PInteger
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Integer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.POleVariant
http://docwiki.embarcadero.com/Libraries/Rio/en/System.OleVariant
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PTextBuf
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TTextBuf
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TTextBuf
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TTextRec
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PVarRec
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TVarRec
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PVariant
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variant
http://docwiki.embarcadero.com/Libraries/Rio/en/System.PWideString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.PWordArray
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.TWordArray

Embarcadero Technologies 135

About Procedural Types

The following example demonstrates usage of a procedural type. Suppose you
define a function called Calc that takes two integer parameters and returns an
integer:

 function Calc(X,Y: Integer): Integer;

You can assign the Calc function to the variable F:

 var F: function(X,Y: Integer): Integer;

 F := Calc;

If you take any procedure or function heading and remove the identifier after
the word procedure or function, what is left is the right part of a procedural type
declaration. You can use such type names directly in variable declarations (as in
the previous example) or to declare new types:

 type

 TIntegerFunction = function: Integer;

 TProcedure = procedure;

 TStrProc = procedure(const S: string);

 TMathFunc = function(X: Double): Double;

 var

 F: TIntegerFunction; // F is a parameterless function that returns an

integer

 Proc: TProcedure; // Proc is a parameterless procedure

 SP: TStrProc; // SP is a procedure that takes a string parameter

 M: TMathFunc; // M is a function that takes a Double (real)

 // parameter and returns a Double

 procedure FuncProc(P: TIntegerFunction); // FuncProc is a procedure

 // whose only parameter is a parameterless

 // integer-valued function

Method Pointers

The variables shown in the previous example are all procedure pointers - that is,
pointers to the address of a procedure or function. If you want to reference a
method of an instance object (see Classes and Objects (Delphi)), you need to
add the words of object to the procedural type name. For example:

 type

 TMethod = procedure of object;

 TNotifyEvent = procedure(Sender: TObject) of object;

These types represent method pointers. A method pointer is really a pair of
pointers; the first stores the address of a method, and the second stores a
reference to the object the method belongs to. Given the declarations:

Embarcadero Technologies 136

 type

 TNotifyEvent = procedure(Sender: TObject) of object;

 TMainForm = class(TForm)

 procedure ButtonClick(Sender: TObject);

 ...

 end;

 var

 MainForm: TMainForm;

 OnClick: TNotifyEvent

we could make the following assignment:

 OnClick := MainForm.ButtonClick;

Two procedural types are compatible if they have:

o the same calling convention,

o the same return value (or no return value), and

o the same number of parameters, with identically typed parameters in
corresponding positions. (Parameter names do not matter.)

Procedure pointer types are always incompatible with method pointer types. The
value nil can be assigned to any procedural type.

Nested procedures and functions (routines declared within other routines)
cannot be used as procedural values, nor can predefined procedures and
functions. If you want to use a predefined routine like Length as a procedural
value, write a wrapper for it:

 function FLength(S: string): Integer;

 begin

 Result := Length(S);

 end;

Embarcadero Technologies 137

Procedural Types in Statements and Expressions

When a procedural variable is on the left side of an assignment statement, the
compiler expects a procedural value on the right. The assignment makes the
variable on the left a pointer to the function or procedure indicated on the right.
In other contexts, however, using a procedural variable results in a call to the
referenced procedure or function. You can even use a procedural variable to
pass parameters:

 var

 F: function(X: Integer): Integer;

 I: Integer;

 function SomeFunction(X: Integer): Integer;

 ...

 F := SomeFunction; // assign SomeFunction to F

 I := F(4); // call function; assign result to I

In assignment statements, the type of the variable on the left determines the
interpretation of procedure or method pointers on the right. For example:

 var

 F, G: function: Integer;

 I: Integer;

 function SomeFunction: Integer;

 ...

 F := SomeFunction; // assign SomeFunction to F

 G := F; // copy F to G

 I := G; // call function; assign result to I

The first statement assigns a procedural value to F. The second statement copies
that value to another variable. The third statement makes a call to the
referenced function and assigns the result to I. Because I is an integer variable,
not a procedural one, the last assignment actually calls the function (which
returns an integer).

In some situations it is less clear how a procedural variable should be interpreted.
Consider the statement:

if F = MyFunction then ...;

In this case, the occurrence of F results in a function call; the compiler calls the
function pointed to by F, then calls the function MyFunction, then compares the
results. The rule is that whenever a procedural variable occurs within an
expression, it represents a call to the referenced procedure or function. In a case
where F references a procedure (which doesn't return a value), or where F
references a function that requires parameters, the previous statement causes a
compilation error. To compare the procedural value of F with MyFunction, use:

 if @F = @MyFunction then ...;

Embarcadero Technologies 138

@F converts F into an untyped pointer variable that contains an address, and
@MyFunction returns the address of MyFunction.

To get the memory address of a procedural variable (rather than the address
stored in it), use @@. For example, @@F returns the address of F.

The @ operator can also be used to assign an untyped pointer value to a
procedural variable. For example:

 var StrComp: function(Str1, Str2: PChar): Integer;

 ...

 @StrComp := GetProcAddress(KernelHandle, 'lstrcmpi');

calls the GetProcAddress function and points StrComp to the result.

Any procedural variable can hold the value nil, which means that it points to
nothing. But attempting to call a nil-valued procedural variable is an error. To test
whether a procedural variable is assigned, use the standard function Assigned:

 if Assigned(OnClick) then OnClick(X);

Variant Types (Delphi)
This topic discusses the use of variant data types.

Variants Overview

Sometimes it is necessary to manipulate data whose type varies or cannot be
determined at compile time. In these cases, one option is to use variables and
parameters of type Variant, which represent values that can change type at run
time. Variants offer greater flexibility but consume more memory than regular
variables, and operations on them are slower than on statically bound types.
Moreover, illicit operations on variants often result in run-time errors, where similar
mistakes with regular variables would have been caught at compile time. You
can also create custom variant types.

By default, Variants can hold values of any type except records, sets, static
arrays, files, classes, class references, and pointers. In other words, variants can
hold anything but structured types and pointers. They can hold interfaces, whose
methods and properties can be accessed through them. (See Object Interfaces
(Delphi).) They can hold dynamic arrays, and they can hold a special kind of
static array called a variant array. (See "Variant arrays" later in this chapter.)
Variants can mix with other variants and with integer, real, string, and Boolean
values in expressions and assignments; the compiler automatically performs type
conversions.

Variants that contain strings cannot be indexed. That is, if V is a variant that holds
a string value, the construction V[1] causes a run-time error.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Boolean

Embarcadero Technologies 139

You can define custom Variants that extend the Variant type to hold arbitrary
values. For example, you can define a Variant string type that allows indexing or
that holds a particular class reference, record type, or static array. Custom
Variant types are defined by creating descendants to the TCustomVariantType
class.

Note: This, and almost all variant functionality, is implemented in the
System.Variants unit.

Note: Variant records are considered inherently "unsafe." A variant
record is very similar to using the "absolute" directive because the
variant field parts of the record are literally overlaid in memory atop
each other. You can assign a value as one type and then read it
out as a different type. If you are using variants, you might see
compiler warnings about unsafe code, such as W1047 Unsafe code
'%s' (Delphi).

On 32-bit platforms, a variant is stored as a 16-byte record. On 64-bit platforms, a
variant is stored as a 24-byte record. A variant record consists of a type code
and a value, or a pointer to a value, of the type specified by the type code. All
variants are initialized on creation to the special value Unassigned. The special
value Null indicates unknown or missing data.

The standard function VarType returns a variant's type code. The varTypeMask
constant is a bit mask used to extract the code from VarType's return value, so
that, for example,

VarType(V) and varTypeMask = varDouble

returns True if V contains a Double or an array of Double. (The mask simply hides
the first bit, which indicates whether the variant holds an array.) The TVarData
record type defined in the System unit can be used to typecast variants and
gain access to their internal representation.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.TCustomVariantType
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants
http://docwiki.embarcadero.com/RADStudio/Rio/en/W1047_Unsafe_code_%27%25s%27_(Delphi)
http://docwiki.embarcadero.com/RADStudio/Rio/en/W1047_Unsafe_code_%27%25s%27_(Delphi)
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Double
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Double

Embarcadero Technologies 140

Variant Type Conversions

All integer, real, string, character, and Boolean types are assignment-compatible
with Variant. Expressions can be explicitly cast as variants, and the VarAsType
and VarCast standard routines can be used to change the internal
representation of a variant. The following code demonstrates the use of variants
and some of the automatic conversions performed when variants are mixed with
other types:

var

 V1, V2, V3, V4, V5: Variant;

 I: Integer;

 D: Double;

 S: string;

 begin

 V1 := 1; { integer value }

 V2 := 1234.5678; { real value }

 V3 := 'Hello world!'; { string value }

 V4 := '1000'; { string value }

 V5 := V1 + V2 + V4; { real value 2235.5678}

 I := V1; { I = 1 (integer value) }

 D := V2; { D = 1234.5678 (real value) }

 S := V3; { S = 'Hello world!' (string value) }

 I := V4; { I = 1000 (integer value) }

 S := V5; { S = '2235.5678' (string value) }

 end;

The compiler performs type conversions according to the following rules:

Variant type conversion rules

Embarcadero Technologies 141

 Tar

get:
Sourc

e:

integer real string Boolean

intege

r
Converts integer
formats.

Converts to real. Converts to string
representation.

Returns False if 0,
True otherwise.

real Rounds to nearest
integer.

Converts real
formats.

Converts to string
representation using
regional settings.

Returns False if 0,
True otherwise.

string Converts to
integer, truncating
if necessary; raises
exception if string
is not numeric.

Converts to real
using regional
settings; raises
exception if string
is not numeric.

Converts
string/character
formats.

Returns False if
string is 'false'
(noncase-
sensitive) or a
numeric string that
evaluates to 0,
True if string is 'true'
or a nonzero
numeric string;
raises exception
otherwise.

chara

cter
Same as string
(above).

Same as string
(above).

Same as string
(above).

Same as string
(above).

Boole

an
False = 0, True: all
bits set to 1 (-1 if
Integer, 255 if
Byte, etc.)

False = 0, True = 1 False = 'False', True =
'True' by default;
casing depends on
global variable
System.Variants.Bool
eanToStringRule.

False = False, True
= True

Unassi

gned
Returns 0. Returns 0. Returns empty string. Returns False.

Null Depends on
global variable
System.Variants.N
ullStrictConvert
(raises an
exception by
default).

Depends on
global variable
System.Variants.N
ullStrictConvert
(raises an
exception by
default).

Depends on global
variables
System.Variants.NullS
trictConvert and
System.Variants.Null
AsStringValue (raises
an exception by
default).

Depends on
global variable
System.Variants.N
ullStrictConvert
(raises an
exception by
default).

Out-of-range assignments often result in the target variable getting the highest
value in its range. Invalid variant operations, assignments or casts raise an
Variants.EVariantError exception or an exception class descending from
Variants.EVariantError.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.BooleanToStringRule
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.BooleanToStringRule
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.NullStrictConvert
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.NullStrictConvert
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.NullStrictConvert
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.NullStrictConvert
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.NullStrictConvert
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.NullStrictConvert
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.NullAsStringValue
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.NullAsStringValue
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.NullStrictConvert
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.NullStrictConvert

Embarcadero Technologies 142

Special conversion rules apply to the System.TDateTime type declared in the
System unit. When a System.TDateTime is converted to any other type, it treated
as a normal Double. When an integer, real, or Boolean is converted to a
System.TDateTime, it is first converted to a Double, then read as a date-time
value. When a string is converted to a System.TDateTime, it is interpreted as a
date-time value using the regional settings. When an Unassigned value is
converted to System.TDateTime, it is treated like the real or integer value 0.
Converting a Null value to System.TDateTime raises an exception.

On the Win32 platform, if a variant references a COM interface, any attempt to
convert it reads the object's default property and converts that value to the
requested type. If the object has no default property, an exception is raised.

Variants in Expressions

All operators except ^, is, and in take variant operands. Except for comparisons,
which always return a Boolean result, any operation on a variant value returns a
variant result. If an expression combines variants with statically-typed values, the
statically-typed values are automatically converted to variants.

This is not true for comparisons, where any operation on a Null variant produces
a Null variant. For example:

V := Null + 3;

assigns a Null variant to V. By default, comparisons treat the Null variant as a
unique value that is less than any other value. For example:

if Null > -3 then ... else ...;

In this example, the else part of the if statement will be executed. This behavior
can be changed by setting the NullEqualityRule and NullMagnitudeRule global
variables.

Variant Arrays

You cannot assign an ordinary static array to a variant. Instead, create a variant
array by calling either of the standard functions VarArrayCreate or VarArrayOf.
For example:

V: Variant;

 ...

V := VarArrayCreate([0,9], varInteger);

creates a variant array of integers (of length 10) and assigns it to the variant V.
The array can be indexed using V[0], V[1], and so forth, but it is not possible to
pass a variant array element as a var parameter. Variant arrays are always
indexed with integers.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Double
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Double
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Boolean

Embarcadero Technologies 143

The second parameter in the call to VarArrayCreate is the type code for the
array's base type. For a list of these codes, see VarType. Never pass the code
varString to VarArrayCreate; to create a variant array of strings, use varOleStr.

Variants can hold variant arrays of different sizes, dimensions, and base types.
The elements of a variant array can be of any type allowed in variants except
ShortString and AnsiString, and if the base type of the array is Variant, its elements
can even be heterogeneous. Use the VarArrayRedim function to resize a variant
array. Other standard routines that operate on variant arrays include
VarArrayDimCount, VarArrayLowBound, VarArrayHighBound, VarArrayRef,
VarArrayLock, and VarArrayUnlock.

Note: Variant arrays of custom variants are not supported, as
instances of custom variants can be added to a VarVariant variant
array.

When a variant containing a variant array is assigned to another variant or
passed as a value parameter, the entire array is copied. Do not perform such
operations unnecessarily, since they are memory-inefficient.

OleVariant

The main difference between Variant and OleVariant is that Variant can contain
data types that only the current application knows what to do with. OleVariant
can only contain the data types defined as compatible with OLE Automation,
which means the data types that can be passed between programs or across
the network without worrying about whether the other end will know how to
handle the data.

When you assign a Variant that contains custom data (such as a Delphi string, or
one of the new custom variant types) to an OleVariant, the runtime library tries to
convert the Variant into one of the OleVariant standard data types (such as a
Delphi string converts to an OLE BSTR string). For example, if a variant containing
an AnsiString is assigned to an OleVariant, the AnsiString becomes a WideString.
The same is true when passing a Variant to an OleVariant function parameter.

Type Compatibility and Identity (Delphi)
To understand which operations can be performed on which expressions, we
need to distinguish several kinds of compatibility among types and values. These
include:

o Type identity

o Type compatibility

o Assignment compatibility

http://docwiki.embarcadero.com/Libraries/Rio/en/System.ShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variant
http://docwiki.embarcadero.com/Libraries/Rio/en/System.OleVariant
http://docwiki.embarcadero.com/Libraries/Rio/en/System.OleVariant
http://docwiki.embarcadero.com/Libraries/Rio/en/System.OleVariant
http://docwiki.embarcadero.com/Libraries/Rio/en/System.OleVariant
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.OleVariant
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.OleVariant

Embarcadero Technologies 144

Type Identity

When one type identifier is declared using another type identifier, without
qualification, they denote the same type. Thus, given the declarations:

type

 T1 = Integer;

 T2 = T1;

 T3 = Integer;

 T4 = T2;

T1, T2, T3, T4, and Integer all denote the same type. To create distinct types,
repeat the word type in the declaration. For example:

type TMyInteger = type Integer;

creates a new type called TMyInteger which is not identical to Integer.

Language constructions that function as type names denote a different type
each time they occur. Thus the declarations:

type

 TS1 = set of Char;

 TS2 = set of Char;

create two distinct types, TS1 and TS2. Similarly, the variable declarations:

var

 S1: string[10];

 S2: string[10];

create two variables of distinct types. To create variables of the same type, use:

var S1, S2: string[10];

or:

type MyString = string[10];

var

 S1: MyString;

 S2: MyString;

Type Compatibility

Every type is compatible with itself. Two distinct types are compatible if they
satisfy at least one of the following conditions.

o They are both real types.

Embarcadero Technologies 145

o They are both integer types.

o One type is a subrange of the other.

o Both types are subranges of the same type.

o Both are set types with compatible base types.

o Both are packed-string types with the same number of characters.

o One is a string type and the other is a string, packed-string, or Char type.

o One type is Variant and the other is an integer, real, string, character, or
Boolean type.

o Both are class, class-reference, or interface types, and one type is derived
from the other.

o One type is PAnsiChar or PWideChar and the other is a zero-based
character array of the form array[0..n] of PAnsiChar or PWideChar.

o One type is Pointer (an untyped pointer) and the other is any pointer type.

o Both types are (typed) pointers to the same type and the {$T+} compiler
directive is in effect.

o Both are procedural types with the same result type, the same number of
parameters, and type-identity between parameters in corresponding
positions.

Assignment Compatibility

Assignment-compatibility is not a symmetric relation. An expression of type T2
can be assigned to a variable of type T1 if the value of the expression falls in the
range of T1 and at least one of the following conditions is satisfied:

o T1 and T2 are of the same type, and it is not a file type or structured type
that contains a file type at any level.

o T1 and T2 are compatible ordinal types.

o T1 and T2 are both real types.

o T1 is a real type and T2 is an integer type.

o T1 is PAnsiChar, PWideChar, PChar or any string type and the expression is
a string constant.

o T1 and T2 are both string types.

o T1 is a string type and T2 is a Char or packed-string type.

o T1 is a long string and T2 is PAnsiChar, PWideChar or PChar.

Embarcadero Technologies 146

o T1 and T2 are compatible packed-string types.

o T1 and T2 are compatible set types.

o T1 and T2 are compatible pointer types.

o T1 and T2 are both class, class-reference, or interface types and T2 is a
derived from T1.

o T1 is an interface type and T2 is a class type that implements T1.

o T1 is PAnsiChar or PWideChar and T2 is a zero-based character array of
the form array[0..n] of Char (when T1 is PAnsiChar) or of WideChar (when
T1 is PWideChar).

o T1 and T2 are compatible procedural types. (A function or procedure
identifier is treated, in certain assignment statements, as an expression of
a procedural type. See "Procedural types in statements and expression"
earlier in this chapter.)

o T1 is Variant and T2 is an integer, real, string, character, Boolean, interface
type or OleVariant type.

o T1 is an OleVariant and T2 is an integer, real, string, character, Boolean,
interface, or Variant type.

o T1 is an integer, real, string, character, or Boolean type and T2 is Variant or
OleVariant.

o T1 is the IUnknown or IDispatch interface type and T2 is Variant or
OleVariant. (The variant's type code must be varEmpty, varUnknown, or
varDispatch if T1 is IUnknown, and varEmpty or varDispatch if T1 is
IDispatch.)

Data Types, Variables, and Constants Index
(Delphi)
This topic describes the syntax of Delphi type declarations.

Type Declaration Syntax

A type declaration specifies an identifier that denotes a type. The syntax for a
type declaration is:

type newTypeName = type

where newTypeName is a valid identifier. For example, given the type
declaration:

Embarcadero Technologies 147

type TMyString = string;

you can make the variable declaration:

var S: TMyString;

A type identifier's scope doesn't include the type declaration itself (except for
pointer types). So you cannot, for example, define a record type that uses itself
recursively.

When you declare a type that is identical to an existing type, the compiler treats
the new type identifier as an alias for the old one. Thus, given the declarations:

type TValue = Real;

var

 X: Real;

 Y: TValue;

X and Y are of the same type; at run time, there is no way to distinguish TValue
from Real. This is usually of little consequence, but if your purpose in defining a
new type is to utilize runtime type information, for example, to associate a
property editor with properties of a particular type - the distinction between
'different name' and 'different type' becomes important. In this case, use the
syntax:

type newTypeName = type KnownType

For example:

type TValue = type Real;

forces the compiler to create a new, distinct type called TValue.

Embarcadero Technologies 148

For var parameters, types of formal and actual must be identical. For example:

type

 TMyType = type Integer;

procedure p(var t:TMyType);

 begin

 end;

procedure x;

var

 m: TMyType;

 i: Integer;

begin

 p(m); // Works

 p(i); // Error! Types of formal and actual must be identical.

end;

Note: This only applies to var parameters, not to const or by-value
parameters.

Variables (Delphi)
A variable is an identifier whose value can change at run time. Put differently, a
variable is a name for a location in memory; you can use the name to read or
write to the memory location. Variables are like containers for data, and,
because they are typed, they tell the compiler how to interpret the data they
hold.

Declaring Variables

The basic syntax for a variable declaration is:

var identifierList:type;

where identifierList is a comma-delimited list of valid identifiers and type is any
valid type. For example:

 var I: Integer;

declares a variable I of type Integer, while:

 var X, Y: Real;

declares two variables - X and Y - of type Real.

Embarcadero Technologies 149

Consecutive variable declarations do not have to repeat the reserved word var:

 var

 X, Y, Z: Double;

 I, J, K: Integer;

 Digit: 0..9;

 Okay: Boolean;

Variables declared within a procedure or function are sometimes called local,
while other variables are called global. Global variables can be initialized at the
same time they are declared, using the syntax:

var identifier: type = constantExpression;

where constantExpression is any constant expression representing a value of type
type. Thus the declaration:

 var I: Integer = 7;

is equivalent to the declaration and statement:

 var I: Integer;

 ...

 I := 7;

Local variables cannot be initialized in their declarations. Multiple variable
declarations (such as var X, Y, Z: Real;) cannot include initializations, nor can
declarations of variant and file-type variables.

If you do not explicitly initialize a global variable, the compiler initializes it to 0.
Object instance data (fields) are also initialized to 0. On the Wiin32 platform, the
contents of a local variable are undefined until a value is assigned to them.

When you declare a variable, you are allocating memory which is freed
automatically when the variable is no longer used. In particular, local variables
exist only until the program exits from the function or procedure in which they are
declared. For more information about variables and memory management, see
Memory Management.

Absolute Addresses

You can create a new variable that resides at the same address as another
variable. To do so, put the directive absolute after the type name in the
declaration of the new variable, followed by the name of an existing (previously
declared) variable. For example:

 var

 Str: string[32];

 StrLen: Byte absolute Str;

Embarcadero Technologies 150

specifies that the variable StrLen should start at the same address as Str. Since
the first byte of a short string contains the string length, the value of StrLen is the
length of Str.

You cannot initialize a variable in an absolute declaration or combine absolute
with any other directives.

Dynamic Variables

You can create dynamic variables by calling the GetMem or New procedure.
Such variables are allocated on the heap and are not managed automatically.
Once you create one, it is your responsibility ultimately to free the variable's
memory; use FreeMem to destroy variables created by GetMem and Dispose to
destroy variables created by New. Other standard routines that operate on
dynamic variables include ReallocMem, AllocMem, Initialize, Finalize, StrAlloc,
and StrDispose.

Long strings, wide strings, dynamic arrays, variants, and interfaces are also heap-
allocated dynamic variables, but their memory is managed automatically.

Thread-local Variables

Thread-local (or thread) variables are used in multithreaded applications. A
thread-local variable is like a global variable, except that each thread of
execution gets its own private copy of the variable, which cannot be accessed
from other threads. Thread-local variables are declared with threadvar instead of
var. For example:

 threadvar X: Integer;

Thread-variable declarations:

o cannot occur within a procedure or function.

o cannot include initializations.

o cannot specify the absolute directive.

Dynamic variables that are ordinarily managed by the compiler (long strings,
wide strings, dynamic arrays, variants, and interfaces) can be declared with
threadvar, but the compiler does not automatically free the heap-allocated
memory created by each thread of execution. If you use these data types in
thread variables, it is your responsibility to dispose of their memory from within the
thread, before the thread terminates. For example:

 threadvar S: AnsiString;

 S := 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';

 ...

 S := ''; // free the memory used by S

Embarcadero Technologies 151

Note: Use of such constructs is discouraged.

You can free a variant by setting it to Unassigned and an interface or dynamic
array by setting it to nil.

Declared Constants
Several different language constructions are referred to as 'constants'. There are
numeric constants (also called numerals) like 17, and string constants (also called
character strings or string literals) like 'Hello world!'. Every enumerated type
defines constants that represent the values of that type. There are predefined
constants like True, False, and nil. Finally, there are constants that, like variables,
are created individually by declaration.

Declared constants are either true constants or typed constants. These two kinds
of constant are superficially similar, but they are governed by different rules and
used for different purposes.

True Constants

A true constant is a declared identifier whose value cannot change. For
example:

const MaxValue = 237;

declares a constant called MaxValue that returns the integer 237. The syntax for
declaring a true constant is:

const identifier = constantExpression

where identifier is any valid identifier and constantExpression is an expression that
the compiler can evaluate without executing your program.

If constantExpression returns an ordinal value, you can specify the type of the
declared constant using a value typecast. For example:

const MyNumber = Int64(17);

declares a constant called MyNumber, of type Int64, that returns the integer 17.
Otherwise, the type of the declared constant is the type of the
constantExpression.

o If constantExpression is a character string, the declared constant is
compatible with any string type. If the character string is of length 1, it is
also compatible with any character type.

o If constantExpression is a real, its type is Extended. If it is an integer, its type
is given by the table below.

Embarcadero Technologies 152

Types for integer constants

Range of constant

(hexadecimal)

Range of constant

(decimal)
Type Aliases

0

$FF

0

255

Byte UInt8

0

$FFFF

0

65535

Word UInt16

0

$FFFFFFFF

0

4294967295

Cardinal UInt32,
FixedUInt

0

$FFFFFFFFFFFFFFFF

0

18446744073709551615

UInt64

-$80

 $7F

-128

 127

ShortInt Int8

-$8000

 $7FFF

-32768

 32767

SmallInt Int16

-$80000000

 $7FFFFFFF

-2147483648

 2147483647

Integer Int32, FixedInt

-$8000000000000000

 $7FFFFFFFFFFFFFFF

-9223372036854775808

 9223372036854775807

Int64

32-bit native integer type

Range of constant

(hexadecimal)

Range of constant

(decimal)
Type

Equivalent

type

-$80000000

 $7FFFFFFF

-2147483648

 2147483647

NativeInt Integer

0

$FFFFFFFF

0

4294967295

NativeUInt Cardinal

Embarcadero Technologies 153

64-bit native integer type

Range of constant

(hexadecimal)

Range of constant

(decimal)
Type

Equivalent

type

-$8000000000000000

 $7FFFFFFFFFFFFFFF

-9223372036854775808

 9223372036854775807

NativeInt Int64

0

$FFFFFFFFFFFFFFFF

0

18446744073709551615

NativeUInt UInt64

32-bit platforms and 64-bit Windows integer type

32-bit platforms include 32-bit Windows, OSX32, 32-bit iOS, and Android.

Range of constant

(hexadecimal)

Range of constant

(decimal)
Type

Equivalent

type

 -$80000000

 $7FFFFFFF

-2147483648

 2147483647

LongInt Integer

0

$FFFFFFFF

0

4294967295

LongWord Cardinal

64-bit platforms integer type

64-bit platforms include 64-bit iOS.

Range of constant

(hexadecimal)

Range of constant

(decimal)
Type

Equivalent

type

-$8000000000000000

 $7FFFFFFFFFFFFFFF

-9223372036854775808

 9223372036854775807

LongInt Int64

0

$FFFFFFFFFFFFFFFF

0

18446744073709551615

LongWord UInt64

Embarcadero Technologies 154

Here are some examples of constant declarations:

const

 Min = 0;

 Max = 100;

 Center = (Max - Min) div 2;

 Beta = Chr(225);

 NumChars = Ord('Z') - Ord('A') + 1;

 Message = 'Out of memory';

 ErrStr = ' Error: ' + Message + '. ';

 ErrPos = 80 - Length(ErrStr) div 2;

 Ln10 = 2.302585092994045684;

 Ln10R = 1 / Ln10;

 Numeric = ['0'..'9'];

 Alpha = ['A'..'Z', 'a'..'z'];

 AlphaNum = Alpha + Numeric;

Constant Expressions

A constant expression is an expression that the compiler can evaluate without
executing the program in which it occurs. Constant expressions include
numerals; character strings; true constants; values of enumerated types; the
special constants True, False, and nil; and expressions built exclusively from these
elements with operators, typecasts, and set constructors. Constant expressions
cannot include variables, pointers, or function calls, except calls to the following
predefined functions:
Abs High Low Pred Succ

Chr Length Odd Round Swap

Hi Lo Ord SizeOf Trunc

This definition of a constant expression is used in several places in Delphi's syntax
specification. Constant expressions are required for initializing global variables,
defining subrange types, assigning ordinalities to values in enumerated types,
specifying default parameter values, writing case statements, and declaring
both true and typed constants.

Examples of constant expressions:

100

'A'

256 - 1

(2.5 + 1) / (2.5 - 1)

'Embarcadero' + ' ' + 'Developer'

Chr(32)

Ord('Z') - Ord('A') + 1

Embarcadero Technologies 155

Resource Strings

Resource strings are stored as resources and linked into the executable or library
so that they can be modified without recompiling the program.

Resource strings are declared as other true constants, except that the word
const is replaced by resourcestring. The expression to the right of the = symbol
must be a constant expression and must return a string value. For example:

resourcestring

 CreateError = 'Cannot create file %s';

 OpenError = 'Cannot open file %s';

 LineTooLong = 'Line too long';

 ProductName = 'Embarcadero Rocks';

 SomeResourceString = SomeTrueConstant;

Typed Constants

Typed constants, unlike true constants, can hold values of array, record,
procedural, and pointer types. Typed constants cannot occur in constant
expressions.

Declare a typed constant like this:

const identifier: type = value

where identifier is any valid identifier, type is any type except files and variants,
and value is an expression of type. For example,

const Max: Integer = 100;

In most cases, value must be a constant expression; but if type is an array,
record, procedural, or pointer type, special rules apply.

Array Constants

To declare an array constant, enclose the values of the elements of the array,
separated by commas, in parentheses at the end of the declaration. These
values must be represented by constant expressions. For example:

const Digits: array[0..9] of Char =

 ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9');

declares a typed constant called Digits that holds an array of characters.

Embarcadero Technologies 156

Zero-based character arrays often represent null-terminated strings, and for this
reason string constants can be used to initialize character arrays. So the previous
declaration can be more conveniently represented as:

const Digits: array[0..9] of Char = '0123456789';

To define a multidimensional array constant, enclose the values of each
dimension in a separate set of parentheses, separated by commas. For example:

type TCube = array[0..1, 0..1, 0..1] of Integer;

const Maze: TCube = (((0, 1), (2, 3)), ((4, 5), (6,7)));

creates an array called Maze where:

Maze[0,0,0] = 0

Maze[0,0,1] = 1

Maze[0,1,0] = 2

Maze[0,1,1] = 3

Maze[1,0,0] = 4

Maze[1,0,1] = 5

Maze[1,1,0] = 6

Maze[1,1,1] = 7

Array constants cannot contain file-type values at any level.

Record Constants

To declare a record constant, specify the value of each field - as fieldName:
value, with the field assignments separated by semicolons - in parentheses at the
end of the declaration. The values must be represented by constant expressions.
The fields must be listed in the order in which they appear in the record type
declaration, and the tag field, if there is one, must have a value specified; if the
record has a variant part, only the variant selected by the tag field can be
assigned values.

Embarcadero Technologies 157

Examples:

type

 TPoint = record

 X, Y: Single;

 end;

 TVector = array[0..1] of TPoint;

 TMonth = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);

 TDate = record

 D: 1..31;

 M: TMonth;

 Y: 1900..1999;

 end;

const

 Origin: TPoint = (X: 0.0; Y: 0.0);

 Line: TVector = ((X: -3.1; Y: 1.5), (X: 5.8; Y: 3.0));

 SomeDay: TDate = (D: 2; M: Dec; Y: 1960);

Record constants cannot contain file-type values at any level.

Procedural Constants

To declare a procedural constant, specify the name of a function or procedure
that is compatible with the declared type of the constant. For example,

function Calc(X, Y: Integer): Integer;

begin

 ...

end;

type TFunction = function(X, Y: Integer): Integer;

const MyFunction: TFunction = Calc;

Given these declarations, you can use the procedural constant MyFunction in a
function call:

I := MyFunction(5, 7)

You can also assign the value nil to a procedural constant.

Pointer Constants

When you declare a pointer constant, you must initialize it to a value that can be
resolved at least as a relative address at compile time. There are three ways to
do this: with the @ operator, with nil, and (if the constant is of type PChar or
PWideChar) with a string literal. For example, if I is a global variable of type
Integer, you can declare a constant like:

Embarcadero Technologies 158

const PI: ^Integer = @I;

The compiler can resolve this because global variables are part of the code
segment. So are functions and global constants:

const PF: Pointer = @MyFunction;

Because string literals are allocated as global constants, you can initialize a
PChar constant with a string literal:

const WarningStr: PChar = 'Warning!';

Writeable Typed Constants

Delphi allows typed constants to be modified if you set the compiler directive
($J+} or Writeable typed constants (Delphi) {$WRITEABLECONST ON}.

With $J+ set, you can use assignment statements to change the value of typed
constants as if they were initialized variables. For example:

{$J+}

const

 foo: Integer = 12;

begin

 foo := 14;

end.

Differences between writeable typed constants and initialized variables:

o Writeable typed constants can occur both globally and locally in
procedure, functions and methods.

o Initialized variables are only available as global declarations.

o Initialized variables cause a compile-time error when attempted within
procedures or methods.

http://docwiki.embarcadero.com/RADStudio/Rio/en/Writeable_typed_constants_(Delphi)

Embarcadero Technologies 159

Procedures and Functions Index
This section describes the syntax of function and procedure declarations.

Topics

o Procedures and Functions (Delphi)

o Parameters (Delphi)

o Calling Procedures and Functions (Delphi)

o Anonymous Methods in Delphi

Embarcadero Technologies 160

Procedures and Functions (Delphi)
This topic covers the following items:

o Declaring procedures and functions

o Calling conventions

o Forward and interface declarations

o Declaration of external routines

o Overloading procedures and functions

o Local declarations and nested routines

About Procedures and Functions

Procedures and functions, referred to collectively as routines, are self-contained
statement blocks that can be called from different locations in a program. A
function is a routine that returns a value when it executes. A procedure is a
routine that does not return a value.

Function calls, because they return a value, can be used as expressions in
assignments and operations. For example:

 I := SomeFunction(X);

calls SomeFunction and assigns the result to I. Function calls cannot appear on
the left side of an assignment statement.

Procedure calls - and, when extended syntax is enabled ({$X+}), function calls -
can be used as complete statements. For example:

 DoSomething;

calls the DoSomething routine; if DoSomething is a function, its return value is
discarded.

Procedures and functions can call themselves recursively.

Declaring Procedures and Functions

When you declare a procedure or function, you specify its name, the number
and type of parameters it takes, and, in the case of a function, the type of its
return value; this part of the declaration is sometimes called the prototype,
heading, or header. Then you write a block of code that executes whenever the
procedure or function is called; this part is sometimes called the body of the
routine or block.

Embarcadero Technologies 161

Procedure Declarations

A procedure declaration has the form:

 procedure procedureName(parameterList); directives;

 localDeclarations;

 begin

 statements

 end;

where procedureName is any valid identifier, statements is a sequence of
statements that execute when the procedure is called, and (parameterList),
directives;, and localDeclarations; are optional.

Here is an example of a procedure declaration:

 procedure NumString(N: Integer; var S: string);

 var

 V: Integer;

 begin

 V := Abs(N);

 S := '';

 repeat

 S := Chr(V mod 10 + Ord('0')) + S;

 V := V div 10;

 until V = 0;

 if N < 0 then S := '-' + S;

 end;

Given this declaration, you can call the NumString procedure like this:

 NumString(17, MyString);

This procedure call assigns the value '17' to MyString (which must be a string
variable).

Within a statement block of a procedure, you can use variables and other
identifiers declared in the localDeclarations part of the procedure. You can also
use the parameter names from the parameter list (like N and S in the previous
example); the parameter list defines a set of local variables, so do not try to
redeclare the parameter names in the localDeclarations section. Finally, you can
use any identifiers within whose scope the procedure declaration falls.

Function Declarations

A function declaration is like a procedure declaration except that it specifies a
return type and a return value. Function declarations have the form:

Embarcadero Technologies 162

 function functionName(parameterList): returnType; directives;

 localDeclarations;

 begin

 statements

 end;

where functionName is any valid identifier, returnType is a type identifier,
statements is a sequence of statements that execute when the function is
called, and (parameterList), directives;, and localDeclarations; are optional.

The statement block of the function is governed by the same rules that apply to
procedures. Within the statement block, you can use variables and other
identifiers declared in the localDeclarations part of the function, parameter
names from the parameter list, and any identifiers within whose scope the
function declaration falls. In addition, the function name itself acts as a special
variable that holds the return value of the function, as does the predefined
variable Result.

As long as extended syntax is enabled ({$X+}), Result is implicitly declared in
every function. Do not try to redeclare it.

For example:

 function WF: Integer;

 begin

 WF := 17;

 end;

defines a constant function called WF that takes no parameters and always
returns the integer value 17. This declaration is equivalent to:

 function WF: Integer;

 begin

 Result := 17;

 end;

Here is a more complicated function declaration:

 function Max(A: array of Real; N: Integer): Real;

 var

 X: Real;

 I: Integer;

 begin

 X := A[0];

 for I := 1 to N - 1 do

 if X < A[I] then X := A[I];

 Max := X;

 end;

You can assign a value to Result or to the function name repeatedly within a
statement block, as long as you assign only values that match the declared

Embarcadero Technologies 163

return type. When execution of the function terminates, whatever value was last
assigned to Result or to the function name becomes the return value of the
function. For example:

 function Power(X: Real; Y: Integer): Real;

 var

 I: Integer;

 begin

 Result := 1.0;

 I := Y;

 while I > 0 do

 begin

 if Odd(I) then Result := Result * X;

 I := I div 2;

 X := Sqr(X);

 end;

 end;

Result and the function name always represent the same value. Hence:

 function MyFunction: Integer;

 begin

 MyFunction := 5;

 Result := Result * 2;

 MyFunction := Result + 1;

 end;

returns the value 11. But Result is not completely interchangeable with the
function name. When the function name appears on the left side of an
assignment statement, the compiler assumes that it is being used (like Result) to
track the return value; when the function name appears anywhere else in the
statement block, the compiler interprets it as a recursive call to the function itself.
Result, on the other hand, can be used as a variable in operations, typecasts, set
constructors, indexes, and calls to other routines.

If the function exits without assigning a value to Result or the function name, then
the function's return value is undefined.

Calling Conventions

When you declare a procedure or function, you can specify a calling
convention using one of the directives register, pascal, cdecl, stdcall, safecall,
and winapi. For example,

 function MyFunction(X, Y: Real): Real; cdecl;

Calling conventions determine the order in which parameters are passed to the
routine. They also affect the removal of parameters from the stack, the use of
registers for passing parameters, and error and exception handling. The default
calling convention is register.

Embarcadero Technologies 164

o For the register and pascal conventions, the evaluation order is not
defined.

o The cdecl, stdcall, and safecall conventions pass parameters from right to
left.

o For all conventions except cdecl, the procedure or function removes
parameters from the stack upon returning. With the cdecl convention, the
caller removes parameters from the stack when the call returns.

o The register convention uses up to three CPU registers to pass parameters,
while the other conventions pass all parameters on the stack.

o The safecall convention implements exception 'firewalls.' On Win32, this
implements interprocess COM error notification.

o winapi is not actually a calling convention. winapi defines using the
default platform calling convention. For example, on Win32 winapi is the
same as stdcall.

The table below summarizes calling conventions.

Calling conventions :

Directive

Parameter order

Clean-up

Passes parameters in registers?

register Undefined Routine Yes

pascal Undefined Routine No

cdecl Right-to-left Caller No

stdcall Right-to-left Routine No

safecall Right-to-left Routine No

The default register convention is the most efficient, since it usually avoids
creation of a stack frame. (Access methods for published properties must use
register.) The cdecl convention is useful when you call functions from shared
libraries written in C or C++, while stdcall and safecall are recommended, in
general, for calls to external code. On Win32, the operating system APIs are
stdcall and safecall. Other operating systems generally use cdecl. (Note that
stdcall is more efficient than cdecl.)

The safecall convention must be used for declaring dual-interface methods. The
pascal convention is maintained for backward compatibility.

Embarcadero Technologies 165

The directives near, far, and export refer to calling conventions in 16-bit Windows
programming. They have no effect in Win32 and are maintained for backward
compatibility only.

Forward and Interface Declarations

The forward directive replaces the block, including local variable declarations
and statements, in a procedure or function declaration. For example:

 function Calculate(X, Y: Integer): Real; forward;

declares a function called Calculate. Somewhere after the forward declaration,
the routine must be redeclared in a defining declaration that includes a block.
The defining declaration for Calculate might look like this:

 function Calculate;

 ... { declarations }

 begin

 ... { statement block }

 end;

Ordinarily, a defining declaration does not have to repeat the parameter list or
return type of the routine, but if it does repeat them, they must match those in
the forward declaration exactly (except that default parameters can be
omitted). If the forward declaration specifies an overloaded procedure or
function, then the defining declaration must repeat the parameter list.

A forward declaration and its defining declaration must appear in the same type
declaration section. That is, you cannot add a new section (such as a var
section or const section) between the forward declaration and the defining
declaration. The defining declaration can be an external or assembler
declaration, but it cannot be another forward declaration.

The purpose of a forward declaration is to extend the scope of a procedure or
function identifier to an earlier point in the source code. This allows other
procedures and functions to call the forward-declared routine before it is
actually defined. Besides letting you organize your code more flexibly, forward
declarations are sometimes necessary for mutual recursions.

The forward directive has no effect in the interface section of a unit. Procedure
and function headers in the interface section behave like forward declarations
and must have defining declarations in the implementation section. A routine
declared in the interface section is available from anywhere else in the unit and
from any other unit or program that uses the unit where it is declared.

External Declarations

The external directive, which replaces the block in a procedure or function
declaration, allows you to call routines that are compiled separately from your

Embarcadero Technologies 166

program. External routines can come from object files or dynamically loadable
libraries.

When importing a C function that takes a variable number of parameters, use
the varargs directive. For example:

 function printf(Format: PChar): Integer; cdecl; varargs;

The varargs directive works only with external routines and only with the cdecl
calling convention.

Linking to Object Files

To call routines from a separately compiled object file, first link the object file to
your application using the $L (or $LINK) compiler directive. For example:

 {$L BLOCK.OBJ}

links BLOCK.OBJ into the program or unit in which it occurs. Next, declare the
functions and procedures that you want to call:

 procedure MoveWord(var Source, Dest; Count: Integer); external;

 procedure FillWord(var Dest; Data: Integer; Count: Integer); external;

Now you can call the MoveWord and FillWord routines from BLOCK.OBJ.

On the Win32 platform, declarations like the ones above are frequently used to
access external routines written in assembly language. You can also place
assembly-language routines directly in your Delphi source code.

Importing Functions from Libraries

To import routines from a dynamically loadable library (.DLL), attach a directive
of the form

external stringConstant;

to the end of a normal procedure or function header, where stringConstant is
the name of the library file in single quotation marks. For example, on 32-bit
Windows

function SomeFunction(S: string): string; external 'strlib.dll';

imports a function called SomeFunction from strlib.dll.

Importing a Routine Under a Different Name

You can import a routine under a different name from the one it has in the
library. If you do this, specify the original name in the external directive:

Embarcadero Technologies 167

external stringConstant1 name stringConstant2;

where stringConstant1 gives the name of the library file and stringConstant2 is
the original name of the routine.

The following declaration imports a function from user32.dll (part of the
Windows API):

function MessageBox(HWnd: Integer; Text, Caption: PChar; Flags: Integer):

Integer; stdcall; external 'user32.dll' name 'MessageBoxA';

The original name of the function is MessageBoxA, but it is imported as MessageBox.

In your importing declaration, be sure to match the exact spelling and case of
the name of the routine. Later, when you call the imported routine, the name is
case-insensitive.

Importing a Routine by Index

Instead of a name, you can use a number to identify the routine you want to
import:

external stringConstant index integerConstant;

where integerConstant is the index of the routine in the export table.

Delaying the Loading of the Library

To postpone the loading of the library that contains the function to the moment
the function is actually needed, append the delayed directive to the imported
function:

function ExternalMethod(const SomeString: PChar): Integer; stdcall; external

'cstyle.dll' delayed;

delayed ensures that the library that contains the imported function is not loaded
at application startup, but rather when the first call to the function is made. For
more information on this topic, see the Libraries and Packages - Delayed
Loading topic.

Specifying Dependencies of the Library

If the library that contains the target routine depends on other libraries, use the
dependency directive to specify those dependencies.

To use the dependency directive, append the dependency keyword followed by a
comma-separated list of strings. Each string must contain the name of a library
that is a dependency of the target external library:

external <library> dependency <dependency1>, <dependency2>, …

Embarcadero Technologies 168

The following declaration indicates that libmidas.a depends on the standard
C++ library:

function DllGetDataSnapClassObject(const [REF] CLSID, [REF] IID: TGUID; var

Obj): HResult; cdecl; external 'libmidas.a' dependency 'stdc++';

Overloading Procedures and Functions

You can declare more than one routine in the same scope with the same name.
This is called overloading. Overloaded routines must be declared with the
overload directive and must have distinguishing parameter lists. For example,
consider the declarations:

 function Divide(X, Y: Real): Real; overload;

 begin

 Result := X/Y;

 end

 function Divide(X, Y: Integer): Integer; overload;

 begin

 Result := X div Y;

 end;

These declarations create two functions, both called Divide, that take
parameters of different types. When you call Divide, the compiler determines
which function to invoke by looking at the actual parameters passed in the call.
For example, Divide(6.0, 3.0) calls the first Divide function, because its arguments
are real-valued.

You can pass to an overloaded routine parameters that are not identical in type
with those in any of the declarations of the routine, but that are assignment-
compatible with the parameters in more than one declaration. This happens
most frequently when a routine is overloaded with different integer types or
different real types - for example:

 procedure Store(X: Longint); overload;

 procedure Store(X: Shortint); overload;

In these cases, when it is possible to do so without ambiguity, the compiler
invokes the routine whose parameters are of the type with the smallest range
that accommodates the actual parameters in the call. (Remember that real-
valued constant expressions are always of type Extended.)

Overloaded routines must be distinguished by the number of parameters they
take or the types of their parameters. Hence the following pair of declarations
causes a compilation error:

Embarcadero Technologies 169

 function Cap(S: string): string; overload;

 ...

 procedure Cap(var Str: string); overload;

 ...

But the declarations:

 function Func(X: Real; Y: Integer): Real; overload;

 ...

 function Func(X: Integer; Y: Real): Real; overload;

 ...

are legal.

When an overloaded routine is declared in a forward or interface declaration,
the defining declaration must repeat the parameter list of the routine.

The compiler can distinguish between overloaded functions that contain
AnsiString/PAnsiChar, UnicodeString/PChar and WideString/PWideChar
parameters in the same parameter position. String constants or literals passed
into such an overload situation are translated into the native string or character
type, which is UnicodeString/PChar.

 procedure test(const A: AnsiString); overload;

 procedure test(const W: WideString); overload;

 procedure test(const U: UnicodeString); overload;

 procedure test(const PW: PWideChar); overload;

 var

 a: AnsiString;

 b: WideString;

 c: UnicodeString;

 d: PWideChar;

 e: string;

 begin

 a := 'a';

 b := 'b';

 c := 'c';

 d := 'd';

 e := 'e';

 test(a); // calls AnsiString version

 test(b); // calls WideString version

 test(c); // calls UnicodeString version

 test(d); // calls PWideChar version

 test(e); // calls UnicodeString version

 test('abc'); // calls UnicodeString version

 test(AnsiString ('abc')); // calls AnsiString version

 test(WideString('abc')); // calls WideString version

 test(PWideChar('PWideChar')); // calls PWideChar version

 end;

Variants can also be used as parameters in overloaded function declarations.
Variant is considered more general than any simple type. Preference is always
given to exact type matches over variant matches. If a variant is passed into

Embarcadero Technologies 170

such an overload situation, and an overload that takes a variant exists in that
parameter position, it is considered to be an exact match for the Variant type.

This can cause some minor side effects with float types. Float types are matched
by size. If there is no exact match for the float variable passed to the overload
call but a variant parameter is available, the variant is taken over any smaller
float type.

For example:

 procedure foo(i: integer); overload;

 procedure foo(d: double); overload;

 procedure foo(v: variant); overload;

 var

 v: variant;

 begin

 foo(1); // integer version

 foo(v); // variant version

 foo(1.2); // variant version (float literals -> extended precision)

 end;

This example calls the variant version of foo, not the double version, because the
1.2 constant is implicitly an extended type and extended is not an exact match
for double. Extended is also not an exact match for Variant, but Variant is
considered a more general type (whereas double is a smaller type than
extended).

 foo(Double(1.2));

This typecast does not work. You should use typed consts instead:

 const d: double = 1.2;

 begin

 foo(d);

 end;

The above code works correctly, and calls the double version.

 const s: single = 1.2;

 begin

 foo(s);

 end;

The above code also calls the double version of foo. Single is a better fit to
double than to variant.

When declaring a set of overloaded routines, the best way to avoid float
promotion to variant is to declare a version of your overloaded function for each
float type (Single, Double, Extended) along with the variant version.

If you use default parameters in overloaded routines, be careful not to introduce
ambiguous parameter signatures.

Embarcadero Technologies 171

You can limit the potential effects of overloading by qualifying a name of a
routine when you call it. For example, Unit1.MyProcedure(X, Y) can call only
routines declared in Unit1; if no routine in Unit1 matches the name and
parameter list in the call, an error results.

Local Declarations

The body of a function or procedure often begins with declarations of local
variables used in the statement block of the routine. These declarations can also
include constants, types, and other routines. The scope of a local identifier is
limited to the routine where it is declared.

Nested Routines

Functions and procedures sometimes contain other functions and procedures
within the local-declarations section of their blocks. For example, the following
declaration of a procedure called DoSomething contains a nested procedure.

 procedure DoSomething(S: string);

 var

 X, Y: Integer;

 procedure NestedProc(S: string);

 begin

 ...

 end;

 begin

 ...

 NestedProc(S);

 ...

 end;

The scope of a nested routine is limited to the procedure or function in which it is
declared. In our example, NestedProc can be called only within DoSomething.

For real examples of nested routines, look at the DateTimeToString procedure,
the ScanDate function, and other routines in the SysUtils unit.

Embarcadero Technologies 172

Parameters (Delphi)

This topic covers the following items:

o Parameter semantics

o String parameters

o Array parameters

o Default parameters

About Parameters

Most procedure and function headers include a parameter list. For example, in
the header:

function Power(X: Real; Y: Integer): Real;

the parameter list is (X: Real; Y: Integer).

A parameter list is a sequence of parameter declarations separated by
semicolons and enclosed in parentheses. Each declaration is a comma-
delimited series of parameter names, followed in most cases by a colon and a
type identifier, and in some cases by the = symbol and a default value.
Parameter names must be valid identifiers. Any declaration can be preceded by
var, const, or out. Examples:

(X, Y: Real)

(var S: string; X: Integer)

(HWnd: Integer; Text, Caption: PChar; Flags: Integer)

(const P; I: Integer)

The parameter list specifies the number, order, and type of parameters that must
be passed to the routine when it is called. If a routine does not take any
parameters, omit the identifier list and the parentheses in its declaration:

procedure UpdateRecords;

begin

 ...

end;

Within the procedure or function body, the parameter names (X and Y in the first
example) can be used as local variables. Do not redeclare the parameter
names in the local declarations section of the procedure or function body.

Embarcadero Technologies 173

Parameter Semantics

Parameters are categorized in several ways:

o Every parameter is classified as value, variable, constant, or out. Value
parameters are the default; the reserved words var, const, and out
indicate variable, constant, and out parameters, respectively.

o Value parameters are always typed, while constant, variable, and out
parameters can be either typed or untyped.

o Special rules apply to array parameters.

Files and instances of structured types that contain files can be passed only as
variable (var) parameters.

Value and Variable Parameters

Most parameters are either value parameters (the default) or variable (var)
parameters. Value parameters are passed by value, while variable parameters
are passed by reference. To see what this means, consider the following
functions:

function DoubleByValue(X: Integer): Integer; // X is a value parameter

begin

 X := X * 2;

 Result := X;

end;

function DoubleByRef(var X: Integer): Integer; // X is a variable parameter

begin

 X := X * 2;

 Result := X;

end;

These functions return the same result, but only the second one - DoubleByRef
can change the value of a variable passed to it. Suppose we call the functions
like this:

var

 I, J, V, W: Integer;

begin

 I := 4;

 V := 4;

 J := DoubleByValue(I); // J = 8, I = 4

 W := DoubleByRef(V); // W = 8, V = 8

end;

After this code executes, the variable I, which was passed to DoubleByValue,
has the same value we initially assigned to it. But the variable V, which was
passed to DoubleByRef, has a different value.

Embarcadero Technologies 174

A value parameter acts like a local variable that gets initialized to the value
passed in the procedure or function call. If you pass a variable as a value
parameter, the procedure or function creates a copy of it; changes made to the
copy have no effect on the original variable and are lost when program
execution returns to the caller.

A variable parameter, on the other hand, acts like a pointer rather than a copy.
Changes made to the parameter within the body of a function or procedure
persist after program execution returns to the caller and the parameter name
itself has gone out of scope.

Even if the same variable is passed in two or more var parameters, no copies are
made. This is illustrated in the following example:

procedure AddOne(var X, Y: Integer);

begin

 X := X + 1;

 Y := Y + 1;

end;

var I: Integer;

begin

 I := 1;

 AddOne(I, I);

end;

After this code executes, the value of I is 3.

If a routine's declaration specifies a var parameter, you must pass an assignable
expression - that is, a variable, typed constant (in the {$J+} state), dereferenced
pointer, field, or indexed variable to the routine when you call it. To use our
previous examples, DoubleByRef(7) produces an error, although
DoubleByValue(7) is legal.

Indexes and pointer dereferences passed in var parameters - for example,
DoubleByRef(MyArray[I]) - are evaluated once, before execution of the routine.

Constant Parameters

A constant (const) parameter is like a local constant or read-only variable.
Constant parameters are similar to value parameters, except that you cannot
assign a value to a constant parameter within the body of a procedure or
function, nor can you pass one as a var parameter to another routine. (But when
you pass an object reference as a constant parameter, you can still modify the
object's properties.)

Using const allows the compiler to optimize code for structured - and string-type
parameters. It also provides a safeguard against unintentionally passing a
parameter by reference to another routine.

Embarcadero Technologies 175

Here, for example, is the header for the CompareStr function in the SysUtils unit:

function CompareStr(const S1, S2: string): Integer;

Because S1 and S2 are not modified in the body of CompareStr, they can be
declared as constant parameters.

Constant parameters may be passed to the function by value or by reference,
depending on the specific compiler used. To force the compiler to pass a
constant parameter by reference, you can use the [Ref] decorator with the
const keyword.

The following example shows how you can specify the [Ref] decorator either
before or after the const keyword:

function FunctionName(const [Ref] parameter1: Class1Name; [Ref] const

parameter2: Class2Name);

Out Parameters

An out parameter, like a variable parameter, is passed by reference. With an out
parameter, however, the initial value of the referenced variable is discarded by
the routine it is passed to. The out parameter is for output only; that is, it tells the
function or procedure where to store output, but does not provide any input.

For example, consider the procedure heading:

procedure GetInfo(out Info: SomeRecordType);

When you call GetInfo, you must pass it a variable of type SomeRecordType:

var MyRecord: SomeRecordType;

 ...

GetInfo(MyRecord);

But you're not using MyRecord to pass any data to the GetInfo procedure;
MyRecord is just a container where you want GetInfo to store the information it
generates. The call to GetInfo immediately frees the memory used by MyRecord,
before program control passes to the procedure.

Out parameters are frequently used with distributed-object models like COM. In
addition, you should use out parameters when you pass an uninitialized variable
to a function or procedure.

Embarcadero Technologies 176

Untyped Parameters

You can omit type specifications when declaring var, const, and out parameters.
(Value parameters must be typed.) For example:

procedure TakeAnything(const C);

declares a procedure called TakeAnything that accepts a parameter of any
type. When you call such a routine, you cannot pass it a numeral or untyped
numeric constant.

Within a procedure or function body, untyped parameters are incompatible with
every type. To operate on an untyped parameter, you must cast it. In general,
the compiler cannot verify that operations on untyped parameters are valid.

The following example uses untyped parameters in a function called Equal that
compares a specified number of bytes of any two variables:

function Equal(var Source, Dest; Size: Integer): Boolean;

type

 TBytes = array[0..MaxInt - 1] of Byte;

var

 N : Integer;

begin

 N := 0;

 while (N < Size) and (TBytes(Dest)[N] = TBytes(Source)[N]) do

 Inc(N);

 Equal := N = Size;

end;

Given the declarations:

type

 TVector = array[1..10] of Integer;

 TPoint = record

 X, Y: Integer; // Integer occupies 4 bytes. Therefore 8 bytes in a whole

 end;

var

 Vec1, Vec2: TVector;

 N: Integer;

 P: TPoint;

Embarcadero Technologies 177

you could make the following calls to Equal:

Equal(Vec1, Vec2, SizeOf(TVector)); // compare Vec1 to Vec2

Equal(Vec1, Vec2, SizeOf(Integer) * N); // compare first N

 // elements of Vec1 and Vec2

Equal(Vec1[1], Vec1[6], SizeOf(Integer) * 5); // compare first 5 to

 // last 5 elements of Vec1

Equal(Vec1[1], P, 8); // compare Vec1[1] to P.X and Vec1[2]

to P.Y

 // each Vec1[x] is integer and

occupies 4 bytes

String Parameters

When you declare routines that take short-string parameters, you cannot include
length specifiers in the parameter declarations. That is, the following declaration
causes a compilation error:

procedure Check(S: string[20]); // syntax error

But the following declaration is valid:

type TString20 = string[20];

procedure Check(S: TString20);

The special identifier OpenString can be used to declare routines that take short-
string parameters of varying length:

procedure Check(S: OpenString);

When the {$H} and {$P+} compiler directives are both in effect, the reserved
word string is equivalent to OpenString in parameter declarations.

Short strings, OpenString, $H, and $P are supported for backward compatibility
only. In new code, you can avoid these considerations by using long strings.

Array Parameters

When you declare routines that take array parameters, you cannot include
index type specifiers in the parameter declarations. That is, the declaration:

procedure Sort(A: array[1..10] of Integer) // syntax error

Embarcadero Technologies 178

causes a compilation error. But:

type TDigits = array[1..10] of Integer;

procedure Sort(A: TDigits);

is valid. Another approach is to use open array parameters.

Since the Delphi language does not implement value semantics for dynamic
arrays, 'value' parameters in routines do not represent a full copy of the dynamic
array. In this example:

type

 TDynamicArray = array of Integer;

 procedure p(Value: TDynamicArray);

 begin

 Value[0] := 1;

 end;

 procedure Run;

 var

 a: TDynamicArray;

 begin

 SetLength(a, 1);

 a[0] := 0;

 p(a);

 Writeln(a[0]); // Prints '1'

 end;

Note that the assignment to Value[0] in routine p will modify the content of
dynamic array of the caller, despite Value being a by-value parameter. If a full
copy of the dynamic array is required, use the Copy standard procedure to
create a value copy of the dynamic array.

Open Array Parameters

Open array parameters allow arrays of different sizes to be passed to the same
procedure or function. To define a routine with an open array parameter, use
the syntax array of type (rather than array[X..Y] of type) in the parameter
declaration. For example:

function Find(A: array of Char): Integer;

declares a function called Find that takes a character array of any size and
returns an integer.

Note: The syntax of open array parameters resembles that of
dynamic array types, but they do not mean the same thing. The
previous example creates a function that takes any array of Char
elements, including (but not limited to) dynamic arrays. To declare
parameters that must be dynamic arrays, you need to specify a
type identifier:

Embarcadero Technologies 179

type TDynamicCharArray = array of Char;

function Find(A: TDynamicCharArray): Integer;

Within the body of a routine, open array parameters are governed by the
following rules:

o They are always zero-based. The first element is 0, the second element is 1,
and so forth. The standard Low and High functions return 0 and Length - 1,
respectively. The SizeOf function returns the size of the actual array passed
to the routine.

o They can be accessed by element only. Assignments to an entire open
array parameter are not allowed.

o They can be passed to other procedures and functions only as open array
parameters or untyped var parameters. They cannot be passed to
SetLength.

o Instead of an array, you can pass a variable of the open array
parameter's base type. It will be treated as an array of length 1.

When you pass an array as an open array value parameter, the compiler
creates a local copy of the array within the routine's stack frame. Be careful not
to overflow the stack by passing large arrays.

The following examples use open array parameters to define a Clear procedure
that assigns zero to each element in an array of reals and a Sum function that
computes the sum of the elements in an array of reals:

procedure Clear(var A: array of Real);

var

 I: Integer;

begin

 for I := 0 to High(A) do A[I] := 0;

end;

function Sum(const A: array of Real): Real;

var

 I: Integer;

 S: Real;

begin

 S := 0;

 for I := 0 to High(A) do S := S + A[I];

 Sum := S;

end;

When you call routines that use open array parameters, you can pass open
array constructors to them.

Embarcadero Technologies 180

Variant Open Array Parameters

Variant open array parameters allow you to pass an array of differently typed
expressions to a single procedure or function. To define a routine with a variant
open array parameter, specify array of const as the parameter's type. Thus:

procedure DoSomething(A: array of const);

declares a procedure called DoSomething that can operate on heterogeneous
arrays.

The array of const construction is equivalent to array of TVarRec.
System.TVarRec, which is declared in the System unit, represents a record with a
variant part that can hold values of integer, Boolean, character, real, string,
pointer, class, class reference, interface, and variant types. TVarRec's VType field
indicates the type of each element in the array. Some types are passed as
pointers rather than values; in particular, strings are passed as Pointer and must
be typecast to string.

The following Win32 example, uses a variant open array parameter in a function
that creates a string representation of each element passed to it and
concatenates the results into a single string. The string-handling routines called in
this function are defined in SysUtils:

http://docwiki.embarcadero.com/Libraries/Rio/en/System.TVarRec

Embarcadero Technologies 181

function MakeStr(const Args: array of const): string;

var

 I: Integer;

begin

 Result := '';

 for I := 0 to High(Args) do

 with Args[I] do

 case VType of

 vtInteger: Result := Result + IntToStr(VInteger);

 vtBoolean: Result := Result + BoolToStr(VBoolean);

 vtChar: Result := Result + VChar;

 vtExtended: Result := Result + FloatToStr(VExtended^);

 vtString: Result := Result + VString^;

 vtPChar: Result := Result + VPChar;

 vtObject: Result := Result + VObject.ClassName;

 vtClass: Result := Result + VClass.ClassName;

 vtAnsiString: Result := Result + string(VAnsiString);

 vtUnicodeString: Result := Result + string(VUnicodeString);

 vtCurrency: Result := Result + CurrToStr(VCurrency^);

 vtVariant: Result := Result + string(VVariant^);

 vtInt64: Result := Result + IntToStr(VInt64^);

 end;

end;

We can call this function using an open array constructor. For example:

MakeStr(['test', 100, ' ', True, 3.14159, TForm])

returns the string 'test100 T3.14159TForm'.

Default Parameters

You can specify default parameter values in a procedure or function heading.
Default values are allowed only for typed const and value parameters. To
provide a default value, end the parameter declaration with the = symbol
followed by a constant expression that is assignment-compatible with the
parameter's type.

For example, given the declaration:

procedure FillArray(A: array of Integer; Value: Integer = 0);

the following procedure calls are equivalent.

FillArray(MyArray);

FillArray(MyArray, 0);

A multiple-parameter declaration cannot specify a default value. Thus, while the
following declaration is legal:

Embarcadero Technologies 182

function MyFunction(X: Real = 3.5; Y: Real = 3.5): Real;

The following declaration is not legal:

function MyFunction(X, Y: Real = 3.5): Real; // syntax error

Parameters with default values must occur at the end of the parameter list. That
is, all parameters following the first declared default value must also have default
values. So the following declaration is illegal:

procedure MyProcedure(I: Integer = 1; S: string); // syntax error

Default values specified in a procedural type override those specified in an
actual routine. Thus, given the declarations:

type TResizer = function(X: Real; Y: Real = 1.0): Real;

function Resizer(X: Real; Y: Real = 2.0): Real;

var

 F: TResizer;

 N: Real;

the statements:

F := Resizer;

F(N);

result in the values (N, 1.0) being passed to Resizer.

Default parameters are limited to values that can be specified by a constant
expression. Hence parameters of a dynamic-array, procedural, class, class-
reference, or interface type can have no value other than nil as their default.
Parameters of a record, variant, file, static-array, or object type cannot have
default values at all.

Default Parameters and Overloaded Functions

If you use default parameter values in an overloaded routine, avoid ambiguous
parameter signatures. Consider, for example, the following:

procedure Confused(I: Integer); overload;

 ...

procedure Confused(I: Integer; J: Integer = 0); overload;

 ...

Confused(X); // Which procedure is called?

In fact, neither procedure is called. This code generates a compilation error.

Embarcadero Technologies 183

Default Parameters in Forward and Interface Declarations

If a routine has a forward declaration or appears in the interface section of a
unit, default parameter values if there are any must be specified in the forward
or interface declaration. In this case, the default values can be omitted from the
defining (implementation) declaration; but if the defining declaration includes
default values, they must match those in the forward or interface declaration
exactly.

Calling Procedures and Functions (Delphi)
This topic covers the following items:

o Program control and routine parameters

o Open array constructors

o The inline directive

Program Control and Parameters

When you call a procedure or function, program control passes from the point
where the call is made to the body of the routine. You can make the call using
the declared name of the routine (with or without qualifiers) or using a
procedural variable that points to the routine. In either case, if the routine is
declared with parameters, your call to it must pass parameters that correspond
in order and type to the parameter list of the routine. The parameters you pass to
a routine are called actual parameters, while the parameters in the declaration
of the routine are called formal parameters.

When calling a routine, remember that:

o expressions used to pass typed const and value parameters must be
assignment-compatible with the corresponding formal parameters.

o expressions used to pass var and out parameters must be identically
typed with the corresponding formal parameters, unless the formal
parameters are untyped.

o only assignable expressions can be used to pass var and out parameters.

o if the formal parameters of a routine are untyped, numerals and true
constants with numeric values cannot be used as actual parameters.

When you call a routine that uses default parameter values, all actual
parameters following the first accepted default must also use the default values;
calls of the form SomeFunction(,,X) are not legal.

You can omit parentheses when passing all and only the default parameters to a
routine. For example, given the procedure:

Embarcadero Technologies 184

procedure DoSomething(X: Real = 1.0; I: Integer = 0; S: string = '');

the following calls are equivalent:

DoSomething();

DoSomething;

Open Array Constructors

Open array constructors allow you to construct arrays directly within function
and procedure calls. They can be passed only as open array parameters or
variant open array parameters.

An open array constructor, like a set constructor, is a sequence of expressions
separated by commas and enclosed in brackets.

For example, given the declarations:

var I, J: Integer;

procedure Add(A: array of Integer);

you could call the Add procedure with the statement:

Add([5, 7, I, I + J]);

This is equivalent to:

var Temp: array[0..3] of Integer;

 // …

 Temp[0] := 5;

 Temp[1] := 7;

 Temp[2] := I;

 Temp[3] := I + J;

 Add(Temp);

Open array constructors can be passed only as value or const parameters. The
expressions in a constructor must be assignment-compatible with the base type
of the array parameter. In the case of a variant open array parameter, the
expressions can be of different types.

Using the inline Directive

The Delphi compiler allows functions and procedures to be tagged with the
inline directive to improve performance. If the function or procedure meets
certain criteria, the compiler will insert code directly, rather than generating a
call. Inlining is a performance optimization that can result in faster code, but at
the expense of space. Inlining always causes the compiler to produce a larger

Embarcadero Technologies 185

binary file. The inline directive is used in function and procedure declarations
and definitions, like other directives.

procedure MyProc(x:Integer); inline;

begin

 // …

end;

function MyFunc(y:Char) : String; inline;

begin

 // …

end;

The inline directive is a suggestion to the compiler. There is no guarantee the
compiler will inline a particular routine, as there are a number of circumstances
where inlining cannot be done. The following list shows the conditions under
which inlining does or does not occur:

o Inlining will not occur on any form of late-bound method. This includes
virtual, dynamic, and message methods.

o Routines containing assembly code will not be inlined.

o Constructors and destructors will not be inlined.

o The main program block, unit initialization, and unit finalization blocks
cannot be inlined.

o Routines that are not defined before use cannot be inlined.

o Routines that take open array parameters cannot be inlined.

o Code can be inlined within packages, however, inlining never occurs
across package boundaries.

o No inlining is done between units that are circularly dependent. This
includes indirect circular dependencies, for example, unit A uses unit B,
and unit B uses unit C which in turn uses unit A. In this example, when
compiling unit A, no code from unit B or unit C will be inlined in unit A.

o The compiler can inline code when a unit is in a circular dependency, as
long as the code to be inlined comes from a unit outside the circular
relationship. In the above example, if unit A also used unit D, code from
unit D could be inlined in A, since it is not involved in the circular
dependency.

o If a routine is defined in the interface section and it accesses symbols
defined in the implementation section, that routine cannot be inlined.

o If a routine marked with inline uses external symbols from other units, all of
those units must be listed in the uses statement, otherwise the routine
cannot be inlined.

Embarcadero Technologies 186

o Procedures and functions used in conditional expressions in while-do and
repeat-until statements cannot be expanded inline.

o Within a unit, the body for an inline function should be defined before
calls to the function are made. Otherwise, the body of the function, which
is not known to the compiler when it reaches the call site, cannot be
expanded inline.

If you modify the implementation of an inlined routine, you will cause all units
that use that function to be recompiled. This is different from traditional rebuild
rules, where rebuilds were triggered only by changes in the interface section of a
unit.

The {$INLINE} compiler directive gives you finer control over inlining. The {$INLINE}
directive can be used at the site of the inlined definition of the routine, as well as
at the call site. Below are the possible values and their meaning:

Value Meaning at definition Meaning at call site

{$INLINE
ON}
(default)

The routine is compiled as inlineable if it
is tagged with the inline directive.

The routine will be expanded
inline if possible.

{$INLINE
AUTO}

Behaves like {$INLINE ON}, with the
addition that routines not marked with
inline will be inlined if their code size is
less than or equal to 32 bytes.

{$INLINE AUTO} has no effect on
whether a routine will be inlined
when it is used at the call site of
the routine.

{$INLINE
OFF}

The routine will not be marked as
inlineable, even if it is tagged with inline.

The routine will not be expanded
inline.

Anonymous Methods in Delphi
As the name suggests, an anonymous method is a procedure or function that
does not have a name associated with it. An anonymous method treats a block
of code as an entity that can be assigned to a variable or used as a parameter
to a method. In addition, an anonymous method can refer to variables and bind
values to the variables in the context in which the method is defined.
Anonymous methods can be defined and used with simple syntax. They are
similar to the construct of closures defined in other languages.

Note: This topic covers handling Delphi anonymous method in Delphi code. For
C++ code, see How to Handle Delphi Anonymous Methods in C++.

Syntax

An anonymous method is defined similarly to a regular procedure or function,
but with no name.

http://docwiki.embarcadero.com/RADStudio/Rio/en/How_to_Handle_Delphi_Anonymous_Methods_in_C%2B%2B

Embarcadero Technologies 187

For example, this function returns a function that is defined as an anonymous
method:

function MakeAdder(y: Integer): TFuncOfInt;

begin

 Result := { start anonymous method } function(x: Integer) : Integer

 begin

 Result := x + y;

 end; { end anonymous method }

end;

The function MakeAdder returns a function that it declares with no name: an
anonymous method.

Note that MakeAdder returns a value of type TFuncOfInt. An anonymous
method type is declared as a reference to a method:

type

 TFuncOfInt = reference to function(x: Integer): Integer;

This declaration indicates that the anonymous method:

o is a function

o takes one integer parameter

o returns an integer value.

In general, an anonymous function type is declared for either a procedure or
function:

type

 TType1 = reference to procedure (parameterlist);

 TType2 = reference to function (parameterlist): returntype;

where (parameterlist) are optional.

Here are a couple of examples of types:

type

 TSimpleProcedure = reference to procedure;

 TSimpleFunction = reference to function(x: string): Integer;

Embarcadero Technologies 188

An anonymous method is declared as a procedure or function without a name:

// Procedure

procedure (parameters)

begin

 { statement block }

end;

// Function

function (parameters): returntype

begin

 { statement block }

end;

where (parameters) are optional.

Using Anonymous Methods

Anonymous methods are typically assigned to something, as in these examples:

myFunc := function(x: Integer): string

begin

 Result := IntToStr(x);

end;

myProc := procedure(x: Integer)

begin

 Writeln(x);

end;

Anonymous methods may also be returned by functions or passed as values for
parameters when calling methods. For instance, using the anonymous method
variable myFunc defined just above:

type

 TFuncOfIntToString = reference to function(x: Integer): string;

procedure AnalyzeFunction(proc: TFuncOfIntToString);

begin

 { some code }

end;

// Call procedure with anonymous method as parameter

// Using variable:

AnalyzeFunction(myFunc);

// Use anonymous method directly:

AnalyzeFunction(function(x: Integer): string

begin

 Result := IntToStr(x);

end;)

Method references can also be assigned to methods as well as anonymous
methods. For example:

Embarcadero Technologies 189

type

 TMethRef = reference to procedure(x: Integer);

TMyClass = class

 procedure Method(x: Integer);

end;

var

 m: TMethRef;

 i: TMyClass;

begin

 // ...

 m := i.Method; //assigning to method reference

end;

However, the converse is not true: you cannot assign an anonymous method to
a regular method pointer. Method references are managed types, but method
pointers are unmanaged types. Thus, for type-safety reasons, assigning method
references to method pointers is not supported. For instance, events are method
pointer-valued properties, so you cannot use an anonymous method for an
event. See the section on variable binding for more information on this restriction.

Anonymous Methods Variable Binding

A key feature of anonymous methods is that they may reference variables that
are visible to them where they were defined. Furthermore, these variables can
be bound to values and wrapped up with a reference to the anonymous
method. This captures state and extends the lifetime of variables.

Variable Binding Illustration

Consider again the function defined above:

function MakeAdder(y: Integer): TFuncOfInt;

begin

 Result := function(x: Integer): Integer

 begin

 Result := x + y;

 end;

end;

We can create an instance of this function that binds a variable value:

var

 adder: TFuncOfInt;

begin

 adder := MakeAdder(20);

 Writeln(adder(22)); // prints 42

end.

The variable adder contains an anonymous method that binds the value 20 to
the variable y referenced in the anonymous method's code block. This binding
persists even if the value goes out of scope.

Embarcadero Technologies 190

Anonymous Methods as Events

A motivation for using method references is to have a type that can contain a
bound variables, also known as closure values. Since closures close over their
defining environment, including any local variables referenced at the point of
definition, they have state that must be freed. Method references are managed
types (they are reference counted), so they can keep track of this state and free
it when necessary. If a method reference or closure could be freely assigned to a
method pointer, such as an event, then it would be easy to create ill-typed
programs with dangling pointers or memory leaks.

Delphi events are a convention for properties. There is no difference between an
event and a property, except for the kind of type. If a property is of a method
pointer type, then it is an event.

If a property is of a method reference type, then it should logically be
considered an event too. However the IDE does not treat it as an event. This
matters for classes that are installed into the IDE as components and custom
controls.

Therefore, to have an event on a component or custom control that can be
assigned to using a method reference or a closure value, the property must be
of a method reference type. However, this is inconvenient, because the IDE does
not recognize it as an event.

Here is an example of using a property with a method reference type, so it can
operate as an event:

type

 TProc = reference to procedure;

 TMyComponent = class(TComponent)

 private

 FMyEvent: TProc;

 public

 // MyEvent property serves as an event:

 property MyEvent: TProc read FMyEvent write FMyEvent;

 // some other code invokes FMyEvent as usual pattern for events

 end;

// …

var

 c: TMyComponent;

begin

 c := TMyComponent.Create(Self);

 c.MyEvent := procedure

 begin

 ShowMessage('Hello World!'); // shown when TMyComponent invokes MyEvent

 end;

end;

Embarcadero Technologies 191

Variable Binding Mechanism

To avoid creating memory leaks, it is useful to understand the variable binding
process in greater detail.

Local variables defined at the start of a procedure, function or method
(hereafter "routine") normally live only as long as that routine is active.
Anonymous methods can extend these variables' lifetimes.

If an anonymous method refers to an outer local variable in its body, that
variable is "captured". Capturing means extending the lifetime of the variable, so
that it lives as long as the anonymous method value, rather than dying with its
declaring routine. Note that variable capture captures variables--not values. If a
variable's value changes after being captured by constructing an anonymous
method, the value of the variable the anonymous method captured changes
too, because they are the same variable with the same storage. Captured
variables are stored on the heap, not the stack.

Anonymous method values are of the method reference type, and are
reference-counted. When the last method reference to a given anonymous
method value goes out of scope, or is cleared (initialized to nil) or finalized, the
variables it has captured finally go out of scope.

This situation is more complicated in the case of multiple anonymous methods
capturing the same local variable. To understand how this works in all situations,
it is necessary to be more precise about the mechanics of the implementation.

Whenever a local variable is captured, it is added to a "frame object" associated
with its declaring routine. Every anonymous method declared in a routine is
converted into a method on the frame object associated with its containing
routine. Finally, any frame object created because of an anonymous method
value being constructed or variable being captured is chained to its parent
frame by another reference--if any such frame exists and if necessary to access
a captured outer variable. These links from one frame object to its parent are
also reference counted. An anonymous method declared in a nested, local
routine that captures variables from its parent routine keeps that parent frame
object alive until it itself goes out of scope.

Embarcadero Technologies 192

For example, consider this situation:

type

 TProc = reference to procedure;

procedure Call(proc: TProc);

// ...

procedure Use(x: Integer);

// ...

procedure L1; // frame F1

var

 v1: Integer;

 procedure L2; // frame F1_1

 begin

 Call(procedure // frame F1_1_1

 begin

 Use(v1);

 end);

 end;

begin

 Call(procedure // frame F1_2

 var

 v2: Integer;

 begin

 Use(v1);

 Call(procedure // frame F1_2_1

 begin

 Use(v2);

 end);

 end);

end;

Each routine and anonymous method is annotated with a frame identifier to
make it easier to identify which frame object links to which:

o v1 is a variable in F1

o v2 is a variable in F1_2 (captured by F1_2_1)

o anonymous method for F1_1_1 is a method in F1_1

o F1_1 links to F1 (F1_1_1 uses v1)

o anonymous method for F1_2 is a method in F1

o anonymous method for F1_2_1 is a method in F1_2

Frames F1_2_1 and F1_1_1 do not need frame objects, since they neither declare
anonymous methods nor have variables that are captured. They are not on any
path of parentage between a nested anonymous method and an outer
captured variable either. (They have implicit frames stored on the stack.)

Given only a reference to the anonymous method F1_2_1, variables v1 and v2
are kept alive. If instead, the only reference that outlives the invocation of F1 is
F1_1_1, only variable v1 is kept alive.

Embarcadero Technologies 193

It is possible to create a cycle in the method reference/frame link chains that
causes a memory leak. For example, storing an anonymous method directly or
indirectly in a variable that the anonymous method itself captures creates a
cycle, causing a memory leak.

Utility of Anonymous Methods

Anonymous methods offer more than just a simple pointer to something that is
callable. They provide several advantages:

o binding variable values

o easy way to define and use methods

o easy to parameterize using code

Variable Binding

Anonymous methods provide a block of code along with variable bindings to
the environment in which they are defined, even if that environment is not in
scope. A pointer to a function or procedure cannot do that.

For instance, the statement adder := MakeAdder(20); from the code sample
above produces a variable adder that encapsulates the binding of a variable to
the value 20.

Some other languages that implement such a construct refer to them as
closures. Historically, the idea was that evaluating an expression like adder :=
MakeAdder(20); produced a closure. It represents an object that contains
references to the bindings of all variables referenced in the function and defined
outside it, thus closing it by capturing the values of the variables.

Embarcadero Technologies 194

Ease of Use

The following sample shows a typical class definition to define some simple
methods and then invoke them:

type

 TMethodPointer = procedure of object; // delegate void TMethodPointer();

 TStringToInt = function(x: string): Integer of object;

TObj = class

 procedure HelloWorld;

 function GetLength(x: string): Integer;

end;

procedure TObj.HelloWorld;

begin

 Writeln('Hello World');

end;

function TObj.GetLength(x: string): Integer;

begin

 Result := Length(x);

end;

var

 x: TMethodPointer;

 y: TStringToInt;

 obj: TObj;

begin

 obj := TObj.Create;

 x := obj.HelloWorld;

 x;

 y := obj.GetLength;

 Writeln(y('foo'));

end.

Embarcadero Technologies 195

Contrast this to the same methods defined and invoked using anonymous
methods:

type

 TSimpleProcedure = reference to procedure;

 TSimpleFunction = reference to function(x: string): Integer;

var

 x1: TSimpleProcedure;

 y1: TSimpleFunction;

begin

 x1 := procedure

 begin

 Writeln('Hello World');

 end;

 x1; //invoke anonymous method just defined

 y1 := function(x: string): Integer

 begin

 Result := Length(x);

 end;

 Writeln(y1('bar'));

end.

Notice how much simpler and shorter the code is that uses anonymous methods.
This is ideal if you want to explicitly and simply define these methods and use
them immediately without the overhead and effort of creating a class that may
never be used anywhere else. The resulting code is easier to understand.

Using Code for a Parameter

Anonymous methods make it easier to write functions and structures
parameterized by code, not just values.

Multithreading is a good application for anonymous methods. if you want to
execute some code in parallel, you might have a parallel-for function that looks
like this:

type

 TProcOfInteger = reference to procedure(x: Integer);

procedure ParallelFor(start, finish: Integer; proc: TProcOfInteger);

Embarcadero Technologies 196

The ParallelFor procedure iterates a procedure over different threads. Assuming
this procedure is implemented correctly and efficiently using threads or a thread
pool, it could then be easily used to take advantage of multiple processors:

procedure CalculateExpensiveThings;

var

 results: array of Integer;

begin

 SetLength(results, 100);

 ParallelFor(Low(results), High(results),

 procedure(i: Integer) // \

 begin // \ code block

 results[i] := ExpensiveCalculation(i); // / used as parameter

 end // /

);

 // use results

 end;

Contrast this to how it would need to be done without anonymous methods:
probably a "task" class with a virtual abstract method, with a concrete
descendant for ExpensiveCalculation, and then adding all the tasks to a queue--
not nearly as natural or integrated.

Here, the "parallel-for" algorithm is the abstraction that is being parameterized by
code. In the past, a common way to implement this pattern is with a virtual base
class with one or more abstract methods; consider the TThread class and its
abstract Execute method. However, anonymous methods make this pattern--
parameterizing of algorithms and data structures using code--far easier.

Embarcadero Technologies 197

Classes and Objects Index
This section describes the object-oriented features of the Delphi language, such
as the declaration and usage of class types.

Topics

o Classes and Objects (Delphi)

o Fields (Delphi)

o Methods (Delphi)

o Properties (Delphi)

o Events (Delphi)

o Class References

o Exceptions (Delphi)

o Class and Record Helpers (Delphi)

o Nested Type Declarations

o Operator Overloading (Delphi)

Embarcadero Technologies 198

Classes and Objects (Delphi)
This topic covers the following material:

o Declaration syntax of classes

o Inheritance and scope

o Visibility of class members

o Forward declarations and mutually dependent classes

Class Types

A class, or class type, defines a structure consisting of fields, methods, and
properties. Instances of a class type are called objects. The fields, methods, and
properties of a class are called its components or members.

o A field is essentially a variable that is part of an object. Like the fields of a
record, fields of classes represent data items that exist in each instance of
the class.

o A method is a procedure or function associated with a class. Most
methods operate on objects, that is, instances of a class. Some methods
(called class methods) operate on class types themselves.

o A property is an interface to data associated with an object (often stored
in a field). Properties have access specifiers, which determine how their
data is read and modified. From other parts of a program outside of the
object itself, a property appears in most respects like a field.

Objects are dynamically allocated blocks of memory whose structure is
determined by their class type. Each object has a unique copy of every field
defined in the class, but all instances of a class share the same methods. Objects
are created and destroyed by special methods called constructors and
destructors.

A variable of a class type is actually a pointer that references an object. Hence
more than one variable can refer to the same object. Like other pointers, class-
type variables can hold the value nil. But you do not have to explicitly
dereference a class-type variable to access the object it points to. For example,
SomeObject.Size := 100 assigns the value 100 to the Size property of the object
referenced by SomeObject; you would not write this as SomeObject^.Size := 100.

A class type must be declared and given a name before it can be instantiated.
(You cannot define a class type within a variable declaration.) Declare classes
only in the outermost scope of a program or unit, not in a procedure or function
declaration.

A class type declaration has the following form:

Embarcadero Technologies 199

 type

 className = class [abstract | sealed] (ancestorClass)

 type

 nestedTypeDeclaration

 const

 nestedConstDeclaration

 memberList

 end;

Required elements of the class type declaration

o className is any valid identifier.

o memberList declares members of the class: fields, methods, and
properties.

Optional elements of the class type declaration

o abstract. An entire class can be declared abstract even if it does not
contain any abstract virtual methods.

o sealed. A sealed class cannot be extended through inheritance.

o ancestorClass. The new class inherits directly from the predefined
System.TObject class, in case you omit (ancestorClass). If you include
(ancestorClass), and memberList is empty, you can omit end.

o nestedTypeDeclaration. Nested types present a way to keep
conceptually related types together and to avoid name collisions.

o nestedConstDeclaration. Nested constants present a way to keep
conceptually related types together and to avoid name collisions.

A class cannot be both abstract and sealed. The [abstract | sealed] syntax
(the [] brackets and the | pipe between them) is used to specify that only one
of the optional sealed or abstract keywords can be used. Only the sealed or
abstract keywords are meaningful. The brackets and pipe symbols should be
deleted.

Note: Delphi allows instantiating a class declared abstract, for
backward compatibility, but this feature should not be used
anymore.

Methods appear in a class declaration as function or procedure headings, with
no body. Defining declarations for each method occur elsewhere in the
program.

For example, here is the declaration of the TMemoryStream class from the Classes
unit:

Embarcadero Technologies 200

TMemoryStream = class(TCustomMemoryStream)

 private

 FCapacity: Longint;

 procedure SetCapacity(NewCapacity: Longint);

 protected

 function Realloc(var NewCapacity: Longint): Pointer; virtual;

 property Capacity: Longint read FCapacity write SetCapacity;

 public

 destructor Destroy; override;

 procedure Clear;

 procedure LoadFromStream(Stream: TStream);

 procedure LoadFromFile(const FileName: string);

 procedure SetSize(const NewSize: Int64); override;

 procedure SetSize(NewSize: Longint); override;

 function Write(const Buffer; Count: Longint): Longint; override;

 function Write(const Buffer: TBytes; Offset, Count: Longint): Longint;

override;

 end; // deprecated 'Use TBytesStream';

Classes.TMemoryStream descends from Classes.TCustomMemoryStream, inheriting
most of its members. But it defines – or redefines – several methods and
properties, including its destructor method, Destroy. Its constructor, Create, is
inherited without change from System.TObject, and so is not redeclared. Each
member is declared as private, protected, or public (this class has no published
members). These terms are explained below.

Given this declaration, you can create an instance of TMemoryStream as follows:

var

 stream: TMemoryStream;

begin

 stream := TMemoryStream.Create;

Inheritance and Scope

When you declare a class, you can specify its immediate ancestor. For example:

 type TSomeControl = class(TControl);

declares a class called TSomeControl that descends from Vcl.Controls.TControl.
A class type automatically inherits all of the members from its immediate
ancestor. Each class can declare new members and can redefine inherited
ones, but a class cannot remove members defined in an ancestor. Hence
TSomeControl contains all of the members defined in Vcl.Controls.TControl and
in each of the Vcl.Controls.TControl ancestors.

The scope of a member's identifier starts at the point where the member is
declared, continues to the end of the class declaration, and extends over all

http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.Controls.TControl
http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.Controls.TControl
http://docwiki.embarcadero.com/Libraries/Rio/en/Vcl.Controls.TControl

Embarcadero Technologies 201

descendants of the class and the blocks of all methods defined in the class and
its descendants.

TObject and TClass

The System.TObject class, declared in the System unit, is the ultimate ancestor of
all other classes. System.TObject defines only a handful of methods, including a
basic constructor and destructor. In addition to System.TObject, the System unit
declares the class reference type System.TClass:

 TClass = class of TObject;

If the declaration of a class type does not specify an ancestor, the class inherits
directly from System.TObject. Thus:

type TMyClass = class

 ...

 end;

is equivalent to:

type TMyClass = class(TObject)

 ...

 end;

The latter form is recommended for readability.

Compatibility of Class Types

A class type is assignment-compatible with its ancestors. Hence a variable of a
class type can reference an instance of any descendant type. For example,
given the declarations:

type

 TFigure = class(TObject);

 TRectangle = class(TFigure);

 TSquare = class(TRectangle);

var

 Fig: TFigure;

the variable Fig can be assigned values of type TFigure, TRectangle, and
TSquare.

Object Types

The Delphi compiler allows an alternative syntax to class types. You can declare
object types using the syntax:

http://docwiki.embarcadero.com/Libraries/Rio/en/System.TObject
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TObject
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TObject
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TObject

Embarcadero Technologies 202

type objectTypeName = object (ancestorObjectType)

 memberList

 end;

where objectTypeName is any valid identifier, (ancestorObjectType) is optional,
and memberList declares fields, methods, and properties. If
(ancestorObjectType) is omitted, then the new type has no ancestor. Object
types cannot have published members.

Since object types do not descend from System.TObject, they provide no built-in
constructors, destructors, or other methods. You can create instances of an
object type using the New procedure and destroy them with the Dispose
procedure, or you can simply declare variables of an object type, just as you
would with records.

Object types are supported for backward compatibility only. Their use is not
recommended.

Visibility of Class Members

Every member of a class has an attribute called visibility, which is indicated by
one of the reserved words private, protected, public, published, or automated.
For example,

 published property Color: TColor read GetColor write SetColor;

declares a published property called Color. Visibility determines where and how
a member can be accessed, with private representing the least accessibility,
protected representing an intermediate level of accessibility, and public,
published, and automated representing the greatest accessibility.

If a member's declaration appears without its own visibility specifier, the member
has the same visibility as the one that precedes it. Members at the beginning of
a class declaration that do not have a specified visibility are by default
published, provided the class is compiled in the {$M+} state or is derived from a
class compiled in the {$M+} state; otherwise, such members are public.

For readability, it is best to organize a class declaration by visibility, placing all the
private members together, followed by all the protected members, and so forth.
This way each visibility reserved word appears at most once and marks the
beginning of a new 'section' of the declaration. So a typical class declaration
should be like this:

http://docwiki.embarcadero.com/Libraries/Rio/en/System.TObject

Embarcadero Technologies 203

type

 TMyClass = class(TControl)

 private

 { private declarations here }

 protected

 { protected declarations here }

 public

 { public declarations here }

 published

 { published declarations here }

 end;

You can increase the visibility of a property in a descendent class by redeclaring
it, but you cannot decrease its visibility. For example, a protected property can
be made public in a descendant, but not private. Moreover, published
properties cannot become public in a descendent class. For more information,
see Property Overrides and Redeclarations.

Private, Protected, and Public Members

A private member is invisible outside of the unit or program where its class is
declared. In other words, a private method cannot be called from another
module, and a private field or property cannot be read or written to from
another module. By placing related class declarations in the same module, you
can give each class access to the private members of another class without
making those members more widely accessible. For a member to be visible only
inside its class, it needs to be declared strict private.

A protected member is visible anywhere in the module where its class is declared
and from any descendent class, regardless of the module where the
descendent class appears. A protected method can be called, and a protected
field or property read or written to, from the definition of any method belonging
to a class that descends from the one where the protected member is declared.
Members that are intended for use only in the implementation of derived classes
are usually protected.

A public member is visible wherever its class can be referenced.

Strict Visibility Specifiers

In addition to private and protected visibility specifiers, the Delphi compiler
supports additional visibility settings with greater access constraints. These
settings are strict private and strict protected visibility.

Class members with strict private visibility are accessible only within the class in
which they are declared. They are not visible to procedures or functions
declared within the same unit. Class members with strict protected visibility are
visible within the class in which they are declared, and within any descendent
class, regardless of where it is declared. Furthermore, when instance members

Embarcadero Technologies 204

(those declared without the class or class var keywords) are declared strict

private or strict protected, they are inaccessible outside of the instance of a class
in which they appear. An instance of a class cannot access strict private or strict

protected instance members in other instances of the same class.

Note: The word strict is treated as a directive within the context of a
class declaration. Within a class declaration you cannot declare a
member named 'strict', but it is acceptable for use outside of a
class declaration.

Published Members

Published members have the same visibility as public members. The difference is
that run-time type information (RTTI) is generated for published members. RTTI
allows an application to query the fields and properties of an object dynamically
and to locate its methods. RTTI is used to access the values of properties when
saving and loading form files, to display properties in the Object Inspector, and
to associate specific methods (called event handlers) with specific properties
(called events).

Published properties are restricted to certain data types. Ordinal, string, class,
interface, variant, and method-pointer types can be published. So can set types,
provided the upper and lower bounds of the base type have ordinal values from
0 through 31. (In other words, the set must fit in a byte, word, or double word.)
Any real type except Real48 can be published. Properties of an array type (as
distinct from array properties, discussed below) cannot be published.

Some properties, although publishable, are not fully supported by the streaming
system. These include properties of record types, array properties of all
publishable types, and properties of enumerated types that include anonymous
values. If you publish a property of this kind, the Object Inspector will not display it
correctly, nor will the property's value be preserved when objects are streamed
to disk.

All methods are publishable, but a class cannot publish two or more overloaded
methods with the same name. Fields can be published only if they are of a class
or interface type.

A class cannot have published members unless it is compiled in the {$M+} state
or descends from a class compiled in the {$M+} state. Most classes with
published members derive from Classes.TPersistent, which is compiled in the
{$M+} state, so it is seldom necessary to use the $M directive.

Note: Identifiers that contain Unicode characters are not allowed in
published sections of classes, or in types used by published
members.

Embarcadero Technologies 205

Automated Members (Win32 Only)

Automated members have the same visibility as public members. The difference
is that Automation type information (required for Automation servers) is
generated for automated members. Automated members typically appear only
in Win32 classes . The automated reserved word is maintained for backward
compatibility. The TAutoObject class in the ComObj unit does not use
automated.

The following restrictions apply to methods and properties declared as
automated.

o The types of all properties, array property parameters, method
parameters, and function results must be automatable. The automatable
types are Byte, Currency, Real, Double, Longint, Integer, Single, Smallint,
AnsiString, WideString, TDateTime, Variant, OleVariant, WordBool, and all
interface types.

o Method declarations must use the default register calling convention.
They can be virtual, but not dynamic.

o Property declarations can include access specifiers (read and write) but
other specifiers (index, stored, default, and nodefault) are not allowed.
Access specifiers must list a method identifier that uses the default register
calling convention; field identifiers are not allowed.

o Property declarations must specify a type. Property overrides are not
allowed.

The declaration of an automated method or property can include a dispid
directive. Specifying an already used ID in a dispid directive causes an error.

On the Win32 platform, this directive must be followed by an integer constant
that specifies an Automation dispatch ID for the member. Otherwise, the
compiler automatically assigns the member a dispatch ID that is one larger than
the largest dispatch ID used by any method or property in the class and its
ancestors. For more information about Automation (on Win32 only), see
Automation Objects.

Forward Declarations and Mutually Dependent Classes

If the declaration of a class type ends with the word class and a semicolon—that
is, if it has the form

type className = class;

with no ancestor or class members listed after the word class, then it is a forward
declaration. A forward declaration must be resolved by a defining declaration
of the same class within the same type declaration section. In other words,

Embarcadero Technologies 206

between a forward declaration and its defining declaration, nothing can occur
except other type declarations.

Forward declarations allow mutually dependent classes. For example:

type

 TFigure = class; // forward declaration

 TDrawing = class

 Figure: TFigure;

 // ...

 end;

 TFigure = class // defining declaration

 Drawing: TDrawing;

 // ...

 end;

Do not confuse forward declarations with complete declarations of types that
derive from System.TObject without declaring any class members.

type

 TFirstClass = class; // this is a forward declaration

 TSecondClass = class // this is a complete class declaration

 end; //

 TThirdClass = class(TObject); // this is a complete class declaration

Fields (Delphi)
This topic describes the syntax of class data fields declarations.

About Fields

A field is like a variable that belongs to an object. Fields can be of any type,
including class types. (That is, fields can hold object references.) Fields are usually
private.

To define a field member of a class, simply declare the field as you would a
variable. For example, the following declaration creates a class called TNumber
whose only member, other than the methods inherited from System.TObject, is
an integer field called Int:

 type

 TNumber = class

 var

 Int: Integer;

 end;

The var keyword is optional. However, if it is not used, then all field declarations
must occur before any property or method declarations. After any property or
method declarations, the var may be used to introduce any additional field
declarations.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.TObject
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TObject

Embarcadero Technologies 207

Fields are statically bound; that is, references to them are fixed at compile time.
To see what this means, consider the following code:

 type

 TAncestor = class

 Value: Integer;

 end;

 TDescendant = class(TAncestor)

 Value: string; // hides the inherited Value field

 end;

 var

 MyObject: TAncestor;

 begin

 MyObject := TDescendant.Create;

 MyObject.Value := 'Hello!' // error

 (MyObject as TDescendant).Value := 'Hello!' // works!

 end;

Although MyObject holds an instance of TDescendant, it is declared as
TAncestor. The compiler therefore interprets MyObject.Value as referring to the
(integer) field declared in TAncestor. Both fields, however, exist in the
TDescendant object; the inherited Value is hidden by the new one and can be
accessed through a typecast.

Declarations of constants and typed constants can appear in classes and non-
anonymous records at global scope. Both constants and typed constants can
also appear within nested type definitions. Constants and typed constants can
appear only within class definitions when the class is defined locally to a
procedure (i.e. they cannot appear within records defined within a procedure).

Class Fields

Class fields are data fields in a class that can be accessed without an object
reference (unlike the normal "instance fields" which are discussed above). The
data stored in a class field are shared by all instances of the class and may be
accessed by referring to the class or to a variable that represents an instance of
the class.

You can introduce a block of class fields within a class declaration by using the
class var block declaration. All fields declared after class var have static storage
attributes. A class var block is terminated by the following:

1. Another class var or var declaration

2. A procedure or function (i.e. method) declaration (including class
procedures and class functions)

3. A property declaration (including class properties)

Embarcadero Technologies 208

4. A constructor or destructor declaration

5. A visibility scope specifier (public, private, protected, published, strict

private, and strict protected)

For example:

 type

 TMyClass = class

 public

 class var // Introduce a block of class static fields.

 Red: Integer;

 Green: Integer;

 Blue: Integer;

 var // Ends the class var block.

 InstanceField: Integer;

 end;

The class fields Red, Green, and Blue can be accessed with the code:

 TMyClass.Red := 1;

 TMyClass.Green := 2;

 TMyClass.Blue := 3;

Class fields may also be accessed through an instance of the class. With the
following declaration:

 var

 myObject: TMyClass;

This code has the same effect as the assignments to Red, Green, and Blue
above:

 myObject.Red := 1;

 myObject.Green := 2;

 myObject.Blue := 3;

Methods (Delphi)
A method is a procedure or function associated with a class. A call to a method
specifies the object (or, if it is a class method, the class) that the method should
operate on. For example, SomeObject.Free calls the Free method in
SomeObject.

This topic covers the following material:

o Method declarations and implementation

o Method binding

o Overloading methods

Embarcadero Technologies 209

o Constructors and destructors

o Message methods

About Methods

Within a class declaration, methods appear as procedure and function
headings, which work like forward declarations. Somewhere after the class
declaration, but within the same module, each method must be implemented
by a defining declaration. For example, suppose the declaration of TMyClass
includes a method called DoSomething:

 type

 TMyClass = class(TObject)

 ...

 procedure DoSomething;

 ...

 end;

A defining declaration for DoSomething must occur later in the module:

 procedure TMyClass.DoSomething;

 begin

 ...

 end;

While a class can be declared in either the interface or the implementation
section of a unit, defining declarations for a class methods must be in the
implementation section.

In the heading of a defining declaration, the method name is always qualified
with the name of the class to which it belongs. The heading can repeat the
parameter list from the class declaration; if it does, the order, type, and names of
the parameters must match exactly, and if the method is a function, the return
value must match as well.

Method declarations can include special directives that are not used with other
functions or procedures. Directives should appear in the class declaration only,
not in the defining declaration, and should always be listed in the following
order:

reintroduce; overload; binding; calling convention; abstract; warning

Where:

o binding is virtual, dynamic, or override;

o calling convention is register, pascal, cdecl, stdcall, or safecall;

o warning is platform, deprecated, or library. For more information about
these warning (hinting) directives, see Hinting Directives.

Embarcadero Technologies 210

All Delphi directives are listed in Directives.

Inherited

The reserved word inherited plays a special role in implementing polymorphic
behavior. It can occur in method definitions, with or without an identifier after it.

If inherited is followed by the name of a member, it represents a normal method
call or reference to a property or field, except that the search for the referenced
member begins with the immediate ancestor of the enclosing method's class. For
example, when:

 inherited Create(...);

occurs in the definition of a method, it calls the inherited Create.

When inherited has no identifier after it, it refers to the inherited method with the
same name as the enclosing method or, if the enclosing method is a message
handler, to the inherited message handler for the same message. In this case,
inherited takes no explicit parameters, but passes to the inherited method the
same parameters with which the enclosing method was called. For example:

 inherited;

occurs frequently in the implementation of constructors. It calls the inherited
constructor with the same parameters that were passed to the descendant.

Self

Within the implementation of a method, the identifier Self references the object
in which the method is called. For example, here is the implementation of
TCollection Add method in the Classes unit:

 function TCollection.Add: TCollectionItem;

 begin

 Result := FItemClass.Create(Self);

 end;

The Add method calls the Create method in the class referenced by the
FItemClass field, which is always a TCollectionItem descendant.
TCollectionItem.Create takes a single parameter of type TCollection, so Add
passes it the TCollection instance object where Add is called. This is illustrated in
the following code:

 var MyCollection: TCollection;

 ...

 MyCollection.Add // MyCollection is passed to the

 // TCollectionItem.Create method

Embarcadero Technologies 211

Self is useful for a variety of reasons. For example, a member identifier declared
in a class type might be redeclared in the block of one of the class' methods. In
this case, you can access the original member identifier as Self.Identifier.

For information about Self in class methods, see "Class Operators" in Class
References.

Method Binding

Method bindings can be static (the default), virtual, or dynamic. Virtual and
dynamic methods can be overridden, and they can be abstract. These
designations come into play when a variable of one class type holds a value of
a descendent class type. They determine which implementation is activated
when a method is called.

Static Methods

Methods are by default static. When a static method is called, the declared
(compile-time) type of the class or object variable used in the method call
determines which implementation to activate. In the following example, the
Draw methods are static:

 type

 TFigure = class

 procedure Draw;

 end;

 TRectangle = class(TFigure)

 procedure Draw;

 end;

Given these declarations, the following code illustrates the effect of calling a
static method. In the second call to Figure.Draw, the Figure variable references
an object of class TRectangle, but the call invokes the implementation of Draw in
TFigure, because the declared type of the Figure variable is TFigure:

Embarcadero Technologies 212

 var

 Figure: TFigure;

 Rectangle: TRectangle;

 begin

 Figure := TFigure.Create;

 Figure.Draw; // calls TFigure.Draw

 Figure.Destroy;

 Figure := TRectangle.Create;

 Figure.Draw; // calls TFigure.Draw

 TRectangle(Figure).Draw; // calls TRectangle.Draw

 Figure.Destroy;

 Rectangle := TRectangle.Create;

 Rectangle.Draw; // calls TRectangle.Draw

 Rectangle.Destroy;

 end;

Virtual and Dynamic Methods

To make a method virtual or dynamic, include the virtual or dynamic directive in
its declaration. Virtual and dynamic methods, unlike static methods, can be
overridden in descendent classes. When an overridden method is called, the
actual (run-time) type of the class or object used in the method call--not the
declared type of the variable--determines which implementation to activate.

To override a method, redeclare it with the override directive. An override
declaration must match the ancestor declaration in the order and type of its
parameters and in its result type (if any).

In the following example, the Draw method declared in TFigure is overridden in
two descendent classes:

 type

 TFigure = class

 procedure Draw; virtual;

 end;

 TRectangle = class(TFigure)

 procedure Draw; override;

 end;

 TEllipse = class(TFigure)

 procedure Draw; override;

 end;

Embarcadero Technologies 213

Given these declarations, the following code illustrates the effect of calling a
virtual method through a variable whose actual type varies at run time:

 var

 Figure: TFigure;

 begin

 Figure := TRectangle.Create;

 Figure.Draw; // calls TRectangle.Draw

 Figure.Destroy;

 Figure := TEllipse.Create;

 Figure.Draw; // calls TEllipse.Draw

 Figure.Destroy;

 end;

Only virtual and dynamic methods can be overridden. All methods, however,
can be overloaded; see Overloading methods.

Final Methods

The Delphi compiler also supports the concept of final virtual and dynamic
methods. Declarations of final methods have the form:

function|procedure FunctionName; virtual|dynamic; final;

Here the virtual|dynamic syntax (two keywords and the | pipe between them)
is used to specify that one and only one of the virtual or dynamic keywords
should be used. Meaningful is only the virtual or dynamic keyword; the pipe
symbol itself should be deleted.

When the keyword final is applied to a virtual or dynamic method, no
descendent class can override that method. Use of the final keyword is an
important design decision that can help document how the class is intended to
be used. It can also give the compiler hints that allow it to optimize the code it
produces.

Note: The virtual or dynamic keywords must be written before the
final keyword.

Example

type

 Base = class

 procedure TestProcedure; virtual;

 procedure TestFinalProcedure; virtual; final;

 end;

 Derived = class(Base)

 procedure TestProcedure; override;

 //Ill-formed: E2352 Cannot override a final method

 procedure TestFinalProcedure; override;

 end;

Embarcadero Technologies 214

Virtual versus Dynamic

In Delphi for Win32, virtual and dynamic methods are semantically equivalent.
However, they differ in the implementation of method-call dispatching at run
time: virtual methods optimize for speed, while dynamic methods optimize for
code size.

In general, virtual methods are the most efficient way to implement polymorphic
behavior. Dynamic methods are useful when a base class declares many
overridable methods that are inherited by many descendent classes in an
application, but only occasionally overridden.

Note: Only use dynamic methods if there is a clear, observable
benefit. Generally, use virtual methods.

Overriding versus Hiding

If a method declaration specifies the same method identifier and parameter
signature as an inherited method, but does not include override, the new
declaration merely hides the inherited one without overriding it. Both methods
exist in the descendent class, where the method name is statically bound. For
example:

 type

 T1 = class(TObject)

 procedure Act; virtual;

 end;

 T2 = class(T1)

 procedure Act; // Act is redeclared, but not overridden

 end;

 var

 SomeObject: T1;

 begin

 SomeObject := T2.Create;

 SomeObject.Act; // calls T1.Act

 end;

Reintroduce

The reintroduce directive suppresses compiler warnings about hiding previously
declared virtual methods. For example:

 procedure DoSomething; reintroduce; // The ancestor class also

 // has a DoSomething method

Use reintroduce when you want to hide an inherited virtual method with a new
one.

Embarcadero Technologies 215

Abstract Methods

An abstract method is a virtual or dynamic method that has no implementation
in the class where it is declared. Its implementation is deferred to a descendent
class. Abstract methods must be declared with the directive abstract after virtual
or dynamic. For example:

 procedure DoSomething; virtual; abstract;

You can call an abstract method only in a class or instance of a class in which
the method has been overridden.

Class Methods

Most methods are called instance methods, because they operate on an
individual instance of an object. A class method is a method (other than a
constructor) that operates on classes instead of objects. There are two types of
class methods: ordinary class methods and class static methods.

Ordinary Class Methods

The definition of a class method must begin with the reserved word class. For
example:

 type

 TFigure = class

 public

 class function Supports(Operation: string): Boolean; virtual;

 class procedure GetInfo(var Info: TFigureInfo); virtual;

 ...

 end;

The defining declaration of a class method must also begin with class. For
example:

 class procedure TFigure.GetInfo(var Info: TFigureInfo);

 begin

 ...

 end;

In the defining declaration of a class method, the identifier Self represents the
class where the method is called (which can be a descendant of the class in
which it is defined.) If the method is called in the class C, then Self is of the type
class of C. Thus you cannot use Self to access instance fields, instance properties,
and normal (object) methods. You can use Self to call constructors and other
class methods, or to access class properties and class fields.

A class method can be called through a class reference or an object reference.
When it is called through an object reference, the class of the object becomes
the value of Self.

Embarcadero Technologies 216

Class Static Methods

Like class methods, class static methods can be accessed without an object
reference. Unlike ordinary class methods, class static methods have no Self
parameter at all. They also cannot access any instance members. (They still have
access to class fields, class properties, and class methods.) Also unlike class
methods, class static methods cannot be declared virtual.

Methods are made class static by appending the word static to their
declaration, for example:

 type

 TMyClass = class

 strict private

 class var

 FX: Integer;

 strict protected

 // Note: Accessors for class properties

 // must be declared class static.

 class function GetX: Integer; static;

 class procedure SetX(val: Integer); static;

 public

 class property X: Integer read GetX write SetX;

 class procedure StatProc(s: String); static;

 end;

Like a class method, you can call a class static method through the class type
(for example, without having an object reference), such as:

 TMyClass.X := 17;

 TMyClass.StatProc('Hello');

Overloading Methods

A method can be redeclared using the overload directive. In this case, if the
redeclared method has a different parameter signature from its ancestor, it
overloads the inherited method without hiding it. Calling the method in a
descendent class activates whichever implementation matches the parameters
in the call.

Embarcadero Technologies 217

If you overload a virtual method, use the reintroduce directive when you
redeclare it in descendent classes. For example:

 type

 T1 = class(TObject)

 procedure Test(I: Integer); overload; virtual;

 end;

 T2 = class(T1)

 procedure Test(S: string); reintroduce; overload;

 end;

 ...

 SomeObject := T2.Create;

 SomeObject.Test('Hello!'); // calls T2.Test

 SomeObject.Test(7); // calls T1.Test

Within a class, you cannot publish multiple overloaded methods with the same
name. Maintenance of run time type information requires a unique name for
each published member:

 type

 TSomeClass = class

 published

 function Func(P: Integer): Integer;

 function Func(P: Boolean): Integer; // error

 ...

Methods that serve as property read or write specifiers cannot be overloaded.

The implementation of an overloaded method must repeat the parameter list
from the class declaration. For more information about overloading, see
Overloading Procedures and Functions in Procedures and Functions (Delphi).

Constructors

A constructor is a special method that creates and initializes instance objects.
The declaration of a constructor looks like a procedure declaration, but it begins
with the word constructor. Examples:

 constructor Create;

 constructor Create(AOwner: TComponent);

Constructors must use the default register calling convention. Although the
declaration specifies no return value, a constructor returns a reference to the
object it creates or is called in.

A class can have more than one constructor, but most have only one. It is
conventional to call the constructor Create.

Embarcadero Technologies 218

To create an object, call the constructor method on a class type. For example:

 MyObject := TMyClass.Create;

This allocates storage for the new object, sets the values of all ordinal fields to
zero, assigns nil to all pointer and class-type fields, and makes all string fields
empty. Other actions specified in the constructor implementation are performed
next; typically, objects are initialized based on values passed as parameters to
the constructor. Finally, the constructor returns a reference to the newly
allocated and initialized object. The type of the returned value is the same as the
class type specified in the constructor call.

If an exception is raised during the execution of a constructor that was invoked
on a class reference, the Destroy destructor is automatically called to destroy the
unfinished object.

When a constructor is called using an object reference (rather than a class
reference), it does not create an object. Instead, the constructor operates on
the specified object, executing only the statements in the constructor's
implementation, and then returns a reference to the object. A constructor is
typically invoked on an object reference in conjunction with the reserved word
inherited to execute an inherited constructor.

Here is an example of a class type and its constructor:

 type

 TShape = class(TGraphicControl)

 private

 FPen: TPen;

 FBrush: TBrush;

 procedure PenChanged(Sender: TObject);

 procedure BrushChanged(Sender: TObject);

 public

 constructor Create(Owner: TComponent); override;

 destructor Destroy; override;

 ...

 end;

 constructor TShape.Create(Owner: TComponent);

 begin

 inherited Create(Owner); // Initialize inherited parts

 Width := 65; // Change inherited properties

 Height := 65;

 FPen := TPen.Create; // Initialize new fields

 FPen.OnChange := PenChanged;

 FBrush := TBrush.Create;

 FBrush.OnChange := BrushChanged;

 end;

The first action of a constructor is usually to call an inherited constructor to
initialize the object's inherited fields. The constructor then initializes the fields
introduced in the descendent class. Because a constructor always clears the
storage it allocates for a new object, all fields start with a value of zero (ordinal

Embarcadero Technologies 219

types), nil (pointer and class types), empty (string types), or Unassigned (variants).
Hence there is no need to initialize fields in a constructor's implementation
except to nonzero or nonempty values.

When invoked through a class-type identifier, a constructor declared virtual is
equivalent to a static constructor. When combined with class-reference types,
however, virtual constructors allow polymorphic construction of objects--that is,
construction of objects whose types are not known at compile time. (See Class
References.)

Destructors

A destructor is a special method that destroys the object where it is called and
deallocates its memory. The declaration of a destructor looks like a procedure
declaration, but it begins with the word destructor. Example:

 destructor SpecialDestructor(SaveData: Boolean);

 destructor Destroy; override;

Destructors on Win32 must use the default register calling convention. Although a
class can have more than one destructor, it is recommended that each class
override the inherited Destroy method and declare no other destructors.

To call a destructor, you must reference an instance object. For example:

 MyObject.Destroy;

When a destructor is called, actions specified in the destructor implementation
are performed first. Typically, these consist of destroying any embedded objects
and freeing resources that were allocated by the object. Then the storage that
was allocated for the object is disposed of.

Here is an example of a destructor implementation:

 destructor TShape.Destroy;

 begin

 FBrush.Free;

 FPen.Free;

 inherited Destroy;

 end;

The last action in a destructor implementation is typically to call the inherited
destructor to destroy the inherited fields of the object.

When an exception is raised during the creation of an object, Destroy is
automatically called to dispose of the unfinished object. This means that Destroy
must be prepared to dispose of partially constructed objects. Because a
constructor sets the fields of a new object to zero or empty values before
performing other actions, class-type and pointer-type fields in a partially

Embarcadero Technologies 220

constructed object are always nil. A destructor should therefore check for nil
values before operating on class-type or pointer-type fields. Calling the Free
method (defined in TObject) rather than Destroy offers a convenient way to
check for nil values before destroying an object.

Class Constructors

A class constructor is a special class method that is not accessible to developers.
Calls to class constructors are inserted automatically by the compiler into the
initialization section of the unit where the class is defined. Normally, class
constructors are used to initialize the static fields of the class or to perform a type
of initialization, which is required before the class or any class instance can
function properly. Even though the same result can be obtained by placing class
initialization code into the initialization section, class constructors have the
benefit of helping the compiler decide which classes should be included into the
final binary file and which should be removed from it.

The next example shows the usual way of initializing class fields:

 type

 TBox = class

 private

 class var FList: TList<Integer>;

 end;

 implementation

 initialization

 { Initialize the static FList member }

 TBox.FList := TList<Integer>.Create();

 end.

Embarcadero Technologies 221

This method has a big disadvantage: even though an application can include
the unit in which TBox is declared, it may never actually use the TBox class. In the
current example, the TBox class is included into the resulting binary, because it is
referenced in the initialization section. To alleviate this problem, consider using
class constructors:

 type

 TBox = class

 private

 class var FList: TList<Integer>;

 class constructor Create;

 end;

 implementation

 class constructor TBox.Create;

 begin

 { Initialize the static FList member }

 FList := TList<Integer>.Create();

 end;

 end.

In this case, the compiler checks whether TBox is actually used anywhere in the
application, and if it is used, a call to the class constructor is added
automatically to the initialization section of the unit.

Note: Even though the compiler takes care of ordering the initialization of classes,
in some complex scenarios, ordering may become random. This happens when
the class constructor of a class depends on the state of another class that, in
turn, depends on the first class.

Note: The class constructor for a generic class or record may execute multiple
times. The exact number of times the class constructor is executed in this case
depends on the number of specialized versions of the generic type. For example,
the class constructor for a specialized TList<String> class may execute multiple
times in the same application.

Class Destructors

Class destructors are the opposite of class constructors in that they perform the
finalization of the class. Class destructors come with the same advantages as
class constructors, except for finalization purposes.

Embarcadero Technologies 222

The following example builds on the example shown in class constructors and
introduces the finalization routine:

 type

 TBox = class

 private

 class var FList: TList<Integer>;

 class constructor Create;

 class destructor Destroy;

 end;

 implementation

 class constructor TBox.Create;

 begin

 { Initialize the static FList member }

 FList := TList<Integer>.Create();

 end;

 class destructor TBox.Destroy;

 begin

 { Finalize the static FList member }

 FList.Free;

 end;

 end.

Note: The class destructor for a generic class or record may execute multiple
times. The exact number of times the class destructor is executed in this case
depends on the number of specialized versions of the generic type. For example,
the class destructor for a specialized TList<String> class may execute multiple
times in the same application.

Message Methods

Message methods implement responses to dynamically dispatched messages.
The message method syntax is supported on all platforms. VCL uses message
methods to respond to Windows messages.

A message method is created by including the message directive in a method
declaration, followed by an integer constant from 1 through 49151 that specifies
the message ID. For message methods in VCL controls, the integer constant can
be one of the Win32 message IDs defined, along with corresponding record
types, in the Messages unit. A message method must be a procedure that takes
a single var parameter.

For example:

 type

 TTextBox = class(TCustomControl)

 private

 procedure WMChar(var Message: TWMChar); message WM_CHAR;

 ...

 end;

Embarcadero Technologies 223

A message method does not have to include the override directive to override
an inherited message method. In fact, it does not have to specify the same
method name or parameter type as the method it overrides. The message ID
alone determines to which message the method responds and whether it is an
override.

Implementing Message Methods

The implementation of a message method can call the inherited message
method, as in the following example:

 procedure TTextBox.WMChar(var Message: TWMChar);

 begin

 if Message.CharCode = Ord(#13) then

 ProcessEnter

 else

 inherited;

 end;

The inherited statement searches backward through the class hierarchy and
invokes the first message method with the same ID as the current method,
automatically passing the message record to it. If no ancestor class implements
a message method for the given ID, inherited calls the DefaultHandler method
originally defined in TObject.

The implementation of DefaultHandler in TObject simply returns without
performing any actions. By overriding DefaultHandler, a class can implement its
own default handling of messages. On Win32, the DefaultHandler method for
controls calls the Win32 API DefWindowProc.

Message Dispatching

Message handlers are seldom called directly. Instead, messages are dispatched
to an object using the Dispatch method inherited from TObject:

 procedure Dispatch(var Message);

The Message parameter passed to Dispatch must be a record whose first entry is
a field of type Word containing a message ID.

Dispatch searches backward through the class hierarchy (starting from the class
of the object where it is called) and invokes the first message method for the ID
passed to it. If no message method is found for the given ID, Dispatch calls
DefaultHandler.

Embarcadero Technologies 224

Properties (Delphi)
This topic describes the following material:

o Property access

o Array properties

o Index specifiers

o Storage specifiers

o Property overrides and redeclarations

o Class properties

About Properties

A property, like a field, defines an attribute of an object. But while a field is
merely a storage location whose contents can be examined and changed, a
property associates specific actions with reading or modifying its data. Properties
provide control over access to an object's attributes, and they allow attributes to
be computed.

The declaration of a property specifies a name and a type, and includes at least
one access specifier. The syntax of a property declaration is:

property propertyName[indexes]: type index integerConstant specifiers;

where

o propertyName is any valid identifier.

o [indexes] is optional and is a sequence of parameter declarations
separated by semicolons. Each parameter declaration has the form
identifier1, ..., identifiern: type. For more information, see Array Properties,
below.

o type must be a predefined or previously declared type identifier. That is,
property declarations like property Num: 0..9 ... are invalid.

o the index integerConstant clause is optional. For more information, see
Index Specifiers, below.

o specifiers is a sequence of read, write, stored, default (or nodefault), and
implements specifiers. Every property declaration must have at least one
read or write specifier.

Properties are defined by their access specifiers. Unlike fields, properties cannot
be passed as var parameters, nor can the @ operator be applied to a property.
The reason is that a property doesn't necessarily exist in memory. It could, for

Embarcadero Technologies 225

instance, have a read method that retrieves a value from a database or
generates a random value.

Property Access

Every property has a read specifier, a write specifier, or both. These are called
access specifiers and they have the form:

read fieldOrMethod

write fieldOrMethod

where fieldOrMethod is the name of a field or method declared in the same
class as the property or in an ancestor class.

o If fieldOrMethod is declared in the same class, it must occur before the
property declaration. If it is declared in an ancestor class, it must be visible
from the descendant; that is, it cannot be a private field or method of an
ancestor class declared in a different unit.

o If fieldOrMethod is a field, it must be of the same type as the property.

o If fieldOrMethod is a method, it cannot be dynamic and, if virtual, cannot
be overloaded. Moreover, access methods for a published property must
use the default register calling convention.

o In a read specifier, if fieldOrMethod is a method, it must be a
parameterless function whose result type is the same as the property's
type. (An exception is the access method for an indexed property or an
array property.)

o In a write specifier, if fieldOrMethod is a method, it must be a procedure
that takes a single value or const parameter of the same type as the
property (or more, if it is an array property or indexed property).

For example, given the declaration:

 property Color: TColor read GetColor write SetColor;

the GetColor method must be declared as:

 function GetColor: TColor;

Embarcadero Technologies 226

and the SetColor method must be declared as one of these:

 procedure SetColor(Value: TColor);

 procedure SetColor(const Value: TColor);

(The name of SetColor's parameter, of course, doesn't have to be Value.)

When a property is referenced in an expression, its value is read using the field or
method listed in the read specifier. When a property is referenced in an
assignment statement, its value is written using the field or method listed in the
write specifier.

The example below declares a class called TCompass with a published property
called Heading. The value of Heading is read through the FHeading field and
written through the SetHeading procedure:

 type

 THeading = 0..359;

 TCompass = class(TControl)

 private

 FHeading: THeading;

 procedure SetHeading(Value: THeading);

 published

 property Heading: THeading read FHeading write SetHeading;

 ...

 end;

Given this declaration, the statements:

 if Compass.Heading = 180 then GoingSouth;

 Compass.Heading := 135;

correspond to:

 if Compass.FHeading = 180 then GoingSouth;

 Compass.SetHeading(135);

In the TCompass class, no action is associated with reading the Heading
property; the read operation consists of retrieving the value stored in the
FHeading field. On the other hand, assigning a value to the Heading property
translates into a call to the SetHeading method, which, presumably, stores the
new value in the FHeading field as well as performing other actions. For example,
SetHeading might be implemented like this:

Embarcadero Technologies 227

 procedure TCompass.SetHeading(Value: THeading);

 begin

 if FHeading <> Value then

 begin

 FHeading := Value;

 Repaint; // update user interface to reflect new value

 end;

 end;

A property whose declaration includes only a read specifier is a read-only
property, and one whose declaration includes only a write specifier is a write-
only property. It is an error to assign a value to a read-only property or use a
write-only property in an expression.

Array Properties

Array properties are indexed properties. They can represent things like items in a
list, child controls of a control, and pixels of a bitmap.

The declaration of an array property includes a parameter list that specifies the
names and types of the indexes. For example:

 property Objects[Index: Integer]: TObject read GetObject write SetObject;

 property Pixels[X, Y: Integer]: TColor read GetPixel write SetPixel;

 property Values[const Name: string]: string read GetValue write SetValue;

The format of an index parameter list is the same as that of a procedure's or
function's parameter list, except that the parameter declarations are enclosed in
brackets instead of parentheses. Unlike arrays, which can use only ordinal-type
indexes, array properties allow indexes of any type.

For array properties, access specifiers must list methods rather than fields. The
method in a read specifier must be a function that takes the number and type of
parameters listed in the property's index parameter list, in the same order, and
whose result type is identical to the property's type. The method in a write
specifier must be a procedure that takes the number and type of parameters
listed in the property's index parameter list, in the same order, plus an additional
value or const parameter of the same type as the property.

For example, the access methods for the array properties above might be
declared as:

 function GetObject(Index: Integer): TObject;

 function GetPixel(X, Y: Integer): TColor;

 function GetValue(const Name: string): string;

 procedure SetObject(Index: Integer; Value: TObject);

 procedure SetPixel(X, Y: Integer; Value: TColor);

 procedure SetValue(const Name, Value: string);

Embarcadero Technologies 228

An array property is accessed by indexing the property identifier. For example,
the statements:

 if Collection.Objects[0] = nil then Exit;

 Canvas.Pixels[10, 20] := clRed;

 Params.Values['PATH'] := 'C:\BIN';

correspond to:

 if Collection.GetObject(0) = nil then Exit;

 Canvas.SetPixel(10, 20, clRed);

 Params.SetValue('PATH', 'C:\BIN');

The definition of an array property can be followed by the default directive, in
which case the array property becomes the default property of the class. For
example:

 type

 TStringArray = class

 public

 property Strings[Index: Integer]: string ...; default;

 ...

 end;

If a class has a default property, you can access that property with the
abbreviation object[index], which is equivalent to object.property[index]. For
example, given the declaration above, StringArray.Strings[7] can be
abbreviated to StringArray[7]. A class can have only one default property with a
given signature (array parameter list), but it is possible to overload the default
property. Changing or hiding the default property in descendent classes may
lead to unexpected behavior, since the compiler always binds to properties
statically.

Embarcadero Technologies 229

Index Specifiers

Index specifiers allow several properties to share the same access method while
representing different values. An index specifier consists of the directive index
followed by an integer constant between -2147483647 and 2147483647. If a
property has an index specifier, its read and write specifiers must list methods
rather than fields. For example:

 type

 TRectangle = class

 private

 FCoordinates: array[0..3] of Longint;

 function GetCoordinate(Index: Integer): Longint;

 procedure SetCoordinate(Index: Integer; Value: Longint);

 public

 property Left: Longint index 0 read GetCoordinate

 write SetCoordinate;

 property Top: Longint index 1 read GetCoordinate

 write SetCoordinate;

 property Right: Longint index 2 read GetCoordinate

 write SetCoordinate;

 property Bottom: Longint index 3 read GetCoordinate

 write SetCoordinate;

 property Coordinates[Index: Integer]: Longint

 read GetCoordinate

 write SetCoordinate;

 ...

 end;

An access method for a property with an index specifier must take an extra
value parameter of type Integer. For a read function, it must be the last
parameter; for a write procedure, it must be the second-to-last parameter
(preceding the parameter that specifies the property value). When a program
accesses the property, the property's integer constant is automatically passed to
the access method.

Given the declaration above, if Rectangle is of type TRectangle, then:

 Rectangle.Right := Rectangle.Left + 100;

corresponds to:

 Rectangle.SetCoordinate(2, Rectangle.GetCoordinate(0) + 100);

Storage Specifiers

The optional stored, default, and nodefault directives are called storage
specifiers. They have no effect on program behavior, but control whether or not
to save the values of published properties in form files.

Embarcadero Technologies 230

The stored directive must be followed by True, False, the name of a Boolean field,
or the name of a parameterless method that returns a Boolean value. For
example:

 property Name: TComponentName read FName write SetName stored False;

If a property has no stored directive, it is treated as if stored True were specified.

The default directive must be followed by a constant of the same type as the
property. For example:

 property Tag: Longint read FTag write FTag default 0;

To override an inherited default value without specifying a new one, use the
nodefault directive. The default and nodefault directives are supported only for
ordinal types and for set types, provided the upper and lower bounds of the set's
base type have ordinal values between 0 and 31; if such a property is declared
without default or nodefault, it is treated as if nodefault were specified. For reals,
pointers, and strings, there is an implicit default value of 0, nil, and '' (the empty
string), respectively.

Note: You can't use the ordinal value -2147483648 has a default
value. This value is used internally to represent nodefault.

When saving a component's state, the storage specifiers of the component's
published properties are checked. If a property's current value is different from its
default value (or if there is no default value) and the stored specifier is True, then
the property's value is saved. Otherwise, the property's value is not saved.

Note: Property values are not automatically initialized to the default
value. That is, the default directive controls only when property
values are saved to the form file, but not the initial value of the
property on a newly created instance.

Storage specifiers are not supported for array properties. The default directive
has a different meaning when used in an array property declaration. See Array
Properties, above.

Property Overrides and Redeclarations

A property declaration that does not specify a type is called a property override.
Property overrides allow you to change a property's inherited visibility or
specifiers. The simplest override consists only of the reserved word property
followed by an inherited property identifier; this form is used to change a
property's visibility. For example, if an ancestor class declares a property as
protected, a derived class can redeclare it in a public or published section of
the class. Property overrides can include read, write,stored, default, and
nodefault directives; any such directive overrides the corresponding inherited
directive. An override can replace an inherited access specifier, add a missing

Embarcadero Technologies 231

specifier, or increase a property's visibility, but it cannot remove an access
specifier or decrease a property's visibility. An override can include an
implements directive, which adds to the list of implemented interfaces without
removing inherited ones.

The following declarations illustrate the use of property overrides:

 type

 TAncestor = class

 ...

 protected

 property Size: Integer read FSize;

 property Text: string read GetText write SetText;

 property Color: TColor read FColor write SetColor stored False;

 ...

 end;

 type

 TDerived = class(TAncestor)

 ...

 protected

 property Size write SetSize;

 published

 property Text;

 property Color stored True default clBlue;

 ...

 end;

The override of Size adds a write specifier to allow the property to be modified.
The overrides of Text and Color change the visibility of the properties from
protected to published. The property override of Color also specifies that the
property should be filed if its value is not clBlue.

A redeclaration of a property that includes a type identifier hides the inherited
property rather than overriding it. This means that a new property is created with
the same name as the inherited one. Any property declaration that specifies a
type must be a complete declaration, and must therefore include at least one
access specifier.

Whether a property is hidden or overridden in a derived class, property look-up is
always static. That is, the declared (compile-time) type of the variable used to
identify an object determines the interpretation of its property identifiers. Hence,
after the following code executes, reading or assigning a value to
MyObject.Value invokes Method1 or Method2, even though MyObject holds an
instance of TDescendant. But you can cast MyObject to TDescendant to access
the descendent class's properties and their access specifiers:

Embarcadero Technologies 232

 type

 TAncestor = class

 ...

 property Value: Integer read Method1 write Method2;

 end;

 TDescendant = class(TAncestor)

 ...

 property Value: Integer read Method3 write Method4;

 end;

 var MyObject: TAncestor;

 ...

 MyObject := TDescendant.Create;

Class Properties

Class properties can be accessed without an object reference. Class property
accessors must themselves be declared as class static methods, or class fields. A
class property is declared with the class property keywords. Class properties
cannot be published, and cannot have stored or default value definitions.

You can introduce a block of class static fields within a class declaration by using
the class var block declaration. All fields declared after class var have static
storage attributes. A class var block is terminated by the following:

1. Another class var declaration

2. A procedure or function (i.e. method) declaration (including class
procedures and class functions)

3. A property declaration (including class properties)

4. A constructor or destructor declaration

5. A visibility scope specifier (public, private, protected, published, strict

private, and strict protected)

For example:

 type

 TMyClass = class

 strict private

 class var // Note fields must be declared as class fields

 FRed: Integer;

 FGreen: Integer;

 FBlue: Integer;

 public // ends the class var block

 class property Red: Integer read FRed write FRed;

 class property Green: Integer read FGreen write FGreen;

 class property Blue: Integer read FBlue write FBlue;

 end;

Embarcadero Technologies 233

You can access the above class properties with the code:

 TMyClass.Red := 0;

 TMyClass.Blue := 0;

 TMyClass.Green := 0;

Events (Delphi)
This topic describes the following material:

o Event properties and event handlers

o Triggering multiple event handlers

About Events

An event links an occurrence in the system with the code that responds to that
occurrence. The occurrence triggers the execution of a procedure called an
event handler. The event handler performs the tasks that are required in
response to the occurrence. Events allow the behavior of a component to be
customized at design-time or at run time. To change the behavior of the
component, replace the event handler with a custom event handler that will
have the desired behavior.

Event Properties and Event Handlers

Components that are written in Delphi use properties to indicate the event
handler that will be executed when the event occurs. By convention, the name
of an event property begins with "On", and the property is implemented with a
field rather than read/write methods. The value stored by the property is a
method pointer, pointing to the event handler procedure.

In the following example, the TObservedObject class includes an OnPing event,
of type TPingEvent. The FOnPing field is used to store the event handler. The
event handler in this example, TListener.Ping, prints 'TListener has been pinged!'.

Embarcadero Technologies 234

 program EventDemo;

 {$APPTYPE CONSOLE}

 type

 { Define a procedural type }

 TPingEvent = procedure of object;

 { The observed object }

 TObservedObject = class

 private

 FPing: TPingEvent;

 public

 property OnPing: TPingEvent read FPing write FPing;

 { Triggers the event if anything is registered }

 procedure TriggerEvent();

 end;

 { The listener }

 TListener = class

 procedure Ping;

 end;

 procedure TObservedObject.TriggerEvent;

 begin

 { Call the registerd event only if there is a listener }

 if Assigned(FPing) then

 FPing();

 end;

 procedure TListener.Ping;

 begin

 Writeln('TListener has been pinged.');

 end;

 var

 ObservedObject: TObservedObject;

 Listener: TListener;

 begin

 { Create object instances }

 ObservedObject := TObservedObject.Create();

 Listener := TListener.Create();

 { Register the event handler }

 ObservedObject.OnPing := Listener.Ping;

 { Trigger the event }

 ObservedObject.TriggerEvent();//Should output 'TListener has been pinged'

 Readln; // Pause console before closing

 end.

Embarcadero Technologies 235

Triggering Multiple Event Handlers

In Delphi, events can be assigned only a single event handler. If multiple event
handlers must be executed in response to an event, the event handler assigned
to the event must call any other event handlers. In the following code, a subclass
of TListener called TListenerSubclass has its own event handler called Ping2. In this
example, the Ping2 event handler must explicitly call the TListener.Ping event
handler in order to trigger it in response to the OnPing event:

 program EventDemo2;

 {$APPTYPE CONSOLE}

 type

 { Define a procedural type }

 TPingEvent = procedure of object;

 { The observed object }

 TObservedObject = class

 private

 FPing: TPingEvent;

 public

 property OnPing: TPingEvent read FPing write FPing;

 { Triggers the event if anything is registered }

 procedure TriggerEvent();

 end;

 { The listener }

 TListener = class

 procedure Ping;

 end;

 { The listener sub-class }

 TListenerSubclass = class(TListener)

 procedure Ping2;

 end;

 procedure TObservedObject.TriggerEvent;

 begin

 { Call the registerd event only if there is a listener }

 if Assigned(FPing) then

 FPing();

 end;

 procedure TListener.Ping;

 begin

 Writeln('TListener has been pinged.');

 end;

 procedure TListenerSubclass.Ping2;

 begin

 { Call the base class ping }

 Self.Ping();

 Writeln('TListenerSubclass has been pinged.');

 end;

 var

 ObservedObject: TObservedObject;

Embarcadero Technologies 236

 Listener: TListenerSubclass;

 begin

 { Create object instances }

 ObservedObject := TObservedObject.Create();

 Listener := TListenerSubclass.Create();

 { Register the event handler }

 ObservedObject.OnPing := Listener.Ping2;

 { Trigger the event }

 ObservedObject.TriggerEvent();//Should output 'TListener has been pinged'

 //and then 'TListenerSubclass has been pinged'

 Readln; // Pause console before closing

 end.

Class References
Sometimes operations are performed on a class itself, rather than on instances of
a class (that is, objects). This happens, for example, when you call a constructor
method using a class reference. You can always refer to a specific class using its
name, but sometimes it is necessary to declare variables or parameters that take
classes as values, and in these situations you need class-reference types.

This topic covers the following material:

o Class reference types

o Class operators

Class-Reference Types

A class-reference type, sometimes called a metaclass, is denoted by a
construction of the form:

class of type

where type is any class type. The identifier type itself denotes a value whose type
is class of type. If type1 is an ancestor of type2, then class of type2 is assignment-
compatible with class of type1. Thus:

 type TClass = class of TObject;

 var AnyObj: TClass;

declares a variable called AnyObj that can hold a reference to any class. (The
definition of a class-reference type cannot occur directly in a variable
declaration or parameter list.) You can assign the value nil to a variable of any
class-reference type.

Embarcadero Technologies 237

To see how class-reference types are used, look at the declaration of the
constructor for System.Classes.TCollection (in the System.Classes unit):

 type TCollectionItemClass = class of TCollectionItem;

 ...

 TCollection = class(TPersistent)

 ...

 constructor Create(ItemClass: TCollectionItemClass);

This declaration says that to create a TCollection instance object, you must pass
to the constructor the name of a class descending from TCollectionItem.

Class-reference types are useful when you want to invoke a class method or
virtual constructor on a class or object whose actual type is unknown at compile
time.

Constructors and Class References

A constructor can be called using a variable of a class-reference type. This
allows construction of objects whose type isn't known at compile time. For
example:

 type TControlClass = class of TControl;

 function CreateControl(ControlClass: TControlClass;

 const ControlName: string; X, Y, W, H: Integer): TControl;

 begin

 Result := ControlClass.Create(MainForm);

 with Result do

 begin

 Parent := MainForm;

 Name := ControlName;

 SetBounds(X, Y, W, H);

 Visible := True;

 end;

 end;

The CreateControl function requires a class-reference parameter to tell it what
kind of control to create. It uses this parameter to call the constructor of the
class. Because class-type identifiers denote class-reference values, a call to
CreateControl can specify the identifier of the class to create an instance of. For
example:

 CreateControl(TEdit, 'Edit1', 10, 10, 100, 20);

Constructors called using class references are usually virtual. The constructor
implementation activated by the call depends on the runtime type of the class
reference.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TCollection
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TCollection
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TCollectionItem

Embarcadero Technologies 238

Class Operators

Class methods operate on class references. Every class inherits two class
methods from TObject, called ClassType and ClassParent. These methods return,
respectively, a reference to the class of an object and to the immediate
ancestor class of an object. Both methods return a value of type TClass (where
TClass = class of TObject), which can be cast to a more specific type. Every class
also inherits a method called InheritsFrom that tests whether the object where it is
called descends from a specified class. These methods are used by the is and as
operators, and it is seldom necessary to call them directly.

The is Operator

The is operator, which performs dynamic type checking, is used to verify the
actual runtime class of an object. The expression:

object is class

returns True if object is an instance of the class denoted by class or one of its
descendants, and False otherwise. (If object is nil, the result is False.) If the
declared type of object is unrelated to class -- that is, if the types are distinct and
one is not an ancestor of the other -- a compilation error results. For example:

 if ActiveControl is TEdit then TEdit(ActiveControl).SelectAll;

This statement casts the ActiveControl variable to the TEdit type. First it verifies
that the object referenced by ActiveControl is an instance of TEdit or one of its
descendants.

The as Operator

The as operator performs checked typecasts. The expression

object as class

returns a reference to the same object as object, but with the type given by
class. At run time, object must be an instance of the class denoted by class or
one of its descendants, or be nil; otherwise an exception is raised. If the declared
type of object is unrelated to class - that is, if the types are distinct and one is not
an ancestor of the other - a compilation error results. For example:

 with Sender as TButton do

 begin

 Caption := '&Ok';

 OnClick := OkClick;

 end;

http://docwiki.embarcadero.com/Libraries/Rio/en/System.TObject
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TObject.ClassType
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TObject.ClassParent
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TClass
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TObject.InheritsFrom

Embarcadero Technologies 239

The rules of operator precedence often require as typecasts to be enclosed in
parentheses. For example:

 (Sender as TButton).Caption := '&Ok';

Code Examples

o ClassParent (Delphi)

http://docwiki.embarcadero.com/CodeExamples/Rio/en/ClassParent_(Delphi)

Embarcadero Technologies 240

Exceptions (Delphi)
This topic covers the following material:

o A conceptual overview of exceptions and exception handling

o Declaring exception types

o Raising and handling exceptions

About Exceptions

An exception is raised when an error or other event interrupts normal execution
of a program. The exception transfers control to an exception handler, which
allows you to separate normal program logic from error-handling. Because
exceptions are objects, they can be grouped into hierarchies using inheritance,
and new exceptions can be introduced without affecting existing code. An
exception can carry information, such as an error message, from the point where
it is raised to the point where it is handled.

When an application uses the SysUtils unit, most runtime errors are automatically
converted into exceptions. Many errors that would otherwise terminate an
application - such as insufficient memory, division by zero, and general
protection faults - can be caught and handled.

When To Use Exceptions

Exceptions provide an elegant way to trap runtime errors without halting the
program and without awkward conditional statements. The requirements
imposed by exception handling semantics impose a code/data size and runtime
performance penalty. While it is possible to raise exceptions for almost any
reason, and to protect almost any block of code by wrapping it in a try...except
or try...finally statement, in practice these tools are best reserved for special
situations.

Exception handling is appropriate for errors whose chances of occurring are low
or difficult to assess, but whose consequences are likely to be catastrophic (such
as crashing the application); for error conditions that are complicated or difficult
to test for in if...then statements; and when you need to respond to exceptions
raised by the operating system or by routines whose source code you don't
control. Exceptions are commonly used for hardware, memory, I/O, and
operating-system errors.

Embarcadero Technologies 241

Conditional statements are often the best way to test for errors. For example,
suppose you want to make sure that a file exists before trying to open it. You
could do it this way:

try

 AssignFile(F, FileName);

 Reset(F); // raises an EInOutError exception if file is not found

except

 on Exception do ...

end;

But you could also avoid the overhead of exception handling by using:

if FileExists(FileName) then // returns False if file is not found; raises

no exception

begin

 AssignFile(F, FileName);

 Reset(F);

end;

Assertions provide another way of testing a Boolean condition anywhere in your
source code. When an Assert statement fails, the program either halts with a
runtime error or (if it uses the SysUtils unit) raises an SysUtils.EAssertionFailed
exception. Assertions should be used only to test for conditions that you do not
expect to occur.

Declaring Exception Types

Exception types are declared just like other classes. In fact, it is possible to use an
instance of any class as an exception, but it is recommended that exceptions be
derived from the SysUtils.Exception class defined in SysUtils.

You can group exceptions into families using inheritance. For example, the
following declarations in SysUtils define a family of exception types for math
errors:

type

 EMathError = class(Exception);

 EInvalidOp = class(EMathError);

 EZeroDivide = class(EMathError);

 EOverflow = class(EMathError);

 EUnderflow = class(EMathError);

Given these declarations, you can define a single SysUtils.EMathError exception
handler that also handles SysUtils.EInvalidOp, SysUtils.EZeroDivide,
SysUtils.Overflow, and SysUtils.EUnderflow.

Embarcadero Technologies 242

Exception classes sometimes define fields, methods, or properties that convey
additional information about the error. For example:

type EInOutError = class(Exception)

 ErrorCode: Integer;

 end;

Raising and Handling Exceptions

To raise an exception object, use an instance of the exception class with a raise
statement. For example:

raise EMathError.Create;

In general, the form of a raise statement is

raise object at address

where object and at address are both optional. When an address is specified, it
can be any expression that evaluates to a pointer type, but is usually a pointer to
a procedure or function. For example:

raise Exception.Create('Missing parameter') at @MyFunction;

Use this option to raise the exception from an earlier point in the stack than the
one where the error actually occurred.

When an exception is raised - that is, referenced in a raise statement - it is
governed by special exception-handling logic. A raise statement never returns
control in the normal way. Instead, it transfers control to the innermost exception
handler that can handle exceptions of the given class. (The innermost handler is
the one whose try...except block was most recently entered but has not yet
exited.)

For example, the function below converts a string to an integer, raising an
SysUtils.ERangeError exception if the resulting value is outside a specified range.

function StrToIntRange(const S: string; Min, Max: Longint): Longint;

begin

 Result := StrToInt(S); // StrToInt is declared in SysUtils

 if (Result < Min) or (Result > Max) then

 raise ERangeError.CreateFmt('%d is not within the valid range

of %d..%d', [Result, Min, Max]);

end;

Notice the CreateFmt method called in the raise statement. SysUtils.Exception
and its descendants have special constructors that provide alternative ways to
create exception messages and context IDs.

Embarcadero Technologies 243

A raised exception is destroyed automatically after it is handled. Never attempt
to destroy a raised exception manually.

Note: Raising an exception in the initialization section of a unit may
not produce the intended result. Normal exception support comes
from the SysUtils unit, which must be initialized before such support
is available. If an exception occurs during initialization, all initialized
units - including SysUtils - are finalized and the exception is re-raised.
Then the exception is caught and handled, usually by interrupting
the program. Similarly, raising an exception in the finalization
section of a unit may not lead to the intended result if SysUtils has
already been finalized when the exception has been raised.

Try...except Statements

Exceptions are handled within try...except statements. For example:

try

 X := Y/Z;

 except

 on EZeroDivide do HandleZeroDivide;

end;

This statement attempts to divide Y by Z, but calls a routine named
HandleZeroDivide if an SysUtils.EZeroDivide exception is raised.

The syntax of a try...except statement is:

try statements except exceptionBlock end

where statements is a sequence of statements (delimited by semicolons) and
exceptionBlock is either:

o another sequence of statements or

o a sequence of exception handlers, optionally followed by

else statements

An exception handler has the form:

on identifier: type do statement

where identifier: is optional (if included, identifier can be any valid identifier),
type is a type used to represent exceptions, and statement is any statement.

A try...except statement executes the statements in the initial statements list. If no
exceptions are raised, the exception block (exceptionBlock) is ignored and
control passes to the next part of the program.

Embarcadero Technologies 244

If an exception is raised during execution of the initial statements list, either by a
raise statement in the statements list or by a procedure or function called from
the statements list, an attempt is made to 'handle' the exception:

o If any of the handlers in the exception block matches the exception,
control passes to the first such handler. An exception handler 'matches' an
exception just in case the type in the handler is the class of the exception
or an ancestor of that class.

o If no such handler is found, control passes to the statement in the else
clause, if there is one.

o If the exception block is just a sequence of statements without any
exception handlers, control passes to the first statement in the list.

If none of the conditions above is satisfied, the search continues in the exception
block of the next-most-recently entered try...except statement that has not yet
exited. If no appropriate handler, else clause, or statement list is found there, the
search propagates to the next-most-recently entered try...except statement,
and so forth. If the outermost try...except statement is reached and the
exception is still not handled, the program terminates.

When an exception is handled, the stack is traced back to the procedure or
function containing the try...except statement where the handling occurs, and
control is transferred to the executed exception handler, else clause, or
statement list. This process discards all procedure and function calls that
occurred after entering the try...except statement where the exception is
handled. The exception object is then automatically destroyed through a call to
its Destroy destructor and control is passed to the statement following the
try...except statement. (If a call to the Exit, Break, or Continue standard
procedure causes control to leave the exception handler, the exception object
is still automatically destroyed.)

In the example below, the first exception handler handles division-by-zero
exceptions, the second one handles overflow exceptions, and the final one
handles all other math exceptions. SysUtils.EMathError appears last in the
exception block because it is the ancestor of the other two exception classes; if
it appeared first, the other two handlers would never be invoked:

try

 ...

except

 on EZeroDivide do HandleZeroDivide;

 on EOverflow do HandleOverflow;

 on EMathError do HandleMathError;

end;

An exception handler can specify an identifier before the name of the
exception class. This declares the identifier to represent the exception object
during execution of the statement that follows on...do. The scope of the identifier
is limited to that statement. For example:

Embarcadero Technologies 245

try

 ...

except

 on E: Exception do ErrorDialog(E.Message, E.HelpContext);

end;

If the exception block specifies an else clause, the else clause handles any
exceptions that aren't handled by the block's exception handlers. For example:

try

 ...

except

 on EZeroDivide do HandleZeroDivide;

 on EOverflow do HandleOverflow;

 on EMathError do HandleMathError;

else

 HandleAllOthers;

end;

Here, the else clause handles any exception that isn't an SysUtils.EMathError.

An exception block that contains no exception handlers, but instead consists
only of a list of statements, handles all exceptions. For example:

try

 ...

except

 HandleException;

end;

Here, the HandleException routine handles any exception that occurs as a result
of executing the statements between try and except.

Re-raising Exceptions

When the reserved word raise occurs in an exception block without an object
reference following it, it raises whatever exception is handled by the block. This
allows an exception handler to respond to an error in a limited way and then re-
raise the exception. Re-raising is useful when a procedure or function has to
clean up after an exception occurs but cannot fully handle the exception.

Embarcadero Technologies 246

For example, the GetFileList function allocates a TStringList object and fills it with
file names matching a specified search path:

function GetFileList(const Path: string): TStringList;

var

 I: Integer;

 SearchRec: TSearchRec;

begin

 Result := TStringList.Create;

 try

 I := FindFirst(Path, 0, SearchRec);

 while I = 0 do

 begin

 Result.Add(SearchRec.Name);

 I := FindNext(SearchRec);

 end;

 except

 Result.Free;

 raise;

 end;

end;

GetFileList creates a TStringList object, then uses the FindFirst and FindNext
functions (defined in SysUtils) to initialize it. If the initialization fails - for example
because the search path is invalid, or because there is not enough memory to fill
in the string list - GetFileList needs to dispose of the new string list, since the caller
does not yet know of its existence. For this reason, initialization of the string list is
performed in a try...except statement. If an exception occurs, the statement's
exception block disposes of the string list, then re-raises the exception.

Nested Exceptions

Code executed in an exception handler can itself raise and handle exceptions.
As long as these exceptions are also handled within the exception handler, they
do not affect the original exception. However, once an exception raised in an
exception handler propagates beyond that handler, the original exception is
lost. This is illustrated by the Tan function below:

type

 ETrigError = class(EMathError);

 function Tan(X: Extended): Extended;

 begin

 try

 Result := Sin(X) / Cos(X);

 except

 on EMathError do

 raise ETrigError.Create('Invalid argument to Tan');

 end;

 end;

If an SysUtils.EMathError exception occurs during execution of Tan, the exception
handler raises an ETrigError. Since Tan does not provide a handler for ETrigError,
the exception propagates beyond the original exception handler, causing the

Embarcadero Technologies 247

SysUtils.EMathError exception to be destroyed. To the caller, it appears as if the
Tan function has raised an ETrigError exception.

Try...finally Statements

Sometimes you want to ensure that specific parts of an operation are
completed, whether or not the operation is interrupted by an exception. For
example, when a routine acquires control of a resource, it is often important that
the resource be released, regardless of whether the routine terminates normally.
In these situations, you can use a try...finally statement.

The following example shows how code that opens and processes a file can
ensure that the file is ultimately closed, even if an error occurs during execution:

Reset(F);

try

 ... // process file F

finally

 CloseFile(F);

end;

The syntax of a try...finally statement is

try statementList1 finally statementList2 end

where each statementList is a sequence of statements delimited by semicolons.
The try...finally statement executes the statements in statementList1 (the try
clause). If statementList1 finishes without raising exceptions, statementList2 (the
finally clause) is executed. If an exception is raised during execution of
statementList1, control is transferred to statementList2; once statementList2
finishes executing, the exception is re-raised. If a call to the Exit, Break, or
Continue procedure causes control to leave statementList1, statementList2 is
automatically executed. Thus the finally clause is always executed, regardless of
how the try clause terminates.

If an exception is raised but not handled in the finally clause, that exception is
propagated out of the try...finally statement, and any exception already raised
in the try clause is lost. The finally clause should therefore handle all locally raised
exceptions, so as not to disturb propagation of other exceptions.

Standard Exception Classes and Routines

The SysUtils and System units declare several standard routines for handling
exceptions, including ExceptObject, ExceptAddr, and ShowException. SysUtils,
System and other units also include dozens of exception classes, all of which
(aside from OutlineError) derive from SysUtils.Exception.

The SysUtils.Exception class has properties called Message and HelpContext that
can be used to pass an error description and a context ID for context-sensitive

http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.Exception.Message

Embarcadero Technologies 248

online documentation. It also defines various constructor methods that allow you
to specify the description and context ID in different ways.

Class and Record Helpers (Delphi)
This topic describes the syntax of class helper declarations.

About Class and Record Helpers

A class or a record helper is a type that - when associated with another class or
a record - introduces additional method names and properties that may be
used in the context of the associated type (or its descendants). Helpers are a
way to extend a class without using inheritance, which is also useful for records
that do not allow inheritance at all. A helper simply introduces a wider scope for
the compiler to use when resolving identifiers. When you declare a class or a
record helper, you state the helper name, and the name of the type you are
going to extend with the helper. You can use the helper any place where you
can legally use the extended class or record. The compiler's resolution scope
then becomes the original type, plus the helper.

Class and record helpers provide a way to extend a type, but they should not be
viewed as a design tool to be used when developing new code. For new code
you should always rely on normal class inheritance and interface
implementations.

Helper Syntax

The syntax for declaring a class helper is:

type

 identifierName = class|record helper [(ancestor list)] for

TypeIdentifierName

 memberList

 end;

The ancestor list is optional. It can be specified only for class helper.

A helper type may not declare instance data, but class fields are allowed.

The visibility scope rules and memberList syntax are identical to that of ordinary
class and record types.

Note: Class and record helpers do not support operator overloading.

You can define and associate multiple helpers with a single type. However, only
zero or one helper applies in any specific location in source code. The helper
defined in the nearest scope will apply. Class or record helper scope is
determined in the normal Delphi fashion (for example, right to left in the unit's
uses clause).

Embarcadero Technologies 249

Using Helpers

The following code demonstrates the declaration of a class helper (record
helpers behave in the same manner):

 type

 TMyClass = class

 procedure MyProc;

 function MyFunc: Integer;

 end;

 ...

 procedure TMyClass.MyProc;

 var X: Integer;

 begin

 X := MyFunc;

 end;

 function TMyClass.MyFunc: Integer;

 begin

 ...

 end;

 ...

 type

 TMyClassHelper = class helper for TMyClass

 procedure HelloWorld;

 function MyFunc: Integer;

 end;

 ...

 procedure TMyClassHelper.HelloWorld;

 begin

 Writeln(Self.ClassName); // Self refers to TMyClass type, not

TMyClassHelper

 end;

 function TMyClassHelper.MyFunc: Integer;

 begin

 ...

 end;

 ...

 var

 X: TMyClass;

 begin

 X := TMyClass.Create;

 X.MyProc; // Calls TMyClass.MyProc

 X.HelloWorld; // Calls TMyClassHelper.HelloWorld

 X.MyFunc; // Calls TMyClassHelper.MyFunc

Note that the class helper function MyFunc is called, because the class helper
takes precedence over the actual class type.

Embarcadero Technologies 250

Nested Type Declarations
Type declarations can be nested within class declarations. Nested types are
used throughout object-oriented programming in general. They present a way to
keep conceptually related types together, and to avoid name collisions. The
same syntax for declaring nested types may be used with the Win32 Delphi
compiler.

Declaring Nested Types

The nestedTypeDeclaration follows the type declaration syntax defined in Data
Types, Variables, and Constants Index (Delphi).

type

 className = class [abstract | sealed] (ancestorType)

 memberList

 type

 nestedTypeDeclaration

 memberList

 end;

Nested type declarations are terminated by the first occurrence of a non-
identifier token, for example, procedure, class, type, and all visibility scope
specifiers.

The normal accessibility rules apply to nested types and their containing types. A
nested type can access an instance variable (field, property, or method) of its
container class, but it must have an object reference to do so. A nested type
can access class fields, class properties, and class static methods without an
object reference, but the normal Delphi visibility rules apply.

Nested types do not increase the size of the containing class. Creating an
instance of the containing class does not also create an instance of a nested
type. Nested types are associated with their containing classes only by the
context of their declaration.

Embarcadero Technologies 251

Declaring and Accessing Nested Classes

The following example demonstrates how to declare and access fields and
methods of a nested class:

type

 TOuterClass = class

 strict private

 myField: Integer;

 public

 type

 TInnerClass = class

 public

 myInnerField: Integer;

 procedure innerProc;

 end;

 procedure outerProc;

 end;

To implement the innerProc method of the inner class, you must qualify its name
with the name of the outer class. For example:

procedure TOuterClass.TInnerClass.innerProc;

begin

 ...

end;

To access the members of the nested type, use dotted notation as with regular
class member access. For example:

var

 x: TOuterClass;

 y: TOuterClass.TInnerClass;

begin

 x := TOuterClass.Create;

 x.outerProc;

 ...

 y := TOuterClass.TInnerClass.Create;

 y.innerProc;

Nested Constants

Constants can be declared in class types in the same manner as nested type
sections. Constant sections are terminated by the same tokens as nested type
sections, specifically, reserved words or visibility specifiers. Typed constants are
not supported, so you cannot declare nested constants of value types, such as
System.Currency, or System.TDateTime.

Nested constants can be of any simple type: ordinal, ordinal subranges, enums,
strings, and real types.

Embarcadero Technologies 252

The following code demonstrates the declaration of nested constants:

type

 TMyClass = class

 const

 x = 12;

 y = TMyClass.x + 23;

 procedure Hello;

 private

 const

 s = 'A string constant';

 end;

begin

 Writeln(TMyClass.y); // Writes the value of y, 35.

end.

Operator Overloading (Delphi)
This topic describes Delphi's operator methods and how to overload them.

About Operator Overloading

Delphi allows certain functions, or "operators", to be overloaded within record
declarations. The name of the operator function maps to a symbolic
representation in source code. For example, the Add operator maps to the +
symbol.

The compiler generates a call to the appropriate overload, matching the
context (that is, the return type, and type of parameters used in the call), to the
signature of the operator function.

The following table shows the Delphi operators that can be overloaded:

Embarcadero Technologies 253

Operator Category Declaration Signature
Symbol

Mapping

Implicit Conversion Implicit(a : type) : resultType; implicit
typecast

Explicit Conversion Explicit(a: type) : resultType; explicit
typecast

Negative Unary Negative(a: type) : resultType; -

Positive Unary Positive(a: type): resultType; +

Inc Unary Inc(a: type) : resultType; Inc

Dec Unary Dec(a: type): resultType Dec

LogicalNot Unary LogicalNot(a: type): resultType; not

Trunc Unary Trunc(a: type): resultType; Trunc

Round Unary Round(a: type): resultType; Round

In Set In(a: type; b: type) : Boolean; in

Equal Comparison Equal(a: type; b: type) : Boolean; =

NotEqual Comparison NotEqual(a: type; b: type): Boolean; <>

GreaterThan Comparison GreaterThan(a: type; b: type)
Boolean;

>

GreaterThanOrEqual Comparison GreaterThanOrEqual(a: type; b: type):
Boolean;

>=

LessThan Comparison LessThan(a: type; b: type): Boolean; <

LessThanOrEqual Comparison LessThanOrEqual(a: type; b: type):
Boolean;

<=

Add Binary Add(a: type; b: type): resultType; +

Subtract Binary Subtract(a: type; b: type) : resultType; -

Multiply Binary Multiply(a: type; b: type) : resultType; *

Divide Binary Divide(a: type; b: type) : resultType; /

IntDivide Binary IntDivide(a: type; b: type): resultType; div

Embarcadero Technologies 254

Modulus Binary Modulus(a: type; b: type): resultType; mod

LeftShift Binary LeftShift(a: type; b: type): resultType; shl

RightShift Binary RightShift(a: type; b: type): resultType; shr

LogicalAnd Binary LogicalAnd(a: type; b: type):
resultType;

and

LogicalOr Binary LogicalOr(a: type; b: type): resultType; or

LogicalXor Binary LogicalXor(a: type; b: type):
resultType;

xor

BitwiseAnd Binary BitwiseAnd(a: type; b: type):
resultType;

and

BitwiseOr Binary BitwiseOr(a: type; b: type): resultType; or

BitwiseXor Binary BitwiseXor(a: type; b: type):
resultType;

xor

No operators other than those listed in the table may be defined on a class or
record.

Overloaded operator methods cannot be referred to by name in source code.
To access a specific operator method of a specific class or record, refer to:
Code Example:OpOverloads_(Delphi). Operator identifiers are included for
classes and records in the language in the class or record's list of methods
starting with the word "operator" (example: System.AnsiStringBase Methods). You
can implement any of the above operators in your own classes and records.

The compiler will use an operator for a class or record provided that:

o For binary operators, one of the input parameters must be the class type.

o For unary operators, either the input parameter or the return value must
be the class type.

o For a logical operator and a bitwise operator using the same symbol, the
logical operator is used only when the operands are booleans. Since the
type of the class of this class operator is not a boolean, a logical operator
will only be used when the other operand is a boolean.

No assumptions are made regarding the distributive or commutative properties
of the operation. For binary operators, the first parameter is always the left
operand, and the second parameter is always the right operand. Associativity is
assumed to be left-to-right in the absence of explicit parentheses.

http://docwiki.embarcadero.com/CodeExamples/Rio/en/OpOverloads_(Delphi)
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiStringBase_Methods

Embarcadero Technologies 255

Resolution of operator methods is done over the union of accessible operators of
the types used in the operation (note this includes inherited operators). For an
operation involving two different types A and B, if type A has an implicit
conversion to B, and B has an implicit conversion to A, an ambiguity will occur.
Implicit conversions should be provided only where absolutely necessary, and
reflexivity should be avoided. It is best to let type B implicitly convert itself to type
A, and let type A have no knowledge of type B (or vice versa).

As a general rule, operators should not modify their operands. Instead, return a
new value, constructed by performing the operation on the parameters.

Overloaded operators are used most often in records (that is, value types).

Note: Class and record helpers do not support operator overloading.

Declaring Operator Overloads

Operator overloads are declared within classes or records, with the following
syntax:

type

 typeName = record

 class operator conversionOp(a: type): resultType;

 class operator unaryOp(a: type): resultType;

 class operator comparisonOp(a: type; b: type): Boolean;

 class operator binaryOp(a: type; b: type): resultType;

 end;

Implementation of overloaded operators must also include the class operator
syntax:

class operator typeName.conversionOp(a: type): resultType;

class operator typeName.unaryOp(a: type): resultType;

class operator typeName.comparisonOp(a: type; b: type): Boolean;

class operator typeName.binaryOp(a: type; b: type): resultType;

Embarcadero Technologies 256

The following are some examples of overloaded operators:

type

 TMyRecord = record

 class operator Add(a, b: TMyRecord): TMyRecord; // Addition of two

operands of type TMyRecord

 class operator Subtract(a, b: TMyRecord): TMyRecord; // Subtraction of

type TMyRecord

 class operator Implicit(a: Integer): TMyRecord; // Implicit

conversion of an Integer to type TMyRecord

 class operator Implicit(a: TMyRecord): Integer; // Implicit

conversion of TMyRecordto Integer

 class operator Explicit(a: Double): TMyRecord; // Explicit

conversion of a Double to TMyRecord

 end;

// Example implementation of Add

class operator TMyRecord.Add(a, b: TMyRecord): TMyRecord;

begin

 // ...

end;

var

x, y: TMyRecord;

begin

 x := 12; // Implicit conversion from an Integer

 y := x + x; // Calls TMyRecord.Add(a, b: TMyRecord): TMyRecord

 b := b + 100; // Calls TMyRecord.Add(b, TMyRecord.Implicit(100))

end;

Code Samples

o RTL.ComplexNumbers Sample

http://docwiki.embarcadero.com/CodeExamples/Rio/en/RTL.ComplexNumbers_Sample

Embarcadero Technologies 257

Standard Routines and Input-Output
These topics discuss text and file I/O and summarize standard library routines.
Many of the procedures and functions listed here are defined in the System and
SysInit units, which are implicitly used with every application. Others are built into
the compiler but are treated as if they were in the System unit.

Some standard routines are in units such as SysUtils, which must be listed in a uses
clause to make them available in programs. You cannot, however, list System in
a uses clause, nor should you modify the System unit or try to rebuild it explicitly.

Note: For new programs, you might want to use the File
Management classes and functions in the System.Classes and
System.SysUtils units. System.Classes.TStream and its descendent
classes are currently recommended for general file handling in
Delphi (for related routines, see Streams, Reader and Writers). For
text-file handling, TStreamReader and TStreamWriter are
recommended over calling Write and Writeln. API Categories Index
contains lists of related routines and classes.

Note: BlockRead and BlockWrite have untyped parameters, which
can be the source of memory corruption. Both methods depend
on the setting of record size, implicitly made by a previous call of
Reset or Rewrite. Using Streams gives a greater level of flexibility
and functionality to the programmer.

File Input and Output

The table below lists input and output routines.

Input and output procedures and functions

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TStream
http://docwiki.embarcadero.com/RADStudio/Rio/en/Streams,_Reader_and_Writers
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TStreamReader
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Classes.TStreamWriter
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Write
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Writeln
http://docwiki.embarcadero.com/RADStudio/Rio/en/API_Categories_Index
http://docwiki.embarcadero.com/Libraries/Rio/en/System.BlockRead
http://docwiki.embarcadero.com/Libraries/Rio/en/System.BlockWrite
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Reset
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Rewrite
http://docwiki.embarcadero.com/RADStudio/Rio/en/Using_Streams

Embarcadero Technologies 258

Procedure or

function
Description

Append Opens an existing text file for appending.

AssignFile Assigns the name of an external file to a file variable.

BlockRead Reads one or more records from an untyped file.

BlockWrite Writes one or more records into an untyped file.

ChDir Changes the current directory.

CloseFile Closes an open file.

Eof Returns the end-of-file status of a file.

Eoln Returns the end-of-line status of a text file.

Erase Erases an external file.

FilePos Returns the current file position of a typed or untyped file.

FileSize Returns the current size of a file; not used for text files.

Flush Flushes the buffer of an output text file.

GetDir Returns the current directory of a specified drive.

IOResult Returns an integer value that is the status of the last I/O function
performed.

MkDir Creates a subdirectory.

Read Reads one or more values from a file into one or more variables.

Readln Does what Read does and then skips to beginning of next line in the
text file.

Rename Renames an external file.

Reset Opens an existing file.

Rewrite Creates and opens a new file.

RmDir Removes an empty subdirectory.

Seek Moves the current position of a typed or untyped file to a specified
component. Not used with text files.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Append
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AssignFile
http://docwiki.embarcadero.com/Libraries/Rio/en/System.BlockRead
http://docwiki.embarcadero.com/Libraries/Rio/en/System.BlockWrite
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ChDir
http://docwiki.embarcadero.com/Libraries/Rio/en/System.CloseFile
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Eof
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Eoln
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Erase
http://docwiki.embarcadero.com/Libraries/Rio/en/System.FilePos
http://docwiki.embarcadero.com/Libraries/Rio/en/System.FileSize
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Flush
http://docwiki.embarcadero.com/Libraries/Rio/en/System.GetDir
http://docwiki.embarcadero.com/Libraries/Rio/en/System.IOResult
http://docwiki.embarcadero.com/Libraries/Rio/en/System.MkDir
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Read
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Readln
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Rename
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Reset
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Rewrite
http://docwiki.embarcadero.com/Libraries/Rio/en/System.RmDir
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Seek

Embarcadero Technologies 259

SeekEof Returns the end-of-file status of a text file.

SeekEoln Returns the end-of-line status of a text file.

SetTextBuf Assigns an I/O buffer to a text file.

Truncate Truncates a typed or untyped file at the current file position.

Write Writes one or more values to a file.

Writeln Does the same as Write, and then writes an end-of-line marker to the
text file.

A file variable is any variable whose type is a file type. There are three classes of
file: typed, text, and untyped. The syntax for declaring file types is given in File
types. Note that file types are only available on the Win32 platform.

Before a file variable can be used, it must be associated with an external file
through a call to the AssignFile procedure. An external file is typically a named
disk file, but it can also be a device, such as the keyboard or the display. The
external file stores the information written to the file or supplies the information
read from the file.

Once the association with an external file is established, the file variable must be
opened to prepare it for input or output. An existing file can be opened via the
Reset procedure, and a new file can be created and opened via the Rewrite
procedure. Text files opened with Reset are read-only and text files opened with
Rewrite and Append are write-only. Typed files and untyped files always allow
both reading and writing regardless of whether they were opened with Reset or
Rewrite.

Every file is a linear sequence of components, each of which has the
component type (or record type) of the file. The components are numbered
starting with zero.

Files are normally accessed sequentially. That is, when a component is read using
the standard procedure Read or written using the standard procedure Write, the
current file position moves to the next numerically ordered file component.
Typed files and untyped files can also be accessed randomly through the
standard procedure Seek, which moves the current file position to a specified
component. The standard functions FilePos and FileSize can be used to
determine the current file position and the current file size.

When a program completes processing a file, the file must be closed using the
standard procedure CloseFile. After a file is closed, its associated external file is
updated. The file variable can then be associated with another external file.

By default, all calls to standard I/O procedures and functions are automatically
checked for errors, and if an error occurs an exception is raised (or the program

http://docwiki.embarcadero.com/Libraries/Rio/en/System.SeekEof
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SeekEoln
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SetTextBuf
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Truncate
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Write
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Writeln

Embarcadero Technologies 260

is terminated if exception handling is not enabled). This automatic checking can
be turned on and off using the {$I+} and {$I-} compiler directives. When I/O
checking is off, that is, when a procedure or function call is compiled in the {$I-}
state an I/O error does not cause an exception to be raised; to check the result
of an I/O operation, you must call the standard function IOResult instead.

You must call the IOResult function to clear an error, even if you aren't interested
in the error. If you do not clear an error and {$I-} is the current state, the next I/O
function call will fail with the lingering IOResult error.

Text Files

This section summarizes I/O using file variables of the standard type Text.

When a text file is opened, the external file is interpreted in a special way: It is
considered to represent a sequence of characters formatted into lines, where
each line is terminated by an end-of-line marker (a carriage-return character,
possibly followed by a line feed character). The type Text is distinct from the type
file of Char.

For text files, there are special forms of Read and Write that let you read and
write values that are not of type Char. Such values are automatically translated
to and from their character representation. For example, Read(F, I), where I is a
type Integer variable, reads a sequence of digits, interprets that sequence as a
decimal integer, and stores it in I.

There are two standard text file variables, System.Input and System.Output The
standard file variable System.Input is a read-only file associated with the
operating system's standard input (typically, the keyboard). The standard file
variable System.Output is a write-only file associated with the operating system's
standard output (typically, the display). Before an application begins executing,
System.Input and System.Output are automatically opened, as if the following
statements were executed:

 AssignFile(Input, '');

 Reset(Input);

 AssignFile(Output, '');

 Rewrite(Output);

Note: For Win32 applications, text-oriented I/O is available only in
console applications, that is, applications compiled with the
Generate console application option checked on the Linking page
of the Project Options dialog box or with the -cc command-line
compiler option. In a GUI (non-console) application, any attempt
to read or write using System.Input or System.Output will produce
an I/O error.

Some of the standard I/O routines that work on text files do not need to have a
file variable explicitly given as a parameter. If the file parameter is omitted,
System.Input or System.Output is assumed by default, depending on whether the

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Input
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Output
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Input
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Output
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Input
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Output
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Input
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Output
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Input
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Output

Embarcadero Technologies 261

procedure or function is input- or output-oriented. For example, Read(X)
corresponds to Read(Input, X) and Write(X) corresponds to Write(Output, X).

If you do specify a file when calling one of the input or output routines that work
on text files, the file must be associated with an external file using AssignFile, and
opened using Reset, Rewrite, or Append. An error occurs if you pass a file that
was opened with Reset to an output-oriented procedure or function. An error
also occurs if you pass a file that was opened with Rewrite or Append to an
input-oriented procedure or function.

Untyped Files

Untyped files are low-level I/O channels used primarily for direct access to disk
files regardless of type and structuring. An untyped file is declared with the word
file and nothing more. For example:

var DataFile: file;

For untyped files, the Reset and Rewrite procedures allow an extra parameter to
specify the record size used in data transfers. For historical reasons, the default
record size is 128 bytes. A record size of 1 is the only value that correctly reflects
the exact size of any file. (No partial records are possible when the record size is
1.)

Except for Read and Write, all typed-file standard procedures and functions are
also allowed on untyped files. Instead of Read and Write, two procedures called
BlockRead and BlockWrite are used for high-speed data transfers.

Text File Device Drivers

You can define your own text file device drivers for your programs. A text file
device driver is a set of four functions that completely implement an interface
between Delphi's file system and some device.

The four functions that define each device driver are Open, InOut, Flush, and
Close. The function header of each function is:

function DeviceFunc(var F: TTextRec): Integer;

where DeviceFunc is the name of the function (that is, Open, InOut, Flush, or
Close). The return value of a device-interface function becomes the value
returned by IOResult. If the return value is zero, the operation was successful.

To associate the device-interface functions with a specific file, you must write a
customized Assign procedure. The Assign procedure must assign the addresses of
the four device-interface functions to the four function pointers in the text file
variable. In addition, it should store the fmClosed magic constant in the Mode

http://docwiki.embarcadero.com/Libraries/Rio/en/System#Constants

Embarcadero Technologies 262

field, store the size of the text file buffer in BufSize, store a pointer to the text file
buffer in BufPtr, and clear the Name string.

Assuming, for example, that the four device-interface functions are called
DevOpen, DevInOut, DevFlush, and DevClose, the Assign procedure might look
like this:

procedure AssignDev(var F: Text);

 begin

 with TTextRec(F) do

 begin

 Mode := fmClosed;

 BufSize := SizeOf(Buffer);

 BufPtr := @Buffer;

 OpenFunc := @DevOpen;

 InOutFunc := @DevInOut;

 FlushFunc := @DevFlush;

 CloseFunc := @DevClose;

 CodePage := DefaultSystemCodePage;

 Name[0] := #0;

 end;

 end;

The CodePage field must be set to DefaultSystemCodePage for the device-
interface functions to be used by the RTL. These device-interface functions must
perform any special character handling that is needed.

The device-interface functions can use the UserData field in the file record to
store private information. This field is not modified by the product file system at
any time.

The Open function

The Open function is called by the Reset, Rewrite, and Append standard
procedures to open a text file associated with a device. On entry, the Mode
field contains fmInput, fmOutput, or fmInOut to indicate whether the Open
function was called from Reset, Rewrite, or Append.

The Open function prepares the file for input or output, according to the Mode
value. If Mode specified fmInOut (indicating that Open was called from
Append), it must be changed to fmOutput before Open returns.

Open is always called before any of the other device-interface functions. For
that reason, AssignDev only initializes the OpenFunc field, leaving initialization of
the remaining vectors up to Open. Based on Mode, Open can then install
pointers to either input- or output-oriented functions. This saves the InOut, Flush
functions and the CloseFile procedure from determining the current mode.

The InOut function

The InOut function is called by the Read, Readln, Write, Writeln, Eof, Eoln,
SeekEof, SeekEoln, and CloseFile standard routines whenever input or output
from the device is required.

Embarcadero Technologies 263

When Mode is fmInput, the InOut function reads up to BufSize characters into
BufPtr^, and returns the number of characters read in BufEnd. In addition, it stores
zero in BufPos. If the InOut function returns zero in BufEnd as a result of an input
request, Eof becomes True for the file.

When Mode is fmOutput, the InOut function writes BufPos characters from
BufPtr^, and returns zero in BufPos.

The Flush function

The Flush function is called at the end of each Read, Readln, Write, and Writeln.
It can optionally flush the text file buffer.

If Mode is fmInput, the Flush function can store zero in BufPos and BufEnd to flush
the remaining (unread) characters in the buffer. This feature is seldom used.

If Mode is fmOutput, the Flush function can write the contents of the buffer
exactly like the InOut function, which ensures that text written to the device
appears on the device immediately. If Flush does nothing, the text does not
appear on the device until the buffer becomes full or the file is closed.

The Close function

The Close function is called by the CloseFile standard procedure to close a text
file associated with a device. (The Reset, Rewrite, and Append procedures also
call Close if the file they are opening is already open.) If Mode is fmOutput, then
before calling Close, the file system calls the InOut function to ensure that all
characters have been written to the device.

Handling null-Terminated Strings

The Delphi language's extended syntax allows the Read, Readln, Str, and Val
standard procedures to be applied to zero-based character arrays, and allows
the Write, Writeln, Val, AssignFile, and Rename standard procedures to be
applied to both zero-based character arrays and character pointers.

Null-Terminated String Functions

The following functions are provided for handling null-terminated strings.

Null-terminated string functions

Embarcadero Technologies 264

Function Description

StrAlloc Allocates a character buffer of a given size on the heap.

StrBufSize Returns the size of a character buffer allocated using StrAlloc or StrNew.

StrCat Concatenates two strings.

StrComp Compares two strings.

StrCopy Copies a string.

StrDispose Disposes a character buffer allocated using StrAlloc or StrNew.

StrECopy Copies a string and returns a pointer to the end of the string.

StrEnd Returns a pointer to the end of a string.

StrFmt Formats one or more values into a string.

StrIComp Compares two strings without case sensitivity.

StrLCat Concatenates two strings with a given maximum length of the resulting
string.

StrLComp Compares two strings for a given maximum length.

StrLCopy Copies a string up to a given maximum length.

StrLen Returns the length of a string.

StrFmt Formats one or more values into a string with a given maximum length.

StrLIComp Compares two strings for a given maximum length without case sensitivity.

StrLower Converts a string to lowercase.

StrMove Moves a block of characters from one string to another.

StrNew Allocates a string on the heap.

StrPCopy Copies a Pascal string to a null-terminated string.

StrPLCopy Copies a Pascal string to a null-terminated string with a given maximum
length.

StrPos Returns a pointer to the first occurrence of a given substring within a string.

StrRscan Returns a pointer to the last occurrence of a given character within a string.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrAlloc
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrBufSize
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrCat
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrComp
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrCopy
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrDispose
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrECopy
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrEnd
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrFmt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrIComp
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrLCat
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrLComp
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrLCopy
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrLen
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrLFmt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrLIComp
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrLower
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrMove
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrNew
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrPCopy
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrPLCopy
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrPos
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrRScan

Embarcadero Technologies 265

StrScan Returns a pointer to the first occurrence of a given character within a string.

StrUpper Converts a string to uppercase.

Standard string-handling functions have multibyte-enabled counterparts that
also implement locale-specific ordering for characters. Names of multibyte
functions start with Ansi-. For example, the multibyte version of StrPos is AnsiStrPos.
Multibyte character support is operating-system dependent and based on the
current locale.

Wide-Character Strings

The System unit provides three functions, WideCharToString,
WideCharLenToString, and StringToWideChar, that can be used to convert null-
terminated wide character strings to single- or double-byte long strings.

Assignment will also convert between strings. For instance, the following are both
valid:

MyAnsiString := MyWideString;

MyWideString := MyAnsiString;

Other Standard Routines

The table below lists frequently used procedures and functions found in product
libraries. This is not an exhaustive inventory of standard routines.

Other standard routines

http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrScan
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrUpper

Embarcadero Technologies 266

Procedure or

function
Description

Addr Returns a pointer to a specified object.

AllocMem Allocates a memory block and initializes each byte to zero.

ArcTan Calculates the arctangent of the given number.

Assert Raises an exception if the passed expression does not evaluate to
true.

Assigned Tests for a nil (unassigned) pointer or procedural variable.

Beep Generates a standard beep.

Break Causes control to exit a for, while, or repeat statement.

ByteToCharIndex Returns the position of the character containing a specified byte
in a string.

Chr Returns the character for a specified integer value.

Close Closes a file.

CompareMem Performs a binary comparison of two memory images.

CompareStr Compares strings case sensitively.

CompareText Compares strings by ordinal value and is not case sensitive.

Continue Returns control to the next iteration of for, while, or repeat
statements.

Copy Returns a substring of a string or a segment of a dynamic array.

Cos Calculates the cosine of an angle.

CurrToStr Converts a currency variable to a string.

Date Returns the current date.

DateTimeToStr Converts a variable of type TDateTime to a string.

DateToStr Converts a variable of type TDateTime to a string.

Dec Decrements an ordinal variable or a typed pointer variable.

Dispose Releases dynamically allocated variable memory.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Addr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AllocMem
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ArcTan
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Assert
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Assigned
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.Beep
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Break
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.ByteToCharIndex
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Chr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Close
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.CompareMem
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.CompareStr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.CompareText
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Continue
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Copy
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Cos
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.CurrToStr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.Date
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.DateTimeToStr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.DateToStr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Dec
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Dispose

Embarcadero Technologies 267

ExceptAddr Returns the address at which the current exception was raised.

Exit Exits from the current procedure.

Exp Calculates the exponential of X.

FillChar Fills contiguous bytes with a specified value.

Finalize Initializes a dynamically allocated variable.

FloatToStr Converts a floating point value to a string.

FloatToStrF Converts a floating point value to a string, using specified format.

FmtLoadStr Returns formatted output using a resourced format string.

FmtStr Assembles a formatted string from a series of arrays.

Format Assembles a string from a format string and a series of arrays.

FormatDateTime Formats a date-and-time value.

FormatFloat Formats a floating point value.

FreeMem Releases allocated memory.

GetMem Allocates dynamic memory and a pointer to the address of the
block.

Halt Initiates abnormal termination of a program.

Hi Returns the high-order byte of an expression as an unsigned
value.

High Returns the highest value in the range of a type, array, or string.

Inc Increments an ordinal variable or a typed pointer variable.

Initialize Initializes a dynamically allocated variable.

Insert Inserts a substring at a specified point in a string.

Int Returns the integer part of a real number.

IntToStr Converts an integer to a string.

Length Returns the length of a string or array.

Lo Returns the low-order byte of an expression as an unsigned value.

Low Returns the lowest value in the range of a type, array, or string.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.ExceptAddr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Exit
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Exp
http://docwiki.embarcadero.com/Libraries/Rio/en/System.FillChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Finalize
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.FloatToStr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.FloatToStrF
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.FmtLoadStr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.FmtStr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.Format
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.FormatDateTime
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.FormatFloat
http://docwiki.embarcadero.com/Libraries/Rio/en/System.FreeMem
http://docwiki.embarcadero.com/Libraries/Rio/en/System.GetMem
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Halt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Hi
http://docwiki.embarcadero.com/Libraries/Rio/en/System.High
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Inc
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Initialize
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Insert
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.IntToStr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Length
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Lo
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Low

Embarcadero Technologies 268

Lowercase Converts an ASCII string to lowercase.

MaxIntValue Returns the largest signed value in an integer array.

MaxValue Returns the largest signed value in an array.

MinIntValue Returns the smallest signed value in an integer array.

MinValue Returns smallest signed value in an array.

New Creates a dynamic allocated variable memory and references it
with a specified pointer.

Now Returns the current date and time.

Ord Returns the ordinal integer value of an ordinal-type expression.

Pos Returns the index of the first single-byte character of a specified
substring in a string.

Pred Returns the predecessor of an ordinal value.

Ptr Converts a value to a pointer.

Random Generates random numbers within a specified range.

ReallocMem Reallocates a dynamically allocatable memory.

Round Returns the value of a real rounded to the nearest whole number.

SetLength Sets the dynamic length of a string variable or array.

SetString Sets the contents and length of the given string.

ShowException Displays an exception message with its address.

sin Returns the sine of an angle in radians.

SizeOf Returns the number of bytes occupied by a variable or type.

Slice Returns a sub-section of an array.

Sqr Returns the square of a number.

Sqrt Returns the square root of a number.

Str Converts an integer or real number into a string.

StrToCurr Converts a string to a currency value.

StrToDate Converts a string to a date format (TDateTime).

http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.LowerCase
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Math.MaxIntValue
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Math.MaxValue
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Math.MinIntValue
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Math.MinValue
http://docwiki.embarcadero.com/Libraries/Rio/en/System.New
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.Now
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Ord
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Pos
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Pred
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Ptr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Random
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ReallocMem
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Round
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SetLength
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SetString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.ShowException
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Sin
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SizeOf
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Slice
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Sqr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Sqrt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Str
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrToCurr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrToDate

Embarcadero Technologies 269

StrToDateTime Converts a string to a TDateTime.

StrToFloat Converts a string to a floating-point value.

StrToInt Converts a string to an integer.

StrToTime Converts a string to a time format (TDateTime).

StrUpper Returns an ASCII string in upper case.

Succ Returns the successor of an ordinal value.

Sum Returns the sum of the elements from an array.

Time Returns the current time.

TimeToStr Converts a variable of type TDateTime to a string.

Trunc Truncates a real number to an integer.

UniqueString Ensures that a string has only one reference. (The string may be
copied to produce a single reference.)

Upcase Converts a character to uppercase.

UpperCase Returns a string in uppercase.

VarArrayCreate Creates a variant array.

VarArrayDimCount Returns number of dimensions of a variant array.

VarArrayHighBound Returns high bound for a dimension in a variant array.

VarArrayLock Locks a variant array and returns a pointer to the data.

VarArrayLowBound Returns the low bound of a dimension in a variant array.

VarArrayOf Creates and fills a one-dimensional variant array.

VarArrayRedim Resizes a variant array.

VarArrayRef Returns a reference to the passed variant array.

VarArrayUnlock Unlocks a variant array.

VarAsType Converts a variant to specified type.

VarCast Converts a variant to a specified type, storing the result in a
variable.

VarClear Clears a variant.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrToDateTime
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrToFloat
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrToInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrToTime
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.StrUpper
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Succ
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Math.Sum
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.Time
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.TimeToStr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Trunc
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UniqueString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UpCase
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SysUtils.UpperCase
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.VarArrayCreate
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.VarArrayDimCount
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.VarArrayHighBound
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.VarArrayLock
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.VarArrayLowBound
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.VarArrayOf
http://docwiki.embarcadero.com/Libraries/Rio/en/System.VarArrayRedim
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.VarArrayRef
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.VarArrayUnlock
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.VarAsType
http://docwiki.embarcadero.com/Libraries/Rio/en/System.VarCast
http://docwiki.embarcadero.com/Libraries/Rio/en/System.VarClear

Embarcadero Technologies 270

VarCopy Copies a variant.

VarToStr Converts variant to string.

VarType Returns type code of specified variant.

Libraries and Packages Index
This section describes how to create static and dynamically loadable libraries in
Delphi.

Note: Libraries are significantly more limited than packages in what
they can export. Libraries cannot export constants, types, and
normal variables. That is, class types defined in a library will not be
seen in a program using that library.

To export items other than simple procedures and functions,
packages are the recommended alternative. Libraries should only
be considered when interoperability with other programming is a
requirement.

Topics

o Libraries and Packages (Delphi)

o Writing Dynamically Loaded Libraries

o Packages (Delphi)

http://docwiki.embarcadero.com/Libraries/Rio/en/System.VarCopy
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.VarToStr
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants.VarType

Embarcadero Technologies 271

Libraries and Packages (Delphi)
A dynamically loadable library is a dynamic-link library (DLL) on Windows, a DYLIB
on Mac, or a shared object (SO) on Linux. It is a collection of routines that can be
called by applications and by other DLLs or shared objects. Like units,
dynamically loadable libraries contain sharable code or resources. But this type
of library is a separately compiled executable that is linked, at run time, to the
programs that use it.

Delphi programs can call DLLs and shared objects written in other languages,
and applications written in other languages can call DLLs or shared objects
written in Delphi.

Calling Dynamically Loadable Libraries

You can call operating system routines that are not linked to your application.
These routines are usually in a DLL or in a shared object. On Windows and OS X,
there is no compile-time validation of attempts to import a routine. It means that
the library does not need to be present when you compile your program.

On other platforms, such as Linux, to resolve an external reference, you have to
link to a shared object. If you want to avoid validation, use LoadLibrary and
GetProcAddress as described in the Dynamic Loading section.

Before you can call routines defined in DLL or shared object, you must import
them. This can be done in two ways: by declaring an external procedure or
function, or by direct calls to the operating system. Whichever method you use,
the routines are not linked to your application until run time.

Delphi does not support importing variables from DLLs or shared objects.

Static Loading

The simplest way to import a procedure or function is to declare it using the
external directive. For example:

 procedure DoSomething; external 'MYLIB.DLL';

If you include this declaration in a program, MYLIB.DLL is loaded once, when
the program starts. Throughout the execution of the program, the identifier
DoSomething always refers to the same entry point in the same shared library.

Declarations of imported routines can be placed directly in the program or unit
where they are called. To simplify maintenance, however, you can collect
external declarations into a separate "import unit" that also contains any
constants and types required for interfacing with the library. Other modules that
use the import unit can call any routines declared in it.

Embarcadero Technologies 272

Delayed Loading (Windows-only)

The delayed directive can be used to decorate an external routine to delay the
loading of the library containing the routine. The actual loading happens when
the routine is called for the first time. The following example demonstrates the use
of the delayed directive:

 function GetSomething: Integer; external 'somelibrary.dll' delayed;

In the example above, the GetSomething routine is imported from the
somelibrary.dll library. The delayed directive ensures that somelibrary.dll is not
statically linked to the application, but rather dynamically.

The delayed directive is useful in the case where the imported routines do not
exist on the target operating system on which the application is run. Statically
imported routines require that the operating system find and load the library
when the application is started. If the routine is not found in the loaded library, or
the library does not exist, the Operating System halts the execution of the
application. Using the delayed directive enables you to check, at run time,
whether the Operating System supports the required APIs; only then you can call
the imported routines.

Another potential use for the delayed directive is related to the memory footprint
of the application: decorating the less probably to be used routines, as delayed
may decrease the memory footprint of the application, because the libraries are
loaded only when required. The abusive use of delayed can damage the speed
performance of the program (as perceived by the end user).

Note: Trying to call a delayed routine that cannot be resolved results in a run-
time error (or an exception, if the SysUtils unit is loaded).

In order to fine-tune the delay-loading process used by the Delphi Run-time
Library, you can register hook procedures to oversee and change its behavior.
To accomplish this, use SetDliNotifyHook2 and SetDliFailureHook2, declared in
the SysInit unit. Also see the code example at DelayedLoading (Delphi).

Dynamic Loading

You can access routines in a library through direct calls to Windows APIs,
including LoadLibrary, FreeLibrary, and GetProcAddress. They are also available
on OS X, Linux, and Android. These functions are declared in
Winapi.Windows.pas unit for Windows and in System.SysUtils.pas for other
platforms. In this case, use procedural-type variables to reference the imported
routines.

http://docwiki.embarcadero.com/Libraries/Rio/en/SysInit.SetDliNotifyHook2
http://docwiki.embarcadero.com/Libraries/Rio/en/SysInit.SetDliFailureHook2
http://docwiki.embarcadero.com/CodeExamples/Rio/en/DelayedLoading_(Delphi)

Embarcadero Technologies 273

For example:

uses System.SysUtils {$IFDEF MSWINDOWS},Winapi.Windows{$ENDIF};

type

 TTimeRec = record

 Second: Integer;

 Minute: Integer;

 Hour: Integer;

 end;

 TGetTime = procedure(var Time: TTimeRec);

var

 Time: TTimeRec;

 Handle: HMODULE;

 GetTime: TGetTime;

begin

 Handle := LoadLibrary('libraryname');

 if Handle <> 0 then

 begin

 @GetTime := GetProcAddress(Handle, 'GetTime');

 if @GetTime <> nil then

 begin

 GetTime(Time);

 with Time do

 Writeln('The time is ', Hour, ':', Minute, ':', Second);

 end;

 FreeLibrary(Handle);

 end;

end.

When you import routines this way, the library is not loaded until the code
containing the call to LoadLibrary executes. The library is later unloaded by the
call to FreeLibrary. This allows you to conserve memory and to run your program
even when some of the libraries it uses are not present.

Embarcadero Technologies 274

Writing Dynamically Loaded Libraries
Note: Libraries are significantly more limited than packages in what they can export.

Libraries cannot export constants, types, and normal variables. That is, class types

defined in a library will not be seen in a program using that library. To export items

other than simple procedures and functions, packages are the recommended alternative.

Libraries should only be considered when interoperability with other programming is a

requirement.

The following topics describe elements of writing dynamically loadable libraries,
including

o The exports clause.

o Library initialization code.

o Global variables.

o Libraries and system variables.

Using Export Clause in Libraries

The main source for a dynamically loadable library is identical to that of a
program, except that it begins with the reserved word library (instead of
program).

Only routines that a library explicitly exports are available for importing by other
libraries or programs. The following example shows a library with two exported
functions, Min and Max:

library MinMax;

function Min(X, Y: Integer): Integer; stdcall;

begin

 if X < Y then Min := X else Min := Y;

end;

function Max(X, Y: Integer): Integer; stdcall;

begin

 if X > Y then Max := X else Max := Y;

end;

exports

 Min,

 Max;

begin

end.

If you want your library to be available to applications written in other
languages, it's safest to specify stdcall in the declarations of exported functions.
Other languages may not support Delphi's default register calling convention.

Libraries can be built from multiple units. In this case, the library source file is
frequently reduced to a uses clause, an exports clause, and the initialization
code. For example:

Embarcadero Technologies 275

library Editors;

uses EdInit, EdInOut, EdFormat, EdPrint;

exports

 InitEditors,

 DoneEditors name Done,

 InsertText name Insert,

 DeleteSelection name Delete,

 FormatSelection,

 PrintSelection name Print,

 .

 .

 .

 SetErrorHandler;

 begin

 InitLibrary;

 end.

You can put exports clauses in the interface or implementation section of a unit.
Any library that includes such a unit in its uses clause automatically exports the
routines listed the unit's exports clauses without the need for an exports clause of
its own.

A routine is exported when it is listed in an exports clause, which has the form:

exports entry1, ..., entryn;

where each entry consists of the name of a procedure, function, or variable
(which must be declared prior to the exports clause), followed by a parameter
list (only if exporting a routine that is overloaded), and an optional name
specifier. You can qualify the procedure or function name with the name of a
unit.

(Entries can also include the directive resident, which is maintained for backward
compatibility and is ignored by the compiler.)

On the Win32 platform, an index specifier consists of the directive index followed
by a numeric constant between 1 and 2,147,483,647. (For more efficient
programs, use low index values.) If an entry has no index specifier, the routine is
automatically assigned a number in the export table.
Note: Use of index specifiers, which are supported for backward compatibility only, is

discouraged and may cause problems for other development tools.

A name specifier consists of the directive name followed by a string constant. If
an entry has no name specifier, the routine is exported under its original declared
name, with the same spelling and case. Use a name clause when you want to
export a routine under a different name. For example:

exports

DoSomethingABC name 'DoSomething';

Embarcadero Technologies 276

When you export an overloaded function or procedure from a dynamically
loadable library, you must specify its parameter list in the exports clause. For
example:

exports

Divide(X, Y: Integer) name 'Divide_Ints',

Divide(X, Y: Real) name 'Divide_Reals';

On Win32, do not include index specifiers in entries for overloaded routines.

An exports clause can appear anywhere and any number of times in the
declaration part of a program or library, or in the interface or implementation
section of a unit. Programs seldom contain an exports clause.

Library Initialization Code

The statements in a library's block constitute the library's initialization code. These
statements are executed once every time the library is loaded. They typically
perform tasks like registering window classes and initializing variables. Library
initialization code can also install an entry point procedure using the DllProc
variable. The DllProc variable is similar to an exit procedure, which is described in
Exit procedures; the entry point procedure executes when the library is loaded or
unloaded.

Library initialization code can signal an error by setting the ExitCode variable to a
nonzero value. ExitCode is declared in the System unit and defaults to zero,
indicating successful initialization. If a library's initialization code sets ExitCode to
another value, the library is unloaded and the calling application is notified of
the failure. Similarly, if an unhandled exception occurs during execution of the
initialization code, the calling application is notified of a failure to load the
library.

Embarcadero Technologies 277

Here is an example of a library with initialization code and an entry point
procedure:

library Test;

var

 SaveDllProc: Pointer;

procedure LibExit(Reason: Integer);

begin

 if Reason = DLL_PROCESS_DETACH then

 begin

 .

 . // library exit code

 .

 end;

 SaveDllProc(Reason); // call saved entry point procedure

end;

begin

 .

 . // library initialization code

 .

 SaveDllProc := DllProc; // save exit procedure chain

 DllProc := @LibExit; // install LibExit exit procedure

end.

DllProc is called when the library is first loaded into memory, when a thread starts
or stops, or when the library is unloaded. The initialization parts of all units used by
a library are executed before the library's initialization code, and the finalization
parts of those units are executed after the library's entry point procedure.

Global Variables in a Library

Global variables declared in a shared library cannot be imported by a Delphi
application.

A library can be used by several applications at once, but each application has
a copy of the library in its own process space with its own set of global variables.
For multiple libraries - or multiple instances of a library - to share memory, they
must use memory-mapped files. Refer to the your system documentation for
further information.

Libraries and System Variables

Several variables declared in the System unit are of special interest to those
programming libraries. Use IsLibrary to determine whether code is executing in an
application or in a library; IsLibrary is always False in an application and True in a
library. During a library's lifetime, HInstance contains its instance handle. CmdLine
is always nil in a library.

The DLLProc variable allows a library to monitor calls that the operating system
makes to the library entry point. This feature is normally used only by libraries that
support multithreading. DLLProc is used in multithreading applications. You
should use finalization sections, rather than exit procedures, for all exit behavior.

Embarcadero Technologies 278

To monitor operating-system calls, create a callback procedure that takes a
single integer parameter, for example:

procedure DLLHandler(Reason: Integer);

and assign the address of the procedure to the DLLProc variable. When the
procedure is called, it passes to it one of the following values.

DLL_PROCESS_DETACH Indicates that the library is detaching from the address space of
the calling process as a result of a clean exit or a call to
FreeLibrary.

DLL_PROCESS_ATTACH Indicates that the library is attaching to the address space of
the calling process as the result of a call to LoadLibrary.

DLL_THREAD_ATTACH Indicates that the current process is creating a new thread.

DLL_THREAD_DETACH Indicates that a thread is exiting cleanly.

In the body of the procedure, you can specify actions to take depending on
which parameter is passed to the procedure.

Exceptions and Runtime Errors in Libraries

When an exception is raised but not handled in a dynamically loadable library, it
propagates out of the library to the caller. If the calling application or library is
itself written in Delphi, the exception can be handled through a normal
try...except statement.

On Win32, if the calling application or library is written in another language, the
exception can be handled as an operating-system exception with the exception
code $0EEDFADE. The first entry in the ExceptionInformation array of the
operating-system exception record contains the exception address, and the
second entry contains a reference to the Delphi exception object.

Generally, you should not let exceptions escape from your library. Delphi
exceptions map to the OS exception model.

If a library does not use the SysUtils unit, exception support is disabled. In this
case, when a runtime error occurs in the library, the calling application
terminates. Because the library has no way of knowing whether it was called
from a Delphi program, it cannot invoke the application's exit procedures; the
application is simply aborted and removed from memory.

Shared-Memory Manager

On Win32, if a DLL exports routines that pass long strings or dynamic arrays as
parameters or function results (whether directly or nested in records or objects),

Embarcadero Technologies 279

then the DLL and its client applications (or DLLs) must all use the ShareMem unit.
The same is true if one application or DLL allocates memory with New or
GetMem which is deallocated by a call to Dispose or FreeMem in another
module. ShareMem should always be the first unit listed in any program or library
uses clause where it occurs.

ShareMem is the interface unit for the BORLANDMM.DLL memory manager, which
allows modules to share dynamically allocated memory. BORLANDMM.DLL must
be deployed with applications and DLLs that use ShareMem. When an
application or DLL uses ShareMem, its memory manager is replaced by the
memory manager in BORLANDMM.DLL.

Packages (Delphi)
Packages are typically the preferred way to export items other than simple
procedures and functions. Libraries should only be considered when
interopability with other programming is a requirement.

The following topics describe packages and various issues involved in creating
and compiling them.

o Package declarations and source files

o Naming packages

o The requires clause

o Avoiding circular package references

o Duplicate package references

o The contains clause

o Avoiding redundant source code uses

o Compiling packages

o Generated files

o Package-specific compiler directives

o Package-specific command-line compiler switches

Understanding Packages

A package is a specially compiled library used by applications, the IDE, or both.
Packages allow you to rearrange where code resides without affecting the
source code. This is sometimes referred to as application partitioning.

Runtime packages provide functionality when a user runs an application.
Design-time packages are used to install components in the IDE and to create

Embarcadero Technologies 280

special property editors for custom components. A single package can function
at both design time and runtime, and design-time packages frequently work by
referencing runtime packages in their requires clauses.

On Win32, package files end with the .bpl (Borland package library) extension.

Ordinarily, packages are loaded statically when an applications starts. But you
can use the LoadPackage and UnloadPackage routines (in the SysUtils unit) to
load packages dynamically.

Note: When an application utilizes packages, the name of each
packaged unit still must appear in the uses clause of any source file
that references it.

Package Declarations and Source Files

Each package is declared in a separate source file, which should be saved with
the .dpk extension to avoid confusion with other files containing Delphi code. A
package source file does not contain type, data, procedure, or function
declarations. Instead, it contains:

o a name for the package.

o a list of other packages required by the new package. These are
packages to which the new package is linked.

o a list of unit files contained by, or bound into, the package when it is
compiled. The package is essentially a wrapper for these source-code
units, which provide the functionality of the compiled package.

A package declaration has the form:

package packageName;

 requiresClause;

 containsClause;

end.

where packageName is any valid identifier. The requiresClause and
containsClause are both optional. For example, the following code declares the
DATAX package:

 package DATAX;

 requires

 rtl,

 contains Db, DBLocal, DBXpress, ... ;

 end.

The requires clause lists other, external packages used by the package being
declared. It consists of the directive requires, followed by a comma-delimited list

http://docwiki.embarcadero.com/RADStudio/Rio/en/Delphi_Package_Source_File_(*.dpk)

Embarcadero Technologies 281

of package names, followed by a semicolon. If a package does not reference
other packages, it does not need a requires clause.

The contains clause identifies the unit files to be compiled and bound into the
package. It consists of the directive contains, followed by a comma-delimited list
of unit names, followed by a semicolon. Any unit name may be followed by the
reserved word in and the name of a source file, with or without a directory path,
in single quotation marks; directory paths can be absolute or relative. For
example:

 contains MyUnit in 'C:\MyProject\MyUnit.pas';

Note: Thread-local variables (declared with threadvar) in a
packaged unit cannot be accessed from clients that use the
package.

Naming packages

A compiled package involves several generated files. For example, the source
file for the package called DATAX is DATAX.DPK, from which the compiler
generates an executable and a binary image called

DATAX.BPL and DATAX.DCP

DATAX is used to refer to the package in the requires clauses of other packages,
or when using the package in an application. Package names must be unique
within a project.

The requires clause

The requires clause lists other, external packages that are used by the current
package. It functions like the uses clause in a unit file. An external package listed
in the requires clause is automatically linked at compile time into any application
that uses both the current package and one of the units contained in the
external package.

If the unit files contained in a package make references to other packaged
units, the other packages should be included in the first package's requires
clause. If the other packages are omitted from the requires clause, the compiler
loads the referenced units from their .dcu files.

Avoiding circular package references

Packages cannot contain circular references in their requires clauses. This means
that

o A package cannot reference itself in its own requires clause.

o A chain of references must terminate without rereferencing any package
in the chain. If package A requires package B, then package B cannot

Embarcadero Technologies 282

require package A; if package A requires package B and package B
requires package C, then package C cannot require package A.

Duplicate package references

The compiler ignores duplicate references in a package's requires clause. For
programming clarity and readability, however, duplicate references should be
removed.

The contains clause

The contains clause identifies the unit files to be bound into the package. Do not
include file-name extensions in the contains clause.

Avoiding redundant source code uses

A package cannot be listed in the contains clause of another package or the
uses clause of a unit.

All units included directly in a package's contains clause, or indirectly in the uses
clauses of those units, are bound into the package at compile time. The units
contained (directly or indirectly) in a package cannot be contained in any other
packages referenced in requires clause of that package.

A unit cannot be contained (directly or indirectly) in more than one package
used by the same application.

Compiling Packages

Packages are ordinarily compiled from the IDE using .dpk files generated by the
Project Manager. You can also compile .dpk files directly from the command
line. When you build a project that contains a package, the package is implicitly
recompiled, if necessary.

Generated Files

The following table lists the files produced by the successful compilation of a
package.

Compiled package files

Embarcadero Technologies 283

File

extension
Contents

DCP A binary image containing a package header and the concatenation of
all .dcu (Win32) files in the package. A single .dcp or .dcp file is created for
each package. The base name for the file is the base name of the .dpk
source file.

BPL The runtime package. This file is a DLL on Win32 with special RAD Studio-
specific features. The base name for the package is the base name of the
dpk source file.

Package-Specific Compiler Directives

The following table lists package-specific compiler directives that can be
inserted into source code.

Package-specific compiler directives

Directive Purpose

{$IMPLICITBUILD OFF} Prevents a package from being implicitly recompiled later.
Use in .dpk files when compiling packages that provide low-
level functionality, that change infrequently between builds, or
whose source code will not be distributed.

{$G-} or
{$IMPORTEDDATA OFF}

Disables creation of imported data references. This directive
increases memory-access efficiency, but prevents the unit
where it occurs from referencing variables in other packages.

{$WEAKPACKAGEUNIT
ON}

Packages unit weakly.

{$DENYPACKAGEUNIT
ON}

Prevents unit from being placed in a package.

{$DESIGNONLY ON} Compiles the package for installation in the IDE. (Put in .dpk
file.)

{$RUNONLY ON} Compiles the package as runtime only. (Put in .dpk file.)

Including {$DENYPACKAGEUNIT ON} in source code prevents the unit file from
being packaged. Including {$G-} or {$IMPORTEDDATA OFF} may prevent a
package from being used in the same application with other packages.

Other compiler directives may be included, if appropriate, in package source
code.

Embarcadero Technologies 284

Package-Specific Command-Line Compiler Switches

The following package-specific switches are available for the command-line
compiler.

Package-specific command-line compiler switches

Switch Purpose

-$G- Disables creation of imported data references. Using this
switch increases memory-access efficiency, but prevents
packages compiled with it from referencing variables in
other packages.

LE path Specifies the directory where the compiled package file will
be placed.

LN path Specifies the directory where the package dcp or dcp file will
be placed.

LUpackageName
[;packageName2;...]

Specifies additional runtime packages to use in an
application. Used when compiling a project.

Z Prevents a package from being implicitly recompiled later.
Use when compiling packages that provide low-level
functionality, that change infrequently between builds, or
whose source code will not be distributed.

Using the -$G- switch may prevent a package from being used in the same
application with other packages.

Other command-line options may be used, if appropriate, when compiling
packages.

Object Interfaces Index
This section describes the use of interfaces in Delphi.

Topics

o Object Interfaces (Delphi)

o Implementing Interfaces

o Interface References (Delphi)

o Automation Objects (Windows only)

Embarcadero Technologies 285

Object Interfaces (Delphi)
An object interface, or simply interface, defines methods that can be
implemented by a class. Interfaces are declared as classes, but cannot be
directly instantiated and do not have their own method definitions. Rather, it is
the responsibility of any class that supports an interface to provide
implementations for the method of the interface. A variable of an interface type
can reference an object whose class implements that interface; however, only
methods declared in the interface can be called using such a variable.

Interfaces offer some of the advantages of multiple inheritance without the
semantic difficulties. They are also essential for using distributed object models
(such as SOAP). Using a distributed object model, custom objects that support
interfaces can interact with objects written in C++, Java, and other languages.

Interface Types

Interfaces, like classes, can be declared only in the outermost scope of a
program or unit, not in a procedure or function declaration. An interface type
declaration has the form:

 type interfaceName = interface (ancestorInterface) ['{GUID}'] memberList end;

Warning: The ancestorInterface and GUID specification are required to support
Win32 COM interoperability. If your interface is to be accessed through COM, be
sure to specify the ancestorInterface and GUID.

In most respects, interface declarations resemble class declarations, but the
following restrictions apply:

o The memberList can include only methods and properties. Fields are not
allowed in interfaces.

o Since an interface has no fields, property read and write specifiers must
be methods.

o All members of an interface are public. Visibility specifiers and storage
specifiers are not allowed. (But an array property can be declared as
default.)

o Interfaces have no constructors or destructors. They cannot be
instantiated, except through classes that implement their methods.

o Methods cannot be declared as virtual, dynamic, abstract, or override.
Since interfaces do not implement their own methods, these designations
have no meaning.

Embarcadero Technologies 286

Here is an example of an interface declaration:

type IMalloc = interface(IInterface)

 ['{00000002-0000-0000-C000-000000000046}']

 function Alloc(Size: Integer): Pointer; stdcall;

 function Realloc(P: Pointer; Size: Integer): Pointer; stdcall;

 procedure Free(P: Pointer); stdcall;

 function GetSize(P: Pointer): Integer; stdcall;

 function DidAlloc(P: Pointer): Integer; stdcall;

 procedure HeapMinimize; stdcall;

 end;

In some interface declarations, the interface reserved word is replaced by
dispinterface.

IInterface and Inheritance

An interface, like a class, inherits all of its ancestors' methods. But interfaces,
unlike classes, do not implement methods. What an interface inherits is the
obligation to implement methods, an obligation that is passed onto any class
supporting the interface.

The declaration of an interface can specify an ancestor interface. If no ancestor
is specified, the interface is a direct descendant of IInterface, which is defined in
the System unit and is the ultimate ancestor of all other interfaces. On Win32,
IInterface declares three methods: QueryInterface, _AddRef, and _Release.

Note: IInterface is equivalent to IUnknown. You should generally use
IInterface for platform independent applications and reserve the
use of IUnknown for specific programs that include Win32
dependencies.

QueryInterface provides the means to obtain a reference to the different
interfaces that an object supports. _AddRef and _Release provide lifetime
memory management for interface references. The easiest way to implement
these methods is to derive the implementing class from the TInterfacedObject of
the System unit. It is also possible to dispense with any of these methods by
implementing it as an empty function; COM objects, however, must be
managed through _AddRef and _Release.

Warning:

QueryInterface, _AddRef, and _Release are required to support Win32 COM
interoperability. If your interface is to be accessed through COM, be sure to
implement these methods.

Embarcadero Technologies 287

Interface Identification and GUIDs

An interface declaration can specify a globally unique identifier (GUID),
represented by a string literal enclosed in brackets immediately preceding the
member list. The GUID part of the declaration must have the form:

 ['{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}']

where each x is a hexadecimal digit (0 through 9 or A through F). The Type
Library editor automatically generates GUIDs for new interfaces. You can also
generate GUIDs by pressing Ctrl+Shift+G in the code editor.

A GUID is a 16-byte binary value that uniquely identifies an interface. If an
interface has a GUID, you can use interface querying to get references to its
implementations.

Note: GUIDs are only used for COM interoperability.

The TGUID and PGUID types, declared in the System unit, are used to manipulate
GUIDs.

 type

 PGUID = ^TGUID;

 TGUID = packed record

 D1: Cardinal;

 D2: Word;

 D3: Word;

 D4: array[0..7] of Byte;

 end;

Supports can be called in either of two ways:

if Supports(Allocator, IMalloc) then ...

or:

if Supports(Allocator, IID_IMalloc) then ...

Note: The SysUtils unit provides an overloaded function called
Supports that returns true or false when class types and instances
support a particular interface represented by a GUID. The Supports
function is used in the manner of the Delphi is and as operators.
The significant difference is that the Supports function can take as
the right operand either a GUID or an interface type associated
with a GUID, whereas is and as take the name of a type. For more
information about is and as, see Class References.

Embarcadero Technologies 288

Calling Conventions for Interfaces

The default calling convention for interface methods is register, but interfaces
shared among modules (especially if they are written in different languages)
should declare all methods with stdcall. On Win32, you can use safecall to
implement methods of dual interfaces.

Interface Properties

Properties declared in an interface are accessible only through expressions of
the interface type; they cannot be accessed through class-type variables.
Moreover, interface properties are visible only within programs where the
interface is compiled.

In an interface, property read and write specifiers must be methods, since fields
are not available.

Forward Declarations

An interface declaration that ends with the reserved word interface and a
semicolon, without specifying an ancestor, GUID, or member list, is a forward
declaration. A forward declaration must be resolved by a defining declaration
of the same interface within the same type declaration section. In other words,
between a forward declaration and its defining declaration, nothing can occur
except other type declarations.

Forward declarations allow mutually dependent interfaces. For example:

 type

 IControl = interface;

 IWindow = interface

 ['{00000115-0000-0000-C000-000000000044}']

 function GetControl(Index: Integer): IControl;

 //. . .

 end;

 IControl = interface

 ['{00000115-0000-0000-C000-000000000049}']

 function GetWindow: IWindow;

 //. . .

 end;

Mutually derived interfaces are not allowed. For example, it is not legal to derive
IWindow from IControl and also derive IControl from IWindow.

Implementing Interfaces
Once an interface has been declared, it must be implemented in a class before
it can be used. The interfaces implemented by a class are specified in the
declaration of the class, after the name of the class ancestor.

Embarcadero Technologies 289

Class Declarations

Such declarations have the form:

type className = class (ancestorClass, interface1, ..., interfaceN)

 memberList

end;

For example:

type

 TMemoryManager = class(TInterfacedObject, IMalloc, IErrorInfo)

 // ...

 end;

declares a class called TMemoryManager that implements the IMalloc and
IErrorInfo interfaces. When a class implements an interface, it must implement
(or inherit an implementation of) each method declared in the interface.

Here is the declaration of System.TInterfacedObject (on Windows. On other
platforms, declaration is slightly different):

type

 TInterfacedObject = class(TObject, IInterface)

 protected

 FRefCount: Integer;

 function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;

 function _AddRef: Integer; stdcall;

 function _Release: Integer; stdcall;

 public

 procedure AfterConstruction; override;

 procedure BeforeDestruction; override;

 class function NewInstance: TObject; override;

 property RefCount: Integer read FRefCount;

 end;

TInterfacedObject implements the IInterface interface. Hence
TInterfacedObject declares and implements each of the three IInterface
methods.

Classes that implement interfaces can also be used as base classes. (The first
example above declares TMemoryManager as a direct descendent of
TInterfacedObject.) Every interface inherits from IInterface, and a class that
implements interfaces must implement the QueryInterface, _AddRef, and
_Release methods. TInterfacedObject in the unit System implements these
methods and is thus a convenient base from which to derive other classes that
implement interfaces.

When an interface is implemented, each of its methods is mapped onto a
method in the implementing class that has the same result type, the same calling
convention, the same number of parameters, and identically typed parameters

http://docwiki.embarcadero.com/Libraries/Rio/en/System.TInterfacedObject

Embarcadero Technologies 290

in each position. By default, each interface method is mapped to a method of
the same name in the implementing class.

Method Resolution Clause

You can override the default name-based mappings by including method
resolution clauses in a class declaration. When a class implements two or more
interfaces that have identically named methods, use method resolution clauses
to resolve the naming conflicts.

A method resolution clause has the form:

procedure interface.interfaceMethod = implementingMethod;

or:

function interface.interfaceMethod = implementingMethod;

where implementingMethod is a method declared in the class or one of its
ancestors. The implementingMethod can be a method declared later in the
class declaration, but cannot be a private method of an ancestor class
declared in another module.

For example, the class declaration:

type

 TMemoryManager = class(TInterfacedObject, IMalloc, IErrorInfo)

 function IMalloc.Alloc = Allocate;

 procedure IMalloc.Free = Deallocate;

 // ...

 end;

maps the Alloc and Free methods of IMalloc onto the Allocate and Deallocate
methods of TMemoryManager.

A method resolution clause cannot alter a mapping introduced by an ancestor
class.

Changing Inherited Implementations

Descendent classes can change the way a specific interface method is
implemented by overriding the implementing method. This requires that the
implementing method be virtual or dynamic.

A class can also reimplement an entire interface that it inherits from an ancestor
class. This involves relisting the interface in the descendent class' declaration. For
example:

Embarcadero Technologies 291

type

 IWindow = interface

 ['{00000115-0000-0000-C000-000000000146}']

 procedure Draw;

 // ...

 end;

 TWindow = class(TInterfacedObject, IWindow)

 // TWindow implements IWindow pocedure Draw;

 // ...

 end;

 TFrameWindow = class(TWindow, IWindow)

 // TFrameWindow reimplements IWindow procedure Draw;

 // ...

 end;

Reimplementing an interface hides the inherited implementation of the same
interface. Hence method resolution clauses in an ancestor class have no effect
on the reimplemented interface.

Implementing Interfaces by Delegation

The implements directive allows you to delegate implementation of an interface
to a property in the implementing class. For example:

property MyInterface: IMyInterface read FMyInterface implements IMyInterface;

declares a property called MyInterface that implements the interface
IMyInterface.

The implements directive must be the last specifier in the property declaration
and can list more than one interface, separated by commas. The delegate
property:

o Must be of a class or interface type.

o Cannot be an array property or have an index specifier.

o Must have a read specifier. If the property uses a read method, that
method must use the default register calling convention and cannot be
dynamic (though it can be virtual) or specify the message directive.

The class you use to implement the delegated interface should derive from
System.TAggregatedObject.

Delegating to an Interface-Type Property

If the delegate property is of an interface type, that interface, or an interface
from which it derives, must occur in the ancestor list of the class where the
property is declared. The delegate property must return an object whose class
completely implements the interface specified by the implements directive, and
which does so without method resolution clauses. For example:

http://docwiki.embarcadero.com/Libraries/Rio/en/System.TAggregatedObject

Embarcadero Technologies 292

type

 IMyInterface = interface

 procedure P1;

 procedure P2;

 end;

 TMyClass = class(TObject, IMyInterface)

 FMyInterface: IMyInterface;

 property MyInterface: IMyInterface read FMyInterface implements

IMyInterface;

 end;

var

 MyClass: TMyClass;

 MyInterface: IMyInterface;

begin

 MyClass := TMyClass.Create;

 MyClass.FMyInterface := ...// some object whose class implements IMyInterface

 MyInterface := MyClass;

 MyInterface.P1;

end;

Embarcadero Technologies 293

Delegating to a Class-Type Property

If the delegate property is of a class type, that class and its ancestors are
searched for methods implementing the specified interface before the enclosing
class and its ancestors are searched. Thus it is possible to implement some
methods in the class specified by the property, and others in the class where the
property is declared. Method resolution clauses can be used in the usual way to
resolve ambiguities or specify a particular method. An interface cannot be
implemented by more than one class-type property. For example:

type

 IMyInterface = interface

 procedure P1;

 procedure P2;

 end;

 TMyImplClass = class

 procedure P1;

 procedure P2;

 end;

 TMyClass = class(TInterfacedObject, IMyInterface)

 FMyImplClass: TMyImplClass;

 property MyImplClass: TMyImplClass read FMyImplClass implements

IMyInterface;

 procedure IMyInterface.P1 = MyP1;

 procedure MyP1;

 end;

procedure TMyImplClass.P1;

 // ...

procedure TMyImplClass.P2;

 // ...

procedure TMyClass.MyP1;

 // ...

var

 MyClass: TMyClass;

 MyInterface: IMyInterface;

begin

 MyClass := TMyClass.Create;

 MyClass.FMyImplClass := TMyImplClass.Create;

 MyInterface := MyClass;

 MyInterface.P1; // calls TMyClass.MyP1;

 MyInterface.P2; // calls TImplClass.P2;

end;

Interface References (Delphi)
If you declare a variable of an interface type, the variable can reference
instances of any class that implements the interface. These topics describe
Interface references and indicate related topics.

Implementing Interface References

Interface reference variables allow you to call interface methods without
knowing, at compile time, where the interface is implemented. But they are
subject to the following:

Embarcadero Technologies 294

o An interface-type expression gives you access only to methods and
properties declared in the interface, not to other members of the
implementing class.

o An interface-type expression cannot reference an object whose class
implements a descendent interface, unless the class (or one that it inherits
from) explicitly implements the ancestor interface as well.

For example:

 type

 IAncestor = interface

 end;

 IDescendant = interface(IAncestor)

 procedure P1;

 end;

 TSomething = class(TInterfacedObject, IDescendant)

 procedure P1;

 procedure P2;

 end;

 // ...

 var

 D: IDescendant;

 A: IAncestor;

 begin

 D := TSomething.Create; // works!

 A := TSomething.Create; // error

 D.P1; // works!

 D.P2; // error

 end;

In this example, A is declared as a variable of type IAncestor. Because
TSomething does not list IAncestor among the interfaces it implements, a
TSomething instance cannot be assigned to A. But if you changed TSomething's
declaration to:

 TSomething = class(TInterfacedObject, IAncestor, IDescendant)

 // ...

the first error would become a valid assignment. D is declared as a variable of
type IDescendant. While D references an instance of TSomething, you cannot
use it to access TSomething's P2 method, since P2 is not a method of
IDescendant. But if you changed D's declaration to:

 D: TSomething;

the second error would become a valid method call.

On the Win32 platform, interface references are typically managed through
reference-counting, which depends on the _AddRef and _Release methods
inherited from System.IInterface. Using the default implementation of reference
counting, when an object is referenced only through interfaces, there is no need
to destroy it manually; the object is automatically destroyed when the last

http://docwiki.embarcadero.com/Libraries/Rio/en/System.IInterface

Embarcadero Technologies 295

reference to it goes out of scope. Some classes implement interfaces to bypass
this default lifetime management, and some hybrid objects use reference
counting only when the object does not have an owner.

Global interface-type variables can be initialized only to nil.

To determine whether an interface-type expression references an object, pass it
to the standard function Assigned.

Interface Assignment Compatibility

Variables of a given class type are assignment-compatible with any interface
type implemented by the class. Variables of an interface type are assignment-
compatible with any ancestor interface type. The value nil can be assigned to
any interface-type variable.

An interface-type expression can be assigned to a variant. If the interface is of
type IDispatch or a descendant, the variant receives the type code varDispatch.
Otherwise, the variant receives the type code varUnknown.

A variant whose type code is varEmpty, varUnknown, or varDispatch can be
assigned to an IInterface variable. A variant whose type code is varEmpty or
varDispatch can be assigned to an IDispatch variable.

Interface Typecasts

An interface-type expression can be cast to Variant. If the interface is of type
IDispatch or a descendant, the resulting variant has the type code varDispatch.
Otherwise, the resulting variant has the type code varUnknown.

A variant whose type code is varEmpty, varUnknown, or varDispatch can be cast
to IInterface. A variant whose type code is varEmpty or varDispatch can be cast
to IDispatch.

Embarcadero Technologies 296

Interface Querying

You can use the as operator to perform checked interface typecasts. This is
known as interface querying, and it yields an interface-type expression from an
object reference or from another interface reference, based on the actual (run-
time) type of object. An interface query has the form:

object as interface

where object is an expression of an interface or variant type or denotes an
instance of a class that implements an interface, and interface is any interface
declared with a GUID.

An interface query returns nil if object is nil. Otherwise, it passes the GUID of the
interface to the QueryInterface method in object, raising an exception unless
QueryInterface returns zero. If QueryInterface returns zero (indicating that the
object's class implements the interface), the interface query returns an interface
reference to object.

Casting Interface References to Objects

The as operator can also be used to cast an interface reference back to the
object from which it was obtained. This casting only works for interfaces obtained
from Delphi objects. For example:

 var

 LIntfRef: IInterface;

 LObj: TInterfacedObject;

 begin

 { Create an interfaced object and extract an interface from it. }

 LIntfRef := TInterfacedObject.Create();

 { Cast the interface back to the original object. }

 LObj := LIntfRef as TInterfacedObject;

 end;

The above example shows how to obtain the original object from which the
interface reference was obtained. This technique is useful when possessing an
interface reference is simply not enough.

Embarcadero Technologies 297

The as operator raises an exception if the interface was not extracted from the
given class:

 var

 LIntfRef: IInterface;

 LObj: TInterfacedObject;

 begin

 { Create an interfaced object and extract an interface from it. }

 LIntfRef := TInterfacedObject.Create();

 try

 { Cast the interface to a TComponent. }

 LObj := LIntfRef as TComponent;

 except

 Writeln('LIntfRef was not referencing a TComponent instance');

 end;

 end;

You can also perform normal type casting (unsafe) from an interface reference
to an object. Like in the case of object unsafe casting, this method does not
raise any exceptions. The difference between the unsafe object-to-object
casting and unsafe interface-to-object casting is that while the first returns a valid
pointer in case of incompatible types, the later returns nil. The example describes
the use of unsafe casting:

 var

 LIntfRef: IInterface;

 LObj: TInterfacedObject;

 begin

 { Create an interfaced object and extract an interface from it. }

 LIntfRef := TInterfacedObject.Create();

 { Cast the interface to a TComponent. }

 LObj := TComponent(LIntfRef);

 if LObj = nil then

 Writeln('LIntfRef was not referencing a TComponent instance');

 { Cast the interface to a TObject. }

 LObj := TObject(LIntfRef);

 if LObj <> nil then

 Writeln('LIntfRef was referencing a TObject (or descendant).');

 end;

To avoid potential nil references, use the is operator to verify whether the
interface reference was extracted from a given class:

 if Intf is TCustomObject then ...

Note: Make sure you are using Delphi-only objects when using the
unsafe casting or the as and is operators.

Embarcadero Technologies 298

Automation Objects (Win32 Only)
An object whose class implements the IDispatch interface (declared in the
System unit) is an Automation object.

Use variants to access Automation objects. When a variant references an
Automation object, you can call the object's methods and read or write to its
properties through the variant. To do this, you must include ComObj in the uses
clause of one of your units or your program or library.

Dispatch Interface Types

Dispatch interface types define the methods and properties that an Automation
object implements through IDispatch. Calls to methods of a dispatch interface
are routed through IDispatch's Invoke method at run time; a class cannot
implement a dispatch interface.

A dispatch interface type declaration has the form:

type InterfaceName = dispinterface

 ['{GUID}']

 // …

end;

where

['{GUID}']

is optional and the interface contains property and method declarations.
Dispatch interface declarations are similar to regular interface declarations, but
they cannot specify an ancestor. For example:

type

 IStringsDisp = dispinterface

 ['{EE05DFE2-5549-11D0-9EA9-0020AF3D82DA}']

 property ControlDefault[Index: Integer]: OleVariant dispid 0; default;

 function Count: Integer; dispid 1;

 property Item[Index: Integer]: OleVariant dispid 2;

 procedure Remove(Index: Integer); dispid 3;

 procedure Clear; dispid 4;

 function Add(Item: OleVariant): Integer; dispid 5;

 function _NewEnum: IUnknown; dispid -4;

 end;

Dispatch interface methods

Methods of a dispatch interface are prototypes for calls to the Invoke method of
the underlying IDispatch implementation. To specify an Automation dispatch ID

Embarcadero Technologies 299

for a method, include the dispid directive in its declaration, followed by an
integer constant; specifying an already used ID causes an error.

A method declared in a dispatch interface cannot contain directives other than
dispid. Parameter and result types must be automatable. In other words, they
must be Byte, Currency, Real, Double, Longint, Integer, Single, Smallint, AnsiString,
WideString, TDateTime, Variant, OleVariant, WordBool, or any interface type.

Dispatch interface properties

Properties of a dispatch interface do not include access specifiers. They can be
declared as readonly or writeonly. To specify a dispatch ID for a property,
include the dispid directive in its declaration, followed by an integer constant;
specifying an already used ID causes an error. Array properties can be declared
as default. No other directives are allowed in dispatch-interface property
declarations.

Accessing Automation Objects

Automation object method calls are bound at run time and require no previous
method declarations. The validity of these calls is not checked at compile time.

The following example illustrates Automation method calls. The CreateOleObject
function (defined in ComObj) returns an IDispatch reference to an Automation
object and is assignment-compatible with the variant Word:

var

 Word: Variant;

begin

 Word := CreateOleObject('Word.Basic');

 Word.FileNew('Normal');

 Word.Insert('This is the first line'#13);

 Word.Insert('This is the second line'#13);

 Word.FileSaveAs('c:\temp\test.txt', 3);

end;

You can pass interface-type parameters to Automation methods.

Variant arrays with an element type of varByte are the preferred method of
passing binary data between Automation controllers and servers. Such arrays
are subject to no translation of their data, and can be efficiently accessed using
the VarArrayLock and VarArrayUnlock routines.

Automation Object Method-Call Syntax

The syntax of an Automation object method call or property access is similar to
that of a normal method call or property access. Automation method calls,
however, can use both positional and named parameters. (But some
Automation servers do not support named parameters.)

Embarcadero Technologies 300

A positional parameter is simply an expression. A named parameter consists of a
parameter identifier, followed by the := symbol, followed by an expression.
Positional parameters must precede any named parameters in a method call.
Named parameters can be specified in any order.

Some Automation servers allow you to omit parameters from a method call,
accepting their default values. For example:

Word.FileSaveAs('test.doc');

Word.FileSaveAs('test.doc', 6);

Word.FileSaveAs('test.doc',,,'secret');

Word.FileSaveAs('test.doc', Password := 'secret');

Word.FileSaveAs(Password := 'secret', Name := 'test.doc');

Automation method call parameters can be of integer, real, string, Boolean, and
variant types. A parameter is passed by reference if the parameter expression
consists only of a variable reference, and if the variable reference is of type Byte,
Smallint, Integer, Single, Double, Currency, System.TDateTime, AnsiString,
WordBool, or Variant. If the expression is not of one of these types, or if it is not just
a variable, the parameter is passed by value. Passing a parameter by reference
to a method that expects a value parameter causes COM to fetch the value
from the reference parameter. Passing a parameter by value to a method that
expects a reference parameter causes an error.

Dual Interfaces

A dual interface is an interface that supports both compile-time binding and
runtime binding through Automation. Dual interfaces must descend from
IDispatch.

All methods of a dual interface (except from those inherited from IInterface and
IDispatch) must use the safecall convention, and all method parameter and
result types must be automatable. (The automatable types are Byte, Currency,
Real, Double, Real48, Integer, Single, Smallint, AnsiString, ShortString,
System/TDateTime, Variant, OleVariant, and WordBool.)

Embarcadero Technologies 301

Memory Management Index
This section describes memory management issues related to programming in
Delphi on Win32.

Topics

o Memory Management

o Internal Data Formats (Delphi)

Memory Management
This help topic describes the two memory managers that are used on the various
target platforms, and briefly describes memory issues of variables.

Default memory manager

The memory manager in use is determined by the target platform/compiler of
your application.

The following table lists the default memory manager for each platform.

Platform Compiler Memory Manager name

Win32 DCC32 FastMM (GETMEM.inc)

Win64 DCC64 FastMM (GETMEM.inc)

OSX32 DCCOSX Posix/32

Linux DCCLINUX64 Posix/64

iOSDevice32 DCCIOSARM Posix/32

iOSDevice64 DCCIOSARM64 Posix/64

iOSSimulator DCCIOS32 Posix/32

Android DCCAARM Posix/32

The FastMM Memory Manager (Win32 and Win64)

The Memory Manager manages all dynamic memory allocations and
deallocations in an application. The New, Dispose, GetMem, ReallocMem, and

http://docwiki.embarcadero.com/RADStudio/Rio/en/DCC32
http://docwiki.embarcadero.com/RADStudio/Rio/en/DCC64
http://docwiki.embarcadero.com/RADStudio/Rio/en/DCCOSX
http://docwiki.embarcadero.com/RADStudio/Rio/en/DCCLINUX64
http://docwiki.embarcadero.com/RADStudio/Rio/en/DCCIOSARM
http://docwiki.embarcadero.com/RADStudio/Rio/en/DCCIOSARM64
http://docwiki.embarcadero.com/RADStudio/Rio/en/DCCIOS32
http://docwiki.embarcadero.com/RADStudio/Rio/en/DCCAARM

Embarcadero Technologies 302

FreeMem standard System procedures use the memory manager. All objects,
dynamic arrays, and long strings are allocated through the memory manager.

For Win32 and Win64, the default FastMM Memory Manager is optimized for
applications that allocate large numbers of small- to medium-sized blocks, as is
typical for object-oriented applications and applications that process string
data. The Memory Manager is optimized for efficient operation (high speed and
low memory overhead) in single and multi-threaded applications. Other memory
managers, such as the implementations of GlobalAlloc, LocalAlloc, and private
heap support in Windows, typically do not perform well in such situations, and
would slow down an application if they were used directly.

To ensure the best performance, the Memory Manager interfaces directly with
the virtual memory API (the >VirtualAlloc and VirtualFree functions).

For Win32, the Memory Manager supports a user mode address space up to
2GB.

Note: To increase the user mode address space to 3GB, see
Increasing the Memory Address Space topic.

Memory Manager blocks are rounded upward to a size that is a multiple of 4
bytes, and include a 4-byte header in which the size of the block and other
status bits are stored. The start address of memory blocks are aligned on at least
8-byte boundaries, or optionally on 16-byte boundaries, which improves
performance when addressing them. (See System.SetMinimumBlockAlignment)

For Win64, the Memory Manager supports a user mode address space up to
16EiB in speculation.

Note: Actual maximum allocatable size is depended on CPU
implementation and operating system. For example, the current
Intel/X64 implementation supports up to 256TiB (48bits), and
Windows 7 Professional supports up to 192GiB.

Memory Manager blocks are rounded upward to a size that is a multiple of 16
bytes, and include a 8-byte header in which the size of the block and other
status bits are stored. The start address of memory blocks are aligned on at least
16-byte boundaries.

For Win32 and Win64, the Memory Manager employs an algorithm that
anticipates future block reallocations, reducing the performance impact usually
associated with such operations. The reallocation algorithm also helps reduce
address space fragmentation. The memory manager provides a sharing
mechanism that does not require the use of an external DLL.

The Memory Manager includes reporting functions to help applications monitor
their own memory usage and potential memory leaks.

http://docwiki.embarcadero.com/Libraries/Rio/en/System
http://docwiki.embarcadero.com/RADStudio/Rio/en/Increasing_the_Memory_Address_Space
http://docwiki.embarcadero.com/Libraries/Rio/en/System.SetMinimumBlockAlignment

Embarcadero Technologies 303

The Memory Manager provides two procedures, GetMemoryManagerState and
GetMemoryMap, that allow applications to retrieve memory-manager status
information and a detailed map of memory usage.

The Posix Memory Manager (Posix platforms)

The Posix Memory Manager is used when the target platform/compiler is OSX 32,
Linux, 32-bit iOS Device, 64-bit iOS Device, iOS Simulator, or Android.

All memory management functions/methods use the Posix system library, as
shown in the following table:

RTL POSIX function

AllocMem calloc

FreeMem free

GetMem malloc

ReallocMem realloc

Variables

Global variables are allocated on the application data segment and persist for
the duration of the program. Local variables (declared within procedures and
functions) reside in the stack of an application. Each time a procedure or
function is called, it allocates a set of local variables; on exit, the local variables
are disposed of. Compiler optimization may eliminate variables earlier.

On Win32, an application's stack is defined by two values: the minimum stack
size and the maximum stack size. The values are controlled through the
$MINSTACKSIZE and $MAXSTACKSIZE compiler directives, and default to 16,384
(16K) and 1,048,576 (1Mb) respectively. An application is guaranteed to have
the minimum stack size available, and an application's stack is never allowed to
grow larger than the maximum stack size. If there is not enough memory
available to satisfy an application's minimum stack requirement, Windows will
report an error upon attempting to start the application.

If a Win32 application requires more stack space than specified by the minimum
stack size, additional memory is automatically allocated in 4K increments. If
allocation of additional stack space fails, either because more memory is not
available or because the total size of the stack would exceed the maximum
stack size, an EStackOverflow exception is raised. (Stack overflow checking is
completely automatic. The $S compiler directive, which originally controlled
overflow checking, is maintained for backward compatibility.)

Dynamic variables created with the GetMem or New procedure are heap-
allocated and persist until they are deallocated with FreeMem or Dispose.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.GetMemoryManagerState
http://docwiki.embarcadero.com/Libraries/Rio/en/System.GetMemoryMap
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AllocMem
http://docwiki.embarcadero.com/RADStudio/Rio/en/Calloc
http://docwiki.embarcadero.com/Libraries/Rio/en/System.FreeMem
http://docwiki.embarcadero.com/RADStudio/Rio/en/Free
http://docwiki.embarcadero.com/Libraries/Rio/en/System.GetMem
http://docwiki.embarcadero.com/RADStudio/Rio/en/Malloc
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ReallocMem
http://docwiki.embarcadero.com/RADStudio/Rio/en/Realloc

Embarcadero Technologies 304

Long strings, wide strings, dynamic arrays, variants, and interfaces are heap-
allocated, but their memory is managed automatically.

Internal Data Formats (Delphi)
The following topics describe the internal formats of Delphi data types.

Integer Types

Integer values have the following internal representation in Delphi.

Platform-Independent Unsigned Integer Types

Values of platform-independent integer types occupy the same number of bits
on any platform.

Values of unsigned integer types always are positive and do not involve a Sign

bit as do signed integer types. All bits of unsigned integer types occupy by the
magnitude of the value and have no other meaning.

Byte, UInt8

Byte and UInt8 are 1-byte (8-bit) unsigned positive integer numbers. The
Magnitude occupies all 8-bits.

Word and UInt16

Word and UInt16 are 2-byte (16-bit) unsigned integer numbers.

FixedUInt, Cardinal and UInt32

FixedUInt, Cardinal, and UInt32 are 4-byte (32-bit) unsigned integer numbers.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Byte
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UInt8
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Word
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UInt16
http://docwiki.embarcadero.com/Libraries/Rio/en/System.FixedUInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Cardinal
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UInt32

Embarcadero Technologies 305

UInt64

UInt64 are 8-byte (64-bit) unsigned integer numbers.

Platform-Independent Signed Integer Types

Values of signed integer types represent a sign of a number by one leading sign

bit, expressed by the most significant bit. The sign bit is 0 for a positive number,
and 1 for a negative number. Other bits in a positive signed integer number are
occupied by the magnitude. In a negative signed integer number, other bits are
occupied by the two's complement representation of the magnitude of the
value (absolute value).

To obtain the two's complement to a magnitude:

1. Starting from the right, find the first '1'.

2. Invert all of the bits to the left of that one.

For example:
 Example 1 Example 2

Magnitude 0101010 1010101

2's Complement 1010110 0101011

ShortInt, Int8

Shortint and Int8 are 1-byte (8-bit) signed integer numbers. The sign bit' occupies
the most significant 7-th bit, the Magnitude or two's complement occupies other
7 bits.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.UInt64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Shortint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int8

Embarcadero Technologies 306

SmallInt and Int16

SmallInt and Int16 are 2-byte (16-bit) signed integer numbers.

FixedInt, Integer and Int32

FixedInt, Integer, and Int32 are 4-byte (32-bit) signed integer numbers.

Int64

Int64 are 8-byte (64-bit) signed integer numbers.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Smallint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int16
http://docwiki.embarcadero.com/Libraries/Rio/en/System.FixedInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Integer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int32
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64

Embarcadero Technologies 307

Platform-Dependent Integer Types

The platform-dependent integer types are transformed to fit the bit size of the
current target platform. On 64-bit platforms they occupy 64 bits, on 32-bit
platforms they occupy 32 bits (except the LongInt and LongWord types). When
the size of the target platform is the same as the CPU platform, then one
platform-dependent integer number exactly matches the size of CPU registers.
These types are often used when best performance is desired for a particular
CPU type and operating system.

Unsigned Integer NativeUInt

NativeUInt is the platform-dependent unsigned integer type. The size and internal
representation of NativeUInt depends on the current platform. On 32-bit
platforms, NativeUInt is equivalent to the Cardinal type. On 64-bit platforms,
NativeUInt is equivalent to the UInt64 type.

Signed Integer NativeInt

NativeInt is the platform-dependent signed integer type. The size and internal
representation of NativeInt depends on the current platform. On 32-bit platforms,
NativeInt is equivalent to the Integer type. On 64-bit platforms, NativeInt is
equivalent to the Int64 type.

LongInt and LongWord

LongInt defines the signed integer type and the LongWord defines the unsigned
integer type. LongInt and LongWord platform dependent integer types size are
changed on each platforms, except for 64-bit Windows that remains unchanged
(32-bits).

Size

 32-bit platforms and 64-bit Windows platforms 64-bit iOS platforms

LongInt 32-bits (4 bytes) 64-bits (8 bytes)

LongWord 32-bits (4 bytes) 64-bits (8 bytes)

Note: 32-bit platforms in RAD Studio include 32-bit Windows, OSX32, 32-bit iOS,
and Android.

On 64-bit iOS platforms, if you want to use:

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Longint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.LongWord
http://docwiki.embarcadero.com/Libraries/Rio/en/System.NativeUInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.NativeUInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.NativeUInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Cardinal
http://docwiki.embarcadero.com/Libraries/Rio/en/System.NativeUInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UInt64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.NativeInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.NativeInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.NativeInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Integer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.NativeInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Longint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.LongWord
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Longint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.LongWord

Embarcadero Technologies 308

o 32-bits signed integer type, use Integer or FixedInt instead of LongInt.

o 32-bits unsigned integer type, use Cardinal or FixedUInt instead of
LongWord.

Integer Subrange Types

When you use integer constants to define the minimum and maximum bounds of
a subrange type, you define an integer subrange type. An integer subrange
type represents a subset of the values in an integer type (called the base type).
The base type is the smallest integer type that contains the specified range
(contains both the minimum and maximum bounds).

The internal data format of an integer subrange type variable depends on its
minimum and maximum bounds:

o If both bounds are within the range -128..127 (ShortInt), the variable is
stored as a signed byte.

o If both bounds are within the range 0..255 (Byte), the variable is stored as
an unsigned byte.

o If both bounds are within the range -32768..32767 (SmallInt), the variable is
stored as a signed word.

o If both bounds are within the range 0..65535 (Word), the variable is stored
as an unsigned word.

o If both bounds are within the range -2147483648..2147483647 (FixedInt and
LongInt on 32-bit platforms and 64-bit Windows platforms), the variable is
stored as a signed double word.

o If both bounds are within the range 0..4294967295 (FixedUInt and
LongWord on 32-bit platforms and 64-bit Windows platforms), the variable
is stored as an unsigned double word.

o If both bounds are within the range -2^63..2^63-1 (Int64 and LongInt on
64-bit iOS platforms), the variable is stored as a signed quadruple word.

o If both bounds are within the range 0..2^64-1 (UInt64 and LongWord on
64-bit iOS platforms), the variable is stored as an unsigned quadruple
word.

Note: A "word" occupies two bytes.

Character Types

On the 32-bit and 64-bit platforms:

o Char and WideChar are stored as an unsigned word variable, normally
using UTF-16 or Unicode encoding.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Integer
http://docwiki.embarcadero.com/Libraries/Rio/en/System.FixedInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Longint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Cardinal
http://docwiki.embarcadero.com/Libraries/Rio/en/System.FixedUInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.LongWord
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Shortint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Byte
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Smallint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Word
http://docwiki.embarcadero.com/Libraries/Rio/en/System.FixedInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Longint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.FixedUInt
http://docwiki.embarcadero.com/Libraries/Rio/en/System.LongWord
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Int64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Longint
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UInt64
http://docwiki.embarcadero.com/Libraries/Rio/en/System.LongWord
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Char
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideChar

Embarcadero Technologies 309

o AnsiChar type is stored as an unsigned byte. In Delphi 2007 and earlier,
Char was represented as an AnsiChar. The character type used with Short
Strings is always AnsiChar and is stored in unsigned byte values.

o The default long string type (string) is now UnicodeString, which is
reference counted like an AnsiString, the former default long string type.
Compatibility with older code may require the use of the AnsiString type.

o WideString is composed of WideChars like UnicodeString, but is not
reference counted.

Boolean Types

A Boolean type is stored as a Byte, a ByteBool is stored as a Byte, a WordBool
type is stored as a Word, and a LongBool is stored as a Longint.

A Boolean can assume the values 0 (False) and 1 (True). ByteBool, WordBool, and
LongBool types can assume the values 0 (False) or nonzero (True).

Enumerated Types

An enumerated type is stored as an unsigned byte if the enumeration has no
more than 256 values and the type was declared in the {$Z1} state (the default).
If an enumerated type has more than 256 values, or if the type was declared in
the {$Z2} state, it is stored as an unsigned word. If an enumerated type is
declared in the {$Z4} state, it is stored as an unsigned double-word.

Real Types

The real types store the binary representation of a sign (+ or -), an exponent, and
a significand. A real value has the form

+/- significand * 2^exponent

where the significand has a single bit to the left of the binary decimal point
(that is, 0 <= significand < 2).

In the images that follow, the most significant bit is always on the left, and the
least significant bit, on the right. The numbers at the top indicate the width (in
bits) of each field, with the leftmost items stored at the highest addresses. For
example, for a Real48 value, e is stored in the first byte, f in the following five
bytes, and s in the most significant bit of the last byte.

The Real48 type

On the 32-bit and 64-bit platforms, a 6-byte (48-bit) Real48 number is divided into
three fields.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.ShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.WideChar
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Real48
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Real48

Embarcadero Technologies 310

1 39 8

s f e

If 0 < e <= 255, the value v of the number is given by:

v = (-1)s * 2(e-129) * (1.f)

If e = 0, then v = 0.

The Real48 type cannot store denormals, NaNs, and infinities (Inf). Denormals
become zero when stored in a Real48, while NaNs and infinities produce an
overflow error if an attempt is made to store them in a Real48.

The Single type

On 32-bit and 64-bit platforms, a 4-byte (32-bit) Single number is divided into
three fields.

1 8 23

s e f

The value v of the number is given by:

o If 0 < e < 255, then v = (-1)s * 2(e-127) * (1.f)

o If e = 0 and f <> 0, then v = (-1)s * 2(-126) * (0.f)

o If e = 0 and f = 0, then v = (-1)s * 0

o If e = 255 and f = 0, then v = (-1)s * Inf

o If e = 255 and f <> 0, then v is a NaN

The Double type

The Real type, in the current implementation, is equivalent to Double.

On 32-bit and 64-bit platforms, an 8-byte (64-bit) Double number is divided into
three fields.

1 11 52

s e f

The value v of the number is given by:

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Real48
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Real48
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Real48
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Single
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Real
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Double
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Double

Embarcadero Technologies 311

o If 0 < e < 2047, then v = (-1)s * 2(e-1023) * (1.f)

o If e = 0 and f <> 0, then v = (-1)s * 2(-1022) * (0.f)

o If e = 0 and f = 0, then v = (-1)s * 0

o If e = 2047 and f = 0, then v = (-1)s * Inf

o If e = 2047 and f <> 0, then v is a NaN

The Extended type

Extended offers greater precision on 32-bit Intel platform than other real types,
but is less portable. Be careful using Extended if you are creating data files to
share across platforms. Be aware that:

On 32-bit Intel platform, an Extended number is represented as 10 bytes (80 bits).
An Extended number is divided into four fields.

1 15 1 63

s e i f

The value v of the number is given by:

o If 0 <= e < 32767, then v = (-1)s * 2(e-16383) * (i.f)

o If e = 32767 and f = 0, then v = (-1)s * Inf

o If e = 32767 and f <> 0, then v is a NaN

However, on the 64-bit Intel platform and ARM platform, the Extended type is an
alias for Double, which is only 8 bytes. This difference can adversely affect
numeric precision in floating-point operations. For more information, see Delphi
Considerations for Multi-Device Applications. On MAC OS X systems, the size of
Extended is 16 bytes in order to be compatible with BCCOSX.

The Comp type

An 8-byte (64-bit) Comp number is stored as a signed 64-bit integer.

The Currency type

An 8-byte (64-bit) Currency number is stored as a scaled and signed 64-bit
integer with the 4 least significant digits implicitly representing 4 decimal places.

Pointer Types

On 32-bit platforms, a pointer type is stored in 4 bytes as a 32-bit address.

On 64-bit platforms, a pointer type is stored in 8 bytes as a 64-bit address.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Extended
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Extended
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Extended
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Extended
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Extended
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Double
http://docwiki.embarcadero.com/RADStudio/Rio/en/Delphi_Considerations_for_Multi-Device_Applications
http://docwiki.embarcadero.com/RADStudio/Rio/en/Delphi_Considerations_for_Multi-Device_Applications
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Extended
http://docwiki.embarcadero.com/RADStudio/Rio/en/BCCOSX
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Comp
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Currency
http://docwiki.embarcadero.com/RADStudio/Rio/en/64-bit_Windows_Data_Types_Compared_to_32-bit_Windows_Data_Types

Embarcadero Technologies 312

The pointer value nil is stored as zero.

Short String Types

A ShortString string occupies as many bytes as its maximum length plus one. The
first byte contains the current dynamic length of the string, and the following
bytes contain the characters of the string.

The length byte and the characters are considered unsigned values. The
maximum string length is 255 characters plus a length byte (string[255]).

Long String Types

A string variable of type UnicodeString or AnsiString occupies 4 bytes of memory
on 32-bit platforms (and 8 bytes on 64-bit) that contain a pointer to a
dynamically allocated string. When a string variable is empty (contains a zero-
length string), the string pointer is nil and no dynamic memory is associated with
the string variable. For a nonempty string value, the string pointer points to a
dynamically allocated block of memory that contains the string value in addition
to information describing the string. The tables below show the layout of a long-
string memory block.

Format of UnicodeString data type (32-bit and 64-bit)

Field
CodePag

e

ElementSiz

e

ReferenceCou

nt
Length

String Data

(ElementSize

d)

Null Term

Offset -12 -10 -8 -4 0..(Length

- 1)
Length *

ElementSiz

e

Content

s
16-bit
codepag
e of string
data

16-bit
element
size of
string data

32-bit
reference-
count

Length in
character
s

Character
string of
ElementSized
data

NULL
character

Numbers in the Offset row show offsets of fields, describing the string contents,
from the string pointer, which points to the String Data field (offset = 0),
containing a block of memory that contains the actual string values.

The NULL character at the end of a string memory block is automatically
maintained by the compiler and the built-in string handling routines. This makes it
possible to typecast a string directly to a null-terminated string.

See also "New String Type: UnicodeString."

For string literals, the compiler generates a memory block with the same layout
as a dynamically allocated string, but with a reference count of -1. String

http://docwiki.embarcadero.com/Libraries/Rio/en/System.ShortString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.AnsiString
http://docwiki.embarcadero.com/Libraries/Rio/en/System.UnicodeString
http://docwiki.embarcadero.com/RADStudio/Rio/en/Unicode_in_RAD_Studio#New_String_Type:_UnicodeString

Embarcadero Technologies 313

constants are treated the same way, the only difference from literals being that
they are a pointer to a -1 reference counter block.

When a pointer to a string structure (source) is assigned to a string variable
(destination), the reference counter dictates how this is done. Usually, the
reference count is decreased for the destination and increased for the source,
as both pointers, source and destination, will point to the same memory block
after the assignment.

If the source reference count is -1 (string constant), a new structure is created
with a reference count of 1. If the destination is not nil, the reference counter is
decreased. If it reaches 0, the structure is deallocated from the memory. If the
destination is nil, no additional actions are taken for it. The destination will then
point to the new structure.

var

 destination : String;

 source : String;

...

destination := 'qwerty'; // reference count for the newly-created block of

memory (containing the 'qwerty' string) pointed at by the "destination"

variable is now 1

...

source := 'asdfgh'; // reference count for the newly-created block of memory

(containing the 'asdfgh' string) pointed at by the "destination" variable is

now 1

destination := source; // reference count for the memory block containing the

'asdfgh' string is now 2, and since reference count for the block of memory

containing the 'qwerty' string is now 0, the memory block is deallocated.

If the source reference count is not -1, it is incremented and the destination will
point to it.

var

 destination, destination2, destination3: String;

 destination := 'Sample String'; //reference count for the newly-created block

of memory containing 'Sample string' is 1.

 destination2 := destination; //reference count for the block of memory

containing 'Sample string' is now 2.

 destination3 := destination; //reference count for the block of memory

containing 'Sample string' is now 3.

Note: No string variable can point to a structure with a reference
count of 0. Structures are always deallocated when they reach 0
reference count and cannot be modified when they have -1
reference count.

Wide String Types

On 32-bit platforms, a wide string variable occupies 4 bytes of memory (and 8
bytes on 64-bit) that contain a pointer to a dynamically allocated string. When a
wide string variable is empty (contains a zero-length string), the string pointer is nil

Embarcadero Technologies 314

and no dynamic memory is associated with the string variable. For a nonempty
string value, the string pointer points to a dynamically allocated block of memory
that contains the string value in addition to a 32-bit length indicator. The table
below shows the layout of a wide string memory block on Windows.

Wide string dynamic memory layout (32-bit and 64-bit)

Offset -4 0..(Length - 1) Length

Contents 32-bit length indicator
(in bytes)

Character string NULL character

The string length is the number of bytes, so it is twice the number of wide
characters contained in the string.

The NULL character at the end of a wide string memory block is automatically
maintained by the compiler and the built-in string handling routines. This makes it
possible to typecast a wide string directly to a null-terminated string.

Set Types

A set is a bit array where each bit indicates whether an element is in the set or
not. The maximum number of elements in a set is 256, so a set never occupies
more than 32 bytes. The number of bytes occupied by a particular set is equal to

(Max div 8) - (Min div 8) + 1

where Max and Min are the upper and lower bounds of the base type of the set.
The byte number of a specific element E is

(E div 8) - (Min div 8)

and the bit number within that byte is

E mod 8

where E denotes the ordinal value of the element. When possible, the compiler
stores sets in CPU registers, but a set always resides in memory if it is larger than
the platform-dependent integer type or if the program contains code that takes
the address of the set.

Static Array Types

On the 32-bit platform, a static-array variable occupies 4 bytes of memory (and
8 bytes on 64-bit) that contain a pointer to the statically allocated array. A static
array is stored as a contiguous sequence of elements of the component type of
the array. The components with the lowest indexes are stored at the lowest

Embarcadero Technologies 315

memory addresses. A multidimensional array is stored with the rightmost
dimension increasing first.

Dynamic Array Types

On the 32-bit platform, a dynamic-array variable occupies 4 bytes of memory
(and 8 bytes on 64-bit) that contain a pointer to the dynamically allocated array.
When the variable is empty (uninitialized) or holds a zero-length array, the pointer
is nil and no dynamic memory is associated with the variable. For a nonempty
array, the variable points to a dynamically allocated block of memory that
contains the array in addition to a 32-bit (64-bit on Win64) length indicator and a
32-bit reference count. The table below shows the layout of a dynamic-array
memory block.

Dynamic array memory layout (32-bit and 64-bit)

Offset 32-

bit
-8 -4 0..(Length *

Size_of_element - 1)

Offset 64-

bit
-12 -8 0..(Length *

Size_of_element - 1)

Contents 32-bit reference-
count

32-bit or 64-bit on 64-bit
platform

length indicator
(number of elements)

Array elements

Record Types

When a record type is declared in the {$A+} state (the default), and when the
declaration does not include a packed modifier, the type is an unpacked
record type, and the fields of the record are aligned for efficient access by the
CPU, and according to the platform. The alignment is controlled by the type of
each field. Every data type has an inherent alignment, which is automatically
computed by the compiler. The alignment can be 1, 2, 4, or 8, and represents
the byte boundary on which a value of the type must be stored in order to
provide the most efficient access. The table below lists the alignments for all data
types.

Type alignment masks (32-bit only)

Embarcadero Technologies 316

Type Alignment

Ordinal types Size of the type (1, 2, 4, or 8)

Real types 2 for Real48, 4 for Single, 8 for Double and Extended

Short string types 1

Array types Same as the element type of the array

Record types The largest alignment of the fields in the record

Set types Size of the type if 1, 2, or 4, otherwise 1

All other types Determined by the $A directive

To ensure proper alignment of the fields in an unpacked record type, the
compiler inserts an unused byte before fields with an alignment of 2, and up to 3
unused bytes before fields with an alignment of 4, if required. Finally, the
compiler rounds the total size of the record upward to the byte boundary
specified by the largest alignment of any of the fields.

Implicit Packing of Fields with a Common Type Specification

Earlier versions of the Delphi compiler, such as Delphi 7 and earlier, implicitly
applied packed alignment to fields that were declared together, that is, fields
that have a common type specification. Newer compilers can reproduce the
behavior if you specify the directive {$OLDTYPELAYOUT ON}. This directive byte-
aligns (packs) the fields that have a common type specification, even if the
declaration does not include the packed modifier and the record type is not
declared in the {$A-} state.

Thus, for example, given the following declaration:

 {$OLDTYPELAYOUT ON}

 type

 TMyRecord = record

 A, B: Extended;

 C: Extended;

 end;

 {$OLDTYPELAYOUT OFF}

A and B are packed (aligned on byte boundaries) because the
{$OLDTYPELAYOUT ON} directive is specified and because A and B share the
same type specification. However, for the separately declared C field, the
compiler uses the default behavior and pads the structure with unused bytes to
ensure the field appears on a quadword boundary.

Embarcadero Technologies 317

When a record type is declared in the {$A-} state, or when the declaration
includes the packed modifier, the fields of the record are not aligned, but are
instead assigned consecutive offsets. The total size of such a packed record is
simply the size of all the fields. Because data alignment can change, it is a good
idea to pack any record structure that you intend to write to disk or pass in
memory to another module compiled using a different version of the compiler.

File Types

File types are represented as records. Typed files and untyped files occupy 592
bytes on 32-bit platforms and 616 bytes on 64-bit platforms, which are laid out as
follows:

 type

 TFileRec = packed record

 Handle: NativeInt;

 Mode: word;

 Flags: word;

 case Byte of

 0: (RecSize: Cardinal);

 1: (BufSize: Cardinal;

 BufPos: Cardinal;

 BufEnd: Cardinal;

 BufPtr: _PAnsiChr;

 OpenFunc: Pointer;

 InOutFunc: Pointer;

 FlushFunc: Pointer;

 CloseFunc: Pointer;

 UserData: array[1..32] of Byte;

 Name: array[0..259] of WideChar;);

 end;

Embarcadero Technologies 318

Text files occupy 730 bytes on Win 32 and 754 bytes on Win64, which are laid out
as follows:

 type

 TTextBuf = array[0..127] of Char;

 TTextRec = packed record

 Handle: NativeInt;

 Mode: word;

 Flags: word;

 BufSize: Cardinal;

 BufPos: Cardinal;

 BufEnd: Cardinal;

 BufPtr: _PAnsiChr;

 OpenFunc: Pointer;

 InOutFunc: Pointer;

 FlushFunc: Pointer;

 CloseFunc: Pointer;

 UserData: array[1..32] of Byte;

 Name: array[0..259] of WideChar;

 Buffer: TTextBuf; //

 CodePage: Word;

 MBCSLength: ShortInt;

 MBCSBufPos: Byte;

 case Integer of

 0: (MBCSBuffer: array[0..5] of _AnsiChr);

 1: (UTF16Buffer: array[0..2] of WideChar);

 end;

Handle contains the handle of the file (when the file is open).

The Mode field can assume one of the values:

 const

 fmClosed = $D7B0;

 fmInput= $D7B1;

 fmOutput = $D7B2;

 fmInOut= $D7B3;

where fmClosed indicates that the file is closed, fmInput and fmOutput indicate a
text file that has been reset (fmInput) or rewritten (fmOutput), fmInOut indicates a
typed or untyped file that has been reset or rewritten. Any other value indicates
that the file variable is not assigned (and hence not initialized).

The UserData field is available for user-written routines to store data in.

Name contains the file name, which is a sequence of characters terminated by a
null character (#0).

For typed files and untyped files, RecSize contains the record length in bytes,
and the Private field is unused but reserved.

For text files, BufPtr is a pointer to a buffer of BufSize bytes, BufPos is the index of
the next character in the buffer to read or write, and BufEnd is a count of valid
characters in the buffer. OpenFunc, InOutFunc, FlushFunc, and CloseFunc are

Embarcadero Technologies 319

pointers to the I/O routines that control the file; see Device functions. Flags
determines the line break style as follows.

bit 0 clear LF line breaks

bit 0 set CRLF line breaks

All other Flags bits are reserved for future use.

Note: For using the UnicodeString type (the default Delphi string
type), the various stream types in the Classes unit (TFileStream,
TStreamReader, TStreamWriter, and so forth) are more useful, since
the older file types have limited Unicode functionality, particularly
the old text file type.

Procedural Types

On the 32-bit platform, a procedure pointer is stored as a 32-bit pointer to the
entry point of a procedure or function. A method pointer is stored as a 32-bit
pointer to the entry point of a method, followed by a 32-bit pointer to an object.

On the 64-bit platform, a procedure pointer is stored as a 64-bit pointer to the
entry point of a procedure or function. A method pointer is stored as a 64-bit
pointer to the entry point of a method, followed by a 64-bit pointer to an object.

Class Types

On the 32-bit platforms (Win32, OSX, iOS and Android), a class-type value is
stored as a 32-bit pointer to an instance of the class (and as a 64-bit pointer on
the 64-bit platform), which is called an object. The internal data format of an
object resembles that of a record. The fields of the object are stored in order of
declaration as a sequence of contiguous variables. Fields are always aligned,
corresponding to an unpacked record type. Therefore, the alignment
corresponds to the largest alignment of the fields in the object. Any fields
inherited from an ancestor class are stored before the new fields defined in the
descendent class.

On the 32-bit platforms, the first 4-byte field of every object (the first 8-byte field
on the 64-bit platform) is a pointer to the virtual method table (VMT) of the class.
There is exactly one VMT per class (not one per object); distinct class types, no
matter how similar, never share a VMT. VMTs are built automatically by the
compiler, and are never directly manipulated by a program. Pointers to VMTs,
which are automatically stored by constructor methods in the objects they
create, are also never directly manipulated by a program.

The layout of a VMT is shown in the following table. On the 32-bit platforms, at
positive offsets, a VMT consists of a list of 32-bit method pointers (64-bit method
pointers on the 64-bit platform)--one per user-defined virtual method in the class
type--in order of declaration. Each slot contains the address of the

Embarcadero Technologies 320

corresponding entry point of the virtual method. This layout is compatible with a
C++ v-table and with COM. At negative offsets, a VMT contains a number of
fields that are internal to Delphi's implementation. Applications should use the
methods defined in TObject to query this information, since the layout is likely to
change in future implementations of the Delphi language.

Virtual method table layout

Embarcadero Technologies 321

Offset

Win32

, OSX

Offse

t

Win6

4

Offset

iOS/ARM,

Android/AR

M

Offset

iOS/Simulat

or

Type Description
Constant in

System.pas

-88 -200 -108 -96 Pointer Pointer to virtual
method table
(or nil)

vmtSelfPtr

-84 -192 -104 -92 Pointer Pointer to
interface table
(or nil)

vmtIntfTable

-80 -184 -100 -88 Pointer Pointer to
Automation
information
table (or nil)

vmtAutoTable

-76 -176 -96 -84 Pointer Pointer to
instance
initialization
table (or nil)

vmtInitTable

-72 -168 -92 -80 Pointer Pointer to type
information
table (or nil)

vmtTypeInfo

-68 -160 -88 -76 Pointer Pointer to field
definition table
(or nil)

vmtFieldTable

-64 -152 -84 -72 Pointer Pointer to
method
definition table
(or nil)

vmtMethodTable

-60 -144 -80 -68 Pointer Pointer to
dynamic
method table
(or nil)

vmtDynamicTable

-56 -136 -76 -64 Pointer Pointer to short
string containing
class name

vmtClassName

-52 -128 -72 -60 Cardin
al

Instance size in
bytes

vmtInstanceSize

Embarcadero Technologies 322

-48 -120 -68 -56 Pointer Pointer to a
pointer to
ancestor class
(or nil)

vmtParent

n/a n/a -64 -52 Pointer Entry point of
__ObjAddRef
method

vmtObjAddRef

n/a n/a -60 -48 Pointer Entry point of
__ObjRelease
method

vmtObjRelease

-44 -112 -56 -44 Pointer Entry point of
Equals method

vmtEquals

-40 -104 -52 -40 Pointer Entry point of
GetHashCode
method

vmtGetHashCode

-36 -96 -48 -36 Pointer Entry point of
ToString method

vmtToString

-32 -88 -44 -32 Pointer Pointer to entry
point of
SafecallExceptio

n method (or nil)

vmtSafeCallExcepti
on

-28 -80 -40 -28 Pointer Entry point of
AfterConstructio

n method

vmtAfterConstructio
n

-24 -72 -36 -24 Pointer Entry point of
BeforeDestructio

n method

vmtBeforeDestructio
n

-20 -64 -32 -20 Pointer Entry point of
Dispatch
method

vmtDispatch

-16 -56 -28 -16 Pointer Entry point of
DefaultHandler
method

vmtDefaultHandler

-12 -48 -24 -12 Pointer Entry point of
NewInstance
method

vmtNewInstance

-8 -40 -20 -8 Pointer Entry point of
FreeInstance
method

vmtFreeInstance

Embarcadero Technologies 323

-4 -32 -16 -4 Pointer Entry point of
Destroy
destructor

vmtDestroy

0 0 0 0 Pointer Entry point of
first user-defined
virtual method

4 8 4 4 Pointer Entry point of
second user-
defined virtual
method

Class Reference Types

On the 32-bit (Win32, OSX, iOS and Android) platform, a class-reference value is
stored as a 32-bit pointer to the virtual method table (VMT) of a class.

On the 64-bit (Win64) platform, a class-reference value is stored as a 64-bit
pointer to the virtual method table (VMT) of a class.

Variant Types

Variants rely on boxing and unboxing of data into an object wrapper, as well as
Delphi helper classes to implement the variant-related RTL functions.

On the 32-bit platform, a variant is stored as a 16-byte record that contains a
type code and a value (or a reference to a value) of the type given by the
code. On the 64-bit platform, a variant is stored as a 24-byte record. The System
and System.Variants units define constants and types for variants.

The TVarData type represents the internal structure of a Variant variable (on
Windows, this is identical to the Variant type used by COM and the Win32 API).
The TVarData type can be used in typecasts of Variant variables to access the
internal structure of a variable. The TVarData record contains the following fields:

o The VType field of the TVarType type has the Word (16-bit) size. VType
contains the type code of the variant in the lower 12 bits (the bits defined
by the varTypeMask = $FFF constant). In addition, the varArray = $2000
bit may be set to indicate that the variant is an array, and the varByRef (=
$4000) bit may be set to indicate that the variant contains a reference as
opposed to a value.

o The Reserved1, Reserved2, and Reserved3 (Word size) fields are unused.

The contents of the remaining 8 bytes (32-bit platform) or 16 bytes (64-bit
platform) of a TVarData record depend on the VType field as follows:

http://docwiki.embarcadero.com/Libraries/Rio/en/System
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variants
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TVarData
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variant
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Variant
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TVarData
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TVarData
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TVarType
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Word
http://docwiki.embarcadero.com/Libraries/Rio/en/System#Constants
http://docwiki.embarcadero.com/Libraries/Rio/en/System#Constants
http://docwiki.embarcadero.com/Libraries/Rio/en/System#Constants
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Word
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TVarData

Embarcadero Technologies 324

o If neither the varArray nor the varByRef bits are set, the variant contains a
value of the given type.

o If the varArray bit is set, the variant contains a pointer to a TVarArray
structure that defines an array. The type of each array element is given by
the varTypeMask bits in the VType field.

o If the varByRef bit is set, the variant contains a reference to a value of the
type given by the varTypeMask and varArray bits in the VType field.

The varString type code is private. Variants containing a varString value should
never be passed to a non-Delphi function. On the Windows platform, Delphi's
Automation support automatically converts varString variants to varOleStr
variants before passing them as parameters to external functions.

Program Control (Delphi)
The concepts of passing parameters and function result processing are
important to understand before you undertake your application projects
Treatment of parameters and function results is determined by several factors,
including calling conventions, parameter semantics, and the type and size of the
value being passed.

This following topics are covered in this material:

o Passing Parameters.

o Handling Function Results.

o Handling Method Calls.

o Understanding Exit Procedures.

Passing Parameters

Parameters are transferred to procedures and functions via CPU registers or the
stack, depending on the routine's calling convention. For information about
calling conventions, see the topic on Calling Conventions.

By Value vs. By Reference

Variable (var) parameters are always passed by reference, as 32-bit pointers that
point to the actual storage location.

Value and constant (const) parameters are passed by value or by reference,
depending on the type and size of the parameter:

o An ordinal parameter is passed as an 8-bit, 16-bit, 32-bit, or 64-bit value,
using the same format as a variable of the corresponding type.

http://docwiki.embarcadero.com/Libraries/Rio/en/System#Constants
http://docwiki.embarcadero.com/Libraries/Rio/en/System#Constants
http://docwiki.embarcadero.com/Libraries/Rio/en/System#Constants
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TVarArray
http://docwiki.embarcadero.com/Libraries/Rio/en/System#Constants
http://docwiki.embarcadero.com/Libraries/Rio/en/System#Constants
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TVarType
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TVarType
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TVarType
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TVarType

Embarcadero Technologies 325

o A real parameter is always passed on the stack. A Single parameter
occupies 4 bytes, and a Double, Comp, or Currency parameter occupies
8 bytes. A Real48 occupies 8 bytes, with the Real48 value stored in the
lower 6 bytes. An Extended occupies 12 bytes, with the Extended value
stored in the lower 10 bytes.

o A short-string parameter is passed as a 32-bit pointer to a short string.

o A long-string or dynamic-array parameter is passed as a 32-bit pointer to
the dynamic memory block allocated for the long string. The value nil is
passed for an empty long string.

o A pointer, class, class-reference, or procedure-pointer parameter is
passed as a 32-bit pointer.

o A method pointer is passed on the stack as two 32-bit pointers. The
instance pointer is pushed before the method pointer so that the method
pointer occupies the lowest address.

o Under the register and pascal conventions, a variant parameter is passed
as a 32bit pointer to a Variant value.

o Sets, records, and static arrays of 1, 2, or 4 bytes are passed as 8-bit, 16-bit,
and 32bit values. Larger sets, records, and static arrays are passed as 32-
bit pointers to the value. An exception to this rule is that records are
always passed directly on the stack under the cdecl, stdcall, and safecall
conventions; the size of a record passed this way is rounded upward to
the nearest double-word boundary.

o An open-array parameter is passed as two 32-bit values. The first value is a
pointer to the array data, and the second value is one less than the
number of elements in the array.

When two parameters are passed on the stack, each parameter occupies a
multiple of 4 bytes (a whole number of double words). For an 8-bit or 16-bit
parameter, even though the parameter occupies only a byte or a word, it is
passed as a double word. The contents of the unused parts of the double word
are undefined.

Pascal, cdecl, stdcall, and safecall Conventions

Under the pascal, cdecl, stdcall and safecall conventions, all parameters are
passed on the stack. Under the pascal convention, parameters are pushed in
the order of their declaration (left-to-right), so that the first parameter ends up at
the highest address and the last parameter ends up at the lowest address. Under
the cdecl, stdcall, and safecall conventions, parameters are pushed in reverse
order of declaration (right-to-left), so that the first parameter ends up at the
lowest address and the last parameter ends up at the highest address.

Embarcadero Technologies 326

Register Convention

Under the register convention, up to three parameters are passed in CPU
registers, and the rest (if any) are passed on the stack. The parameters are
passed in order of declaration (as with the pascal convention), and the first three
parameters that qualify are passed in the EAX, EDX, and ECX registers, in that
order. Real, method-pointer, variant, Int64, and structured types do not qualify as
register parameters, but all other parameters do. If more than three parameters
qualify as register parameters, the first three are passed in EAX, EDX, and ECX,
and the remaining parameters are pushed onto the stack in order of
declaration. For example, given the declaration:

 procedure Test(A: Integer; var B: Char; C: Double; const D: string; E:

Pointer);

a call to Test passes A in EAX as a 32-bit integer, B in EDX as a pointer to a Char,
and D in ECX as a pointer to a long-string memory block; C and E are pushed
onto the stack as two double-words and a 32-bit pointer, in that order.

Register saving conventions

Procedures and functions must preserve the EBX, ESI, EDI, and EBP registers, but
can modify the EAX, EDX, and ECX registers. When implementing a constructor or
destructor in assembler, be sure to preserve the DL register. Procedures and
functions are invoked with the assumption that the CPU's direction flag is cleared
(corresponding to a CLD instruction) and must return with the direction flag
cleared.

Note: Delphi language procedures and functions are generally
invoked with the assumption that the FPU stack is empty: The
compiler tries to use all eight FPU stack entries when it generates
code.

When working with the MMX and XMM instructions, be sure to preserve the
values of the xmm and mm registers. Delphi functions are invoked with the
assumption that the x87 FPU data registers are available for use by x87 floating
point instructions. That is, the compiler assumes that the EMMS/FEMMS instruction
has been called after MMX operations. Delphi functions do not make any
assumptions about the state and content of xmm registers. They do not
guarantee that the content of xmm registers is unchanged.

Handling Function Results

The following conventions are used for returning function result values.

o Ordinal results are returned, when possible, in a CPU register. Bytes are
returned in AL, words are returned in AX, and double-words are returned
in EAX.

Embarcadero Technologies 327

o Real results are returned in the floating-point coprocessor's top-of-stack
register (ST(0)). For function results of type Currency, the value in ST(0) is
scaled by 10000. For example, the Currency value 1.234 is returned in ST(0)
as 12340.

o For a string, dynamic array, method pointer, or variant result, the effects
are the same as if the function result were declared as an additional var
parameter following the declared parameters. In other words, the caller
passes an additional 32-bit pointer that points to a variable in which to
return the function result.

o Int64 is returned in EDX:EAX.

o Pointer, class, class-reference, and procedure-pointer results are returned
in EAX.

o For static-array, record, and set results, if the value occupies one byte it is
returned in AL; if the value occupies two bytes it is returned in AX; and if
the value occupies four bytes it is returned in EAX. Otherwise, the result is
returned in an additional var parameter that is passed to the function
after the declared parameters.

Handling Method Calls

Methods use the same calling conventions as ordinary procedures and
functions, except that every method has an additional implicit parameter Self,
which is a reference to the instance or class in which the method is called. The
Self parameter is passed as a 32-bit pointer.

o Under the register convention, Self behaves as if it were declared before
all other parameters. It is therefore always passed in the EAX register.

o Under the pascal convention, Self behaves as if it were declared after all
other parameters (including the additional var parameter sometimes
passed for a function result). It is therefore pushed last, ending up at a
lower address than all other parameters.

o Under the cdecl, stdcall, and safecall conventions, Self behaves as if it
were declared before all other parameters, but after the additional var
parameter (if any) passed for a function result. It is therefore the last to be
pushed, except for the additional var parameter.

Constructors and destructors use the same calling conventions as other
methods, except that an additional Boolean flag parameter is passed to
indicate the context of the constructor or destructor call.

A value of False in the flag parameter of a constructor call indicates that the
constructor was invoked through an instance object or using the inherited
keyword. In this case, the constructor behaves like an ordinary method. A value
of True in the flag parameter of a constructor call indicates that the constructor

Embarcadero Technologies 328

was invoked through a class reference. In this case, the constructor creates an
instance of the class given by Self, and returns a reference to the newly created
object in EAX.

A value of False in the flag parameter of a destructor call indicates that the
destructor was invoked using the inherited keyword. In this case, the destructor
behaves like an ordinary method. A value of True in the flag parameter of a
destructor call indicates that the destructor was invoked through an instance
object. In this case, the destructor deallocates the instance given by Self just
before returning.

The flag parameter behaves as if it were declared before all other parameters.
Under the register convention, it is passed in the DL register. Under the pascal
convention, it is pushed before all other parameters. Under the cdecl, stdcall,
and safecall conventions, it is pushed just before the Self parameter.

Since the DL register indicates whether the constructor or destructor is the
outermost in the call stack, you must restore the value of DL before exiting so that
BeforeDestruction or AfterConstruction can be called properly.

Understanding Exit Procedures

Exit procedures ensure that specific actions such as updating and closing filesare
carried out before a program terminates. The ExitProc pointer variable allows you
to install an exit procedure, so that it is always called as part of the program's
termination whether the termination is normal, forced by a call to Halt, or the
result of a runtime error. An exit procedure takes no parameters.

Note: It is recommended that you use finalization sections rather
than exit procedures for all exit behavior. Exit procedures are
available only for executables. For .DLLs (Win32) you can use a
similar variable, DllProc, which is called when the library is loaded
as well as when it is unloaded. For packages, exit behavior must be
implemented in a finalization section. All exit procedures are called
before execution of finalization sections.

Units as well as programs can install exit procedures. A unit can install an exit
procedure as part of its initialization code, relying on the procedure to close files
or perform other clean-up tasks.

When implemented properly, an exit procedure is part of a chain of exit
procedures. The procedures are executed in reverse order of installation,
ensuring that the exit code of one unit isn't executed before the exit code of any
units that depend on it. To keep the chain intact, you must save the current
contents of ExitProc before pointing it to the address of your own exit procedure.
Also, the first statement in your exit procedure must reinstall the saved value of
ExitProc.

Embarcadero Technologies 329

The following code shows a skeleton implementation of an exit procedure:

 var

 ExitSave: Pointer;

 procedure MyExit;

 begin

 ExitProc := ExitSave; // always restore old vector first

 .

 .

 .

 end;

 begin

 ExitSave := ExitProc;

 ExitProc := @MyExit;

 .

 .

 .

 end.

On entry, the code saves the contents of ExitProc in ExitSave, then installs the
MyExit procedure. When called as part of the termination process, the first thing
MyExit does is reinstall the previous exit procedure.

The termination routine in the runtime library keeps calling exit procedures until
ExitProc becomes nil. To avoid infinite loops, ExitProc is set to nil before every call,
so the next exit procedure is called only if the current exit procedure assigns an
address to ExitProc. If an error occurs in an exit procedure, it is not called again.

An exit procedure can learn the cause of termination by examining the ExitCode
integer variable and the ErrorAddr pointer variable. In case of normal
termination, ExitCode is zero and ErrorAddr is nil. In case of termination through a
call to Halt, ExitCode contains the value passed to Halt and ErrorAddr is nil. In
case of termination due to a runtime error, ExitCode contains the error code and
ErrorAddr contains the address of the invalid statement.

The last exit procedure (the one installed by the runtime library) closes the Input
and Output files. If ErrorAddr is not nil, it outputs a runtime error message. To
output your own runtime error message, install an exit procedure that examines
ErrorAddr and outputs a message if it's not nil; before returning, set ErrorAddr to
nil so that the error is not reported again by other exit procedures.

Once the runtime library has called all exit procedures, it returns to the operating
system, passing the value stored in ExitCode as a return code.

Embarcadero Technologies 330

Inline Assembly Code Index
This section describes the use of the Delphi inline assembler.

Note: Inline assembly code is supported on the Win32, Win64 and OS X platforms, but is not

supported by the Delphi compilers for the iOS device and Android device.

Topics

o Using Inline Assembly Code

o Assembler Syntax

o Assembly Expressions

o Assembly Procedures and Functions

Embarcadero Technologies 331

Using Inline Assembly Code
The built-in assembler allows you to write assembly code within Delphi programs.
It has the following features:

o Allows for inline assembly.

o Supports all instructions found in the Intel Pentium 4, Intel MMX extensions,
Streaming SIMD Extensions (SSE), and the AMD Athlon (including 3D Now!).

o Supports the Intel 64 architecture, with some limitations.

o Permits the use of Delphi identifiers, such as constants, types, and
variables in assembly statements.

o Provides no macro support, but allows for pure assembly function
procedures.

As an alternative to the built-in assembler, you can link to object files that
contain external procedures and functions. See the topic External Declarations
for more information. If you have external assembly code that you want to use in
your applications, you should consider rewriting it in the Delphi language or
minimally reimplement it using the inline assembler.

The inline assembler is available on:

o DCC32.EXE, the Delphi Command Line Compiler

o DCC64.EXE, the Delphi 64-bit Command Line Compiler

o DCCOSX.EXE, the Delphi Compiler for OS X

However, inline assembly is not supported by the Delphi compilers for the iOS
device and Android device.

Using the asm Statement

The built-in assembler is accessed through asm statements, which have the form:

asm statementList end

where statementList is a sequence of assembly statements separated by
semicolons, end-of-line characters, or Delphi comments.

Comments in an asm statement must be in Delphi style. A semicolon does not
indicate that the rest of the line is a comment.

The reserved word inline and the directive assembler are maintained for
backward compatibility only. They have no effect on the compiler.

http://docwiki.embarcadero.com/RADStudio/Rio/en/DCC32.EXE,_the_Delphi_Command_Line_Compiler
http://docwiki.embarcadero.com/RADStudio/Rio/en/DCC64.EXE,_the_Delphi_64-bit_Command_Line_Compiler
http://docwiki.embarcadero.com/RADStudio/Rio/en/DCCOSX.EXE,_the_Delphi_Compiler_for_macOS

Embarcadero Technologies 332

Using Registers

32-bit

In general, the rules of register use in an asm statement are the same as those of
an external procedure or function. An asm statement must preserve the EDI, ESI,
ESP, EBP, and EBX registers, but can freely modify the EAX, ECX, and EDX registers.
On entry to an asm statement, EBP points to the current stack frame and ESP
points to the top of the stack. Except for ESP and EBP, an asm statement can
assume nothing about register contents on entry to the statement.

64-bit

In line with the x64 Application Binary Interface (ABI), the contents of the
following registers must be preserved and restored within inline assembly
functions: R12, R13, R14, R15, RDI, RSI, RBX, RBP, RSP, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, and XMM15.

The first four parameters to inline assembler functions are passed via RCX, RDX,
R8, and R9 respectively, except for floating-point arguments which use XMMO,
XMM1, XMM2, XMM3. The math coprocessor is not normally used from x64 code.
Registers used for function parameters can be modified freely.

Using Conditional Defines for Cross-Platform Code

For existing functions with inline Assembly code, conditional defines must be used
to differentiate between platforms. Functions should have a common function
prototype between platforms. Example:

Embarcadero Technologies 333

function Power10(val: Extended; power: Integer): Extended;

{$IFDEF PUREPASCAL}

begin

 // Pascal implementation here...

end;

{$ELSE !PUREPASCAL}

{$IFDEF CPUX86}

 asm

 // ASM implementation here...

 end;

{$ENDIF CPUX86}

{$ENDIF !PUREPASCAL}

Example without $ELSE:

 {$IFDEF CPUX86}

 asm

 // ...

 end;

 {$ENDIF CPUX86}

 {$IFDEF CPUX64}

 asm

 // ...

 end;

{$ENDIF CPUX64}

For more information about the predefined conditionals, see Conditional
compilation. Predefined Conditionals.

Assembler Syntax
The following material describes the elements of the assembler syntax.

Statements

This syntax of an assembly statement is:

Label: Prefix Opcode Operand1, Operand2

where Label is a label, Prefix is an assembly prefix opcode (operation code),
Opcode is an assembly instruction opcode or directive, and Operand is an
assembly expression. Label and Prefix are optional. Some opcodes take only one
operand, and some take none.

http://docwiki.embarcadero.com/RADStudio/Rio/en/Conditional_compilation_(Delphi)#Predefined_Conditionals
http://docwiki.embarcadero.com/RADStudio/Rio/en/Conditional_compilation_(Delphi)#Predefined_Conditionals

Embarcadero Technologies 334

Comments are allowed between assembly statements, but not within them. For
example:

MOV AX,1 {Initial value} { OK }

MOV CX,100 {Count} { OK }

MOV {Initial value} AX,1; { Error! }

MOV CX, {Count} 100 { Error! }

Labels

Labels are used in built-in assembly statements as they are in the Delphi
language by writing the label and a colon before a statement. There is no limit to
a label's length. As in Delphi, labels must be declared in a label declaration part
in the block containing the asm statement. The one exception to this rule is local
labels.

Local labels are labels that start with an at-sign (@). They consist of an at-sign
followed by one or more letters, digits, underscores, or at-signs. Use of local labels
is restricted to asm statements, and the scope of a local label extends from the
asm reserved word to the end of the asm statement that contains it. A local
label doesn't have to be declared.

Instruction Opcodes

The built-in assembler supports all of the Intel-documented opcodes for general
application use. Note that operating system privileged instructions may not be
supported. Specifically, the following families of instructions are supported:

o IA-32

Pentium family

Pentium Pro and Pentium II

Pentium III

Pentium 4

o Intel 64

In addition, the built-in assembler supports the following instruction set extensions

o Intel SSE (including SSE4.2)

o AMD 3DNow! (from the AMD K6 onwards)

o AMD Enhanced 3DNow! (from the AMD Athlon onwards)

For a complete description of each instruction, refer to your microprocessor
documentation.

Embarcadero Technologies 335

Automatic jump sizing

Unless otherwise directed, the built-in assembler optimizes jump instructions by
automatically selecting the shortest, and therefore most efficient, form of a jump
instruction. This automatic jump sizing applies to the unconditional jump
instruction (JMP), and to all conditional jump instructions when the target is a
label (not a procedure or function).

For an unconditional jump instruction (JMP), the built-in assembler generates a
short jump (one-byte opcode followed by a one-byte displacement) if the
distance to the target label is -128 to 127 bytes. Otherwise it generates a near
jump (one-byte opcode followed by a two-byte displacement).

For a conditional jump instruction, a short jump (one-byte opcode followed by a
one-byte displacement) is generated if the distance to the target label is -128 to
127 bytes. Otherwise, the built-in assembler generates a near jump to the target
label.

Jumps to the entry points of procedures and functions are always near.

Directives

The built-in assembler supports three assembly define directives: DB (define byte),
DW (define word), and DD (define double word). Each generates data
corresponding to the comma-separated operands that follow the directive.

Directive Description

DB Define byte: generates a sequence of bytes. Each operand can be a
constant expression with a value between 128 and 255, or a character string
of any length. Constant expressions generate one byte of code, and strings
generate a sequence of bytes with values corresponding to the ASCII code
of each character.

DW Define word: generates a sequence of words. Each operand can be a
constant expression with a value between 32,768 and 65,535, or an address
expression. For an address expression, the built-in assembler generates a near
pointer, a word that contains the offset part of the address.

DD Define double word: generates a sequence of double words. Each operand
can be a constant expression with a value between 2,147,483,648 and
4,294,967,295, or an address expression. For an address expression, the built-in
assembler generates a far pointer, a word that contains the offset part of the
address, followed by a word that contains the segment part of the address.

DQ Define quad word: defines a quad word for Int64 values.

The data generated by the DB, DW, and DD directives is always stored in the
code segment, just like the code generated by other built-in assembly

Embarcadero Technologies 336

statements. To generate uninitialized or initialized data in the data segment, you
should use Delphi var or const declarations.

Some examples of DB, DW, and DD directives follow:

 asm

 DB FFH { One byte }

 DB 0.99 { Two bytes }

 DB 'A' { Ord('A') }

 DB 'Hello world...',0DH,0AH { String followed by CR/LF }

 DB 12,'string' { {{Delphi}} style string }

 DW 0FFFFH { One word }

 DW 0,9999 { Two words }

 DW 'A' { Same as DB 'A',0 }

 DW 'BA' { Same as DB 'A','B' }

 DW MyVar { Offset of MyVar }

 DW MyProc { Offset of MyProc }

 DD 0FFFFFFFFH { One double-word }

 DD 0,999999999 { Two double-words }

 DD 'A' { Same as DB 'A',0,0,0 }

 DD 'DCBA' { Same as DB 'A','B','C','D' }

 DD MyVar { Pointer to MyVar }

 DD MyProc { Pointer to MyProc }

 end;

When an identifier precedes a DB, DW , or DD directive, it causes the declaration
of a byte-, word-, or double-word-sized variable at the location of the directive.
For example, the assembler allows the following:

ByteVar DB ?

WordVar DW ?

IntVar DD ?

// …

MOV AL,ByteVar

MOV BX,WordVar

MOV ECX,IntVar

The built-in assembler does not support such variable declarations. The only kind
of symbol that can be defined in an inline assembly statement is a label. All
variables must be declared using Delphi syntax; the preceding construction can
be replaced by:

var

 ByteVar: Byte;

 WordVar: Word;

 IntVar: Integer;

// …

asm

 MOV AL,ByteVar

 MOV BX,WordVar

 MOV ECX,IntVar

end;

Embarcadero Technologies 337

SMALL and LARGE can be used determine the width of a displacement:

MOV EAX, [LARGE $1234]

This instruction generates a 'normal' move with a 32-bit displacement
($00001234):

MOV EAX, [SMALL $1234]

The second instruction will generate a move with an address size override prefix
and a 16-bit displacement ($1234).

SMALL can be used to save space. The following example generates an address
size override and a 2-byte address (in total three bytes):

MOV EAX, [SMALL 123]

as opposed to:

MOV EAX, [123]

which will generate no address size override and a 4-byte address (in total four
bytes).

Two additional directives allow assembly code to access dynamic and virtual
methods: VMTOFFSET and DMTINDEX.

VMTOFFSET retrieves the offset in bytes of the virtual method pointer table entry
of the virtual method argument from the beginning of the virtual method table
(VMT). This directive needs a fully specified class name with a method name as a
parameter (for example, TExample.VirtualMethod), or an interface name and an
interface method name.

DMTINDEX retrieves the dynamic method table index of the passed dynamic
method. This directive also needs a fully specified class name with a method
name as a parameter, for example, TExample.DynamicMethod. To invoke the
dynamic method, call System.@CallDynaInst with the (E)SI register containing the
value obtained from DMTINDEX.

Note: Methods with the message directive are implemented as
dynamic methods and can also be called using the DMTINDEX
technique. For example:

TMyClass = class

 procedure x; message MYMESSAGE;

end;

Embarcadero Technologies 338

The following example uses both DMTINDEX and VMTOFFSET to access dynamic
and virtual methods:

program Project2;

type

 TExample = class

 procedure DynamicMethod; dynamic;

 procedure VirtualMethod; virtual;

 end;

procedure TExample.DynamicMethod;

begin

end;

procedure TExample.VirtualMethod;

begin

end;

procedure CallDynamicMethod(e: TExample);

asm

 // Save ESI register

 PUSH ESI

 // Instance pointer needs to be in EAX

 MOV EAX, e

 // DMT entry index needs to be in (E)SI

 MOV ESI, DMTINDEX TExample.DynamicMethod

 // Now call the method

 CALL System.@CallDynaInst

 // Restore ESI register

 POP ESI

end;

procedure CallVirtualMethod(e: TExample);

asm

 // Instance pointer needs to be in EAX

 MOV EAX, e

 // Retrieve VMT table entry

 MOV EDX, [EAX]

 // Now call the method at offset VMTOFFSET

 CALL DWORD PTR [EDX + VMTOFFSET TExample.VirtualMethod]

end;

var

 e: TExample;

begin

 e := TExample.Create;

 try

 CallDynamicMethod(e);

 CallVirtualMethod(e);

 finally

 e.Free;

 end;

end.

Embarcadero Technologies 339

Operands

Inline assembler operands are expressions that consist of constants, registers,
symbols, and operators.

Within operands, the following reserved words have predefined meanings:

Built-in assembler reserved words
CPU registers

Category Identifiers

8-bit CPU
registers AH, AL, BH, BL, CH, CL, DH, DL (general purpose registers);

16-bit CPU
registers

AX, BX, CX, DX (general purpose registers); DI, SI, SP, BP (index registers);
CS, DS, SS, ES (segment registers); IP (instruction pointer)

32-bit CPU
registers

EAX, EBX, ECX, EDX (general purpose registers); EDI, ESI, ESP, EBP (index
registers); FS, GS (segment registers); EIP

FPU ST(0), ..., ST(7)

MMX FPU
registers mm0, ..., mm7

XMM registers xmm0, ..., xmm7 (..., xmm15 on x64)

Intel 64
registers RAX, RBX, ...

Data and Operators

Category Identifiers

Data BYTE, WORD, DWORD, QWORD, TBYTE

Operators NOT, AND, OR, XOR; SHL, SHR, MOD; LOW, HIGH; OFFSET, PTR, TYPE

 VMTOFFSET, DMTINDEX

 SMALL, LARGE

Embarcadero Technologies 340

Reserved words always take precedence over user-defined identifiers. For
example:

var

 Ch: Char;

// …

asm

 MOV CH, 1

end;

loads 1 into the CH register, not into the Ch variable. To access a user-defined
symbol with the same name as a reserved word, you must use the ampersand
(&) override operator:

MOV&Ch, 1

It is best to avoid user-defined identifiers with the same names as built-in
assembler reserved words.

Assembly Expressions
The built-in assembler evaluates all expressions as 32-bit integer values. It doesn't
support floating-point and string values, except string constants.

Expressions are built from expression elements and operators, and each
expression has an associated expression class and expression type.

Differences between Delphi and Assembler Expressions

The most important difference between Delphi expressions and built-in assembler
expressions is that assembler expressions must resolve to a constant value. In
other words, it must resolve to a value that can be computed at compile time.
For example, given the declarations:

const

 X = 10;

 Y = 20;

var

 Z: Integer;

the following is a valid statement:

asm

 MOV Z,X+Y

end;

Because both X and Y are constants, the expression X + Y is a convenient way of
writing the constant 30, and the resulting instruction simply moves of the value 30
into the variable Z. But if X and Y are variables:

Embarcadero Technologies 341

var

 X, Y: Integer;

the built-in assembler cannot compute the value of X + Y at compile time. In this
case, to move the sum of X and Y into Z you would use:

asm

 MOV EAX,X

 ADD EAX,Y

 MOV Z,EAX

end;

In a Delphi expression, a variable reference denotes the contents of the variable.
But in an assembler expression, a variable reference denotes the address of the
variable. In Delphi the expression X + 4 (where X is a variable) means the
contents of X plus 4, while to the built-in assembler it means the contents of the
word at the address four bytes higher than the address of X. So, even though you
are allowed to write:

asm

 MOV EAX,X+4

end;

this code doesn't load the value of X plus 4 into AX; instead, it loads the value of
a word stored four bytes beyond X. The correct way to add 4 to the contents of
X is:

asm

 MOV EAX,X

 ADD EAX,4

end;

Expression Elements

The elements of an expression are constants, registers, and symbols.

Numeric Constants

Numeric constants must be integers, and their values must be between
2,147,483,648 and 4,294,967,295.

By default, numeric constants use decimal notation, but the built-in assembler
also supports binary, octal, and hexadecimal. Binary notation is selected by
writing a B after the number, octal notation by writing an O after the number,
and hexadecimal notation by writing an H after the number or a $ before the
number.

Embarcadero Technologies 342

Numeric constants must start with one of the digits 0 through 9 or the
$ character. When you write a hexadecimal constant using the H suffix, an extra
zero is required in front of the number if the first significant digit is one of the digits
A through F. For example, 0BAD4H and $BAD4 are hexadecimal constants, but
BAD4H is an identifier because it starts with a letter.

String Constants

String constants must be enclosed in single or double quotation marks. Two
consecutive quotation marks of the same type as the enclosing quotation marks
count as only one character. Here are some examples of string constants:

'Z'

'Delphi'

'Windows'

"That's all folks"

'"That''s all folks," he said.'

'100'

'"'

"'"

String constants of any length are allowed in DB directives, and cause allocation
of a sequence of bytes containing the ASCII values of the characters in the
string. In all other cases, a string constant can be no longer than four characters
and denotes a numeric value which can participate in an expression. The
numeric value of a string constant is calculated as:

Ord(Ch1) + Ord(Ch2) shl 8 + Ord(Ch3) shl 16 + Ord(Ch4) shl 24

where Ch1 is the rightmost (last) character and Ch4 is the leftmost (first)
character. If the string is shorter than four characters, the leftmost characters are
assumed to be zero. The following table shows string constants and their numeric
values.

String examples and their values:

Embarcadero Technologies 343

String Value

'a' 00000061H

'ba' 00006261H

'cba' 00636261H

'dcba' 64636261H

'a ' 00006120H

' a' 20202061H

'a' * 2 000000E2H

'a'-'A' 00000020H

not 'a' FFFFFF9EH

Registers

The following reserved symbols denote CPU registers in the inline assembler:
CPU registers

Category Identifiers

8-bit CPU
registers AH, AL, BH, BL, CH, CL, DH, DL (general purpose registers);

16-bit CPU
registers

AX, BX, CX, DX (general purpose registers); DI, SI, SP, BP (index registers);
CS, DS, SS, ES (segment registers); IP (instruction pointer)

32-bit CPU
registers

EAX, EBX, ECX, EDX (general purpose registers); EDI, ESI, ESP, EBP (index
registers); FS, GS (segment registers); EIP

FPU ST(0), ..., ST(7)

MMX FPU
registers mm0, ..., mm7

XMM registers xmm0, ..., xmm7 (..., xmm15 on x64)

Intel 64
registers RAX, RBX, ...

x64 CPU General purpose registers, x86 FPU data registers, and x64 SSE data registers

Embarcadero Technologies 344

When an operand consists solely of a register name, it is called a register
operand. All registers can be used as register operands, and some registers can
be used in other contexts.

The base registers (BX and BP) and the index registers (SI and DI) can be written
within square brackets to indicate indexing. Valid base/index register
combinations are [BX], [BP], [SI], [DI], [BX+SI], [BX+DI], [BP+SI], and [BP+DI]. You
can also index with all the 32-bit registersfor example, [EAX+ECX], [ESP], and
[ESP+EAX+5].

The segment registers (ES, CS, SS, DS, FS, and GS) are supported, but segments
are normally not useful in 32-bit applications.

Embarcadero Technologies 345

The symbol ST denotes the topmost register on the 8087 floating-point register
stack. Each of the eight floating-point registers can be referred to using ST(X),
where X is a constant between 0 and 7 indicating the distance from the top of
the register stack.

Symbols

The built-in assembler allows you to access almost all Delphi identifiers in
assembly language expressions, including constants, types, variables,
procedures, and functions. In addition, the built-in assembler implements the
special symbol @Result, which corresponds to the Result variable within the body
of a function. For example, the function:

function Sum(X, Y: Integer): Integer;

begin

 Result := X + Y;

end;

could be written in assembly language as:

function Sum(X, Y: Integer): Integer; stdcall;

begin

 asm

 MOV EAX,X

 ADD EAX,Y

 MOV @Result,EAX

 end;

end;

The following symbols cannot be used in asm statements:

o Standard procedures and functions (for example, Writeln and Chr).

o String, floating-point, and set constants (except when loading registers).

o Labels that aren't declared in the current block.

o The @Result symbol outside of functions.

The following table summarizes the kinds of symbol that can be used in asm
statements.

Symbols recognized by the built-in assembler:

Embarcadero Technologies 346

Symbol Value Class Type

Label Address of label Memory
reference

Size of
type

Constant Value of constant Immediate value 0

Type 0 Memory
reference

Size of
type

Field Offset of field Memory Size of
type

Variable Address of variable or address of a pointer to
the variable

Memory
reference

Size of
type

Procedure Address of procedure Memory
reference

Size of
type

Function Address of function Memory
reference

Size of
type

Unit 0 Immediate value 0

@Result Result variable offset Memory
reference

Size of
type

With optimizations disabled, local variables (variables declared in procedures
and functions) are always allocated on the stack and accessed relative to EBP,
and the value of a local variable symbol is its signed offset from EBP. The
assembler automatically adds [EBP] in references to local variables. For example,
given the declaration:

var Count: Integer;

within a function or procedure, the instruction:

MOV EAX,Count

assembles into MOV EAX,[EBP4].

The built-in assembler treats var parameters as a 32-bit pointers, and the size of a
var parameter is always 4. The syntax for accessing a var parameter is different
from that for accessing a value parameter. To access the contents of a var
parameter, you must first load the 32-bit pointer and then access the location it
points to. For example:

Embarcadero Technologies 347

function Sum(var X, Y: Integer): Integer; stdcall;

begin

 asm

 MOV EAX,X

 MOV EAX,[EAX]

 MOV EDX,Y

 ADD EAX,[EDX]

 MOV @Result,EAX

 end;

end;

Identifiers can be qualified within asm statements. For example, given the
declarations:

type

 TPoint = record

 X, Y: Integer;

 end;

 TRect = record

 A, B: TPoint;

 end;

var

 P: TPoint;

 R: TRect;

the following constructions can be used in an asm statement to access fields:

MOV EAX,P.X

MOV EDX,P.Y

MOV ECX,R.A.X

MOV EBX,R.B.Y

A type identifier can be used to construct variables on the fly. Each of the
following instructions generates the same machine code, which loads the
contents of [EDX] into EAX.

MOV EAX,(TRect PTR [EDX]).B.X

MOV EAX,TRect([EDX]).B.X

MOV EAX,TRect[EDX].B.X

MOV EAX,[EDX].TRect.B.X

Expression Classes

The built-in assembler divides expressions into three classes: registers, memory
references, and immediate values.

An expression that consists solely of a register name is a register expression.
Examples of register expressions are AX, CL, DI, and ES. Used as operands, register
expressions direct the assembler to generate instructions that operate on the
CPU registers.

Embarcadero Technologies 348

Expressions that denote memory locations are memory references. Delphi's
labels, variables, typed constants, procedures, and functions belong to this
category.

Expressions that aren't registers and aren't associated with memory locations are
immediate values. This group includes Delphi's untyped constants and type
identifiers.

Immediate values and memory references cause different code to be
generated when used as operands. For example:

const

 Start = 10;

var

 Count: Integer;

// …

asm

 MOV EAX,Start { MOV EAX,xxxx }

 MOV EBX,Count { MOV EBX,[xxxx] }

 MOV ECX,[Start] { MOV ECX,[xxxx] }

 MOV EDX,OFFSET Count { MOV EDX,xxxx }

end;

Because Start is an immediate value, the first MOV is assembled into a move
immediate instruction. The second MOV, however, is translated into a move
memory instruction, as Count is a memory reference. In the third MOV, the
brackets convert Start into a memory reference (in this case, the word at offset
10 in the data segment). In the fourth MOV, the OFFSET operator converts Count
into an immediate value (the offset of Count in the data segment).

The brackets and OFFSET operator complement each other. The following asm
statement produces identical machine code to the first two lines of the previous
asm statement:

asm

 MOV EAX,OFFSET [Start]

 MOV EBX,[OFFSET Count]

end;

Memory references and immediate values are further classified as either
relocatable or absolute. Relocation is the process by which the linker assigns
absolute addresses to symbols. A relocatable expression denotes a value that
requires relocation at link time, while an absolute expression denotes a value
that requires no such relocation. Typically, expressions that refer to labels,
variables, procedures, or functions are relocatable, since the final address of
these symbols is unknown at compile time. Expressions that operate solely on
constants are absolute.

The built-in assembler allows you to carry out any operation on an absolute
value, but it restricts operations on relocatable values to addition and
subtraction of constants.

Embarcadero Technologies 349

Expression Types

Every built-in assembler expression has a type, or more correctly a size, because
the assembler regards the type of an expression simply as the size of its memory
location. For example, the type of an Integer variable is four, because it
occupies 4 bytes. The built-in assembler performs type checking whenever
possible, so in the instructions:

var

 QuitFlag: Boolean;

 OutBufPtr: Word;

// …

asm

 MOV AL,QuitFlag

 MOV BX,OutBufPtr

end;

the assembler checks that the size of QuitFlag is one (a byte), and that the size of
OutBufPtr is two (a word). The instruction:

MOV DL,OutBufPtr

produces an error because DL is a byte-sized register and OutBufPtr is a word.
The type of a memory reference can be changed through a typecast; these are
correct ways of writing the previous instruction:

MOV DL,BYTE PTR OutBufPtr

MOV DL,Byte(OutBufPtr)

MOV DL,OutBufPtr.Byte

These MOV instructions all refer to the first (least significant) byte of the OutBufPtr
variable.

In some cases, a memory reference is untyped. One example is an immediate
value (Buffer) enclosed in square brackets:

procedure Example(var Buffer);

asm

 MOV AL, [Buffer]

 MOV CX, [Buffer]

 MOV EDX, [Buffer]

end;

The built-in assembler permits these instructions, because the expression [Buffer]
has no type. [Buffer] means "the contents of the location indicated by Buffer,"
and the type can be determined from the first operand (byte for AL, word for
CX, and double-word for EDX).

In cases where the type can't be determined from another operand, the built-in
assembler requires an explicit typecast. For example:

Embarcadero Technologies 350

INC BYTE PTR [ECX]

IMUL WORD PTR [EDX]

The following table summarizes the predefined type symbols that the built-in
assembler provides in addition to any currently declared Delphi types.

Predefined type symbols:

Symbol Type

BYTE 1

WORD 2

DWORD 4

QWORD 8

TBYTE 10

Expression Operators

The built-in assembler provides a variety of operators. Precedence rules are
different from that of the Delphi language; for example, in an asm statement,
AND has lower precedence than the addition and subtraction operators. The
following table lists the built-in assembler's expression operators in decreasing
order of precedence.

Precedence of built-in assembler expression operators

Operators Remarks Precedence

&

highest

(...), [...],., HIGH, LOW

+, - unary + and -

:

OFFSET, TYPE, PTR, *, /, MOD, SHL, SHR, +, - binary + and -

NOT, AND, OR, XOR

lowest

The following table defines the built-in assembler's expression operators:

Definitions of built-in assembler expression operators:

Embarcadero Technologies 351

Operator Description

& Identifier override. The identifier immediately following the ampersand is
treated as a user-defined symbol, even if the spelling is the same as a built-in
assembler reserved symbol.

(...) Subexpression. Expressions within parentheses are evaluated completely prior
to being treated as a single expression element. Another expression can
precede the expression within the parentheses; the result in this case is the
sum of the values of the two expressions, with the type of the first expression.

[...] Memory reference. The expression within brackets is evaluated completely
prior to being treated as a single expression element. Another expression can
precede the expression within the brackets; the result in this case is the sum of
the values of the two expressions, with the type of the first expression. The
result is always a memory reference.

. Structure member selector. The result is the sum of the expression before the
period and the expression after the period, with the type of the expression
after the period. Symbols belonging to the scope identified by the expression
before the period can be accessed in the expression after the period.

HIGH Returns the high-order 8 bits of the word-sized expression following the
operator. The expression must be an absolute immediate value.

LOW Returns the low-order 8 bits of the word-sized expression following the
operator. The expression must be an absolute immediate value.

+ Unary plus. Returns the expression following the plus with no changes. The
expression must be an absolute immediate value.

- Unary minus. Returns the negated value of the expression following the minus.
The expression must be an absolute immediate value.

+ Addition. The expressions can be immediate values or memory references,
but only one of the expressions can be a relocatable value. If one of the
expressions is a relocatable value, the result is also a relocatable value. If
either of the expressions is a memory reference, the result is also a memory
reference.

- Subtraction. The first expression can have any class, but the second
expression must be an absolute immediate value. The result has the same
class as the first expression.

: Segment override. Instructs the assembler that the expression after the colon
belongs to the segment given by the segment register name (CS, DS, SS, FS,
GS, or ES) before the colon. The result is a memory reference with the value of
the expression after the colon. When a segment override is used in an
instruction operand, the instruction is prefixed with an appropriate segment-
override prefix instruction to ensure that the indicated segment is selected.

Embarcadero Technologies 352

OFFSET Returns the offset part (double word) of the expression following the operator.
The result is an immediate value.

TYPE Returns the type (size in bytes) of the expression following the operator. The
type of an immediate value is 0.

PTR Typecast operator. The result is a memory reference with the value of the
expression following the operator and the type of the expression in front of
the operator.

* Multiplication. Both expressions must be absolute immediate values, and the
result is an absolute immediate value.

/ Integer division. Both expressions must be absolute immediate values, and
the result is an absolute immediate value.

MOD Remainder after integer division. Both expressions must be absolute
immediate values, and the result is an absolute immediate value.

SHL Logical shift left. Both expressions must be absolute immediate values, and
the result is an absolute immediate value.

SHR Logical shift right. Both expressions must be absolute immediate values, and
the result is an absolute immediate value.

NOT Bitwise negation. The expression must be an absolute immediate value, and
the result is an absolute immediate value.

AND Bitwise AND. Both expressions must be absolute immediate values, and the
result is an absolute immediate value.

OR Bitwise OR. Both expressions must be absolute immediate values, and the
result is an absolute immediate value.

XOR Bitwise exclusive OR. Both expressions must be absolute immediate values,
and the result is an absolute immediate value.

Embarcadero Technologies 353

Assembly Procedures and Functions
You can write complete procedures and functions using inline assembly
language code, without including a begin...end statement.

Compiler Optimizations

An example of the type of function you can write is as follows:

function LongMul(X, Y: Integer): Longint;

asm

 MOV EAX,X

 IMUL Y

end;

The compiler performs several optimizations on these routines:

o No code is generated to copy value parameters into local variables. This
affects all string-type value parameters and other value parameters
whose size isn't 1, 2, or 4 bytes. Within the routine, such parameters must
be treated as if they were var parameters.

o Unless a function returns a string, variant, or interface reference, the
compiler doesn't allocate a function result variable; a reference to the
@Result symbol is an error. For strings, variants, and interfaces, the caller
always allocates an @Result pointer.

o The compiler only generates stack frames for nested routines, for routines
that have local parameters, or for routines that have parameters on the
stack.

o Locals is the size of the local variables and Params is the size of the
parameters. If both Locals and Params are zero, there is no entry code,
and the exit code consists simply of a RET instruction.

The automatically generated entry and exit code for the routine looks like this:

PUSH EBP ;Present if Locals <> 0 or Params <> 0

MOV EBP,ESP ;Present if Locals <> 0 or Params <> 0

SUB ESP,Locals ;Present if Locals <> 0

; …

MOV ESP,EBP ;Present if Locals <> 0

POP EBP ;Present if Locals <> 0 or Params <> 0

RET Params ;Always present

If locals include variants, long strings, or interfaces, they are initialized to zero but
not finalized.

Embarcadero Technologies 354

Function Results

Assembly language functions return their results as follows.

32-bit

o Ordinal values are returned in AL (8-bit values), AX (16-bit values), or EAX
(32-bit values).

o Real values are returned in ST(0) on the coprocessor's register stack.
(Currency values are scaled by 10000.)

o Pointers, including long strings, are returned in EAX.

o Short strings and variants are returned in the temporary location pointed
to by @Result.

64-bit

o Values 8 bytes or less in size are return in RAX.

o Real values are returned in XMM0.

o Other types are returned by a reference whose pointer value resides in
RAX whose memory is allocated by the calling routine.

Intel 64 Specifics (Pseudo-Ops)

x64 functions must be written completely in assembly or Pascal, that is, assembler
statements are not supported, only inline assembly functions.

Pseudo-ops have been provided to help manage stack use in
x64: .PARAMS, .PUSHNV, .SAVENV and .NOFRAME.

Embarcadero Technologies 355

Pseudo-op Description

.PARAMS

<number>

Used when calling external functions to setup the register parameter
backing store as per the x64 calling convention as this is not normally
done by default. When used, a pseudo-variable, @params, is available
for passing stack params to called functions. Use @params as a byte
array where the first stack parameter will be @params[32], locations 0-
31 represent the 4 register parameters.

.PUSHNV

<register>
Generates code to save and restore the non-volatile general purpose
register in the prologue and epilogue.

.SAVENV <XMM

register> Same functionality as .PUSHNV for non-volatile XMM registers.

.NOFRAME
Forcibly disables the generation of a stack frame as long as there are
no local variables declared and the parameter count <= 4. Use only for
leaf functions.

Stack Unwinding for PC-mapped Exceptions

See PC-Mapped Exceptions#Unwinding Assembly Routines.

Generics Index
Presents an overview of generics, a terminology list, a summary of grammar
changes for generics, and details about declaring and using parameterized
types, specifying constraints on generics, and using overloads.

Topics

o Overview of Generics

o Terminology for Generics

o Declaring Generics

o Overloads and Type Compatibility in Generics

o Constraints in Generics

o Class Variable in Generics

http://docwiki.embarcadero.com/RADStudio/Rio/en/PC-Mapped_Exceptions#Unwinding_Assembly_Routines

Embarcadero Technologies 356

Overview of Generics
Delphi supports the use of generics.

How Generics Work

The terms generics or generic types describe the set of things in a platform that
can be parameterized by type. The term generics can refer to either generic
types or generic methods, i.e., generic procedures and generic functions.

Generics are a set of abstraction tools that permit the decoupling of an
algorithm (such as a procedure or function) or a data structure (such as a class,
interface, or record) from one or more particular types that the algorithm or data
structure uses.

A method or data type that uses other types in its definition can be made more
general by substituting one or more particular types with type parameters. Then
you add those type parameters to a type parameter list in the method or data
structure declaration. This is similar to the way that you can make a procedure
more general by substituting instances of a literal constant in its body with a
parameter name and adding the parameter to the parameter list of the
procedure.

For example, a TMyList class that maintains a list of objects (of the TObject type)
can be made more reusable and type-safe by substituting uses of TObject with a
type parameter name (such as 'T'), and adding the type parameter to the class's
type parameter list so that it becomes TMyList<T>.

Particular uses (instantiations) of a generic type or method can be made by
supplying type arguments to the generic type or method at the point of use. The
act of supplying type arguments effectively constructs a new type or method by
substituting instances of the type parameter in the generic definition with the
corresponding type argument.

For example, the list might be used as TMyList<Double>. This creates a new type,
TMyList<Double>, whose definition is identical to TMyList<T> except that all
instances of 'T' in the definition are replaced with 'Double'.

It should be noted that generics as an abstraction mechanism duplicates much
of the functionality of polymorphism, but with different characteristics. Since a
new type or method is constructed at instantiation time, you can find type errors
sooner, at compile time rather than at run time. This also increases the scope for
optimization, but with a trade-off - each instantiation increases the memory
usage of the final running application, possibly resulting in lower performance.

Code Examples

For example, TSIPair is a class holding two data types, String and Integer:

Embarcadero Technologies 357

 type

 TSIPair = class

 private

 FKey: String;

 FValue: Integer;

 public

 function GetKey: String;

 procedure SetKey(Key: String);

 function GetValue: Integer;

 procedure SetValue(Value: Integer);

 property Key: TKey read GetKey write SetKey;

 property Value: TValue read GetValue write SetValue;

 end;

To make a class independent of data type, replace the data type with a type
parameter:

 type

 TPair<TKey,TValue> = class // declares TPair type with two type parameters

 private

 FKey: TKey;

 FValue: TValue;

 public

 function GetKey: TKey;

 procedure SetKey(Key: TKey);

 function GetValue: TValue;

 procedure SetValue(Value: TValue);

 property Key: TKey read GetKey write SetKey;

 property Value: TValue read GetValue write SetValue;

 end;

 type

 TSIPair = TPair<String,Integer>; // declares instantiated type

 TSSPair = TPair<String,String>; // declares with other data types

 TISPair = TPair<Integer,String>;

 TIIPair = TPair<Integer,Integer>;

 TSXPair = TPair<String,TXMLNode>;

Embarcadero Technologies 358

Platform Requirements and Differences

Generics are supported by the Delphi compilers.

Run-time type identification

In Win32, generics and methods do not have run-time type information (RTTI), but
instantiated types do have RTTI. An instantiated type is the combination of a
generic with a set of parameters. The RTTI for methods of a class is a subset of the
RTTI for that class as a whole. If a non-generic class has a generic method, that
method will not be included in the RTTI generated for the class because generics
are instantiated at compile time, not at run time.

Interface GUID

In Win32, an instantiated interface type does not have an interface GUID.

Parameterized method in interface

A parameterized method (method declared with type parameters) cannot be
declared in an interface.

Instantiation timing

Generic types are instantiated at compile time and emitted into executables
and relocatable files. Instance variables of a generic type are instantiated at run
time for classes and at compile time for generic records. The RTTI for generic
classes is only generated when the classes are instantiated. RTTI for instantiated
classes follows just as for non-generic classes. If the generic class has a generic
method, then the instantiated generic class will not have RTTI for that generic
method.

Dynamic instantiation

Dynamic instantiation at run time is not supported.

Interface constraints

The Win32 interface is not a "light" interface. This means all type parameters with
interface constraints always support the COM IUnknown methods _AddRef,
_Release, and QueryInterface or inherit from TInterfacedObject. Record types
cannot specify an interface constraint parameter.

Embarcadero Technologies 359

Terminology for Generics
Terminology used to describe generics is defined in this section.

Type generic A type declaration that requires type parameters to be supplied in order to
form an actual type.
List<Item> is a type generic (or generic) in the following example:

type

 List<Item> = class

 ...

 end;

Generic Same as Type generic.

Type

parameter
A parameter declared in a generic declaration or a method header in order
to use as a type for another declaration inside its generic declaration or the
method body. It will be bound to a particular type argument. Item is a type
parameter in the following example:

type

 List<Item> = class

 ...

 end;

Type argument
and
Type identifier

A particular type used with a type identifier in order to make an instantiated
type. Using the previous example, List<Integer> is the instantiated type
(instantiated generic), List is the type identifier, and Integer is the type
argument.

Instantiated

type
The combination of a generic with a set of parameters.

Constructed

type
Same as instantiated type.

Closed

constructed

type

A constructed type having all its parameters resolved to actual types.
List<Integer> is closed because Integer is an actual type.

Open

constructed

type

A constructed type having at least one parameter that is a type parameter. If
T is a type parameter of a containing class, List<T> is an open constructed
type.

Instantiation The compiler generates real instruction code for methods defined in generics
and real virtual method table for a closed constructed type. This process is
required before emitting a Delphi compiled unit file (.dcu) or object file (.obj)
for Win32.

Embarcadero Technologies 360

Declaring Generics
The declaration of a generic is similar to the declaration of a regular class,
record, or interface type. The difference is that a list of one or more type
parameters placed between angle brackets (< and >) follows the type identifier
in the declaration of a generic.

A type parameter can be used as a typical type identifier inside a container
type declaration and method body.

For example:

 type

 TPair<TKey,TValue> = class // TKey and TValue are type parameters

 FKey: TKey;

 FValue: TValue;

 function GetValue: TValue;

 end;

 function TPair<TKey,TValue>.GetValue: TValue;

 begin

 Result := FValue;

 end;

Note: You must call the default constructor and initialize the class
fields before calling the GetValue method.

Type Argument

Generic types are instantiated by providing type arguments. In Delphi, you can
use any type as a type argument except for the following: a static array, a short
string, or a record type that (recursively) contains a field of one or more of these
two types.

 type

 TFoo<T> = class

 FData: T;

 end;

 var

 F: TFoo<Integer>; // 'Integer' is the type argument of TFoo<T>

 begin

 ...

 end.

Embarcadero Technologies 361

Nested Types

A nested type within a generic is itself a generic.

type

 TFoo<T> = class

 type

 TBar = class

 X: Integer;

 // ...

 end;

 end;

 // ...

 TBaz = class

 type

 TQux<T> = class

 X: Integer;

 // ...

 end;

 // ...

 end;

To access the TBar nested type, you must specify a construction of the TFoo type
first:

 var

 N: TFoo<Double>.TBar;

A generic can also be declared within a regular class as a nested type:

 type

 TOuter = class

 type

 TData<T> = class

 FFoo1: TFoo<Integer>; // declared with closed constructed type

 FFoo2: TFoo<T>; // declared with open constructed type

 FFooBar1: TFoo<Integer>.TBar; // declared with closed constructed type

 FFooBar2: TFoo<T>.TBar; // declared with open constructed type

 FBazQux1: TBaz.TQux<Integer>; // declared with closed constructed type

 FBazQux2: TBaz.TQux<T>; // declared with open constructed type

 ...

 end;

 var

 FIntegerData: TData<Integer>;

 FStringData: TData<String>;

 end;

Embarcadero Technologies 362

Base Types

The base type of a parameterized class or interface type might be an actual
type or a constructed type. The base type might not be a type parameter alone.

 type

 TFoo1<T> = class(TBar) // Actual type

 end;

 TFoo2<T> = class(TBar2<T>) // Open constructed type

 end;

 TFoo3<T> = class(TBar3<Integer>) // Closed constructed type

 end;

If TFoo2<String> is instantiated, an ancestor class becomes TBar2<String>, and
TBar2<String> is automatically instantiated.

Class, Interface, and Record Types

Class, interface, record, and array types can be declared with type parameters.

For example:

 type

 TRecord<T> = record

 FData: T;

 end;

 type

 IAncestor<T> = interface

 function GetRecord: TRecord<T>;

 end;

 IFoo<T> = interface(IAncestor<T>)

 procedure AMethod(Param: T);

 end;

 type

 TFoo<T> = class(TObject, IFoo<T>)

 FField: TRecord<T>;

 procedure AMethod(Param: T);

 function GetRecord: TRecord<T>;

 end;

 type

 anArray<T>= array of T;

 IntArray= anArray<integer>;

Procedural Types

The procedure type and the method pointer can be declared with type
parameters. Parameter types and result types can also use type parameters.

Embarcadero Technologies 363

For example:

 type

 TMyProc<T> = procedure(Param: T);

 TMyProc2<Y> = procedure(Param1, Param2: Y) of object;

 type

 TFoo = class

 procedure Test;

 procedure MyProc(X, Y: Integer);

 end;

 procedure Sample(Param: Integer);

 begin

 Writeln(Param);

 end;

 procedure TFoo.MyProc(X, Y: Integer);

 begin

 Writeln('X:', X, ', Y:', Y);

 end;

 procedure TFoo.Test;

 var

 X: TMyProc<Integer>;

 Y: TMyProc2<Integer>;

 begin

 X := Sample;

 X(10);

 Y := MyProc;

 Y(20, 30);

 end;

 var

 F: TFoo;

 begin

 F := TFoo.Create;

 F.Test;

 F.Free;

 end.

Parameterized Methods

Methods can be declared with type parameters. Parameter types and result
types can use type parameters. However, constructors and destructors cannot
have type parameters, and neither can virtual, dynamic, or message methods.
Parameterized methods are similar to overloaded methods.

There are two ways to instantiate a method:

o Explicitly specifying type argument

o Automatically inferring from the type argument

Embarcadero Technologies 364

For example:

type

 TFoo = class

 procedure Test;

 procedure CompareAndPrintResult<T>(X, Y: T);

 end;

procedure TFoo.CompareAndPrintResult<T>(X, Y: T);

var

 Comparer : IComparer<T>;

begin

 Comparer := TComparer<T>.Default;

 if Comparer.Compare(X, Y) = 0 then

 WriteLn('Both members compare as equal')

 else

 WriteLn('Members do not compare as equal');

end;

procedure TFoo.Test;

begin

 CompareAndPrintResult<String>('Hello', 'World');

 CompareAndPrintResult('Hello', 'Hello');

 CompareAndPrintResult<Integer>(20, 20);

 CompareAndPrintResult(10, 20);

end;

var

 F: TFoo;

begin

 F := TFoo.Create;

 F.Test;

 ReadLn;

 F.Free;

end.

Scope of Type Parameters

The scope of a type parameter covers the type declaration and the bodies of all
its members, but does not include descendent types.

For example:

 type

 TFoo<T> = class

 X: T;

 end;

 TBar<S> = class(TFoo<S>)

 Y: T; // error! unknown identifier "T"

 end;

 var

 F: TFoo<Integer>;

 begin

 F.T // error! unknown identifier "T"

 end.

Embarcadero Technologies 365

Overloads and Type Compatibility in
Generics

Overloads

Generic methods can participate in overloading alongside non-generic
methods by using the 'overload' directive. If overload selection between a
generic method and a non-generic method would otherwise be ambiguous, the
compiler selects the non-generic method.

For example:

 type

 TFoo = class

 procedure Proc<T>(A: T); overload;

 procedure Proc(A: String); overload;

 procedure Test;

 end;

 procedure TFoo.Test;

 begin

 Proc('Hello'); // calls Proc(A: String);

 Proc<String>('Hello'); // calls Proc<T>(A: T);

 end;

Type Compatibility

Two non-instantiated generics are considered assignment compatible only if
they are identical or are aliases to a common type.

Two instantiated generics are considered assignment compatible if the base
types are identical (or are aliases to a common type) and the type arguments
are identical.

Note: Generics in Delphi are unlike templates in C++ or generic
types in C#. Most notably, a type parameter cannot be
constrained to a specific simple type, such as Integer, Double,
String, and so forth. In cases where different types need to be
expressed (including simple types), consider using overloaded

functions for each needed type or use a record type such as
TValue from the System.Rtti unit, which offers operators and
methods for storing and querying these data types.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Rtti.TValue
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Rtti

Embarcadero Technologies 366

Constraints in Generics
Constraints can be associated with a type parameter of a generic. Constraints
declare items that must be supported by any particular type passed to that
parameter in a construction of the generic type.

Specifying Generics with Constraints

Constraint items include:

o Zero, one, or multiple interface types

o Zero or one class type

o The reserved word "constructor", "class", or "record"

You can specify both "constructor" and "class" for a constraint. However, "record"
cannot be combined with other reserved words. Multiple constraints act as an
additive union ("AND" logic).

The examples given here show only class types, although constraints apply to all
forms of generics.

Declaring Constraints

Constraints are declared in a fashion that resembles type declarations in regular
parameter lists:

 type

 TFoo<T: ISerializable> = class

 FField: T;

 end;

In the example declaration given here, the 'T' type parameter indicates that it
must support the ISerializable interface. In a type construction like
TFoo<TMyClass>, the compiler checks at compile time to ensure that TMyClass
actually implements ISerializable.

Multiple Type Parameters

When you specify constraints, you separate multiple type parameters by
semicolons, as you do with a parameter list declaration:

 type

 TFoo<T: ISerializable; V: IComparable>

Embarcadero Technologies 367

Like parameter declarations, multiple type parameters can be grouped together
in a comma list to bind to the same constraints:

 type

 TFoo<S, U: ISerializable> ...

In the example above, S and U are both bound to the ISerializable constraint.

Multiple Constraints

Multiple constraints can be applied to a single type parameters as a comma list
following the colon:

 type

 TFoo<T: ISerializable, ICloneable; V: IComparable> ...

Constrained type parameters can be mixed with "free" type parameters. For
example, all the following are valid:

 type

 TFoo<T; C: IComparable> ...

 TBar<T, V> ...

 TTest<S: ISerializable; V> ...

 // T and V are free, but C and S are constrained

Types of Constraints

Interface Type Constraints

A type parameter constraint may contain zero, one, or a comma separated list
of multiple interface types.

A type parameter constrained by an interface type means that the compiler will
verify at compile time that a concrete type passed as an argument to a type
construction implements the specified interface type(s).

Embarcadero Technologies 368

For example:

 type

 TFoo<T: ICloneable> ...

 TTest1 = class(TObject, ICloneable)

 ...

 end;

 TError = class

 end;

 var

 X: TFoo<TTest1>; // TTest1 is checked for ICloneable support here

 // at compile time

 Y: TFoo<TError>; // exp: syntax error here - TError does not support

 // ICloneable

Class Type Constraints

A type parameter may be constrained by zero or one class type. As with
interface type constraints, this declaration means that the compiler will require
any concrete type passed as an argument to the constrained type param to be
assignment compatible with the constraint class.

Compatibility of class types follows the normal rules of OOP type compatibilty -
descendent types can be passed where their ancestor types are required.

Constructor Constraints

A type parameter may be constrained by zero or one instance of the reserved
word "constructor". This means that the actual argument type must be a class
that defines a default constructor (a public parameterless constructor), so that
methods within the generic type may construct instances of the argument type
using the default constructor of the argument type, without knowing anything
about the argument type itself (no minimum base type requirements).

In a constraint declaration, you can mix "constructor" in any order with interface
or class type constraints.

Class Constraint

A type parameter may be constrained by zero or one instance of the reserved
word "class". This means that the actual type must be a class type.

Record Constraint

A type parameter may be constrained by zero or one instance of the reserved
word "record". This means that the actual type must be a value type (not a
reference type). A "record" constraint cannot be combined with a "class" or
"constructor" constraint.

Embarcadero Technologies 369

Type Inferencing

When using a field or variable of a constrained type parameter, it is not
necessary in many cases to typecast in order to treat the field or variable as one
of the constrained types. The compiler can infer which type you're referring to by
looking at the method name and by performing a variation of overload
resolution over the union of the methods sharing the same name across all the
constraints on that type.

For example:

 type

 TFoo<T: ISerializable, ICloneable> = class

 FData: T;

 procedure Test;

 end;

 procedure TFoo<T>.Test;

 begin

 FData.Clone;

 end;

The compiler looks for "Clone" methods in ISerializable and ICloneable, since
FData is of type T, which is guaranteed to support both those interfaces. If both
interfaces implement "Clone" with the same parameter list, the compiler issues an
ambiguous method call error and require you to typecast to one or the other
interface to disambiguate the context.

Class Variable in Generics
The class variable defined in a generic type is instantiated in each instantiated
type identified by the type parameters.

The following code shows that TFoo<Integer>.FCount and TFoo<String>.FCount
are instantiated only once, and these are two different variables:

Embarcadero Technologies 370

 {$APPTYPE CONSOLE}

 type

 TFoo<T> = class

 class var FCount: Integer;

 constructor Create;

 end;

 constructor TFoo<T>.Create;

 begin

 inherited Create;

 Inc(FCount);

 end;

 procedure Test;

 var

 FI: TFoo<Integer>;

 begin

 FI := TFoo<Integer>.Create;

 FI.Free;

 end;

 var

 FI: TFoo<Integer>;

 FS: TFoo<String>;

 begin

 FI := TFoo<Integer>.Create;

 FI.Free;

 FS := TFoo<String>.Create;

 FS.Free;

 Test;

 Writeln(TFoo<Integer>.FCount); // outputs 2

 Writeln(TFoo<String>.FCount); // outputs 1

 end.

Embarcadero Technologies 371

Attributes and RTTI
Introduces the concept of attributes, their general use case, and some of their
basic restrictions in the Delphi language.

Note: Delphi attributes are not supported in C++Builder. For
information about RTTI in C++Builder, see Delphi RTTI and
C++Builder.

Introduction

Attributes are a language feature in Delphi that allows annotating types and
type members with special objects that carry additional information. This
information can be queried at run time. Attributes extend the normal Object-

Oriented model with Aspect-Oriented elements.

In general, attributes are useful when building general purpose frameworks that
analyze structured types such as objects or records at run time and introduce
new behavior based on additional information supplied by the annotated
attributes.

Attributes and RTTI

Attributes do not modify the behavior of types or members by themselves. The
consumer code must specifically query for their existence and take appropriate
actions when this is required. To be able to attach an attribute to an entity in the
compiled binary, first you need to have RTTI information emitted for that entity.
This means that types that explicitly disable RTTI information are not eligible for
attribute annotation. For example, in the following code, SomeCustomAttribute
will not be emitted to the compiled binary, because the RTTI information is
specifically disabled for the TDerivedObject class.

 type

 {$RTTI EXPLICIT METHODS([]) PROPERTIES([]) FIELDS([])}

 TDerivedObject = class(TObject)

 [SomeCustomAttribute()]

 procedure Shoot;

 end;

Topics

o Declaring Custom Attributes (RTTI)

o Annotating Types and Type Members

o Extracting Attributes at Run Time

o Using Virtual Method Interceptors

http://docwiki.embarcadero.com/RADStudio/Rio/en/Delphi_RTTI_and_C%2B%2BBuilder#Attributes
http://docwiki.embarcadero.com/RADStudio/Rio/en/Delphi_RTTI_and_C%2B%2BBuilder#Attributes

Embarcadero Technologies 372

Declaring Custom Attributes (RTTI)
This topic describes the basic methods used to create custom attributes, the
proper design decisions for attribute classes, and the general use cases.

Declaring an Attribute

An attribute is a simple class type. To declare your own custom attribute, you
must derive it from a special predefined class: System.TCustomAttribute:

type

 MyCustomAttribute = class(TCustomAttribute)

 end;

MyCustomAttribute can then be used to annotate any type or any member of a
type (such as class, record, or interface):

type

 [MyCustomAttribute]

 TSpecialInteger = type integer;

 TSomeClass = class

 [MyCustomAttribute]

 procedure Work;

 end;

Note that the declared attribute class must not be declared as class abstract
and should not contain any abstract methods. Even though the compiler allows
you to use these attributes for annotation, the built binary will not include them in
the emitted RTTI information.

Attribute Names that End with 'Attribute' are Implicitly Shortened

Suppose you define two TCustomAttribute subclasses with the same name
prefix, but one has 'Attribute' as a suffix, such as:

o MyCustom

o MyCustomAttribute

The class with the 'Attribute' suffix (MyCustomAttribute) is always used, and the
class with the shorter name (MyCustom) becomes inaccessible.

The following code snippet demonstrates this issue. One might expect the
TCustomAttribute subclass, Test, to be applied but because of implicit name
shortening, TestAttribute will actually be applied where either [Test] or
[TestAttribute] are used.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.TCustomAttribute

Embarcadero Technologies 373

type

 // To check ambigious names

 TestAttribute = class(TCustomAttribute)

 end;

 // Becomes unaccessible

 Test = class(TCustomAttribute)

 end;

 [Test] // Resolves to TestAttribute at run time

 TAmbigiousClass = class

 end;

Constructors in Attributes

Normally, an attribute is designed to carry some additional information that can
be queried at run time. To allow specifying custom information for the attribute
class, you must declare constructors for it:

type

 AttributeWithConstructor = class(TCustomAttribute)

 public

 constructor Create(const ASomeText: String);

 end;

which can then be used as follows:

 type

 [AttributeWithConstructor('Added text value!')]

 TRecord = record

 FField: Integer;

 end;

The method resolution works for attributes as well, which means that you can
define overloaded constructors in the custom-defined attribute. Declare only
constructors that accept constant values and not out or var ones. This comes
out of a basic restriction in how attributes work and is discussed in more detail in
Annotating Types and Type Members.

Annotating Types and Type Members
This topic describes the syntax and rules appropriate when annotating a type or
a member with an attribute.

General Syntax

To annotate a Delphi type or a member, such as a class or a class member, you
must precede the declaration of that type by the name of the attribute class
between brackets:

Embarcadero Technologies 374

[CustomAttribute]

TMyClass = class;

If the name of the attribute class ends in "Attribute", you can also omit the
"Attribute" suffix:

[Custom]

procedure DoSomething;

Having a set of parenthesis after the attribute class name is also a valid syntax:

[Custom()]

TMyRecord = record;

Some attributes accept parameters. To pass arguments to your attribute, use the
same syntax as you use for method calls:

[Custom(Argument1, Argument2, …)]

TSimpleType = set of (stOne, stTwo, stThree);

To annotate a single type with several attributes, you can either use several sets
of brackets:

[Custom1]

[Custom2(MyArgument)]

FString: String;

Or use comma-separated attributes between a single set of brackets:

[Custom1, Custom2(MyArgument)]

function IsReady: Boolean;

You Can Only Use Constant Expressions as Attribute
Parameters

An attribute that is annotated to a type or a member is inserted into the RTTI
information block in the generated binary. The emitted information includes:

o The class type of the attribute.

o The pointer to the selected constructor.

o A list of constants that are later passed to the attribute constructor.

The values passed to the constructor of the attribute must be constant
expressions. Because those values must be embedded directly into the resulting
binary, it is impossible to pass an expression that requires run-time evaluation. This

Embarcadero Technologies 375

raises a few limitations to the information that can be passed to the attribute at
compile time:

o You can only use constant expressions, including sets, strings, and ordinal
expressions.

o You can use TypeInfo() to pass type information because the RTTI block
addresses are known at compile time.

o You can use class references because the metaclass addresses are
known at compile time.

o You cannot use out or var parameters because they require run-time
evaluation of addresses of passed parameters.

o You cannot use Addr() or @.

The following code exemplifies the case in which the compiler does not compile
the annotation:

var

 a, b: Integer;

type

 [SomeAttribute(a + b)]

 TSomeType = record

 // …

 end;

In the previous example, the constructor of SomeAttribute requires an integer
value. The passed expression requires a run-time evaluation of a + b. The
compiler emits a compile-time error because it expects a constant expression.

The code below shows an accepted expression:

const

 a = 10;

 b = 20;

type

 [SomeAttribute(a + b)]

 TSomeType = record

 // …

 end;

The values of a and b are known at compile time; thus, the constant expression is
evaluated directly.

Extracting Attributes at Run Time
Provides information about run-time aspects of attributes--how to extract them
and how to make custom decisions based on their informational value.

http://docwiki.embarcadero.com/RADStudio/Rio/en/Constant_Expressions
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TypeInfo
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Addr

Embarcadero Technologies 376

Attribute Instantiation

Annotation (as discussed in Annotating Types and Type Members) is a simple
method of attaching an attribute to a type or a member. The information
included into the compiled binary only includes the class of the attribute, the
pointer to the selected constructor, and the list of constants that are passed to
the attribute's constructor at instantiation time.

The actual instantiation of attributes happens when the consumer code queries
for them in a given type or type member. This means that instances of attribute
classes are not created automatically, but rather when the program explicitly
searches for them. There is no guaranteed order in which attributes are
instantiated, nor it is known how many instances are created. A program should
not depend on such consequences.

Consider the following attribute declaration:

type

 TSpecialAttribute = class(TCustomAttribute)

 public

 FValue: String;

 constructor Create(const AValue: String);

 end;

constructor TSpecialAttribute.Create(const AValue: String);

begin

 FValue := AValue;

end;

The TSpecialAttribute is then used as annotation in the following example:

type

 [TSpecialAttribute('Hello World!')]

 TSomeType = record

 ...

 end;

To extract the attribute from the TSomeType type, the user code must employ
the functionality exposed by the System.Rtti unit. The following example
demonstrates the extraction code:

http://docwiki.embarcadero.com/Libraries/Rio/en/System.TCustomAttribute
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Rtti

Embarcadero Technologies 377

var

 LContext: TRttiContext;

 LType: TRttiType;

 LAttr: TCustomAttribute;

begin

 { Create a new Rtti context }

 LContext := TRttiContext.Create

 { Extract type information for TSomeType type }

 LType := LContext.GetType(TypeInfo(TSomeType));

 { Search for the custom attribute and do some custom processing }

 for LAttr in LType.GetAttributes() do

 if LAttr is TSpecialAttribute then

 Writeln(TSpecialAttribute(LAttr).FValue);

 { Destroy the context }

 LContext.Free;

end;

As seen in the example above, the user must specifically write code to query for
attributes annotated to a type. The actual attribute instances are created in the
TRttiType.GetAttributes method. Note that the example does not destroy the
instances; the TRttiContext frees all resources afterward.

Exceptions

Because the actual instantiation of attributes is performed in the user code, one
must be aware of the possible exceptions that may occur in the attributes'
constructors. The general recommendation is to use a try .. except clause
surrounding the code that queries for attributes.

To exemplify the problem, the attribute constructor in the original example is
changed to look like this:

constructor TSpecialAttribute.Create(const AValue: String);

begin

 if AValue = '' then

 raise EArgumentException.Create('Expected a non-null string');

 FValue := AValue;

end;

and the annotation for TSomeType is changed to pass an empty string to the
attribute constructor:

type

 [TSpecialAttribute('')]

 TSomeType = record

 ...

 end;

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Rtti.TRttiContext
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Rtti.TRttiType
http://docwiki.embarcadero.com/Libraries/Rio/en/System.TCustomAttribute
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Rtti.TRttiContext.Create
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Rtti.TRttiContext.GetType
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Rtti.TRttiObject.GetAttributes
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Rtti.TRttiObject.GetAttributes
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Rtti.TRttiContext

Embarcadero Technologies 378

In this case, the code that queries for the attributes of type TSomeType will fail
with an EArgumentException exception, which is raised by the instantiating
attribute. The recommendation is to change the query code to use the try ..
except clause:

 { Search for the custom attribute and do some custom processing }

 try

 for LAttr in LType.GetAttributes() do

 if LAttr is TSpecialAttribute then

 Writeln(TSpecialAttribute(LAttr).FValue);

 except

 { ... Do something here ... }

 end;

Using Virtual Method Interceptors
Delphi has a new type in Rtti.pas called System.Rtti.TVirtualMethodInterceptor.
Essentially, this type creates a derived metaclass dynamically at run time that
overrides every virtual method in the ancestor, by creating a new virtual method
table and populating it with stubs that intercept calls and arguments. When the
metaclass reference for any instance of the "ancestor" is replaced with this new
metaclass, the user can then intercept virtual function calls, change arguments
on the fly, change the return value, intercept and suppress exceptions or raise
new exceptions, or entirely replace calling the underlying method.

In concept, this is somewhat similar to dynamic proxies from .NET and Java. It is
like being able to derive from a class at run time, override methods (but not add
new instance fields), and then change the run-time type of an instance to this
new derived class.

For more information, see Barry Kelly's blog at
http://blog.barrkel.com/2010/09/virtual-method-interception.html

Compiler Attributes
Some special attributes trigger certain features of Delphi compilers.

Ref

The Ref attribute is used to qualify constant function parameters so that they are
passed by reference (not by value) to the function. For more information, see
Constant Parameters.

http://docwiki.embarcadero.com/Libraries/Rio/en/System.Rtti.TRttiObject.GetAttributes
http://docwiki.embarcadero.com/Libraries/Rio/en/System.Rtti.TVirtualMethodInterceptor
http://blog.barrkel.com/2010/09/virtual-method-interception.html
http://docwiki.embarcadero.com/RADStudio/Rio/en/Delphi_Toolchains

Embarcadero Technologies 379

Unsafe

Tag the Result of a function as Unsafe to make the compiler treat the function
result as “unsafe”, which disables ARC management of the object. For more
information, see The Unsafe Attribute.

Volatile

The volatile attribute is used to mark fields that are subject to change by
different threads, so that code generation does not optimize copying the value
in a register or another temporary memory location.

You can use the volatile attribute to mark the following declarations:

o Variables (global and local)

o Parameters

o Fields of a record or a class.

You cannot use the volatile attribute to mark the following declarations:

o Type

o Procedures, Functions or Methods

o Expressions

type

 TMyClass = class

 private

 [volatile] FMyVariable: TMyType;

 end;

Weak

The weak attribute is used to mark a declaration as a weak reference. For more
information, see Weak References.

Writing C++-friendly Delphi Code
C++ can consume Delphi code. The Delphi command-line compiler uses the
following switches to generate the files that C++ needs to process Delphi code:

o The -JL switch generates .lib, .bpi, .bpl and .obj files from a .dpk file, and
header files for all units in the package.

o The -JPHNE switch does the same from a .pas unit.

http://docwiki.embarcadero.com/RADStudio/Rio/en/Automatic_Reference_Counting_in_Delphi_Mobile_Compilers
http://docwiki.embarcadero.com/RADStudio/Rio/en/Automatic_Reference_Counting_in_Delphi_Mobile_Compilers#The_Unsafe_Attribute
http://docwiki.embarcadero.com/RADStudio/Rio/en/Automatic_Reference_Counting_in_Delphi_Mobile_Compilers#Weak_References
http://docwiki.embarcadero.com/RADStudio/Rio/en/DCC32.EXE,_the_Delphi_Command_Line_Compiler
http://docwiki.embarcadero.com/RADStudio/Rio/en/API_(*.lib,_*.a)
http://docwiki.embarcadero.com/RADStudio/Rio/en/API_(*.bpi)
http://docwiki.embarcadero.com/RADStudio/Rio/en/API_(*.bpl,_*.dylib,_*.so)
http://docwiki.embarcadero.com/RADStudio/Rio/en/C%2B%2B_Object_File_(*.obj,_*.o)
http://docwiki.embarcadero.com/RADStudio/Rio/en/Delphi_Package_Source_File_(*.dpk)
http://docwiki.embarcadero.com/RADStudio/Rio/en/C%2B%2B_Header_File_(*.h,_*.hpp)

Embarcadero Technologies 380

However, not all Delphi features are C++-friendly. This topic lists the DOs and
DON'Ts for Delphi run-time code that you want to consume from C++.

DOs

Redeclaring All Inhereted Contructors

Unlike Delphi, C++ does not inherit constructors. For example, the following is
incorrect:

class A

{

 public:

 A(int x) {}

};

class B: public A

{

};

int main(void)

{

 B *b = new B(5); // Error

 delete b;

}

The header file generation logic of the Delphi compiler is aware of this language
difference and adds the missing inherited constructors to each derived class.
However, these constructors also initialize member variables of the class. This
causes problems if a base class invokes a virtual method that already initialized
one of these member variables to a non-default value. It is particularly important
to redeclare inherited constructors if the base constructor can initialize a
member of a delphireturn type in the class.

Ensuring Distinct Signature for Each Constructor in a Hierarchy

C++ does not support named constructors. For this reason overloaded
constructors must not have identical nor similar parameters. For example, the
following code does not work for C++ consumption:

MyPoint = class

public

 constructor Polar(Radius, Angle: Single);

 constructor Rect(X, Y: Single);

This example results in the following C++ code that arises compilation errors
associated with duplicated constructors:

http://docwiki.embarcadero.com/RADStudio/Rio/en/Declspec(delphireturn)

Embarcadero Technologies 381

class PASCALIMPLEMENTATION MyPoint : public System::TObject

{

 public:

 __fastcall MyPoint(float Radius, float Angle);

 __fastcall MyPoint(float X, float Y);

};

You can workaround this issue in different ways:

o Add a dummy parameter with a default value to one of the constructors.
The header file generation logic intentionally leaves out the default value
on the constructor so that the two constructors are distinct in C++:

MyPoint = class

public

 constructor Polar(Radius, Angle: Single);

 constructor Rect(X, Y: Single; Dummy: Integer = 0);

class PASCALIMPLEMENTATION MyPoint : public System::TObject

{

 public:

 __fastcall MyPoint(float Radius, float Angle);

 __fastcall MyPoint(float X, float Y, int Dummy);

};

o Use the Named Constructor Idiom. This technique declares class static
factory members instead of named constructors when constructors are
overloaded with identical or similar parameters. This is particularly relevant
for the Delphi record type. The following example depicts a solution
based on this technique:

class MyPoint {

public:

 static MyPoint Rect(float X, float Y); // Rectangular coordinates

 static MyPoint Polar(float Radius, float Angle); // Polar coordinates

private:

 MyPoint(float X, float Y); // Rectangular coordinates

 float X_, Y_;

};

inline MyPoint::MyPoint(float X, float Y)

 : X_(X), Y_(Y) { }

inline MyPoint MyPoint::Rect(float X, float Y)

{ return MyPoint(X, Y); }

inline MyPoint MyPoint::Polar(float Radius, float Angle)

{ return Point(Radius*std::cos(Angle), Radius*std::sin(Angle)); }

https://isocpp.org/wiki/faq/ctors#named-ctor-idiom

Embarcadero Technologies 382

DON'Ts

Overloading Index Properties

Delphi allows overloading index properties, such as:

TTest = class

 function GetPropI(Index: Integer): Longint; overload;

 procedure SetProp(Index: Integer; Value: Longint); overload;

 function GetPropS(Index: Integer): String; overload;

 procedure SetProp(Index: Integer; Value: String); overload;

public

 property Props[Index: Integer] : Longint read GetPropI write SetProp;

 property Props[Index: Integer] : String read GetPropS write SetProp; default;

end;

However, the resulting interface in the header file does not work in C++, since
each property of a class must be unique.

Calling Virtual Mehtods from Constructors

This is related to Redeclaring All Inhereted Contructors. For Delphi-style classes,
the vtable of the most-derived class is set when the base constructors is invoked.
This allows the virtual mechanism to work from constructors. However, this implies
a strange behavior in a C++ environment, such as a virtual method of a class
that is invoked before the constructor of the class executes; or the constructor of
a class that undoes the initialization of a member that was performed from a
base constructor.

Using Generics in Aliases

C++ can use a Delphi alias to an instantiated template type. However, C++
cannot use a Delphi alias with dependent types. The following code illustrates
this fact:

type

 GoodArray = TArray<Integer>;

 BadArray<T> = array of T;

GoodArray is a concrete type that C++ can use. In contrast, BadArray contains a
dependent type, thus C++ cannot use it.

Using Generics in Closures

RTTI generated for published events allows the IDE to generate event handlers.
The logic in the IDE is unable to process RTTI generated for Generics when C++
event handlers are generated. Thus it is recommended that you avoid using
Generics in closures.

http://docwiki.embarcadero.com/RADStudio/Rio/en/Writing_C%2B%2B-friendly_Delphi_Code#Redeclaring_All_Inhereted_Contructors
http://docwiki.embarcadero.com/RADStudio/Rio/en/Run-Time_Type_Identification_(RTTI)_Index
http://docwiki.embarcadero.com/RADStudio/Rio/en/Generating_a_New_Event_Handler
http://docwiki.embarcadero.com/RADStudio/Rio/en/Events_Are_closures_(C%2B%2B)

Embarcadero Technologies 383

Using Records with Constructors

In Delphi, a variant record is equivalent to a C++ union. Records with
constructors cannot be in a variant record. The C++ rule is actually more generic:
a type with a user-defined constructor, destructor, or assignment cannot be a
member of a union. The following code illustrates a case that does not work for
C++:

type

 TPointD = record

X: Double;

Y: Double;

 public

constructor Create(const X, Y: Double);

 end;

 TRectD = record

case Integer of

0:

(Left, Top, Right, Bottom: Double);

1:

(TopLeft, BottomRight: TPointD);

 end;

The resulting C++ code triggers compiler errors:

struct DECLSPEC_DRECORD TRectD

{

 #pragma pack(push,1)

 union

{

struct

{

TPointD TopLeft; // Error

TPointD BottomRight; // Error

};

struct

{

double Left;

double Top;

double Right;

double Bottom;

};

};

 #pragma pack(pop)

};

Using Non-Empty Default String Parameters

Non-empty default string parameters generate the following warning:

W8058 Cannot create pre-compiled header: initialized data in header

Note that this issue only affects previous-generation C++ compilers (BCC32 and
BCCOSX), it does not affect Clang-enhanced C++ compilers.

http://docwiki.embarcadero.com/RADStudio/Rio/en/BCC32
http://docwiki.embarcadero.com/RADStudio/Rio/en/BCCOSX
http://docwiki.embarcadero.com/RADStudio/Rio/en/Clang-enhanced_C%2B%2B_Compilers

This is a human-readable summary of (and not a substitute for) the license.

Under the following terms:

Notices:

Creative Commons License Deed
Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

You are free to:
Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that
legally restrict others from doing anything the license permits.

You do not have to comply with the license for elements of the material in the public
domain or where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for
your intended use. For example, other rights such as publicity, privacy, or moral rights may
limit how you use the material.

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://freedomdefined.org/

Creative Commons Legal Code
Attribution-ShareAlike 4.0 International

Official translations of this license are available in other languages.
Creative Commons Corporation (“Creative Commons”) is not a law firm and does not provide legal services
or legal advice. Distribution of Creative Commons public licenses does not create a lawyer-client or other
relationship. Creative Commons makes its licenses and related information available on an “as-is” basis.
Creative Commons gives no warranties regarding its licenses, any material licensed under their terms and
conditions, or any related information. Creative Commons disclaims all liability for damages resulting from
their use to the fullest extent possible.

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and conditions that creators and other
rights holders may use to share original works of authorship and other material subject to copyright and
certain other rights specified in the public license below. The following considerations are for informational
purposes only, are not exhaustive, and do not form part of our licenses.

Considerations for licensors: Our public licenses are intended for use by those authorized to give the
public permission to use material in ways otherwise restricted by copyright and certain other rights. Our
licenses are irrevocable. Licensors should read and understand the terms and conditions of the license they
choose before applying it. Licensors should also secure all rights necessary before applying our licenses so
that the public can reuse the material as expected. Licensors should clearly mark any material not subject to
the license. This includes other CC-licensed material, or material used under an exception or limitation to
copyright.

Considerations for the public: By using one of our public licenses, a licensor grants the public permission
to use the licensed material under specified terms and conditions. If the licensor’s permission is not
necessary for any reason–for example, because of any applicable exception or limitation to copyright–then
that use is not regulated by the license. Our licenses grant only permissions under copyright and certain
other rights that a licensor has authority to grant. Use of the licensed material may still be restricted for other
reasons, including because others have copyright or other rights in the material. A licensor may make
special requests, such as asking that all changes be marked or described. Although not required by our
licenses, you are encouraged to respect those requests where reasonable.

Creative Commons Attribution-ShareAlike 4.0 International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and
conditions of this Creative Commons Attribution-ShareAlike 4.0 International Public License ("Public
License"). To the extent this Public License may be interpreted as a contract, You are granted the Licensed
Rights in consideration of Your acceptance of these terms and conditions, and the Licensor grants You such
rights in consideration of benefits the Licensor receives from making the Licensed Material available under
these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived from or based
upon the Licensed Material and in which the Licensed Material is translated, altered, arranged,
transformed, or otherwise modified in a manner requiring permission under the Copyright and Similar
Rights held by the Licensor. For purposes of this Public License, where the Licensed Material is a
musical work, performance, or sound recording, Adapted Material is always produced where the
Licensed Material is synched in timed relation with a moving image.

b. Adapter's License means the license You apply to Your Copyright and Similar Rights in Your
contributions to Adapted Material in accordance with the terms and conditions of this Public License.

c. BY-SA Compatible License means a license listed at creativecommons.org/compatiblelicenses,
approved by Creative Commons as essentially the equivalent of this Public License.

d. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright
including, without limitation, performance, broadcast, sound recording, and Sui Generis Database
Rights, without regard to how the rights are labeled or categorized. For purposes of this Public License,
the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights.

e. Effective Technological Measures means those measures that, in the absence of proper authority,
may not be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty
adopted on December 20, 1996, and/or similar international agreements.

f. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to
Copyright and Similar Rights that applies to Your use of the Licensed Material.

g. License Elements means the license attributes listed in the name of a Creative Commons Public
License. The License Elements of this Public License are Attribution and ShareAlike.

h. Licensed Material means the artistic or literary work, database, or other material to which the Licensor
applied this Public License.

i. Licensed Rights means the rights granted to You subject to the terms and conditions of this Public
License, which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed
Material and that the Licensor has authority to license.

j. Licensor means the individual(s) or entity(ies) granting rights under this Public License.
k. Share means to provide material to the public by any means or process that requires permission under

the Licensed Rights, such as reproduction, public display, public performance, distribution,
dissemination, communication, or importation, and to make material available to the public including in

https://creativecommons.org/compatiblelicenses

ways that members of the public may access the material from a place and at a time individually chosen
by them.

l. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the
European Parliament and of the Council of 11 March 1996 on the legal protection of databases, as
amended and/or succeeded, as well as other essentially equivalent rights anywhere in the world.

m. You means the individual or entity exercising the Licensed Rights under this Public License. Your has a
corresponding meaning.

Section 2 – Scope.

a. License grant.
1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a

worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the
Licensed Rights in the Licensed Material to:
A. reproduce and Share the Licensed Material, in whole or in part; and
B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply to
Your use, this Public License does not apply, and You do not need to comply with its terms and
conditions.

3. Term. The term of this Public License is specified in Section 6(a).
4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise the

Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.
A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material

automatically receives an offer from the Licensor to exercise the Licensed Rights under the terms
and conditions of this Public License.

B. Additional offer from the Licensor – Adapted Material. Every recipient of Adapted Material from
You automatically receives an offer from the Licensor to exercise the Licensed Rights in the
Adapted Material under the conditions of the Adapter’s License You apply.

C. No downstream restrictions. You may not offer or impose any additional or different terms or
conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so
restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission to
assert or imply that You are, or that Your use of the Licensed Material is, connected with, or

sponsored, endorsed, or granted official status by, the Licensor or others designated to receive
attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are
publicity, privacy, and/or other similar personality rights; however, to the extent possible, the Licensor
waives and/or agrees not to assert any such rights held by the Licensor to the limited extent
necessary to allow You to exercise the Licensed Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.
3. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of

the Licensed Rights, whether directly or through a collecting society under any voluntary or waivable
statutory or compulsory licensing scheme. In all other cases the Licensor expressly reserves any
right to collect such royalties.

Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:
i. identification of the creator(s) of the Licensed Material and any others designated to receive

attribution, in any reasonable manner requested by the Licensor (including by pseudonym if
designated);

ii. a copyright notice;
iii. a notice that refers to this Public License;
iv. a notice that refers to the disclaimer of warranties;
v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text of, or the
URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium,
means, and context in which You Share the Licensed Material. For example, it may be reasonable to
satisfy the conditions by providing a URI or hyperlink to a resource that includes the required
information.

3. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A)
to the extent reasonably practicable.

b. ShareAlike.
In addition to the conditions in Section 3(a), if You Share Adapted Material You produce, the following
conditions also apply.

1. The Adapter’s License You apply must be a Creative Commons license with the same License
Elements, this version or later, or a BY-SA Compatible License.

2. You must include the text of, or the URI or hyperlink to, the Adapter's License You apply. You may
satisfy this condition in any reasonable manner based on the medium, means, and context in which
You Share Adapted Material.

3. You may not offer or impose any additional or different terms or conditions on, or apply any Effective
Technological Measures to, Adapted Material that restrict exercise of the rights granted under the
Adapter's License You apply.

Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed
Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share
all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which You have Sui
Generis Database Rights, then the database in which You have Sui Generis Database Rights (but not its
individual contents) is Adapted Material, including for purposes of Section 3(b); and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the
contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this
Public License where the Licensed Rights include other Copyright and Similar Rights.
Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor
offers the Licensed Material as-is and as-available, and makes no representations or warranties
of any kind concerning the Licensed Material, whether express, implied, statutory, or other. This
includes, without limitation, warranties of title, merchantability, fitness for a particular purpose,
non-infringement, absence of latent or other defects, accuracy, or the presence or absence of
errors, whether or not known or discoverable. Where disclaimers of warranties are not allowed in
full or in part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental,
consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of

this Public License or use of the Licensed Material, even if the Licensor has been advised of the
possibility of such losses, costs, expenses, or damages. Where a limitation of liability is not
allowed in full or in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner
that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if
You fail to comply with this Public License, then Your rights under this Public License terminate
automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your
discovery of the violation; or

2. upon express reinstatement by the Licensor.
For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek
remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or
conditions or stop distributing the Licensed Material at any time; however, doing so will not terminate this
Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions communicated by You
unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein
are separate from and independent of the terms and conditions of this Public License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit,
restrict, or impose conditions on any use of the Licensed Material that could lawfully be made without
permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be
automatically reformed to the minimum extent necessary to make it enforceable. If the provision cannot
be reformed, it shall be severed from this Public License without affecting the enforceability of the
remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented to unless
expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any
privileges and immunities that apply to the Licensor or You, including from the legal processes of any
jurisdiction or authority.

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to
apply one of its public licenses to material it publishes and in those instances will be considered the
“Licensor.” The text of the Creative Commons public licenses is dedicated to the public domain under the
CC0 Public Domain Dedication. Except for the limited purpose of indicating that material is shared under a
Creative Commons public license or as otherwise permitted by the Creative Commons policies published at
creativecommons.org/policies, Creative Commons does not authorize the use of the trademark “Creative
Commons” or any other trademark or logo of Creative Commons without its prior written consent including,
without limitation, in connection with any unauthorized modifications to any of its public licenses or any other
arrangements, understandings, or agreements concerning use of licensed material. For the avoidance of
doubt, this paragraph does not form part of the public licenses.

Creative Commons may be contacted at creativecommons.org.

Additional languages available: Bahasa Indonesia, Español, euskara, Deutsch, Español, français, hrvatski,
italiano, latviski, Lietuvių, Nederlands, norsk, polski, português, suomeksi, svenska, te reo Māori, Türkçe,
čeština, Ελληνικά, русский, українська, العربیة, 日本語, 한국어. Please read the FAQ for more information
about official translations.

https://creativecommons.org/publicdomain/zero/1.0/legalcode
https://creativecommons.org/policies
https://creativecommons.org/
https://creativecommons.org/licenses/by-sa/4.0/legalcode.id
https://creativecommons.org/licenses/by-sa/4.0/legalcode.es
https://creativecommons.org/licenses/by-sa/4.0/legalcode.eu
https://creativecommons.org/licenses/by-sa/4.0/legalcode.de
https://creativecommons.org/licenses/by-sa/4.0/legalcode.es
https://creativecommons.org/licenses/by-sa/4.0/legalcode.fr
https://creativecommons.org/licenses/by-sa/4.0/legalcode.hr
https://creativecommons.org/licenses/by-sa/4.0/legalcode.it
https://creativecommons.org/licenses/by-sa/4.0/legalcode.lv
https://creativecommons.org/licenses/by-sa/4.0/legalcode.lt
https://creativecommons.org/licenses/by-sa/4.0/legalcode.nl
https://creativecommons.org/licenses/by-sa/4.0/legalcode.no
https://creativecommons.org/licenses/by-sa/4.0/legalcode.pl
https://creativecommons.org/licenses/by-sa/4.0/legalcode.pt
https://creativecommons.org/licenses/by-sa/4.0/legalcode.fi
https://creativecommons.org/licenses/by-sa/4.0/legalcode.sv
https://creativecommons.org/licenses/by-sa/4.0/legalcode.mi
https://creativecommons.org/licenses/by-sa/4.0/legalcode.tr
https://creativecommons.org/licenses/by-sa/4.0/legalcode.cs
https://creativecommons.org/licenses/by-sa/4.0/legalcode.el
https://creativecommons.org/licenses/by-sa/4.0/legalcode.ru
https://creativecommons.org/licenses/by-sa/4.0/legalcode.uk
https://creativecommons.org/licenses/by-sa/4.0/legalcode.ar
https://creativecommons.org/licenses/by-sa/4.0/legalcode.ja
https://creativecommons.org/licenses/by-sa/4.0/legalcode.ko
https://wiki.creativecommons.org/FAQ#officialtranslations

	Delphi Language Guide.pdf
	Creative Commons — Deed — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0
	Creative Commons — Legal Code — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0 — Legal Code

