

Fearless
Cross-Platform
Development
with Delphi

Expand your Delphi skills to build a new generation
of Windows, web, mobile, and IoT applications

David Cornelius

BIRMINGHAM—MUMBAI

Fearless Cross-Platform Development
with Delphi
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Richa Tripathi
Publishing Product Manager: Alok Dhuri
Senior Editor: Rohit Singh
Content Development Editor: Kinnari Chohan
Technical Editor: Maran Fernandes
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Joshua Misquitta

First published: September 2021

Production reference: 1160921

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80020-382-2

www.packt.com

http://www.packt.com

To my wife, Terresa, for her incredible patience and support
during the writing of this book.

– David

Contributors

About the author
David Cornelius is a software engineer in the Pacific Northwest of the US with over
30 years of experience writing applications for education, research, finance, inventory
management, and retail. He has been the coordinator for the Oregon Delphi User Group
for two decades and keeps active in various online forums. David is the founder and
principal developer at Cornelius Concepts, LLC. and an Embarcadero MVP.

In his spare time, he likes to ride his motorcycle, escape the city with his RV, play the tuba
or bass guitar, and play strategy board games with friends.

I would like to thank, first of all, my technical reviewers, Jonathan Eaton
and Marco Breveglieri, and the editors at Packt Publishing who helped

me see things from the perspective of the reader and caught project
errors and omissions I submitted to GitHub (which I tried to pass off

as challenges to the readers). They certainly saved me much embarrassment
and helped ensure the book you have makes sense—and the

sample programs actually compile!

I would also like to thank attendees of the Oregon Delphi User Group, a
small but loyal band of awesome Delphi programmer friends, who have

been cheerleaders for my writing efforts.

Finally, I very much appreciate the love and support that friends and family
have given me even when they didn't fully understand what I was writing

about. They helped more than they know.

About the reviewer
Jonathan Eaton is a Texan who loves living in Oregon. He has been an avid professional
user of Delphi ever since he used it for a Y2K project way back in 1999. Since then,
he has used Delphi to design, develop, and update software applications for a variety
of industries, including chemical mixing, mineral asset accounting, insurance form
processing, commercial real estate appraisal, and the development of software components
of medical devices. In 2013, Jonathan became an ASQ Certified Software Quality
Engineer and has been a strong proponent for the application of the principles of quality
management to software development ever since. He's also written and self-published
three novels and several collections of short stories.

Marco Breveglieri is a software and web developer. He started programming when he
was 14 and got his first home personal computer, a beloved Commodore 16. Going
forward—and getting serious—years later he attended secondary school focusing on
computer science, continuing that learning path and taking his first steps from BASIC to
Pascal and C++. Today, Marco continues to work for his own IT company using Delphi
to create any kind of application. He also uses Visual Studio to build websites, using the
Microsoft web stack based on the .NET Framework. He often takes part in technical
conferences and holds training courses about programming with all these tools, especially
Delphi, C#, and the web standards HTML5, JavaScript, and CSS3.

Table of Contents
Preface

Section 1: Programming Power

1
Recent IDE Enhancements

Understanding the Delphi IDE 4
Delphi 10 Seattle 9
Delphi 10.1 Berlin 10
Delphi 10.2 Tokyo 12
Delphi 10.3 Rio 13

Delphi 10.4 Sydney 15
Summary 19
Questions 19
Further reading 20

2
Delphi Project Management

Technical requirements 22
Creating a console application 23
Building a Windows VCL application 24
Starting a multi-device application 25
Working with dynamic libraries 29
Understanding packages 30
Dealing with Android services 30
Customizing your favorite project types 31

Using build configurations
effectively 32
Build events 32

Working with related projects 34
Managing source modifications 35
Looking through your code history 36
Integrating source repositories 38

Using the command-line tools
for build automation 39
Summary 44
Questions 44
Further reading 44

viii Table of Contents

3
A Modern-Day Language

Technical requirements 47
Remembering Delphi's
Pascal roots 48
Reviewing the syntax 48

Growing a language 50
Adding objects to Pascal 50
Promising functionality with interfaces 52
Handling unknown data types 52
Supporting nested types 53
Migrating to Unicode 55
Applying strong type checking
generically 56

Adding anonymous methods for
cleaner code 60
Adding metadata to your classes
with attributes 62

Learning about the latest
enhancements 72
Simplifying variable declaration 72
Controlling initialization and the
finalization of records 73

Summary 76
Questions 76
Further reading 77

Section 2: Cross-Platform Power

4
Multiple Platforms, One Code Base

Technical requirements 81
Moving to FireMonkey from
the VCL 82
Starting a new Windows
FireMonkey project 83
Migrating an existing Windows VCL
application to use FireMonkey 86

Preparing other platforms 88
Preparing a Mac for cross-platform
development 88
Running your first cross-platform
application 90

Preparing for iOS development
and deployment 94
Preparing your PC to deploy to an
Android device 102

Working with various
screen sizes 104
Exploring target views 104

Writing code to support
multiple platforms 105
Summary 107
Questions 107
Further reading 108

Table of Contents ix

5
Libraries, Packages, and Components

Technical requirements 110
Sharing code in libraries 110
Things to keep in mind for the
Windows platform 113
Loading libraries dynamically versus
statically 113
Things to keep in mind for non-
Windows platforms 116

Putting code into packages 119
Working with package filenames 122

Turning a package into
a component 124
Creating our first component 124
Adding in the code to a component 126
Adding design-time properties to
a component 128
Adding cross-platform support
to components 130

Summary 132
Questions 132
Further reading 132

6
All About LiveBindings

Technical requirements 136
Using the LiveBindings
designer to get started quickly 136
Using layers to group LiveBindings
elements 139
Revealing embedded component
properties 140

Creating magic with the
LiveBindings Wizard 142
Pulling in fields from a database 143
Adding more controls through
the wizard 145
Prototyping custom objects at
design time 147

Swapping out prototype data for
your own custom data 149

Applying custom formatting
and parsing to your
bound data 153
Getting to the BindingsList 153
Customizing the display 154
Parsing edited data 156

Coding your own
LiveBindings methods 156
Summary 160
Questions 161
Further reading 161

x Table of Contents

7
FireMonkey Styles

Technical requirements 164
Understanding and using
FireMonkey styles 164
Loading style sets 165
Selecting between multiple StyleBooks 167
Accessing substyle definitions 169

Customizing FireMonkey styles
with the Style Designer 170
Creating a default style for a
control type 171

Creating a custom style for a
specific control 172

Styling your applications
with ease 174
Quickly setting a single,
application-wide style 174
Customizing styles per form 174
Managing style resources with code 176

Summary 182
Questions 183
Further reading 183

8
Exploring the World of 3D

Technical requirements 186
Getting started with 3D
in Delphi 187
Adding 2D controls to a 3D form 189

Adding basic and
extruded shapes 189
Showing lines for the axes 190
Extruded shapes 190
User-defined shapes 192

Adding color, lighting,
and movement 193
Adding a light source to colors
and textures 194
Coloring extruded objects 197
Adding animation 198
Animating color 199

Importing 3D models 200
Changing the camera 203
Multiple cameras 203
Satellite camera 205
Testing on phones 206

Let's write a game! 209
Implementing hidden clickable areas 210
Activating and deactivating an object 213
Mixing 2D and 3D controls for best
use of each 215
Working with layered objects at
design time 217
Deciding on the end game 218

Summary 219
Questions 219
Further reading 220

Table of Contents xi

Section 3: Mobile Power

9
Mobile Data Storage

Technical requirements 224
Comparing different
approaches 225
Learning about InterBase's editions 225
Introducing SQLite 226

Managing databases 228
Using the InterBase Server Manager
and IBConsole 228
Trying out SQLite Studio 233

Setting up access to tables
and queries 236
Utilizing FireDAC, Delphi's
cross-platform Data Access Component 236

Getting table and query records
from InterBase 238
Getting table and query records
from SQLite 245

Deploying your database 248
Deploying IBLite and IBToGo 250

Updating data on a
mobile device 252
Understanding touch-oriented
interfaces 252

Summary 254
Questions 255
Further reading 255

10
Cameras, the GPS, and More

Technical requirements 258
Setting up 258

Establishing a base 263
Getting permission 264
Setting up permissions for
Android apps 265
Using sensitive services on iOS 268

Capturing your neighborhood 269
Saving an image to the database 270
Loading previously taken images 272
Expanding your use of the camera 274

Marking your spot 275
Getting permission for location services 275

Saving coordinates in the database 278
Showing the location in the list view 279

Mapping your way 281
Setting up a Google Maps API key for
Android 282
Setting up your Delphi project to use
Google Maps 284
Plotting park points 284
Changing the map style 287

Sharing your pictures 289
Summary 290
Questions 291
Further reading 291

xii Table of Contents

11
Extending Delphi with Bluetooth, IoT, and Raspberry Pi

Technical requirements 294
Starting with Bluetooth Classic 294
Configuring Classic Bluetooth 295
Discovering and pairing devices 298
Publishing Bluetooth services 302
Connecting and communicating 306

Learning about low-energy
Bluetooth 311
Utilizing beacons 313
Setting up a beacon server app 313
Finding and reacting to
beacon messages 317

Fencing your application 321

Doing more with the Internet
of Things 321
Discovering and managing your device 323
Getting data from IoT devices 323

Using a Raspberry Pi 324
Using Android to run your apps on
a Raspberry Pi 325

Summary 328
Questions 328
Further reading 328

Section 4: Server Power

12
Console-Based Server Apps and Services

Technical requirements 334
Starting with console apps
on Windows and Linux 334
Installing the Windows subsystem
for Linux 335
Running our first Linux app 336
Adding a simple database
lookup module 337
Testing the data module with
a console app 340

Providing remote server
connectivity for clients 342
Testing with a console client 348

Logging activity 351

Sending logs in two directions 354
Adding a custom logging mechanism 356

Creating a Windows service 359
Logging to the Windows Event Log 362

Adopting a Linux daemon 366
Exposing your server to
the world 367
Modifying our client app to use the
new server 369

Summary 373
Questions 373
Further reading 374

Table of Contents xiii

13
Web Modules for IIS and Apache

Technical requirements 376
Surveying website-building
options in Delphi 376
Understanding the Web Server
Application wizard 376

Getting comfortable with the
underlying framework 377
Templating your HTML 380

Building an ISAPI web module
for IIS on Windows 389
Logging from an ISAPI web module 397

Getting started with the
Apache HTTP server 400
Installing and starting Apache
on Windows 400
Installing and starting Apache
on Linux 402

Writing cross-platform
Apache web modules 404
Deploying an Apache web module
on Windows 406
Deploying an Apache web module
on Linux 408

Summary 410
Questions 411
Further reading 411

14
Using the RAD Server

Technical requirements 414
Establishing a use case for
RAD Server 415
Considering an application's multi-user
needs 416
Enabling push notifications for
registered devices 417
Justifying the cost 418

Getting familiar with what's
included 419
Running RAD Server on a
development environment 419
Using the RAD Server
Management Console 426

Writing modules to extend
your server 428
Using the wizard to create our first
resource package 428
Implementing MyParks for RAD Server 432
Building a REST server without code 436
Testing RAD Server with the
REST Debugger 439
Inserting, updating, and deleting data 442

Modifying MyParks for use
with RAD Server 445
Setting up RAD Server
connection components 446
Sending updates back to RAD Server 452

xiv Table of Contents

Summary 456
Questions 456

Further reading 456

15
Deploying an Application Suite

Technical requirements 460
Configuring for a wide
audience 460
Getting settings in desktop
applications 460
Updating a web module with
dynamic settings 462
Updating a RAD Server package
with dynamic settings 465
Reviewing mobile data
storage locations 466

Securing data 467
Securing your server's
data transmission 468
Controlling access to resources 468
Adding application security for RAD
Server clients 473
Protecting your hardware and
operating system 474

Adding a graphical touch 475
Iconifying desktop apps 476

Iconifying mobile apps 476
Setting splash screen options on iOS 479
Creating splash screens for Android 480

Establishing product identity 481
Including Windows version information 481
Identifying your Apple product 481
Identifying your Android product 482

Testing for deployment 483
Using virtual machines 483
Testing the wide range of
mobile devices 484

Distributing the final product 485
Installing RAD Server modules to
production 486
Selecting deployment configuration 487
Deploying macOS and iOS applications 488
Deploying an Android app 489

Summary 490
Questions 491
Further reading 492

Assessments

Chapter 1 – Recent IDE
Enhancements 495
Chapter 2 – Delphi Project
Management 495
Chapter 3 – A Modern-Day
Language 496
Chapter 4 – Multiple Platforms,
One Code Base 496

Chapter 5 – Libraries, Packages,
and Components 497
Chapter 6 – All about
LiveBindings 497
Chapter 7 – FireMonkey Styles 497
Chapter 8 – Exploring the
World of 3D 498

Table of Contents xv

Chapter 9 – Mobile
Data Storage 498
Chapter 10 – Cameras,
the GPS, and More 498
Chapter 11 – Extending Delphi
with Bluetooth, IoT, and
Raspberry Pi 499

Chapter 12 – Console-Based
Server Apps and Services 499
Chapter 13 – Web Modules for
IIS and Apache 500
Chapter 14 – Using RAD Server 500
Chapter 15 – Deploying an
Application Suite 501

Other Books You May Enjoy
Index

Preface
A favorite author once penned, "Resistance to change leads to catastrophic change." I fully
believe that and, in this field, learning and growing and yes, changing, is good—anything
else is career death.

Delphi has been around for over 25 years, but it is anything but old. The language,
libraries, and toolset are not stagnant and applications built with this suite of compilers
rival those of competing products. Continual updates, frequent webinars, lively forum
debates, a recent explosion of books, and a myriad of blog sites are evidence of a rich
and active developer community.

This book takes you on a journey. This journey will build upon and extend the hours
you've invested in creating beautiful desktop applications and teach you how to craft
new, globally usable mobile apps and backend servers that power today's interconnected
platforms. Technology has exploded with ways to communicate and share data between
apps, web services, and devices of all kinds. People demand choices—choice of operating
system, choice of style, choice of screen size, and choice of location.

Companies everywhere have risen to the challenge of providing options to satisfy these
customer demands with unique tools that market to a new generation of developers.
Are you feeling left behind, wondering how to move forward?

Reading this book will expand your Delphi programming skill set in a step-by-step
manner, explaining what you need to know to handle the variety of challenges addressing
new platforms will bring. And we'll have fun along the way. We'll build database
applications that have sample data built in to make prototyping easier than ever. We'll
build a 3D game you can play on your smartphone. We'll create a full-featured mobile
app you can extend for your own creative uses. We'll also build powerful backend REST
servers with virtually no code.

Take this journey with me to multiple platforms—fearlessly!

xviii Preface

Who this book is for
This book is written mostly for the Delphi programmer who is confident on the Windows
platform with the VCL but unsure what mobile development will mean for them. If you're
relatively new to Delphi programming, this book will be a quick jump start into the
rich and wonderful integrated development environment we all love—you'll figure it
out quickly!

The experienced cross-platform developer will likely seek me out on a forum and point
out obvious things I missed. I'm sorry in advance—this was a journey for me as well!

What this book covers
Chapter 1, Recent IDE Enhancements, will help you get up to speed quickly, starting
with an understanding of the many parts of the IDE, and then explaining "What's new?"
in each of the last five major versions.

Chapter 2, Delphi Project Management, simplifies the bewildering choice of where to start!
With so many platforms and project templates, deciding how to create a new app can itself
be overwhelming. We'll explore build configurations, shortcuts to managing options and
project groups, and show you how to use the command-line compiler for automation.

Chapter 3, A Modern-Day Language, clears up any misunderstanding that Delphi is not
capable of building cross-platform apps. We'll showcase enhancements made through
the years to the Pascal-based syntax that facilitated the flexible and powerful language
it is today.

Chapter 4, Multiple Platforms, One Code Base, is where we'll really start diving into
cross-platform topics. The first step in that direction is learning about FireMonkey—we
will take you carefully through several differences compared with the VCL in some simple
apps so you can get comfortable quickly. Then we introduce various form factors of mobile
devices and show how to manage them in Delphi. Finally, we cover several conditional
compilation constants you'll need to know in order to separate code for specific platforms.

Chapter 5, Libraries, Packages, and Components, is an important chapter as writing a simple
DLL isn't so simple when you have to deploy to platforms other than Windows—we
cover several gotchas that you need to know. After we build both a dynamic library
and a package (and why you might need one over the other), we turn a package into
a cross-platform component.

Preface xix

Chapter 6, All About LiveBindings, explains how this expression-based data connector
technology is more than just a replacement for data-aware controls in Delphi. The
LiveBindings Designer is explained with tips on organizing with layers. We demonstrate
how the LiveBindings Wizard can create components for you already hooked up to your
data. Finally, we use custom formatting and parsing—and end with code that creates
custom LiveBinding methods installed in Delphi.

Chapter 7, FireMonkey Styles, uncovers the nuances of styling a FireMonkey application
and how to use and customize FireMonkey styles effectively for a distinctive appearance.
We will build a simple app with a variety of controls and four different styles that you can
run on each of your devices to see the differences.

Chapter 8, Exploring the World of 3D, is a fun chapter that demonstrates how you can use
your favorite programming tool to utilize popular GPU engine libraries with ease. We
build a simple app with a variety of 3D shapes, textures, lighting, and cameras for a broad
overview of the capabilities. We end the chapter by using some of these techniques and
more to build an escape game you can play on your phone!

Chapter 9, Mobile Data Storage, shows how well FireDAC works with different database
products on multiple platforms, comparing one application that uses InterBase ToGo and
a similar one using SQLite. We'll answer questions on licensing, explore free management
tools, and offer tips for working with touchscreen devices.

Chapter 10, Cameras, the GPS, and More, demonstrates the power of the FireMonkey
library to encapsulate various platform capabilities in simple components that you can
readily use in your apps. We'll also build a database-enabled mobile app that utilizes
techniques learned in previous chapters but that will grow in functionality for the rest
of this book.

Chapter 11, Extending Delphi with Bluetooth, IoT, and Raspberry Pi!, explores various
types of Bluetooth technologies, including BLE, which is what beacons are based on.
We dive further and show how BLE is the basis for all IoT components and explain how
to use ThingConnect components you can get from GetIt. We conclude this chapter on
small devices by demonstrating how to deploy a Delphi app to a Raspberry Pi.

Chapter 12, Console-Based Server Apps and Services, switches gears from small, mobile
devices to server technologies. We create both Windows services and Linux daemons
and also show how to take an open source project and modify it for our own needs when
we need to implement custom logging.

xx Preface

Chapter 13, Web Modules for IIS and Apache, continues the server discussion by
concentrating on web server modules for the two most popular web servers – IIS on
Windows, and Apache for both Windows and Linux. We bring over the data module
tested in our console-based server and use WebBroker to build a simple but nice-looking
web page that displays data in a grid with very little code.

Chapter 14, Using the RAD Server, is a big chapter covering a big product available for
Delphi Enterprise and up that serves as another type of platform, one that provides a
REST server in a box where you only add your custom business methods. We teach what
RAD Server brings to the table, why it can pay for itself, and how to write modules for it.
Then we go one step further and modify our sample mobile app to use it.

Chapter 15, Deploying an Application Suite, culminates the application development
process by covering important aspects of deploying to production with discussions about
externally defined configuration files, various security concerns, application icons and
identity, testing, the installation of server backends, and mobile app submission.

To get the most out of this book
You will need Embarcadero Delphi 10.4 Sydney Professional or Enterprise on Windows
64-bit with access to one or more mobile platforms on which you can deploy and test the
sample applications:

You will need the Enterprise edition of Delphi to build Linux apps or RAD Server
modules. Also, while the Community Edition may be used for many of the examples, you
may be restricted from downloading from the GetIt portal.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Preface xxi

Download the example code files
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi. If there's an update to the code, it will be updated
in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800203822_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Back in the form unit, uCardPanel.pas, it starts with the unit
keyword and has both an interface and implementation section, each with a
uses clause."

A block of code is set as follows:

procedure TfrmPeopleList.lbPeopleClick(Sender: TObject);

var

 APerson: TPerson;

begin

 if lbPeople.ItemIndex > -1 then begin

 APerson := lbPeople.Items.Objects[lbPeople.ItemIndex]

 as TPerson;

 lblPersonName.Caption := APerson.FirstName + ' ' +

 APerson.LastName;

 lblPersonDOB.Caption := FormatDateTime('yyyy-mm-dd',

 APerson.DateOfBirth);

 end;

end;

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800203822_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800203822_ColorImages.pdf

xxii Preface

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

constructor TfrmPeopleList.TPerson.Create(

 NewFN, NewLN string; NewDOB: TDate);

begin

 FFirstName := NewFN;

 FLastName := NewLN;

 FDateOfBirth := NewDOB;

end;

Bold: Indicates a new term, an important word, or words that you see on screen. For
instance, words in menus or dialog boxes appear in bold. Here is an example:

"Under the Develop section of Delphi's default Welcome page, click the Open a sample
project… link and drill down through the Object Pascal, VCL, and CardPanel folders,
and then open the CardPanel project."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if you
would report this to us. Please visit www.packtpub.com/support/errata and fill
in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

Preface xxiii

Share Your Thoughts
Once you've read Fearless Cross-Platform Development with Delphi, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1-800-20382-9

Section 1:
Programming

Power

This section introduces Delphi as a powerful programming tool for fully embracing
cross-platform development, explains why it's so much more than just a legacy Windows
compiler, and helps get you up to speed with the latest IDE and language enhancements
that accelerate development and decrease the time to market. This foundational
knowledge sets the stage for the rest of the book, helping you to navigate the IDE,
write efficient code, drop to the command line if you need, and become familiar with
new programming constructs.

This section comprises the following chapters:

• Chapter 1, Recent IDE Enhancements

• Chapter 2, Delphi Project Management

• Chapter 3, A Modern-Day Language

1
Recent IDE

Enhancements
Delphi is not just a language, nor just an Integrated Development Environment (IDE),
nor just a toolset or programming environment, but all of that and more. Starting in
the early 1980s with Turbo Pascal shipping on a single floppy disk, it has grown to be a
powerful suite of libraries, tools, connected services, and integrated components that
support virtually every computing platform. And as with most technological tools, Delphi
is constantly growing, improving, and adding features.

This first chapter will give you a quick recap of all that the IDE encompasses and what
new features you may have missed in the last few versions. Some of these are just for
convenience, such as quickly locating a unit in Windows Explorer, or jumping to a
method with the navigation toolbar. There are visual improvements with high DPI
support, a new dark mode, and structural highlighting options. You'll be more efficient
with faster loading times, greatly improved Code Insight features, and editor tricks such
as bookmark stacks. Finally, you will understand your code better with add-ons, such as
Project Statistics and Toxicity Metrics.

4 Recent IDE Enhancements

You will read about all of these and more in the following sections of this chapter:

• Understanding the Delphi IDE

• Delphi 10 Seattle

• Delphi 10.1 Berlin

• Delphi 10.2 Tokyo

• Delphi 10.3 Rio

• Delphi 10.4 Sydney

Understanding the Delphi IDE
The idea of combining the editing, compiling, and managing of project files within one
integrated programming application started way back in the 1970s, but didn't really
catch on in the PC arena for quite some time. Borland Pascal, the pre-cursor to Delphi,
pioneered many facets of an IDE in the creation of Disk Operating System (DOS)
applications and took many of its features and user interface constructs with it to the
Windows desktop.

At its core, an IDE needs to assist the developer in managing a software project's many
moving parts: editing source code, crafting user interfaces, managing project parameters,
compiling the application and resources, testing and debugging, and preparing a
deployable application. These vary from language to language, so an IDE needs to
understand the tools that it supports very well—and the developers who use it.

Delphi's IDE, like many other modern tools, has a rich code editor with syntax checking
and color schemes, resizable window panes, structure and object views, data and source
repository connections, and the ability to save various configurations for different needs.
Here are the various windows and views you'll find in Delphi:

• Code Editor: The main focal point for writing code.

• Project Manager: Combine files necessary for compiling a project.

• Object Inspector: Access properties and events of components.

• Structure Pane: View and organize components hierarchically.

• Tool Palette: Component list.

• Message Window: Compilation output, search results, and more.

• To-Do List: Parsed TODO comments from the code are neatly displayed here.

• Templates: Macros for expanding frequently typed patterns of code.

Understanding the Delphi IDE 5

• LiveBindings Designer: Visually build data connections between components.

• Class Explorer: Tree view of the classes in the current unit.

• Data Explorer: View data and manage connections from dbExpress or FireDAC
sources without leaving the IDE.

• Model View: Manage object models of your data.

• Other Debugger views: Call Stack, watches, local variables, breakpoints, Threads,
events, Modules, and CPU windows.

The following screenshot shows these windows and views in the Delphi IDE:

Figure 1.1 – The Delphi 10.4 Sydney IDE showing several available window panes

Let's look at some of these in a little more detail.

Like most popular code editors that developers use these days, there is color syntax
highlighting, hotkeys for moving code around, bookmarks, class completion, and template
expansion. There is a lot of keyboard backward-compatibility in Delphi (even dating back
to the old WordStar days) but also a lot of customization to set up the key combinations
that work best for you. Classes and methods can be folded (or "collapsed"), and you can
create your own foldable regions. Error insight can alert you to syntactical errors in your
code as you type.

6 Recent IDE Enhancements

The Project Manager can contain a single project or a group of projects, and there
are buttons to manage aspects of them with ease—as a group or individually. You can
determine where compiled objects will be placed, establish host applications to debug
modules, and manage multiple platform configurations here. More on this will be covered
in Chapter 2, Delphi Project Management.

The Object Inspector allows you to initialize properties and hook up events of
components at design time to save you the trouble of having to write all that out in code.
If you build custom components, you can publish your own properties and events, which
will also show up here. Plus, you can register your own property editors to provide even
greater functionality.

The Structure pane is a handy view of elements that changes depending on the context.
When you're in the code editor, it shows the list of classes, methods, and used units in the
current unit. When you're in the form designer, it shows a tree view of the components
on the form that can be rearranged by dragging them with the mouse to a different place
on the hierarchy (with some obvious parent-container restrictions; for example, a panel
can contain a label, whereas a label cannot contain a panel). Double-clicking one of these
elements takes you to that element.

When you're designing a form or data module, you can place items on it from the Tool
Palette. This is also context-sensitive, thereby only listing the elements that can be placed
on the current form. For example, only FireMonkey components will be available for a
FireMonkey form; but database connection components can be placed on a VCL form, a
FireMonkey form, or a data module.

When building a project or running other processes, the output will be shown in the
Message window. This is often collapsed but expands temporarily at appropriate times.
Like most other windows, this pane can be pinned to keep it open and resized as desired.
Search results and console application output will show up as tabs here.

The Delphi code editor watches for specific comments that start with TODO: and builds
a list from these found in all the units of your project and shows them in a To-Do List
window with a clickable checkbox. This allows you to see all the places in your code where
you've marked items you need to finish. By double-clicking on the to-do list item, it will
take you to that line in the code. When you are finished with the task, click the checkbox
in the to-do list and it will mark it as complete by changing the comment from TODO to
DONE. (You can also uncheck an item marked DONE and it will turn the comment back
to TODO.)

Understanding the Delphi IDE 7

Live templates (shown in the window pane that is simply titled Templates) can speed
up coding considerably. They are code macros that can insert text and allow you to fill
in the blanks to complete larger constructs with very few keystrokes. They can be set to
automatically expand after a certain sequence of letters are typed or manually activated by
hitting Ctrl + J. You can create your own or edit the built-in ones.

Some of the first code templates in Delphi were implemented by the popular free IDE
plugin, GExperts (sort of a mix of Code Librarian and Code Proofreader) but other
products soon introduced their own version. Live templates were added in Delphi 2006.

We'll talk about the LiveBindings Designer in greater detail in Chapter 6, All About
LiveBindings, but as a brief overview, this is a visual way to link data between various
entities. For example, a form that displays an edit box to type in a name has to load the
value from somewhere and also save it when the user is done. Typing code to load and
save such elements can become quite tedious. This lets you do it visually.

The Class Explorer (not shown in the previous screenshot) is similar to the Structure
pane when viewing code in that they both show a tree view of classes. But while the
Structure pane shows more than just classes, it has few options for actually dealing with
the classes. That's where the Class Explorer shines—it allows you to view and manage
methods, fields, and properties of classes with the mouse. Think of it as a simplified
version of ModelMaker Code Explorer if you've ever used that product.

The IDE allows you to save the arrangement of these panes as desktop profiles. You can
have several desktop profiles and use different ones for different projects. You can select
one to be the default for standard editing and another as the default for debugging—the
IDE will automatically switch to the debug desktop when you start an application and
switch back to the default one when it's finished.

8 Recent IDE Enhancements

Here's an example of what the IDE could look like while debugging:

Figure 1.2 – Debugging an application in Delphi 10.4

As you can see, the Delphi IDE is center-stage in the development process of creating
and managing Delphi projects. Since no two developers work the same way, its flexibility,
customization, and the wide variety of built-in tools help make this environment a
powerful tool.

Now that you've had a glimpse of what the IDE is, let's step back a few versions,
highlighting some of the changes it has undergone.

Delphi 10 Seattle 9

Delphi 10 Seattle
The Delphi XE series broke ground in many ways, not least of which was the FireMonkey
GUI to support mobile devices. Updates were fast and furious, and some complained
it was hard to keep up with them. XE8 was the last of this line and introduced a new
Welcome screen that has carried through to the current version. Delphi 10 Seattle started
the "10" series in August 2015 and was named, at least in part, to coincide and align itself
with Windows 10.

There weren't any ground-breaking IDE features introduced in the first of the Delphi 10
series, but several important improvements were made in project loading speed, support
for large project groups, and high DPI support, especially notable when working with
forms at different DPIs. Several menu items were moved for better organization and
simplification, and an Editor submenu was added to contain the editor's context menu
items. The nicest new feature of the IDE was a convenient Show in Explorer menu item,
which will open File Explorer for a file or folder in the Project Manager, as shown:

Figure 1.3 – Delphi 10 Seattle "Show in Explorer" from Project Manager

If you ever purchased the Castalia for Delphi suite of IDE tools from TwoDesk Software,
you may recall several nifty features that they added to Delphi. Embarcadero had just
acquired Castalia and quickly incorporated many of those features into the editor. These
include the following:

• MultiPaste: Pops up a window allowing you to add text before and after each line
before pasting (really handy for copying SQL or HTML into your code).

• Project Statistics: Informs you of the time spent in various parts of the IDE, such as
designing and editing.

• Navigation Toolbar: A nice way to view and jump to files in the project and
sections within the file.

10 Recent IDE Enhancements

• Sync Prototypes: Make a change to the parameters in the declaration of a class
method and it applies those same changes to the implementation.

• Structural Highlighting: Draws lines in the editor to visually depict blocks of code.

• Smart Keys: Adds editor shortcuts, including a fast way to surround code with
braces and parentheses.

All of these features have added settings in the options pages.

Other additions included are the following:

• Automatic recovery of files if the IDE crashes while editing

• Being able to change the font size quickly with Ctrl + Num+ and Ctrl + Num-

• The ability to enable High-DPI Awareness in your VCL application

• Several improvements to the Object Inspector, structure view, and the Select
Directory dialog

• A new option to hide non-visual components

• Improved memory management allowing the IDE to use up to 4 GB of RAM (up
from 2 GB previously)

• Better support for importing old projects even as far back as Delphi 1

Finally, there were several mobile enhancements, as well including a new Android Service
project type, background execution on iOS, and an option to allow iOS 9 applications to
access non-SSL URLs.

Delphi 10.1 Berlin
The IDE for Delphi 10.1 Berlin released in April 2016 had quite a few enhancements.
In all previous versions of Delphi, units with forms shared the same IDE window—you
had to switch between code and form design mode. Finally, in Delphi 10.1 Berlin, using
an Embedded Designer is now an option in the Form Designer section of the Tools |
Options dialog. Switching this option off allows you to move a floating window for both
the VCL and FireMonkey form designers separately from the code editing window.

Delphi 10.1 Berlin 11

FireUI Live Preview is an amazing new tool that gives FireMonkey application designers
the ability to preview and debug their user interfaces in real time on remote devices. The
IDE acts as a "client" that communicates with a Platform Assistant Server you need to
install on the target device, which connects over a local network or a connected USB
cable. The server capability is built into the Windows IDE, and PAServer for Windows,
Linux, and OS X is included with the Delphi installation. Details on setting this up will be
explained in Chapter 4, Multiple Platforms, One Code Base.

GetIt Package Manager was introduced a few versions back and allows quick access
to open source, trial, and commercial components, program templates, and styles. In
Delphi 10.1 Berlin, the Project Options dialog window gained a new section called
GetIt Dependencies. Here, you can check off one or more GetIt packages that are used
in your project. Then, when you open a project where one or more of those marked GetIt
packages are not installed, you'll get a message that the project has dependencies that are
not installed.

NOTE
If any of these dependencies are not installed when you try to build your
application and you get an MSBuild error stating the GetItCmd task failed
unexpectedly, you need to add an environment variable (Tools | Options |
Environment Variables): New Variable: Name = "BDSHost" and Value =
"true".

If you ever purchased the Castalia for Delphi suite of IDE tools from TwoDesk Software,
you may recall several nifty features they added to Delphi. Embarcadero acquired Castalia
in 2015 and has incorporated many of those features into Delphi 10 Seattle, as previously
noted. One of my favorites is bookmark stacks. This allows you to drop a temporary
bookmark in your code, go to another section of code, or even another file, then recall
the temporary bookmark to jump right back to where you were coding, cleaning up the
temporary bookmark. However, you may want to customize the default keys for this as it
uses a difficult key sequence to drop (Ctrl + K and Ctrl + G) and pick up (Ctrl + Q and
Ctrl + G) the bookmarks.

NOTE
In the Delphi 10.3 Rio section, you'll learn about the Navigator plugin that has
been added that provides nice keyboard shortcuts for this feature.

12 Recent IDE Enhancements

If you're most efficient when keeping your hands on the keyboard, you may really like
Selection Expansion. This allows you to click Ctrl + W in the code, and with repeated
clicks of Ctrl + W, expand the selected text to increasingly larger code blocks, starting
with the current identifier and moving up to statement, line, block, method, and so on.

There's a new menu item under Projects called Method Toxicity Metrics that gives you
statistics about the procedures and functions in the active project and that may indicate
good candidates for refactoring. You can export these metrics and customize thresholds
under Tools | Options | Toxicity Metrics.

Other improvements include more support for Android services, Android smart watches,
iOS ad hoc applications, CPU view support for iOS and Android, a new File Associations
page on the Options window, and the ability to show or hide the Navigation Toolbar.
Finally, the IDE is now DPI-aware.

Delphi 10.2 Tokyo
The frequency of updates finally started slowing back to a reasonable pace with the release
of Delphi 10.2 Tokyo in March 2017, and a long-anticipated feature request finally made
it into the second release 9 months later: a dark theme! While you could change the
colors of many of the IDE components in previous versions (and, in fact, there were "dark
themes" already available in the popular Delphi Theme Editor), they mostly affected the
code editor—the core of the IDE was still based on the typical Windows standard look
with a white background. With the dark theme enabled, menus, dialogs, edit boxes, and
more are themed around a dark set of colors, which many people find reduces eye strain
when working at a computer for long hours or late at night when there's less light. If you
want to switch themes for different hours of the day, it's a quick mouse click from the
desktop toolbar:

Figure 1.4 – The Delphi 10.2 Tokyo desktop toolbar showing quick toggle between the Dark and Light
themes

The third release of Delphi 10.2 improved both the light and dark themes with cleaner
lines and aligned controls. Several items in the Options box were moved for better
categorization and the whole interface became more readable. The currently focused area
was made more prominently displayed and some window panes were renamed:

Delphi 10.3 Rio 13

Figure 1.5 – Delphi 10.2 Tokyo using the Dark theme

The preceding screenshot shows how the IDE looks in dark mode.

Delphi 10.3 Rio
In November 2018, the first release of Delphi 10.3 Rio was made available. Besides
improvements in themes, cleaner lines, aligned controls, better tab-readability, and clearer
window focus changes, there were no major changes to the IDE in any of the three releases
of Delphi 10.3 Rio. That's not to say this was not a significant version, as there were several
language and library features added, which we will cover later.

One nice improvement can be seen in the New Items list (from the menu, go to File | New
| Other). It changed to present a scrollable list of items with full descriptions and larger
icons and titles giving more information about what you're about to create. Some items are
now in multiple categories, such as the FireMonkey Metro UI application, which is in both
the Multi-Device and the Windows categories. These are great aids in helping you find
the item you want.

14 Recent IDE Enhancements

GetIt Package Manager was improved in a similar fashion to show items in a scrollable
list. Other aspects of its interface were improved as well:

Figure 1.6 – Delphi 10.3 Rio's improved New Items list

The categories in both the general and project options have been reworked, with some new
ones introduced and others moved around. For general IDE options, this has shortened the
list, but more importantly, the full list of categories is no longer fully expanded, making it
much more manageable. One big change to the recategorization is that the Delphi section
(with library paths and Type Library options) has been pulled out of Environment and is
now under its own Language category (which actually makes much more sense).

Many Delphi users have included Andreas Hausladen's IDE Fix Pack as part of their
Delphi install routines over the years. Some of those fixes are now part of Delphi 10.3 Rio.

Finally, some speed enhancements have been made, including loading forms with
LiveBindings.

There were a couple of nice IDE plugins added to GetIt Package Manager that should be
mentioned: Bookmarks and Navigator. Both of these were acquired by Embarcadero
from Parnassus.

Delphi 10.4 Sydney 15

Bookmarks extends Delphi's bookmark stacks feature introduced in 10.1 Berlin with
unlimited temporary bookmarks and much more convenient hotkeys (F2 to set, and Esc
to pop back and remove), along with a dockable window to list them within context.

Navigator provides a hotkey (Ctrl + G) that pops up a list of quick places you might need
to jump in your code, such as the interface Uses section or the declaration for a field.
With a few keys of incremental search or a couple of down arrows, you can hit Enter to go
there immediately, then after you're done and want to get back to where you were, simply
hit Esc! It's a beautiful marriage with the Bookmarks feature. But wait, there's more!
Additionally (and optionally), Navigator also provides a resizable mini-map of your code
on the right-hand side of the code editor that not only gives you a glimpse of where you
are in the current unit but also allows you to click and drag to view a different portion of
the unit without changing your current cursor position.

NOTE
One important note before we move on to the latest version of Delphi is that
the Integrated Translation tools will no longer be improved and developers
are warned to migrate to a different set of translation tools if they are being
used.

Delphi 10.4 Sydney
After 2 years of updates to the previous version of Delphi, 10.4 Sydney was finally released
in May 2020. One important change for this version is that it now requires a 64-bit
version of Windows 10. Running the IDE is no longer supported on any prior version
of Windows (what this means is that while it might be technically possible to install
Delphi 10.4 on an earlier 64-bit version of Windows, it is not recommended and you may
encounter problems in some aspects of working with it—you have been warned!). For
most developers, this won't require a new computer but it is a big step for the IDE—even
though at its core, it is still a 32-bit application!

You can still target 32-bit operating systems of Windows, but 32-bit macOS and iOS devices
have been removed (although when using the iOS simulator, it's still 32-bit). Android 64-bit
and 32-bit devices are supported for the Android API versions 6 through 10.

Delphi 10.4 is now only supported on 64-bit Windows 10:

16 Recent IDE Enhancements

Here's a list of target devices supported by Delphi 10.4:

One significantly improved feature is Code Insight. This is a set of useful typing helpers in
the code editor and includes Code Completion, Code Parameter Hints, Code Hints, Block
Completion, Help Insight, Class Completion, Error Insight, and Code Browsing. Often,
parts of it are disabled because it can slow down coding, especially on large projects or
slow machines as it precompiles and looks up identifiers in related units to help you type
faster and catch errors on the fly.

In Delphi 10.4, these tools have been off-loaded from bogging down the editor to
a separate server process that communicates with the IDE asynchronously using a
Language Server Protocol (LSP). The Code Insight settings are now defined per
language in the Options windows. What's more is that Code Insight now also works
while debugging!

Reporting bugs must be done manually now. If you get an IDE exception, you can save the
error report to a file, then go to https://quality.embarcadero.com and submit a
problem discussion, along with the saved error report.

If you have ever gotten tired waiting for the Options screen to open, you will be happy to
know that it opens faster now. There's a constructor for each page, which is now delayed
until the page is shown.

Scrolling in GetIt Package Manager has been greatly improved with a single tweak. The list
position now stays on the item just installed, so you can immediately go to the next one
in the list instead of scrolling back down from the top as in previous versions. This was a
great annoyance when installing a long list of styles.

https://quality.embarcadero.com

Delphi 10.4 Sydney 17

There are three new convenience features in Delphi 10.4's code editor status bar:

• Syntax Highlighter: If you work in multiple languages, the syntax checker for the
current language is displayed and you can click it and switch to a different language.
This supports more than just Delphi and C++. The IDE might become your
default editor to work on SQL, PHP, INI, CSS, HTML, and other supporting files,
centralizing your editing tasks:

Figure 1.7 – Override the default syntax checker selected for the current file

• File Encoding: Your current file's encoding is now displayed and can be changed.
This could be quite handy when working with XML files—another aid to keep all
your files in the IDE:

Figure 1.8 – Switch file encoding quickly

18 Recent IDE Enhancements

• Font size: There's now a trackbar in the status bar with increase/decrease buttons to
allow you to adjust the font size. Clicking Ctrl + Num+ and Ctrl + Num- still do the
same thing:

Figure 1.9 – Visually change the font size in the editor

Another notable change is that the clipboard history (added in Delphi 10 Seattle as part
of the Castalia integration) has been removed, partially for security reasons and partially
because if you copy very large amounts of data to the clipboard, it could potentially crash
the IDE.

The Welcome page, which was drastically changed in Delphi XE8 and was cluttered with
advertising, events, and more, now shows three columns of links:

• Creating new projects, opening existing ones, and links to Platforms and
Extensions Manager and GetIt Package Manager

• Favorite and recent project listings

• YouTube Video Channel

Here is what it looks like:

Figure 1.10 – The default Welcome screen in Delphi 10.4

Summary 19

If this is still too much, you can modify the web page and take out what you feel is
unnecessary. The Welcome page is simply a local web page in your Delphi installation's
Welcomepage folder. Choose the subfolder for your language (for example, en for
English) and make sure you run your editor as Administrator if Delphi is installed
under the standard Program Files (x86) protected folder structure. Then, after
making a backup of the files there, simply modify the HTML, JavaScript, and CSS to your
heart's content!

There are several other minor improvements in speed and control-painting and
placement, in addition to several bugs fixed. The IDE now uses native VCL controls,
which resolves a few display issues.

Summary
In this chapter, we reviewed everything Delphi's IDE has to offer, then, after touching on
the XE series, highlighted the improvements in Delphi versions 10 Seattle, 10.1 Berlin,
10.2 Tokyo, and 10.3 Rio, and finally covered the major enhancements to the newest
version of Delphi, 10.4 Sydney.

The Delphi IDE is a powerful developer tool and grows in capability with every version.
As technology continues to evolve, the feature set changes accordingly to embrace the
software build processes for today's complex needs and the plethora of devices to support.

With a thorough knowledge of the IDE comes increased productivity through efficient
use of the keyboard, proper window placement, customized colors and fonts, handy tools,
and useful add-ons. Those who take the time to develop proficiency in this toolset will be
valuable assets to their employers and clients as they build great products.

Now we're ready to use this tool as we create projects of all kinds. Keep reading to learn
about the possibilities!

Questions
1. What is the difference between the Structure pane and the Class Explorer?

2. How can the IDE help locate a project file in Windows Explorer?

3. Where are auto-recovery files saved?

4. How do you hide non-visual components?

5. When should you add GetIt dependencies?

6. Can you quickly switch between light and dark modes?

7. What is LSP?

20 Recent IDE Enhancements

Further reading
• What's new in Delphi 10 Seattle: http://docwiki.embarcadero.com/

RADStudio/Seattle/en/What's_New#IDE

• What's new in Delphi 10.1 Berlin – IDE: http://docwiki.embarcadero.
com/RADStudio/Berlin/en/What%27s_New#IDE

• What's new in Delphi 10.2 Tokyo – IDE: http://docwiki.embarcadero.
com/RADStudio/Tokyo/en/What%27s_New#IDE

• What's new in Delphi 10.3 Rio – IDE: http://docwiki.embarcadero.com/
RADStudio/Rio/en/What%27s_New#IDE

• New Delphi features: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/What's_New#IDE

• FireUI live preview http://docwiki.embarcadero.com/RADStudio/
Rio/en/FireUI_Live_Preview

• Delphi 10.4 Sydney – key IDE enhancements: http://docwiki.
embarcadero.com/RADStudio/Sydney/en/What%27s_New#Key_IDE_
Enhancements

• Code Insight and LSP: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/Code_Insight_Reference

• Embarcadero acquires Castalia: https://www.embarcadero.com/press-
releases/embarcadero-acquires-castalia-and-usertility-
from-twodesk-software

• DPI-Awareness: https://docs.microsoft.com/en-us/windows/win32/
win7appqual/user-interface---high-dpi-awareness

• Dark theme arrives in Delphi 10.2.2: https://community.idera.com/
developer-tools/b/blog/posts/new-in-10-2-2-dark-ide-theme

• Delphi Theme Editor: https://github.com/RRUZ/delphi-ide-theme-
editor/

• IDE Fix Pack: https://www.idefixpack.de/

• Bookmarks and Navigator: https://parnassus.co/bookmarks-and-
navigator-acquired-by-embarcadero/

http://docwiki.embarcadero.com/RADStudio/Seattle/en/What’s_New#IDE
http://docwiki.embarcadero.com/RADStudio/Seattle/en/What’s_New#IDE
http://docwiki.embarcadero.com/RADStudio/Berlin/en/What%27s_New#IDE
http://docwiki.embarcadero.com/RADStudio/Berlin/en/What%27s_New#IDE
http://docwiki.embarcadero.com/RADStudio/Tokyo/en/What%27s_New#IDE
http://docwiki.embarcadero.com/RADStudio/Tokyo/en/What%27s_New#IDE
http://docwiki.embarcadero.com/RADStudio/Rio/en/What%27s_New#IDE
http://docwiki.embarcadero.com/RADStudio/Rio/en/What%27s_New#IDE
http://docwiki.embarcadero.com/RADStudio/Sydney/en/What’s_New#IDE
http://docwiki.embarcadero.com/RADStudio/Sydney/en/What’s_New#IDE
http://docwiki.embarcadero.com/RADStudio/Rio/en/FireUI_Live_Preview
http://docwiki.embarcadero.com/RADStudio/Rio/en/FireUI_Live_Preview
http://docwiki.embarcadero.com/RADStudio/Sydney/en/What%27s_New#Key_IDE_Enhancements
http://docwiki.embarcadero.com/RADStudio/Sydney/en/What%27s_New#Key_IDE_Enhancements
http://docwiki.embarcadero.com/RADStudio/Sydney/en/What%27s_New#Key_IDE_Enhancements
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Code_Insight_Reference
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Code_Insight_Reference
https://www.embarcadero.com/press-releases/embarcadero-acquires-castalia-and-usertility-from-twodesk-software
https://www.embarcadero.com/press-releases/embarcadero-acquires-castalia-and-usertility-from-twodesk-software
https://www.embarcadero.com/press-releases/embarcadero-acquires-castalia-and-usertility-from-twodesk-software
https://docs.microsoft.com/en-us/windows/win32/win7appqual/user-interface---high-dpi-awareness
https://docs.microsoft.com/en-us/windows/win32/win7appqual/user-interface---high-dpi-awareness
https://community.idera.com/developer-tools/b/blog/posts/new-in-10-2-2-dark-ide-theme
https://community.idera.com/developer-tools/b/blog/posts/new-in-10-2-2-dark-ide-theme
https://github.com/RRUZ/delphi-ide-theme-editor/
https://github.com/RRUZ/delphi-ide-theme-editor/
https://www.idefixpack.de/
https://parnassus.co/bookmarks-and-navigator-acquired-by-embarcadero/
https://parnassus.co/bookmarks-and-navigator-acquired-by-embarcadero/

2
Delphi Project
Management

There are many types of projects that Delphi can build: standalone desktop applications
for Windows and Mac, mobile apps for Android and iOS smartphones and tablets, Linux
daemons, Android packages and services, and even plugin packages to add functionality
within Delphi itself; all types are possible. If all you've ever built are Windows Visual
Component Library (VCL) applications, it may be daunting to consider other platforms.
But Delphi 10.4 is a very capable toolset, having simplified the steps you need to take,
which allows you to concentrate on what you do best—building great software! Most of
the heavy lifting is done for you when supporting other platforms, so it's time to extend
your skills to these devices.

To help you down the right path, you need to know about the project types, target
platforms, and starting templates available and how to best utilize them. After reading this
chapter, you will have no difficulty knowing where to start. Additionally, you'll learn when
to use debug and release configurations to separate testing and deployment scenarios,
how to integrate version control right within the IDE, and how to set up automation both
inside the IDE with build events and outside with command-line tools. These topics will
be covered in the following sections:

• Exploring project types and target platforms

• Using build configurations effectively

• Working with related projects

22 Delphi Project Management

• Managing source modifications

• Using the command-line tools for build automation

Technical requirements
This chapter simply requires using Delphi on a Windows 10 machine to explore different
project types. There will be screenshots of short example applications running on different
platforms but they will be brief and only exist to showcase what lies ahead. The code for
a couple of small Windows projects, including a batch script for compiling several projects
is on GitHub at: https://github.com/PacktPublishing/Fearless-Cross-
Platform-Development-with-Delphi/tree/master/Chapter02

Exploring project types and target platforms
As we look at each project type in this section, there will be different target platforms
available. For example, a Windows VCL application can only be built on Windows
platforms (either 32-bit or 64-bit), but a multi-device application can have several
different target platforms. This is shown in the Projects window as the second sub-item
under the project name and can be expanded to show the currently supported platforms
added for that project. To add support for other platforms, right-click on Target
Platforms and select from the list available. For example, a new multi-device application
comes supporting six targets by default, but you can also add iOS Simulator:

Figure 2.1 – Adding and selecting a target platform

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter02
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter02

Technical requirements 23

As we talk about the different project types and what platforms are available for each, this
is how you add support for platforms that are not initially added to your project. You can
only compile for one target at a time; the currently selected target is shown in parentheses
next to the Target Platforms header.

Creating a console application
If you don't need a rich interface with complex graphical controls, you may need nothing
more than a console application. This is the simplest project type and is often used for
small utility programs, automated unit testing, and prototyping Windows services
or IIS modules. It can write output to the console using Writeln and pause for input using
Readln but does not include any graphical libraries. Console applications can be built on
Windows, Linux (Enterprise or Architect edition), or Mac OS X—and even though you
can add platforms for Android and iOS, there seems to be no documentation or support
on how to run console apps on mobile platforms.

To create a console application, select File | New | Other from the menu and select
Console Application. A single source file is created with the program keyword and
a compiler directive of {$APPTYPE CONSOLE}. All the sources can be contained in
this one file and the program flow is simple and contained within the begin-end block
created for you. The compiled application on Windows will be .EXE.

Running this will bring up a console window, typically with a black background and white
text, and any output you've added to the application is displayed in a scrolling window
within this box. You can add code to read text entered from the keyboard using Readln—
which, if you're running it from the IDE, you will need to do in order to keep it from
finishing and closing so quickly that you miss seeing any output.

Here's what a simple console application looks like when running:

Figure 2.2 – Windows 64-bit console application

24 Delphi Project Management

We will use console apps to demonstrate language concepts and to test Windows services
in later chapters.

Building a Windows VCL application
A Windows VCL application has been the most common project type since the first
version of Delphi. In fact, the main reason Delphi was created was to make it easier
to develop Windows applications by replacing the Object Windows Library (OWL)
framework used in Borland Pascal as wrappers around the Windows API. The VCL
hides a lot of complexity and yet provides an extensible hierarchy of object-oriented
components to ease the development of any type of Windows application.

To start one of these project types, select File | New | Other and select Windows VCL
Application. A project source file is created with the program keyword and a "form"
unit is added, which comprises two physical files: a .DFM, or Delphi, form, and .PAS,
the source for this form with the unit keyword at the top of the file. The extension of the
compiled application will be .EXE, for "executable."

Without doing anything else, simply building and running this project immediately
launches a Windows application with one form that can be moved around the screen and
closed like any other Windows application.

With a quick addition of a label and a button, this is what that might look like:

Figure 2.3 – Windows 32-bit VCL forms application with a label and a button added

Let's now have a rundown on starting a multi-device application.

Technical requirements 25

Starting a multi-device application
If you want to write an application but you don't want it limited to the Windows platform,
you should create a multi-device application. Similar to Windows VCL applications, it
creates standalone executables with one or more form units but instead of using the VCL,
it uses the FireMonkey framework, a cross-platform set of controls that allow one code
base to build applications that look and feel like they were built separately for Windows,
Android tablets and phones, Macs, and iOS devices.

From the File | New | Other menu, select Multi-Device Application. Before a project is
created, you're presented with a choice of several template projects that will get you started
quickly:

Figure 2.4 – Multi-device application templates

26 Delphi Project Management

Each of these, after selecting a directory for the new application, creates a project source
file with the program keyword, and a form unit that comprises two physical files:
a .FMX, or FireMonkey, form, and .PAS, the source for this form with the unit keyword
at the top of the file. There are also seven target platforms added for you, which you can
see if you expand the list by clicking the little > symbol to the left of Target Platforms in
the Project Manager:

Figure 2.5 – Target platforms added to a new multi-device application

Let's go through the various templates to give you an idea of what they look like to help
you decide which one to use.

Technical requirements 27

The first one, Master-Detail, shows an example of laying out a list of records on the left
side of the screen with thumbnails and names of people in a ListView control, and as you
click each person, a bigger image with their name, title, and details show up in labels and
a memo on the right. All controls are arranged using a layout control. It supports scrolling
the list of records up and down with a finger drag as you would expect on a mobile device.
The records and details are linked using LiveBindings. Without any modifications, here's
what it looks like on a Kindle Fire (we'll show how to do this in Chapter 4, Multiple
Platforms, One Code Base):

Figure 2.6 – "Master-Detail" multi-device template app, running on an Android tablet

28 Delphi Project Management

The Header/Footer and Header/Footer with Navigation templates are very similar. Both
application templates show a header at the top and a footer at the bottom that you can
customize. The area between in the latter template contains a TabControl for your content
with an ActionList for moving forward or backward in the list of tabs. Here's how it looks,
unmodified, on an Android phone:

Figure 2.7 – "Header/Footer with Navigation" multi-device template app on an Android phone

The Tabbed and Tabbed with Navigation templates are also similar to each other except
that the first has its title in the header with four tabs below, while the second has the four
tabs along the top with the content of each tab containing its own title; plus, the first tab
has a set of sub-tabs with navigation buttons. Here's what the Tabbed template looks like
on Windows and the Tabbed with Navigation template looks like on a Mac:

Technical requirements 29

Figure 2.8 – "Tabbed" and "Tabbed with Navigation" multi-device template apps on Windows and Mac

If you don't need headers or footers, a master/detail list of records, or tabbed navigation,
or if you just want to build your mobile app from scratch, select the Blank Application
template—just as it says, there are no controls on the form.

A 3D Application template also gives you a blank slate with no controls but has a different
set of units included that set up the 3D framework. Additionally, the form inherits from
TForm3D instead of TForm like the other multi-device application template forms do. We
will cover 3D apps in detail in Chapter 8, Exploring the World of 3D.

Working with dynamic libraries
Delphi has long enjoyed being one of the few development tools that can ship a complete
application in a single executable without the need for installing supporting libraries
and resource files at the destination. But this is not always an advantage, especially if you
need to ship separate executables that use the same code. That code could be put into
a Dynamically Loaded Library (DLL) and shared among them. This is, in fact, how
most operating systems and many of today's large applications are put together—lots of
interconnected modules that work together. When there's an update for that code, you
don't have to replace the whole system but just that one DLL (this is sometimes all a
"patch" in a software update does).

Of course, Delphi can support these as well. Simply select File | New | Other from the
menu, and choose Dynamic Library from the list. A single source file is created with
the library keyword. All the sources can be contained in this one file and a begin-
end block is created for you—although it is likely you won't use it. Compiling a dynamic
library on Windows generates a DLL.

A dynamic library cannot run by itself but is called from another library or an application.
As such, a library is, for the most part, simply a published list of procedures or functions
(libraries can also contain published resources). We will cover creating and using libraries
in Chapter 5, Libraries, Packages, and Components.

30 Delphi Project Management

Understanding packages
A Delphi package is a special kind of library that can only be used by applications or
libraries written in Delphi or within the Delphi IDE itself. The advantage is that it contains
metadata that makes sharing code easier. A more important feature is that it allows you to
write components and plugins that get installed in the Delphi IDE—or RAD Server.

Starting a package is similar to starting a Dynamic library. When you select File | New
| Other from the menu, and choose Package from the list, a single source file is created
with the package keyword and a requires section that lists other packages that must
be present to support the functionality that this package provides. Compiling a package
generates a file ending with .BPL (Borland Package Library). (Borland was the original
publisher of the Turbo Pascal, Borland Pascal, and now Delphi line of products.)

There are two types of packages: run-time and design-time. Runtime packages are
a great way to modularize your application as they are similar to dynamic libraries in that
they can provide a shared set of libraries, functions, and resources to be used by other
applications or libraries. They can also be loaded dynamically as libraries can. However,
as mentioned previously, they are not as versatile as they can only be called from code
written with the same version of Delphi. Dynamic libraries, on the other hand, can be
shared between applications and modules written in other languages—or other versions
of Delphi.

Design-time packages allow you to augment functionality within the Delphi IDE
itself, typically to support components with custom property editors or provide special
functionality that hooks into the Delphi IDE, such as providing features in the editor or
adding menu items for launching new functionality. We will discuss these capabilities in
Chapter 5, Libraries, Packages, and Components.

Dealing with Android services
As you get more acquainted with writing applications for the mobile platform, you'll learn
that there are many more differences than just the user interface. On modern desktop
PCs, you can assume that there is a lot more memory and disk space available than what
you have on a hand-held device. You must take these application design considerations
into account. For Android applications, it can be quite advantageous to offload some of
the work your application must perform to a background process known as an Android
service. Yes, Delphi has a project type to support these, and you do that by selecting File |
New | Other from the menu, and choose Android Service from the list.

Before any project files are created, you are presented with a choice of four Android
service types:

Technical requirements 31

Figure 2.9 – New Android service type selection

Once one is selected, a project source file is created with the program keyword, and
a form unit is added that comprises two physical files: a .DFM, or Delphi, form, and
.PAS, the source for this form with the unit keyword at the top of the file. This looks
surprisingly similar to a Windows VCL application, but notice that the extension of the
compiled output is .SO instead of .EXE. Additionally, the uses clauses of both the
project and unit are obviously geared to the Android platform.

Customizing your favorite project types
This section has instructed you to use the File | New | Other menu selection for each
project type because that menu item is always there—the other menu items you see
after first installing Delphi can be added, removed, or rearranged. Just select File | New |
Customize and modify the list to your liking. For example, if you never work on Windows
VCL applications, you can remove that item from the list and add other project or file
types that you use more often. You can also add separators to help organize the items into
groups that make sense to you. Any items you add here that can be added as part of the
current project will show up in the context menu when you right-click the project and
select Add New. It should be noted also that if you remove items from this customizable
list, they will also be removed from the Add New context menu.

32 Delphi Project Management

Using build configurations effectively
Before we start writing code and developing applications, there are a few more project
management topics you should be aware of that apply to any project. One of those is the
use of Build Configurations. This is the first sub-item that shows in the Project Manager
window under the project name and lists the currently selected build configuration in
parentheses for that project. You can set up various project options and save them as
a build configuration, then switch between them by expanding the Build Configurations
list and double-clicking on one. Delphi comes preconfigured with two standard
configurations: Debug and Release. You can customize the default configurations or add
other ones to suit your needs.

When testing applications, you may want to step through your code, set breakpoints, and
watch variables. To do this, several compiler options need to be enabled in the project
options (select Project | Options from the menu or right-click on the project name and
select Options from the context menu). These options add size to the compiled file and,
in some cases, slow down execution slightly. However, the convenience of inspecting your
code at runtime can save hours.

When you're satisfied with your work and are ready to deploy your application, you
can switch the selected build configuration to Release, which turns off those debug
compiler options and enables optimization, then rebuild your project in order to give your
customer the best experience when they run your code.

Some organizations may only allow one build configuration to be used in both
development and deployment out of concerns that differences may make it difficult
to exactly replicate a reported problem. However, you might still want to use build
configurations and set up all the compiler and linking options the same to produce
identically compiled code in order to use other facets of the build configurations that don't
affect the compiled files: build events.

Build events
Build events are the closest thing to automation within the IDE. We'll talk about scripting
your whole build process from the command line a little later, but with build events,
you can launch external tools to sign your code, generate installers, make copies of your
packages to another folder, and anything else a Windows batch file can do. Plus, Delphi
makes macros available that are replaced with various parts of your project, such as the
output directory, the active build configuration, the extension of the file being compiled,
and more.

Using build configurations effectively 33

NOTE
The statements in build events are not called the same way that batch files are
but are concatenated into one long statement with ampersands (&) to ensure
they are executed in order. Therefore, statement1 and statement2
will be executed as if you had entered statement1 & statement2.
If you embed if statements in your build events, be sure to use parentheses to
enclose statements that should not affect the execution of further statements.

To configure the build events for your project, open the Project | Options menu
(or right-click on your project name and select Options), then expand Building and click
on Build Events.

You'll notice that build events are specific to the target platform. That makes sense as the
tools you use or the actions you perform may very well be different for different platforms.
But you can also set up tools that are common to sets of platforms, or even all platforms,
by choosing one of the base configurations (for example, All, Debug, or Release), then
when you select a specific platform (for example, Windows 32-bit platform), it will
inherit the list of commands from its base configuration and allow you to add additional
ones for the specific platform. For example, you might want to initialize test data for all
configurations but generate installers only for Release builds.

There are three categories of events:

• Pre-build events: Commands to be run before a build starts. If there's an error in
this process, you can optionally halt the entire project build process by setting the
Cancel on error checkbox.

• Pre-link events: These commands will be run after the units are compiled but
before the linking phase starts (more applicable to C++ than Delphi). Again, you
can halt the build process with the Cancel on error checkbox.

• Post-build events: This set of commands will be run after the project has been
successfully built. This type of build event has an extra option where you can always
launch the commands or only if the target is out of date.

34 Delphi Project Management

For each of these types, click on the ellipsis button to enter one or more commands. For
example, the following post-build event will sign the code with an SSL certificate (using
the Windows SDK's SignTool), then generate an installation executable (using InnoSetup,
in this example), and finally copy the result to a shared folder on the network (assuming
paths are set up so that the SignTool and setup builder applications can be found):

signtool sign /f "MyCert.pfx" /p "MyPW" "$(OUTPUTPATH)"

iscc.exe $(PROJECTNAME).iss

copy "$(OUTPUTDIR)\..\output\setup.exe" \\server\deploys

Remember, this is similar to writing a batch file but has the advantage of using
project-specific macros provided by the Delphi environment so that if you rename
a project, you don't have to change the build event script.

Now, let's expand our focus to work with several projects at once.

Working with related projects
You may find yourself often switching between multiple projects, either as part of an
application suite or simply having a list of assigned projects to maintain. Instead of closing
one and opening a different one, you can put multiple projects into a project group for
quicker accessibility. From the Project menu (or from the context pop-up menu after
right-clicking on the project group name), select Add Existing Project… (or Add New
Project…) and follow the steps for opening or creating a project. Once you have one
or more projects loaded, you can right-click at the top of the projects list in the Project
Manager window and select Save Project Group As… to save the list of projects. Now,
you can open and close a group of projects as easily as you can a single project.

You may already be well-versed in managing groups of projects, but a couple of toolbar
buttons added back in Delphi XE2 in the Project Manager simplify actions you can take
on multiple projects at once.

For instance, let's say you maintain a large product that has a main executable project,
several libraries, and maybe a non-visual component set. This application suite runs in
both Windows 32-bit and 64-bit and on Mac 64-bit, and a problem has been reported for
the Windows 32-bit version—and you're not sure which module is causing the problem.
You need to switch all projects to the Win32 platform and Debug mode, then recompile
them all and start testing.

Managing source modifications 35

After loading the project group, instead of tediously going to every project and setting the
platform and build configuration, simply go to the project window's toolbar, drop down
the Set Active Configuration menu button, and select Debug. Then, drop down the Set
Active Platform menu button and select Win32, and all the projects in the project group
are ready to debug on Win32.

Here's a screenshot of the toolbar with the Configurations button dropped down and the
Platforms button to its immediate right:

Figure 2.10 – The project group toolbar

After finding and resolving the problem, you can again use the Set Active Configuration
toolbar button to set all projects back to Release mode, and right-click on the project
group, and select Build All to recompile all the projects.

If you don't remember the buttons' functions by icon, you can right-click on the toolbar
and activate Text Labels, but if the project window is too narrow, not all the buttons will
show—and this toolbar is not customizable.

Once we've got a handle on managing multiple projects, we need to keep track of all the
changes we're making to them.

Managing source modifications
Team collaboration invariably involves some sort of source code repository – no longer is
a shared network folder good enough. Version histories with trackable changes are part of
the daily life of the professional programmer. Everyone has their favorite tools for viewing
changes and checking in code, but you might want to try out the built-in repository
support in the Delphi IDE as another way of getting updates or committing your work.
We'll start by looking at a part of the IDE you may not have used much, the code editor's
History tab, and then show how integrating source repositories can make that view much
more useful.

36 Delphi Project Management

Looking through your code history
The discussion on how version control works in Delphi starts with a look at the History
tab of the code editor window:

Figure 2.11 – The code editor's History tab

When you're typing code, you're usually in the Code tab. When working on a data module
or form, you can switch between Code and Design with the F12 key (by default). Toggling
between code and design can also be done by switching tabs. The rightmost tab of these
code editor tabs is the History tab and shows recent changes made to the file you're
working on. Once you switch to the History tab, there are three page tabs:

• Contents: Displays selectable revisions in the top pane and the contents of the
corresponding revision in the bottom pane. The revision fields shown include
revision name or description, an optional label, the date it was made, and the
author. By default, the author is simply the username of the current Windows user.

• Information: In the top pane, the only difference from the Contents view is the
addition of an optional comment. The bottom pane shows additional comments
if they exist.

• Differences: The top pane presents two copies of the revisions for the current file:
From, and To. Once you select a From revision and a To revision, the bottom pane
shows the differences between them, indicated with color-coded lines and plus and
minus signs in the left column.

Managing source modifications 37

In the following screenshot, the Differences pane of the History tab is shown with the
original version of a file selected in the From revision list and the most recent changes
in the To revision list. The bottom pane shows the changes that were made to the file,
including the addition of an image and the removal of the private and public sections:

Figure 2.12 – Differences shown in the History tab

38 Delphi Project Management

There are several toolbar buttons above the Differences pane that help you manage the
revisions, including reverting changes to a file and traversing through the differences.
There are also several icons to help you identify the type of revision for each line, such
as a local backup file or a file stored in a source repository. This functionality is built into
Delphi before you add version control. You can specify how many local backups (locally
stored revisions of files) to keep in the Tools | Options | User Interface | Editor page by
setting File Backup Limit (if Create backup files is checked). But these are only local and
don't contain comments. That's why integrating a source repository can be quite useful.

Integrating source repositories
Delphi 10.4 has support for three different source code repositories: SVN, Git, and
Mercurial. They all support the basic operations: clone (or checkout) a copy of a remote
repository to a local folder, add files and projects to a repository, refresh a local copy with
remote changes, and commit or check in modifications—but they differ slightly, so you'll
need to follow the links in the Further reading section at the end of this chapter for details
on your particular repository type.

The steps for setting each up are similar: go to Tools | Options | Version Control, select
your repository type, then fill in the requested information, and optionally, customize the
colors that will affect the Log view of the repository history.

NOTE
The Log view is only available for projects assigned to a repository. To show
a repository log for a project, right-click on it and select the repository you're
using from the context menu, then select Show Log in the fly-out menu.

Once Delphi knows about your repository, you can use the Open From Version
Control… File menu item. First, select your version control system, then enter a Source
repository (usually a copied URL), then the Destination folder. The project will be cloned
and opened.

Now, when you right-click on a project or folder, there's a context menu for your
repository type that lets you commit or revert changes, and other management functions
appropriate for your repository.

Using the command-line tools for build automation 39

Back to the History tab, a project under version control will show repository comments
mixed in with the local backups. Here's an example of some changes made to a file in a Git
repository:

Figure 2.13 – Information page of the History tab showing both local backups and repository commits

All these changes were made by the same person, but the local backups took the username
from the Windows user, whereas the repository commits were based on the repository
user settings. The bottom pane shows the hash of the Git commit in the Label field and
the full comment submitted.

Now, let's switch gears a little and move outside of the IDE.

Using the command-line tools for build
automation
We used build events to add automation to the IDE, but we still have to start the IDE, load
a project, and manually start the build. What if you want a dozen libraries and projects
automatically recompiled every night? Delphi has this covered, too.

40 Delphi Project Management

Using the IDE hides a lot of details. It's nice that most of the time, all you need to know
is that there are multiple target platforms and building one produces the desired file in
the right places. But a look at the Build page of the Messages pane reveals very long
commands being called.

What's more is that a temporary resource script file is created and a resource compiler
is called to put any icons, images, version information, and so forth into binary format.
When using just the IDE, these resources are defined in various project options pages and
all the details are handled for you. But when building applications and libraries yourself
using the command-line tools, you have to write your own resource script file to pull these
together, then call the resource compiler. Looking at what is called during the IDE's build
process in the Messages pane, you can use the same call the IDE uses, CGRC.EXE, or call
BRCC32.EXE directly, the main resource compiler used for Delphi applications.

NOTE
There may be occasions to use the Microsoft SDK Resource Compiler (RC.
EXE) instead, but there are several differences to be aware of. Read more in the
link listed in the Further reading section.

After building the resource file, the code compiler appropriate for your platform is called:

The command-line options passed to these toolchains stem from which platform is being
built and how your environment is configured. If you run one of those programs from the
command line without any command arguments, it'll show you all the options available
to specify such things as search paths, debug options, namespaces, record alignment,
optimization types, compatibility settings, and many other things you may never need to
worry about. Delphi does a good job of setting up a lot of defaults for different targets, but
also provides a nice, organized presentation of these in your project's options.

Using the command-line tools for build automation 41

Before we look at building one of the projects from the IDE, let's take the simplest possible
project and compile it from the command line just to try it out. This would be a console
app, of course, and Delphi adds a couple of things in there that we can take out (otherwise,
we'll have to specify library paths, which we don't want to do for this quick test). Here's
the code, which you can also access at https://github.com/PacktPublishing/
Fearless-Cross-Platform-Development-with-Delphi/blob/master/
Chapter02/00_SmallestConsoleApp/TinyConsoleApp.dpr :

program TinyConsoleApp;

{$APPTYPE CONSOLE}

begin

 Writeln('Hi Console!');

 Readln;

end.

Here's the simple compilation:

Fig 2.14 – Compilation of a simple console app

Now that we've got our feet wet at the command line, let's go deeper.

One approach to automated command-line builds is to first set up these options the way
that you need using the IDE, possibly in a separate build configuration, and then build
your project and copy the commands that were called by the IDE from the Build page of
the Messages window to your script. From there, you can cut out what you don't need
from the script and include other actions, such as checking for and logging the results of
unit tests, running audits, and other tools your team utilizes.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/blob/master/Chapter02/00_SmallestConsoleApp/TinyConsoleApp.dpr
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/blob/master/Chapter02/00_SmallestConsoleApp/TinyConsoleApp.dpr
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/blob/master/Chapter02/00_SmallestConsoleApp/TinyConsoleApp.dpr

42 Delphi Project Management

NOTE
The default layout in Delphi doesn't initially show the Messages window.
Remember, you can manually show it by selecting View | Tool Windows |
Messages from the menu.

A helpful hint to know before writing your batch files is to use environment variables as
shortcuts in your paths. Looking at the IDE's generated commands can make your eyes
glaze over pretty quickly as you scan down the long path names because the IDE doesn't
use shortcuts; you can—and should! This will not only shorten your paths and make your
scripts more readable but they'll also work on someone else's system where Delphi may
have been installed in a different location or when you upgrade to a newer version of
Delphi and only need to change one or two lines at the top of your script.

To help with this, every version of Delphi ships with a batch file called rsvars.bat in
the bin folder of the Delphi installation. Running this at the top of your script sets up
BDS, BDSINCLUDE, BDSCOMMONDIR, and other useful environment variables pointing
to folders you'll need.

The following example scripts use the techniques covered in this section to generate
executables for an open source project, DelphiVersions, of which a portion was
extracted for this book and is available here, along with a commented version of the
build script:

https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter02/01_BuildScript

The scripts start off by making sure that the destination folders exist, then clean the
temporary build files, and finally, compile the projects. The first one is a simple
console app:

call "%ProgramFiles(x86)%\embarcadero\studio\21.0\bin\rsvars.
bat"

if not exist .\Win32\Release mkdir .\Win32\Release

del .\Win32\Release*.rsm

del .\Win32\Release*.dcu

del .\Win32\Release*.exe

dcc32.exe -$O+ -$W- --no-config -B -TX.exe -DRELEASE -E.\Win32\
Release -NU.\Win32\Release -NSSystem; -U"%BDS%\lib\Win32\
release" -V -VN -VR DelphiVersionsConsole.dpr

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter02/01_BuildScript
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter02/01_BuildScript

Using the command-line tools for build automation 43

The next one builds a resource with an embedded style for both Debug and Release
versions of a 64-bit Windows VCL application:

call "%ProgramFiles(x86)%\embarcadero\studio\21.0\bin\rsvars.
bat"

if not exist .\Win64\Debug md .\Win64\Debug

if not exist .\Win64\Release md .\Win64\Release

del /s *.res

del /s *.rsm

del /s *.dcu

del /s *.exe

cgrc.exe -c65001 -v DelphiVersionsVCL.rc -foDelphiVersionsVCL.
res

dcc64.exe -$O- -$W+ --no-config -B -TX.exe -DDEBUG -E.\Win64\
Debug -NU.\Win64\Debug 1-NSSystem;Vcl;Vcl.Shell;WinAPI
-R"%BDS%\lib\Win64\Release" -U"%BDS%\lib\Win64\debug" -V -VN
-VR DelphiVersionsVCL.dpr

dcc64.exe -$O+ -$W- --no-config -B -TX.exe -DRELEASE -E.\Win64\
Release -NU.\Win64\Release -NSSystem;Vcl;Vcl.Shell;WinAPI
-R"%BDS%\lib\Win64\Release" -U"%BDS%\lib\Win64\release" -V -VN
-VR DelphiVersionsVCL.dpr

Finally, we build two 64-bit FireMonkey apps—one for Windows and one for Mac:

call "%ProgramFiles(x86)%\embarcadero\studio\21.0\bin\rsvars.
bat"

if not exist .\Win64\Release md .\Win64\Release

if not exist .\OSX64\Release md .\OSX64\Release

del /s *.dcu

del /s *.rsm

del /s *.exe

del .\OSX64\Release*.o

dcc64.exe -$O+ -$W- --no-config -B -TX.exe -DRELEASE -E.\Win64\
Release -R"%BDS%\lib\Win64\release" -U"%BDS%\lib\Win64\release"
-K00400000 DelphiVersionsFM.dpr

dccosx64.exe -$O+ --no-config -B -DRELEASE -E.\OSX64\Release
-R"%BDS%\lib\OSX64\release";"%BDS%\redist\OSX64" -U"%BDS%\
lib\OSX64\release" -NO.\OSX64\Release -NU.\OSX64\Release
-NSSystem -O"%BDS%\lib\OSX64\release";"%BDS%\redist\OSX64"
--syslibroot:"%USERPROFILE%\Documents\Embarcadero\Studio\SDKs\
MacOSX10.14.sdk" DelphiVersionsFM.dpr

44 Delphi Project Management

You can download the original project by following the link to Open source project:
DelphiVersions in the Further reading section at the end of this chapter.

Summary
In this chapter, we covered all the project types and target platforms Delphi 10.4
supports—and some starting templates to jump-start the development of a cross-platform
application. With powerful build configurations, you can apply sets of options quickly and
launch external tools for certain conditions to save steps after the compilation process.
Additionally, you learned how to easily manage a group of projects. With built-in version
control, you seldom need to leave the IDE. But if you have unattended build processes
that run on a regular basis, you learned that Delphi even supports that paradigm with
command-line parameters for the unattended compilation of any project type.

In the next chapter, we'll build on these concepts by reviewing the language syntax of
Delphi and noting several important additions over the years that have laid the foundation
for building modern cross-platform applications.

Questions
1. What project types support the Linux platform?

2. What are the two main differences between the Tabbed and Tabbed with
Navigation multi-device application templates?

3. Which project type can provide callable functions for applications written in other
programming languages?

4. How do you customize the File | New list?

5. How do you automatically build an installer whenever your Release compilation
process succeeds?

6. Where can you see the list of changes made to your files?

7. What's the filename of command-line compiler for the Android platform?

Further reading
• The Projects window: http://docwiki.embarcadero.com/RADStudio/

Sydney/en/Projects_Window

• Extensions of files generated: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/File_Extensions_of_Files_Generated_by_
RAD_Studio

http://docwiki.embarcadero.com/RADStudio/Sydney/en/Projects_Window
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Projects_Window
http://docwiki.embarcadero.com/RADStudio/Sydney/en/File_Extensions_of_Files_Generated_by_RAD_Studio
http://docwiki.embarcadero.com/RADStudio/Sydney/en/File_Extensions_of_Files_Generated_by_RAD_Studio
http://docwiki.embarcadero.com/RADStudio/Sydney/en/File_Extensions_of_Files_Generated_by_RAD_Studio

Further reading 45

• Delphi's History Manager: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/History_Manager

• Version control support in Delphi: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/Version_Control_Systems_in_the_IDE

• Using SVN in Delphi: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/Subversion_Integration_in_the_IDE

• Using Git in Delphi: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/Git_Integration_in_the_IDE

• Using Mercurial in Delphi: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/Mercurial_Integration_in_the_IDE

• Command-line switches and options for starting the IDE: http://docwiki.
embarcadero.com/RADStudio/Sydney/en/IDE_Command_Line_
Switches_and_Options

• Command-line utilities index: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/Command-Line_Utilities_Index

• The Microsoft SDK Resource Compiler: http://docwiki.embarcadero.
com/RADStudio/Sydney/en/RC.EXE,_the_Microsoft_SDK_
Resource_Compiler

• Inno setup: https://jrsoftware.org/isinfo.php

• Open source project: DelphiVersions: https://github.com/
corneliusdavid/DelphiVersions

http://docwiki.embarcadero.com/RADStudio/Sydney/en/History_Manager
http://docwiki.embarcadero.com/RADStudio/Sydney/en/History_Manager
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Version_Control_Systems_in_the_IDE
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Version_Control_Systems_in_the_IDE
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Subversion_Integration_in_the_IDE
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Subversion_Integration_in_the_IDE
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Git_Integration_in_the_IDE
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Git_Integration_in_the_IDE
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Mercurial_Integration_in_the_IDE
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Mercurial_Integration_in_the_IDE
http://docwiki.embarcadero.com/RADStudio/Sydney/en/IDE_Command_Line_Switches_and_Options
http://docwiki.embarcadero.com/RADStudio/Sydney/en/IDE_Command_Line_Switches_and_Options
http://docwiki.embarcadero.com/RADStudio/Sydney/en/IDE_Command_Line_Switches_and_Options
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Command-Line_Utilities_Index
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Command-Line_Utilities_Index
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RC.EXE,_the_Microsoft_SDK_Resource_Compiler
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RC.EXE,_the_Microsoft_SDK_Resource_Compiler
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RC.EXE,_the_Microsoft_SDK_Resource_Compiler
https://jrsoftware.org/isinfo.php
https://github.com/corneliusdavid/DelphiVersions
https://github.com/corneliusdavid/DelphiVersions

3
A Modern-Day

Language
This powerful development environment and toolset we've been discussing in this first
section of the book would not be where it is today if it didn't have the language behind it
to support the needs of the modern-day programmer.

This chapter will look back at where Delphi started, how it got here, and what the latest
additions are that make it well-suited for any development task needed today. Read the
following sections to understand the solid footing upon which Delphi stands:

• Remembering Delphi's Pascal roots

• Growing a language

• Learning about the latest enhancements

Technical requirements
You will need any edition of Delphi 10.4 Sydney to work with all the language features
discussed in this chapter.

48 A Modern-Day Language

This chapter's sample code projects can be downloaded from GitHub at the following link:

https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter03

Remembering Delphi's Pascal roots
Some have pointed to the fact that Delphi—being based on Pascal, which was designed
as a teaching language—is too simple to be a contender in today's complex programming
environments. But nothing could be further from the truth. The extensions added to the
language and the associated runtime library make it just as powerful as any other high-
level, compiled programming language. In fact, the readability of this language and its
strongly typed, structured design lends itself well to code that is easy to maintain and
upgrade. It's object-oriented, compiles quickly, uses libraries and packages for modularity,
and has a variety of frameworks to provide platform and device flexibility.

The Pascal syntax is often used in pseudocode for its universal readability. Instead of curly
braces to define blocks (as in C# or JavaScript), Delphi uses begin-end. Instead of -lt or
-gt, as in PowerShell, it uses less-than and greater-than symbols, < and >. Instead of the
DIM statement to declare variables (as in BASIC), it uses the var keyword to start a variable
declaration section. Instead of being declarative, like SQL, it's procedurally oriented.

Let's quickly review the basic structure of a Delphi program.

Reviewing the syntax
To see a working sample project, try opening one that comes with Delphi 10.4. Under the
Develop section of Delphi's default Welcome page, click the Open a sample project…
link and drill down through the Object Pascal, VCL, and CardPanel folders, and then
open the CardPanel project.

Initially, the main form unit is displayed, but right-click on the project and select View
Source to switch to the project file, CardPanel.dpr, where we see the program
keyword, the uses clause listing the form unit, a compiler directive to link in the project's
version information, compiled into a resource, and the begin-end block with a small bit
of code to start the main application loop.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter04
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter04

Remembering Delphi's Pascal roots 49

Back in the form unit, uCardPanel.pas, it starts with the unit keyword and has
both an interface and implementation section, each with a uses clause. The
interface section is used to tell other units or programs what types, variables,
and methods are available from this unit. A TCardPanelForm type is declared as a
descendant of TForm and a global variable of that type is declared, which is then created
by the main program.

The implementation section is where the methods are implemented, and any
identifiers declared there can only be used there. Again, you'll notice a compiler directive
to link in a resource, only this time, it's the form's layout definition that is compiled into a
resource instead of the project properties, as was seen in the .dpr file.

The const, types, and var sub-sections (to declare constants, types, and variables,
respectively) can appear in any order and multiple times in both sections, as long as
identifiers are declared before they are referenced.

Statements can be grouped into methods and named to break up your code. A procedure
is a method that does not return a value. A function returns one value. Both can have zero
or more parameters and declare constants, types, and variables local to that method.

Units can optionally include initialization and finalization sections. These
sections do not need to use begin-end blocks. If the finalization section is used,
the initialization section must be included, even if it's empty. These sections can be
useful to implement startup code when the application starts or clean-up code when the
application closes (unless the Halt procedure terminates it abruptly).

Note
The code in the initialization section is called in the order in which
the unit appears in the project's uses clause—or in other units that are used
by the project. Likewise, the code in the finalization section is called in
the reverse order that they were loaded.

We won't go into great detail about the various control structures, conditional
expressions, and so forth, but as we quickly talk about some of the highlights, you can
see many of them demonstrated in the sample GitHub project, https://github.
com/PacktPublishing/Fearless-Cross-Platform-Development-with-
Delphi/tree/master/Chapter04/01_BasicSyntaxDemo.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter04/01_BasicSyntaxDemo
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter04/01_BasicSyntaxDemo
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter04/01_BasicSyntaxDemo

50 A Modern-Day Language

The code shows typed constants and initialized variables (which are similar but have some
important differences; see the Declared constants link in the Further reading section at
the end of this chapter), nested repeat-until loops, a case statement with an else
clause, and a try-finally block inside a try-except block for robust error-handling.

The code also demonstrates the following three types of comments. Comments are
excluded in the compilation process, so it's safe to embed passwords and developer-level
notes as they will never be found in the final distributable application or library:

• // double slash: These affect only the text after the double slash on the current line.

• { braces }: These comment out a block of text; they cannot be nested—in other
words, you cannot put braces around code that includes braced comments as the
first end brace encountered will mark the end of the comment block.

• (* parenthesis-star *): These also comment out a block of text and will also
comment out other comments.

Tip
Use only the first two comment types in your regular programming. If and
when you need to comment out a large block of code temporarily, use the
parenthesis-star type as it supersedes the other two.

Now that we've covered the basic syntax, let's talk about what makes the language modern.

Growing a language
Delphi is not a stagnant language—it continues to grow and evolve. Sometimes, these
changes are evolutionary, while sometimes they add optional functionality. Once in a
while, they cause disruption when upgrading your code, but it has surprisingly good
backward compatibility.

These extensions started with the earliest versions of Turbo Pascal, the precursor to Delphi
back in the 1980s.

Adding objects to Pascal
In 1989, Turbo Pascal 5.5 was released. It was this historical upgrade that took Borland's
extension of Pascal from a structured language to the object-oriented arena. A completely
separate manual was provided just to educate developers about the concepts of object-
oriented programming:

Growing a language 51

Figure 3.1 – Turbo Pascal's object-oriented guide

This laid the groundwork for class inheritance, encapsulation of data and functionality in
objects that limit access to private fields through published properties, and polymorphism
allowing descendant classes to override inherited methods. The first version of Delphi,
which brought the Pascal language to mainstream Windows development, leveraged
object-oriented class hierarchies with the powerful components prevalent in many
systems today. You used these constructs in the previous chapter to build a new
component, extending the capabilities of base components to provide a custom new
functionality quickly and easily. These are important building blocks of the powerful
frameworks we use today.

When you start a new GUI application, Delphi creates a class descendant of TForm. We're
accustomed to placing controls on the form, adding event handlers and private functions,
and rapidly building full-featured Windows VCL applications. This productivity, resulting
from a well-conceived object-oriented class hierarchy, lends itself equally well to the rich
set of database components in Delphi and FireDAC, which enable developing multi-tier
database applications, as well as in the FireMonkey framework, allowing us to build cross-
platform applications.

These topics could fill books on their own, but let's move on. Before we highlight the most
recent enhancements, the following sections briefly describe several other important
additions to the language.

52 A Modern-Day Language

Promising functionality with interfaces
Interfaces have been in Delphi since version 3, and you may think they are only needed
when dealing with Microsoft's COM technology, but interfaces are quite useful constructs
that provide code contracts, ensuring functionality in the classes that use them. For
example, an interface can define the methods necessary for a design pattern, and then you
can add that interface to one of your classes to ensure it fulfills, at least in the methods
declared, the functionality of that design pattern.

Interfaces also allow dependency injection, which aids in building flexible unit tests. For
example, a class can be designed to accept an interface reference instead of a specific
class type. In the actual application, you would pass in the class for your real-world
scenario, such as a database connection, while in a unit test, you could pass in a mock
database, such as a class that gives random or hardcoded data instead of pulling from an
actual database. This allows you to test your classes in isolation from other parts of your
application.

There's an excellent paper and YouTube video that covers unit testing in detail, which can
be found in the link titled Unit testing and isolation frameworks in the Further reading
section at the end of this chapter.

Another language feature that arrived with Delphi 3 is variants.

Handling unknown data types
Sometimes, you don't have the privilege of knowing what data type you need to work with
at compile time. The variant type was added to the language to support this. When
a variant variable is created, its initial value is marked as Unassigned. After giving it
a non-null value, you can query its type and perform operations on it. Variants can be
simple data types (integer, string, and so on) but not structured ones (records, sets, files,
pointers, and so on).

Note
Since a variant's type is not known at compile time, runtime execution will be
slower as extra processing is required to know how to handle whatever value
may be assigned. You should only use variants when required by external
functions with which you need to interact.

A type of variant, OleVariant, is used to support Microsoft's Object Linking and
Embedding technology, or OLE, which enables the passing of data between external
applications. This allows you to, for example, read data directly from Microsoft Excel, or
merge data into a Microsoft Word document.

Growing a language 53

Some language features, such as interfaces and variants, were necessary to keep
compatibility with other technologies. Others added convenience or better programming
methodologies to the language. The next section covers one of these.

Supporting nested types
Nested types are a great way to keep related constructs together. This can also avoid
naming conflicts without using long class names. Declaring classes within a class can be
easily demonstrated in a short program that adds people to a list. Normally, the people
would be pulled from a database or web service, but here, we'll just add them manually
each time:

 private

 type

 TPerson = class

 private

 FFirstName: string;

 FLastName: string;

 FDOB: TDate;

 public

 constructor Create(NewFN, NewLN: string; NewDOB:
 TDate);

 function Age: Integer;

 property FirstName: string read FFirstName write
 FFirstName;

 property LastName: string read FLastName write
 FLastName;

 property DateOfBirth: TDate read FDateOfBirth write
 FDOB;

 end;

From the preceding code block, we see that the sub-class declares a TPerson type that
gets added to TListBox, and then when the OnClick event occurs, the class is extracted
and displayed on the screen. It is declared inside the private section of the form's class
because it won't need to be used outside of the form, in this example.

The nested type's constructor simply assigns the parameters to local fields of the new object:

constructor TfrmPeopleList.TPerson.Create(

 NewFN, NewLN string; NewDOB: TDate);

54 A Modern-Day Language

begin

 FFirstName := NewFN;

 FLastName := NewLN;

 FDateOfBirth := NewDOB;

end;

The Add button creates a local TPerson object, assigns the values from the edit fields on
screen, then adds it to the list, as follows:

procedure TfrmPeopleList.btnAddClick(Sender: TObject);

var

 NewPerson: TPerson;

begin

 if (Length(edtNewPersonFirstName.Text) > 0) and

 (Length(edtNewPersonLastName.Text) > 0) then begin

 NewPerson := TPerson.Create(edtNewPersonFirstName.Text,

 edtNewPersonLastName.Text,

 edtNewDOB.Date);

 AddPersonToList(NewPerson);

 edtNewPersonFirstName.Text := EmptyStr;

 edtNewPersonLastName.Text := EmptyStr;

 end else

 ShowMessage('Please fill in both names.');

end;

When the user clicks on a row in ListBox, the associated TPerson object is extracted
and shown:

procedure TfrmPeopleList.lbPeopleClick(Sender: TObject);

var

 APerson: TPerson;

begin

 if lbPeople.ItemIndex > -1 then begin

 APerson := lbPeople.Items.Objects[lbPeople.ItemIndex]

 as TPerson;

 lblPersonName.Caption := APerson.FirstName + ' ' +

 APerson.LastName;

 lblPersonDOB.Caption := FormatDateTime('yyyy-mm-dd',

Growing a language 55

 APerson.DateOfBirth);

 end;

end;

You can find this code at https://github.com/PacktPublishing/Fearless-Cross-Plat-
form-Development-with-Delphi/tree/master/Chapter04/02_NestedTypesDemo.

We will likely be using nested types further in the book, so look for more elaborate
examples. For now, there are still some important topics to cover, not least of
which is Unicode.

Migrating to Unicode
Delphi has used UnicodeString as the default string type since Delphi 2009 (the
type itself was available in earlier versions). It is the universally recognized standard for
encoding all the world's characters and symbols. Each character in UnicodeString can
take up to 4 bytes, and like all other string types in Delphi, indexing is 1-based.

Delphi has support for other string types as well, including AnsiString, UTF8String,
RawByteString, and the original single-byte character type, ShortString, with a
maximum of 255 characters. These all serve different purposes and there's a good, detailed
white-paper, Delphi Unicode Migration for Mere Mortals: Stories and Advice from the Front
Lines, referenced in the Further reading section at the end of this chapter, which covers
some of these as it delves into the history and reasons behind the move from the simple
string types of Delphi's early days.

This change was difficult for some applications but had long-term benefits for the
language that outweighed the inconvenience to developers. I can't word it better than
Cary Jensen as he introduces the subject:

"Embarcadero instantly enabled RAD Studio developers to build world
class applications that treat both the graphical interfaces and the data they

help manipulate in a globally-conscious manner, removing substantial
barriers to building and deploying applications in an increasingly global

marketplace."
Along with the shift to Unicode, there were a couple more important language features
to introduce before cross-platform support was really ready to take off. One of the most
powerful new language concepts, introduced over 10 years ago now, is generics.

56 A Modern-Day Language

Applying strong type checking generically
Have you ever stuffed objects into a TStringList object? When you use them, you have
to type-cast the extracted object to your custom type, much like we did when we extracted
TPerson objects from TListBox in NestedTypesDemo earlier in this chapter (see the
Supporting nested types section):

 APerson := lbPeople.Items.Objects[lbPeople.ItemIndex] as
TPerson;

With generic types (also known as parameterized types, or just generics), you can
create a list that knows what type each object is, which not only eliminates the need
for type-casting but also provides syntax checking at compile time. Let's rework
NestedTypesDemo to manage a generic list and provide more functionality. We'll do
this with the following project:

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Del-
phi/tree/master/Chapter04/03_GenericPeople

First, we'll separate the list of TPerson objects out from TListBox into a generic
TList. The generic type declaration adds a parameter to TList, which may look a little
strange at first:

 FPeopleList: TList<TPerson>;

This tells the compiler that the TList object we are declaring will be holding objects of a
specific type, TPerson.

Instantiating the object is similar:

procedure TfrmPeopleList.FormCreate(Sender: TObject);

begin

 FPeopleList := TList<TPerson>.Create;

end;

AddPersonToList is simplified:

procedure TfrmPeopleList.AddPersonToList(ANewPerson: TPerson);

begin

 FPeopleList.Add(ANewPerson);

end;

Growing a language 57

This procedure doesn't add the new TPerson to our ListBox as in our previous
implementation because the user interface is no longer holding the list of TPerson
objects. Best practices separate the display of the data from the management of the data.
Instead, a new ListPeople procedure will copy the data from our TList to the ListBox
whenever it needs to update the display:

procedure TfrmPeopleList.ListPeople;

var

 APerson: TPerson;

begin

 lbPeople.Items.Clear;

 for APerson in FPeopleList do

 lbPeople.Items.Add(Format('%s %s, Age: %d',

 [APerson.FirstName, APerson.LastName, APerson.
 Age]));

end;

Having the data separated gives us more flexibility. For example, we could show the list in
TListView or TMemo format instead of TListBox. Or, we could print the list without it
ever showing on the screen. We'll keep our ListBox and simply add sorting.

Generic collections provide a nifty way to implement sorting using another generic class:
TComparer. This class's Compare function returns a positive integer if the first parameter
is greater than the second, a negative integer if the first parameter is less than the second, or
zero if they are equal. To use TComparer, the generic version of TList has an overloaded
constructor that accepts an IComparer<T> parameter that allows you to specify the
comparer function for sorting. It's a little complicated until you use it a few times.

The TComparer declaration is shown here:

 TLastNameComparer = class(TComparer<TPerson>)

 function Compare(const Left, Right: TPerson): Integer;
 override;

 end;

58 A Modern-Day Language

The implementation of our TLastNameComparer.Compare function is made quite
simple with Compare functions from the SysUtils unit, which return the same values
we need:

function TfrmPeopleList.TLastNameComparer.Compare(

 const Left, Right: TPerson): Integer;

begin

 Result := CompareText(Left.LastName, Right.LastName);

end;

Now, we can modify the ListPeople procedure and add in last name sorting. Since
our master list of TPerson objects did not implement sorting, we have to create a
temporary one:

procedure TfrmPeopleList.ListPeople;

var

 APerson: TPerson;

 SortedList: TList<TPerson>;

begin

 lbPeople.Items.Clear;

 SortedList := TList<TPerson>.Create(TLastNameComparer.
 Create);

 for APerson in FPeopleList do

 SortedList.Add(APerson);

 SortedList.Sort;

 for APerson in SortedList do

 lbPeople.Items.Add(Format('%s %s, Age: %d',

 [APerson.FirstName, APerson.LastName, APerson.
 Age]));

end;

What if we wanted to sort by First Name or Date of Birth instead? We could
create multiple TComparer types and determine which one to use in the ListPeople
procedure. Doing that would encourage refactoring out the actual sort and display of the
TPerson objects:

procedure TfrmPeopleList.ListSortedPeople(const Comparer:
IComparer<TPerson>);

Growing a language 59

var

 APerson: TPerson;

 SortedList: TList<TPerson>;

begin

 SortedList := TList<TPerson>.Create(Comparer);

 lbPeople.Items.Clear;

 for APerson in FPeopleList do

 SortedList.Add(APerson);

 SortedList.Sort;

 for APerson in SortedList do

 lbPeople.Items.Add(Format('%s %s, Age: %d',

 [APerson.FirstName, APerson.LastName, APerson.
 Age]));

end;

procedure TfrmPeopleList.ListPeople;

begin

 case cmbPersonSort.ItemIndex of

 0: ListSortedPeople(TFirstNameComparer.Create);

 1: ListSortedPeople(TLastNameComparer.Create);

 2: ListSortedPeople(TBirthDateNameComparer.Create);

 end;

end;

The ListPeople procedure adds two sort options, which requires the creation of
additional TComparer classes:

 TFirstNameComparer = class(TComparer<TPerson>)

 function Compare(const Left, Right: TPerson): Integer;
override;

 end;

 TBirthDateNameComparer = class(TComparer<TPerson>)

 function Compare(const Left, Right: TPerson): Integer;
override;

 end;

60 A Modern-Day Language

Implementing each of their Compare functions looks like this:

function TfrmPeopleList.TFirstNameComparer.Compare(const Left,
Right: TPerson): Integer;

begin

 Result := CompareText(Left.FirstName, Right.FirstName);

end;

function TfrmPeopleList.TBirthDateNameComparer.Compare(const
Left, Right: TPerson): Integer;

begin

 Result := CompareDate(Left.DateOfBirth, Right.DateOfBirth);

end;

That looks a little cluttered. Let's simplify this using anonymous methods.

Adding anonymous methods for cleaner code
An anonymous method is a shortcut way of passing a method as a parameter. You declare
the method right within the parameter of a method call instead of declaring a separate,
named method and then passing that method name as the parameter.

Continuing with the GenericPeople project of the last section, we can completely
eliminate the three TComparer classes and implement the sort functions directly in the
ListPeople procedure using anonymous methods. Refer to the following code:

procedure TfrmPeopleList.ListPeople;

begin

 case cmbPersonSort.ItemIndex of

 0: ListSortedPeople(TComparer<TPerson>.Construct(

 function (const Left, Right: TPerson): Integer

 begin

 Result := CompareText(Left.FirstName, Right.
 FirstName);

 end));

 1: ListSortedPeople(TComparer<TPerson>.Construct(

 function (const Left, Right: TPerson): Integer

 begin

 Result := CompareText(Left.LastName, Right.
 LastName);

 end));

Growing a language 61

 2: ListSortedPeople(TComparer<TPerson>.Construct(

 function (const Left, Right: TPerson): Integer

 begin

 Result := CompareDate(Left.DateOfBirth, Right.
 DateOfBirth);

 end));

 end;

end;

I suppose that some would say this also looks a little cluttered, but for procedures that only
need to be called in one place, declaring them in place like this keeps the code together.

A great use case for anonymous methods is when synchronizing messages or data in a
multi-threaded application. Let's say you have written a program that generates a large
number of random numbers and some calculations take a long time. You want to display
the numbers, update a progress bar, and have a way to stop the process cleanly. Take a look
at a simple demo to simulate a threaded process:

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Del-
phi/tree/master/Chapter04/04_ProcessSimulator

Since the VCL is not thread-safe, other threads must call Synchronize to call methods
or set properties of the main thread. This simple demo does this twice. In this first
example, it calls the main thread's public procedure, ShowNumber, to add the newly
generated random number to the list:

procedure TfrmLongProcessMain.TProcessThread.
ShowRandNum(RandNum: Double);

begin

 TThread.Synchronize(TThread.CurrentThread,

 procedure

 begin

 frmLongProcessMain.ShowNumber(RandNum);

 end);

end;

The second synchronized call updates two count properties on the main form, which
update a progress bar when called by TTimer's OnTimer event:

procedure TfrmLongProcessMain.TProcessThread.UpdateStatus(const
Count, MaxCount: Integer);

62 A Modern-Day Language

begin

 TThread.Synchronize(TThread.CurrentThread,

 procedure

 begin

 frmLongProcessMain.Count := Count;

 frmLongProcessMain.MaxCount := MaxCount;

 end);

end;

We will implement anonymous methods several times when writing mobile applications
in later chapters of this book.

Let's now look at one of the more esoteric language features: custom attributes.

Adding metadata to your classes with attributes
There are two subjects that are often discussed along with the topic of attributes in Delphi:
Aspect-Oriented Programming (AOP) and Runtime Type Information (RTTI). AOP
is the idea of adding additional structure or support code that your core application
classes will need but don't really fit the pure class hierarchy in which they were designed,
functionality that cuts across many classes (you might see the term cross-cutting in your
extended reading on this subject). For example, you might need to add logging to several
unrelated classes in your application, or you will want to load and save configuration
settings that are divided up into multiple classes. Adding behavior in a standard way
without loading these different classes with additional code to support this functionality is
what AOP promotes.

To implement this feature in our classes, we need code that can understand our code—in
other words, code that can get information about our classes at runtime and perform the
additional support functionality we need that we don't want to embed in those classes
themselves. That's where RTTI comes in. RTTI has been a part of Delphi all along, but it
was greatly extended in Delphi 2010 to enable greater support for, among other things,
attributes.

To use RTTI, you need to create a TRttiContext. Then, you use that context to get
information about classes, fields, properties, methods, and just about any Delphi type.
For example, let's say you wanted to see information for components on a form in a VCL
application. We could activate the OnClick event of each component and then dump
property information for each component clicked to a ListBox:

procedure TfrmRttiMain.ComponentClick(Sender: TObject);

var

Growing a language 63

 LContext: TRttiContext;

 LRttiType: TRttiType;

 LProperty: TRttiProperty;

begin

 lbRttiInfo.Items.Clear;

 LContext := TRttiContext.Create;

 try

 LRttiType := LContext.GetType(Sender.ClassType);

 for LProperty in LRttiType.GetProperties do

 lbRttiInfo.Items.Add(LProperty.Name + ': ' +

 LProperty.PropertyType.Name);

 finally

 LContext.Free;

 end;

end;

You can get the value of each property, but to display it, you need to convert each value
into a string. PropertyType has an enumerated TypeKind property to help you do
this. You'll need to add a TValue variable and then perform different types of conversion
depending on the setting of TypeKind:

function TfrmRttiMain.GetPropertyValueAsString(Sender: TObject;
LProperty: TRttiProperty): string;

var

 LValue: TValue;

begin

 LValue := LProperty.GetValue(Sender);

 case LProperty.PropertyType.TypeKind of

 tkString, tkLString, tkUString:

 Result := LProperty.GetValue(Sender).AsString;

 tkInt64, tkInteger:

 Result := IntToStr(LProperty.GetValue(Sender).AsInteger);

 tkFloat:

 Result := FloatToStr(LProperty.GetValue(Sender).
 AsExtended);

 tkEnumeration:

 Result := GetEnumName(LProperty.PropertyType.Handle,

64 A Modern-Day Language

 LValue.AsOrdinal);

 else

 Result := 'Unsupported type: ' + LProperty.PropertyType.
 Name;

 end;

end;

With this added function, the for loop would change as follows:

 for LProperty in LRttiType.GetProperties do

 LPropEntry := LProperty.Name + ': ' +

 LProperty.PropertyType.Name + ' = ' +

 GetPropertyValueAsString(Sender, LProperty);

 lbRttiInfo.Items.Add(LPropEntry);

 end;

The completed project can be found on Github:

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Del-
phi/tree/master/Chapter04/05_RttiExplorer

Armed with RTTI, AOP is accomplished through the use of attributes. An attribute in
Delphi is a class you write that inherits from TCustomAttribute. To apply an attribute
class to a type, put the name of the attribute class in square brackets just before the type
declaration. This annotates or marks that type as having that attribute. Here's a simple
attribute class:

 MySimpleAttribute = class(TCustomAttribute);

Now, you can mark up a type with it. When using the attribute, the Attribute part of
the name is assumed, so it can be left off:

 [MySimple]

 TMyClass = class

 end;

Attributes can be applied to properties, fields, methods, entire classes, records, and even
standalone procedures and functions. Getting these attributes is as simple as any other
piece of information you can get from RttiContext. In our next example, let's create a
custom class, apply attributes to it, then show what our code can do at runtime.

Growing a language 65

The purpose of this class is to hold some configuration settings that we want saved to a
INI file and loaded when the program starts. We don't want the settings class to worry
about where or how it is saved. Furthermore, we may want to change how the settings are
saved at a later date (such as saving them to a database instead).

Here's the simple class for our settings, showing MyName and MyFavNum as the
only properties:

 TMySettings = class

 private

 FMyName: string;

 FMyFavNum: Integer;

 published

 property MyFavNum: Integer read FMyFavNum write FMyFavNum;

 property MyName: string read FMyName write FMyName;

 end;

We want to save these to an INI file with a typical NAME=VALUE format:

[TMySettings]

MyFavNum=10

MyName=Fred

The class name will become the section and the property names will be the key names.

To use attributes to save these settings to a file, we need to define an attribute class and
then methods that know how to use them. The first attribute we'll create will be one that
marks a class as one we want to save to an INI file. I'll call it IniSaveClassAttribute
and it will contain the name of the class it is working with in a property:

 IniSaveClassAttribute = class(TCustomAttribute)

 private

 FTheClassName: string;

 published

 property TheClassName: string read FTheClassName write
 FTheClassName;

 end;

66 A Modern-Day Language

Now, we can use this class to annotate the settings class:

 [IniSaveClass]

 TMySettings = class

 // ...

Now that we have an attribute in place, we need methods that know what to do with it. I'll
create a class with some static functions for this purpose and call it TIniSave:

 TIniSave = class

 private

 class procedure SetValue(AData: string; var AValue:
TValue);

 class function GetValue(var AValue: TValue): string;

 class function GetClassName(MyObj: TRttiObject; const
 MyObjName: string): IniSaveClassAttribute;

 public

 class procedure Load(FileName: string; MyObj: TObject);

 class procedure Save(FileName: string; MyObj: TObject);

 end;

Let's look at the Load procedure. We'll be passing in the INI filename and the object with
the properties into which we'll store the values we read from the INI file:

1. First, we need to declare several variables:

class procedure TIniSave.Load(FileName: string; MyObj:
TObject);

var

 LRttiContext : TRttiContext;

 LMyObjType : TRttiType;

 LMyProp: TRttiProperty;

 LIniClass: IniSaveClassAttribute;

 LData: string;

 LValue: TValue;

 LIniFile: TIniFile;

2. Next, we need to get the RTTI context and type info and create TIniFileObject:

begin

 LRttiContext := TRttiContext.Create;

Growing a language 67

 try

 LMyObjType := LRttiContext.GetType(MyObj.ClassInfo);

 LIniFile := TIniFile.Create(FileName);

 try

 LIniClass := GetClassName(LMyObjType, MyObj.
 ClassName);

 // ...

3. Next, we need to get the class name because we'll use that as [Section] for
the INI values. Currently, this is the only attribute used on this class, but the
GetClassName function checks to make sure that IniClassAttribute is
actually applied:

class function TIniSave.GetClassName(MyObj: TRttiObject;

 const MyObjName: string):
 IniSaveClassAttribute;

var

 Attr: TCustomAttribute;

begin

 Result := nil;

 for Attr in MyObj.GetAttributes do

 if Attr is IniSaveClassAttribute then begin

 Result := IniSaveClassAttribute.Create;

 Result.TheClassName := MyObjName;

 Break;

 end;

end;

4. Finally, back in the Load procedure, we'll go through all the properties, and if there
is a value read from the INI file for that property, we'll set its property value to what
was read:

 for LMyProp in LMyObjType.GetProperties do begin

 LData := LIniFile.ReadString(LIniClass....
 TheClassName, LMyProp.Name,LDefaultData

 if Length(LData) > 0 then begin

 LValue := LMyProp.GetValue(MyObj);

 SetValue(LData, LValue);

 if LMyProp.IsWritable then

68 A Modern-Day Language

 LMyProp.SetValue(MyObj, LValue);

 end;

 // ...

We won't cover the implementation of GetValue and SetValue in this book as it
converts between string and various property types and can get a little tedious. See the
link for the full source at the end of this section.

Now that we have functions to load an object from an INI file using its property names as
the value names, here's how it's applied:

var

 LMySettings: TMySettings;

begin

 LMySettings := TMySettings.Create;

 TIniSave.Load(ChangeFileExt(ParamStr(0), '.ini'),
 LMySettings);

 Writeln('My name is: ' + LMySettings.MyName);

 Writeln('My favorite number is: ' +

 IntToStr(LMySettings.MyFavNum));

 // ...

In this book, we've only shown the details of the Load procedure. The Save procedure
and the implementation of the attribute classes we will discuss are in the uIniSave.pas
unit:

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Del-
phi/blob/master/Chapter04/06_SimpleAttributes/uIniSave.pas

You may have made the observation that this example of using an attribute didn't really
enable the class to be saved to an INI file; it was all the work of RTTI in the TIniSave
class—we didn't really need to use an attribute. That's right. However, now that this class is
using RTTI to read through the class properties, we can add more attributes for additional
control and flexibility in expanding this settings class and for other settings classes we
might create—and thus make the case for using attributes a little stronger.

Growing a language 69

The first addition we'll make is to set a default value. If the INI file does not exist, all the
initial values will be blank. Let's create an attribute to allow a default value to be set:

 IniDefaultAttribute = class(TCustomAttribute)

 private

 FDefVal: string;

 public

 constructor Create(const NewDefaultValue: string);

 published

 property DefaultValue: string read FDefVal write FDefVal;

 end;

Notice that this attribute class has a constructor that takes a parameter. This parameter
will set the class's field with the default value to be used for the property on which this
attribute is applied, should that value be blank in the INI file when read.

Here's how it's used in our modified settings class:

 [IniSaveClass]

 TMySettings = class

 private

 FMyName: string;

 FMyFavNum: Integer;

 published

 [IniDefault('42')]

 property MyFavNumber: Integer read FMyFavNum write
 FMyFavNum;

 [IniDefault('Zeek')]

 property MyName: string read FMyName write FMyName;

 // ...

The Load procedure of TIniSave needs to be modified to check for this new attribute as
it goes through the properties:

 for LMyProp in LMyObjType.GetProperties do begin

 LDefaultData := GetDefaultAttributeValue(LMyProp);

 LData := LIniFile.ReadString(LIniClass.TheClassName,

 LMyProp.Name, LDefaultData);

 end;

70 A Modern-Day Language

The new GetDefaultAttributeValue function finds IniDefaultAttribute
and returns the default value:

class function TIniSave.GetDefaultAttributeValue(MyObj:
TRttiObject): string;

var

 Attr: TCustomAttribute;

begin

 Result := EmptyStr;

 for Attr in MyObj.GetAttributes do

 if Attr is IniDefaultAttribute then begin

 Result := IniDefaultAttribute(Attr).DefaultValue;

 Break;

 end;

end;

This example shows that attributes can have parameters.

The last attribute example will mark properties that we don't want to be saved in the INI
file. Why would we have a setting in our class that isn't saved? Sometimes, settings need
to be modified from their raw value before saving. For example, a password should not
be saved in raw, unencrypted form in a plain-text INI file. One way to approach this is to
write encrypt and decrypt functions and use two different properties, one that is the raw
password used in the application and the other that is the saved and encrypted version of
the password.

I have found another use: TDateTime values. If you let the TIniFile class use its
default save mechanism on TDateTime fields, then when the computer's date/time
format is changed or if the settings file is copied to a different computer with a different
date/time format, reading TDateTime values will cause an error. To avoid this problem,
I always save TDateTime values as strings in a specific format and read and parse the
string back to a date/time when loading it. Therefore, I would like to save the string
version of a date/time but not the actual date/time property itself. The purpose of this
attribute, then, will be to skip or ignore a property; I'll call it IniIgnoreAttribute:

 IniIgnoreAttribute = class(TCustomAttribute);

Growing a language 71

This is the simplest type of attribute where there are no properties, no functions—nothing!
All it is is an annotation to a property so that when we're going through the properties in
the Load or Save procedures and find one with this attribute, we know to skip it:

 for LMyProp in LMyObjType.GetProperties do begin

 LIniPropIgnore := GetPropIgnoreAttribute(LMyProp);

 if not Assigned(LIniPropIgnore) then begin

 // not ignored, get the value ...

The implementation of the GetPropIgnoreAttribute function is pretty simple:

class function TIniSave.GetPropIgnoreAttribute(MyObj:
TRttiObject): IniIgnoreAttribute;

var

 Attr: TCustomAttribute;

begin

 Result := nil;

 for Attr in MyObj.GetAttributes do

 if Attr is IniIgnoreAttribute then begin

 Result := IniIgnoreAttribute(Attr);

 Break;

 end;

end;

Finally, we have the addition to our class:

 published

 // ...

 [IniIgnore]

 property MyBirthDate: TDateTime read GetMyDOB write
 SetMyDOB;

 property MyBirthDateStr: string read FMyDOBStr write
 FMyDOBStr;

 // ...

72 A Modern-Day Language

Now, the property, MyBirthDate, will not be loaded from or saved to the INI file
but will instead use the getter and setter methods to translate the string property,
MyBirthDateStr, which is in the INI file (because it is not annotated with the
IniIgnore attribute).

Details of the getter and setter methods for MyBirthDate will not be listed here for
brevity. The full, commented project, which includes some random data that fills the
properties each time it is run, and many other details of this example project can be found
in Packt's GitHub repository:

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Del-
phi/tree/master/Chapter04/06_SimpleAttributes

With such a strong language foundation, cross-platform computing was ready to take off!
And in 2011, with Delphi XE2, compilers for the Mac and Windows 64-bit were released,
along with the FireMonkey cross-platform GUI framework. Over the next several years,
there were practically no changes to the Delphi language itself as the focus was on updating
compilers and the GUI framework for mobile platforms, adding web services support,
adding tools and features to the IDE, and improving memory management all around.

Finally, starting with Delphi 10.3 Rio in 2018, we got a few more small language
enhancements.

Learning about the latest enhancements
The classic Pascal language rules have been followed in Delphi very closely—and that's
a good thing, in my opinion. I remember stumbling through BASIC or JavaScript many
times looking for the source of an error only to discover that a slight typo changed the
name of a variable deep in a subroutine and subsequently lost the value I had been
expecting. In Delphi, a mistake like that wouldn't even compile because identifiers have to
be declared in a var or const section at the top of a method, or in a separate section of
the class or unit. Some have decried this as old-fashioned and inconvenient, but with some
IDE keyboard shortcuts and quick-setting bookmarks, any arguments for productivity
loss have been removed.

Simplifying variable declaration
With Delphi 10.3 Rio, the declaration of local variables has been given a flexibility boost.
You still have to declare them, but they no longer have to be declared in a separate var
section above the code. These inline variables can also use type inference, where it infers
the type of the variable from the value assigned if it's all done in one statement.

Learning about the latest enhancements 73

The most common example for this is using an integer loop variable in a for loop:

 for var i := 1 to 10 do

 // ...

Here, the variable, i, is declared right in the for loop declaration and its type, integer,
is inferred from the assignment of 1 at the start of the loop.

The first code example in this chapter, BasicSyntaxDemo, has been modified using
three inline and type-inferred variables:

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Del-
phi/blob/master/Chapter04/01_BasicSyntaxDemo/BasicSyntaxDemo.dpr

Those were the only language features that were added to with that version. In Delphi 10.4
Sydney, an interesting addition was made for the old record type.

Controlling initialization and the finalization of records
The record type in Delphi encapsulates fields of any type into a single type that is allocated
as soon as a variable of that type is declared, and deallocated when it goes out of scope
(unlike classes, which have to be manually created and freed). Delphi has managed the
memory for a record's fields, such as strings, for a long time. Its default initialization code
does not clear out memory for a new record variable, which could lead to unintentional
behavior if you forget to do it yourself and start using the field values.

With the latest release of Delphi, you can write code to augment the built-in initialize and
finalize operations. You do this by implementing two operator methods, named, aptly
enough, Initialize and Finalize.

Here's a simple record with a few fields and these two methods:

 TMyManagedFlags = record

 FlagHeader: string;

 Flag1: Boolean;

 Flag2: Boolean;

 Flag3: Integer;

 class operator Initialize(out Dest: TMyManagedFlags);

 class operator Finalize(var Dest: TMyManagedFlags);

 end;

74 A Modern-Day Language

In the implementation, you simply write whatever code needs to be part of the record
initialization. In our sample console app, I'll initialize the field values and write a message
to the console:

class operator TMyManagedFlags.Initialize (out Dest:
TMyManagedFlags);

begin

 Dest.FlagHeader := 'My Custom Managed Flag Record';

 Dest.Flag1 := True;

 Dest.Flag2 := False;

 Dest.Flag3 := 100;

 Writeln(‚Flags initialized');

end;

class operator TMyManagedFlags.Finalize(var Dest:
TMyManagedFlags);

begin

 Writeln('Flags finalized');

end;

The demo app has another, nearly identical record structure, but without the
Initialize and Finalize methods as a comparison. A variable of each type is
declared, and a procedure, ShowFlags, is called to list all the values:

procedure ShowFlags;

const

 FALSE_TRUE_STRS: array[Boolean] of string = ('False',
'True');

var

 uflags: TMyUnmanagedFlags;

 mflags: TMyManagedFlags;

begin

 Writeln('Here are the unmanaged flags...');

 Writeln(‚ Header: ‚ + uflags.FlagHeader);

 Writeln(‚ Flag1 = ‚ + FALSE_TRUE_STRS[uflags.Flag1]);

 Writeln(‚ Flag2 = ‚ + FALSE_TRUE_STRS[uflags.Flag2]);

 Writeln(‚ Flag3 = ‚ + uflags.Flag3.ToString);

Learning about the latest enhancements 75

 Writeln('Here are the managed flags...');

 Writeln(' Header: ' + mflags.FlagHeader);

 Writeln(' Flag1 = ' + FALSE_TRUE_STRS[mflags.Flag1]);

 Writeln(‚ Flag2 = ‚ + FALSE_TRUE_STRS[mflags.Flag2]);

 Writeln(‚ Flag3 = ‚ + mflags.Flag3.ToString);

end;

The body of the program simply writes a line to the console, calls ShowFlags, then
writes another line to the console:

begin

 Writeln('Flag demo starting');

 ShowFlags;

 Writeln('Flag demo done');

 Readln;

end.

As might be expected, the output is as follows:

Flag demo starting

Flags initialized

Here are the unmanaged flags...

 Header:

 Flag1 = False

 Flag2 = False

 Flag3 = 0

Here are the managed flags...

 Header: My Custom Managed Flag Record

 Flag1 = True

 Flag2 = False

 Flag3 = 100

Flags finalized

Flag demo done

Notice the messages, Flags initialized and Flags finalized, before the first
record is listed and after the second record is listed? That's telling us that before and after the
body of the ShowFlags procedure, the mflags variable is being created and destroyed.

76 A Modern-Day Language

This may seem like a small thing, but if you use records, there must have been (or will
be) some time when you've forgotten to initialize the fields of a record and, even though
this simple example happened to initialize the values (empty string, false Booleans, zero
integers), it doesn't always and it will bite you when you least expect it.

So, what do they call this new feature? Custom managed records.

Summary
This was a quick look back at the evolution of Delphi's extensions to Object Pascal,
reviewing the basic syntax and briefly looking at interfaces, variants, nested types, and
Unicode. Generics and anonymous methods were explained, RTTI and attributes were
demonstrated, and finally, inline variables, type inference, and custom managed records
were covered to complete the enhancements in the most recent versions. We didn't touch
on all areas of what makes Delphi such a great language (such as operator overloading or
class helpers) but hopefully, you learned some additional aspects of the language that will
solidify your understanding of powerful modern-day programming concepts and increase
your productivity with advanced techniques.

With a firm grasp of the IDE, an understanding of the toolset, knowledge of Delphi's
project types, and making fine use of the language, you are now ready to go on to the next
chapter and start your deep dive into cross-platform development.

Questions
After reading this, you should be able to answer the following questions:

1. In what scenario will the finalization section of a unit not get called?

2. What code comment style can comment out all other comments?

3. Can a nested type declare its own constant?

4. How long has Unicode been the default string type in Delphi?

5. What value should a TComparer<T>.Compare function return if its left
parameter is less than its right parameter?

6. Why do you have to call Synchronize to access properties of the main form from
a thread?

7. When do you need to get the RTTI context?

8. What version of Delphi introduced inline variables?

Further reading 77

Further reading
• Delphi language overview: http://docwiki.embarcadero.com/

RADStudio/Sydney/en/Language_Overview

• Programs and units: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/Programs_and_Units_(Delphi)

• Camel case: https://en.wikipedia.org/wiki/Camel_case

• Fundamental syntactic elements: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/Fundamental_Syntactic_Elements_Index

• Declared constants: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/Declared_Constants

• Data types: http://docwiki.embarcadero.com/RADStudio/Sydney/
en/About_Data_Types_(Delphi)

• Object-oriented programming: https://en.wikipedia.org/wiki/
Object-oriented_programming

• Unit testing and isolation frameworks: https://www.embarcadero.com/
rad-in-action/delphi-unit-testing

• Marco Cantu's Essential Pascal – variants: https://www.marcocantu.com/
epascal/English/ch10var.htm

• Nested type declarations: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/Nested_Type_Declarations

• Delphi Unicode Migration for Mere Mortals: Stories and Advice from the Front
Lines: http://www.embarcadero.com/images/dm/technical-papers/
delphi-unicode-migration.pdf

• Effectively using generics: https://youtu.be/_DKx2_F3M6g

• Dr. Bob examines anonymous methods: http://www.drbob42.com/
examines/examinA5.htm

• What is aspect-oriented programming? https://docs.jboss.org/
aop/1.0/aspect-framework/userguide/en/html/what.html

• Using attributes and TCustomAttribute descendants: https://
robstechcorner.blogspot.com/2009/09/using-attributes-and-
tcustomattribute.html

http://docwiki.embarcadero.com/RADStudio/Sydney/en/Language_Overview
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Language_Overview
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Programs_and_Units_(Delphi)
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Programs_and_Units_(Delphi)
https://en.wikipedia.org/wiki/Camel_case
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Fundamental_Syntactic_Elements_Index
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Fundamental_Syntactic_Elements_Index
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Declared_Constants
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Declared_Constants
http://docwiki.embarcadero.com/RADStudio/Sydney/en/About_Data_Types_(Delphi)
http://docwiki.embarcadero.com/RADStudio/Sydney/en/About_Data_Types_(Delphi)
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://www.embarcadero.com/rad-in-action/delphi-unit-testing
https://www.embarcadero.com/rad-in-action/delphi-unit-testing
https://www.marcocantu.com/epascal/English/ch10var.htm
https://www.marcocantu.com/epascal/English/ch10var.htm
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Nested_Type_Declarations
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Nested_Type_Declarations
http://www.embarcadero.com/images/dm/technical-papers/delphi-unicode-migration.pdf
http://www.embarcadero.com/images/dm/technical-papers/delphi-unicode-migration.pdf
https://youtu.be/_DKx2_F3M6g
http://www.drbob42.com/examines/examinA5.htm
http://www.drbob42.com/examines/examinA5.htm
https://docs.jboss.org/aop/1.0/aspect-framework/userguide/en/html/what.html
https://docs.jboss.org/aop/1.0/aspect-framework/userguide/en/html/what.html
https://robstechcorner.blogspot.com/2009/09/using-attributes-and-tcustomattribute.html
https://robstechcorner.blogspot.com/2009/09/using-attributes-and-tcustomattribute.html
https://robstechcorner.blogspot.com/2009/09/using-attributes-and-tcustomattribute.html

78 A Modern-Day Language

• Using Delphi attributes to unify source, test, and documentation: https://
marc.durdin.net/2014/05/using-delphi-attributes-to-unify-
source-test-and-documentation/

• Custom managed records new in Delphi 10.4 Sydney: https://community.
idera.com/developer-tools/b/blog/posts/custom-managed-
records-coming-to-delphi-10-4

https://marc.durdin.net/2014/05/using-delphi-attributes-to-unify-source-test-and-documentation/
https://marc.durdin.net/2014/05/using-delphi-attributes-to-unify-source-test-and-documentation/
https://marc.durdin.net/2014/05/using-delphi-attributes-to-unify-source-test-and-documentation/
https://community.idera.com/developer-tools/b/blog/posts/custom-managed-records-coming-to-delphi-10-4
https://community.idera.com/developer-tools/b/blog/posts/custom-managed-records-coming-to-delphi-10-4
https://community.idera.com/developer-tools/b/blog/posts/custom-managed-records-coming-to-delphi-10-4

Section 2:
Cross-Platform

Power

This section starts off by showing how to switch from the Windows-restricted VCL to
the cross-platform FireMonkey visual framework, enabling you to build user-friendly
business applications with modern features that span multiple platforms without rewriting
it for each one. Then we create libraries, packages, and even components for other
platforms, demonstrate how much more useful LiveBindings is than data-aware controls,
and show how to stylize your apps and customize them for your unique look and feel.
We end this section with a fun exploration of 3D, including a complete sample game
you can play!

This section comprises the following chapters:

• Chapter 4, Multiple Platforms, One Code Base

• Chapter 5, Libraries, Packages, and Components

• Chapter 6, All About LiveBindings

• Chapter 7, FireMonkey Styles

• Chapter 8, Exploring the World of 3D

4
Multiple Platforms,

One Code Base
We are now ready to dive into the real focus of this book: multiple platforms! We're going
to wade through a lot of new territory in this chapter, introducing FireMonkey, setting
up other platforms for deployment, and the best part, seeing your application running on
your phone or tablet!

We'll take you through these concepts in the following sections:

• Moving to FireMonkey from the VCL

• Preparing other platforms

• Working with various screen sizes

• Writing code to support multiple platforms

Technical requirements
Besides the typical requirements of this book for running Delphi 10.4 Sydney on a
Windows 10 64-bit computer, to run all the examples listed in this chapter and the ones in
the rest of this book, you will also need access to one or more of the following:

• An Apple Mac running a minimum of macOS 10.13 High Sierra accessible via IP
address from your Windows development machine

82 Multiple Platforms, One Code Base

• A 64-bit iOS device (iPod Touch, iPad, or iPhone) running a minimum of iOS 11
connected to a Mac via USB

• A 32-bit or 64-bit Android device running a minimum of Android Marshmallow
(6) connected to your Windows machine via USB

Note
The operating system version of the mobile device you want to test with can
be a troublesome area when supporting multiple platforms with Delphi. If all
you do is write Android apps with Android tools and Apple apps with Apple
tools, you should be fine. But development tools that are native to neither
must carefully test and debug the libraries that come from these platforms
for changes or incompatibilities with the tool. Each version of Delphi lists the
versions of macOS, iOS, and Android and lists the device types that have been
tested and are supported. Even then, changes may occur between release cycles
and your device may be upgraded suddenly to something not yet supported.
This can be a point of great frustration if you're pushing a deadline. Indeed,
this happened to me while writing this chapter. My iPhone upgraded from
13.7 to 14.0 and Delphi 10.4.1 was unable to get all the SDK files it needed for
debugging. My Google Pixel phone was at Android 11 but Delphi 10.4 only
supported up through Android 10, so would not recognize it until I manually
copied over the Android 11 (API 30) SDK using Android Studio's tools and
modified the paths within Delphi. Visit the Delphi forums for advice on getting
past these hurdles.

The example projects for this chapter can be found on GitHub at https://github.
com/PacktPublishing/Fearless-Cross-Platform-Development-with-
Delphi/tree/master/Chapter04.

Moving to FireMonkey from the VCL
For many years, the only GUI development platform that came with Delphi was the VCL,
or Visual Component Library. The VCL is powerful and mature but is so entrenched with
Windows-specific API calls that it is not practical to turn it into something else. Instead,
VGScene, a cross-platform library designed by Eugene Kryukov of KSDev, was acquired in
2011, rebranded as FireMonkey, and added to Delphi XE2. And now, many iterations later,
it is the foundation for all cross-platform GUI applications in Delphi.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter05
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter05
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter05

Moving to FireMonkey from the VCL 83

All Mac, iOS, and Android GUI development in Delphi uses the FireMonkey framework.
Windows has the option to use either FireMonkey or the VCL. So, if you're familiar with
the VCL, the first step toward understanding cross-platform GUI development is to switch
your Windows application development to use FireMonkey. This first section will lead you
through that step.

Starting a new Windows FireMonkey project
Starting a new FireMonkey project is pretty simple. We covered this briefly in the first
section of Chapter 2, Delphi Project Management. Just select File | New | Multi-Device
Application from the Delphi menu and select your template type. We'll just use the
Blank Application template as our starting point for this first example as it most closely
resembles the starting point for a new VCL application.

Once it is created, expand Target Platforms to see that Delphi has configured seven
platform types for you with Windows 32-bit initially activated:

Figure 4.1 – New multi-device application targets

84 Multiple Platforms, One Code Base

We'll just leave the target at the default of Windows 32-bit for now and switch to Unit1.
Let's place a few common controls on the form:

Figure 4.2 – FireMonkey form with simple controls

Name the TEdit control edtName, name the TButton control btnSayHello, then
double-click the button to create the OnClick event handler:

procedure TForm1.btnSayHelloClick(Sender: TObject);

begin

 TDialogService.ShowMessage('Hello, ' + edtName.Text);

end;

(TDialogService is found in the FMX.DialogService unit, which you have to add
manually under a uses clause.)

It looks fairly familiar, doesn't it? Save and run the project, type in a name in the box,
and click Say Hello to see the name show up in a dialog message. You can download this
simple project from GitHub:

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Del-
phi/tree/master/Chapter05/01_HelloFireMonkey

Moving to FireMonkey from the VCL 85

FireMonkey is designed to have a lot of similarities to the VCL to aid experienced Delphi
developers to quickly embrace this new framework. However, there are some notable
differences. Here are several of them:

• VCL controls are positioned with Top and Left properties and sized with Height
and Width whereas FireMonkey controls use a Position property with X and Y
nested properties for positioning and a Size property with nested Height and
Width properties for sizing.

• The text of a FireMonkey TLabel is in its Text property, not the Caption
property as in VCL.

• Font properties in many FireMonkey controls are found under the TextSettings
property. Furthermore, the sizes are given in DIPs (Device-Independent Pixels)
and initialized at 96 per logical inch whereas VCL fonts use points and are set at 72
per logical inch, making the same font size in FireMonkey (compared with its VCL
counterpart) smaller.

• FireMonkey's TCheckBox component changes a couple of things. First, the
Checked property is now IsChecked. Second, to capture the click event and
take action on the value of the IsChecked property that was just changed, use the
OnChange event instead of the OnClick event like you did in VCL.

• FireMonkey's color constants are prefixed with cla instead of cl.

• There is no separate type of button to hold glyphs; instead, the FireMonkey
TButton has an Images property that can point to a TImageList component
holding multiple images and ImageIndex to select which one is showing.

• Global constants that are platform-independent, such as message dialog types, open
options, modal results, and virtual key codes, have been moved to the System.
UITypes unit and out of the VCL-specific unit, Vcl.Controls.

• VCL applications will use units such as Vcl.Forms, Vcl.Dialogs, Vcl.
Graphics, Vcl.Controls, Vcl.StdCtrls, Vcl.ComCtrls, and Vcl.
ExtCtrls but with FireMonkey, they'll use FMX.Forms, FMX.Dialogs,
FMX.Graphics, FMX.Controls, FMX.StdCtrls, FMX.Edit, and FMX.
Controls.Presentation.

• There are no data-aware components (for example, TDBEdit) in FireMonkey.
Instead, you are encouraged to use LiveBindings, which was introduced at the same
time FireMonkey came out in Delphi XE2 but is also available for VCL applications
(we will cover LiveBindings in great detail in Chapter 6, All About LiveBindings).

86 Multiple Platforms, One Code Base

I would suggest that you open the FireMonkey example projects that come with Delphi
and play around with the controls and properties, trying out different ways of interacting
with them and comparing your experience with the nuances of this new framework. Click
on the Open a Sample Project link from the default welcome screen and in the file open
dialog, drill down from Samples through Object Pascal | Multi-Device Samples, and
select from the projects in User Interface. We will be covering several aspects of these
later in this book but there's no better way to get familiar with them than to just dig in and
start experimenting.

A much harder task than starting a new FireMonkey application is migrating an existing
one written with the VCL framework. In some cases, it may not be practical.

Migrating an existing Windows VCL application to use
FireMonkey
Based on the simple example project shown earlier and the list of differences just
mentioned, you might think converting a VCL application over to use the FireMonkey
framework won't be that difficult—just change the units, adjust the fonts, use different
events and properties with checkboxes, and adjust for the other differences we
discussed. But there is no easy way to convert a form using Delphi alone—you can't
simply open a VCL form and save it as a FireMonkey form. Only in the case of porting it
to a Mac desktop application might it make sense anyway as mobile devices have much
smaller screens, which would require a re-design to make them usable.

Note
There is a third-party commercial product that makes a valiant attempt to do
this that could save you many hours of work for large applications. It's called
Mida Converter and has different capabilities depending on the price you
pay. Its Basic edition is free for registered users of Delphi XE2 and XE3. Read
more about it with the link in the Further reading section at the end of this
chapter. If you want to make your desktop apps work on Macs, this shortcut
may work for you.

The only pure-Delphi way of migrating your old VCL applications to FireMonkey is by
starting a new blank multi-device application, then creating each form manually and
placing new FireMonkey-equivalent controls, constantly referring to the VCL forms in the
old application. This will be tedious but most of the code will be able to be ported over—
unless you married the user interface close to the data and business logic, used data-aware
controls, called low-level Windows APIs, or have a plethora of custom components. Most
organizations feel it's better to just rewrite their application from scratch (and shed any
technical debt built up with the old code!).

Moving to FireMonkey from the VCL 87

As a test of this process, I took the example project, RttiExplorer, used in
Chapter 3, A Modern Day Language, and migrated it to use the FireMonkey framework.
It took about an hour to recreate this one form and port the code over. Here are the issues
I encountered:

• The panel in FireMonkey doesn't have a caption or text property, so I had to add
TLabel to the top panel.

• Labels don't have an OnClick event as the VCL does.

• The FireMonkey Align property has many more options than in the VCL—it
wasn't a problem but I had to look carefully through the list and learn about the new
ones in order to choose the right one.

• TLabel's AutoSize property is False by default in FireMonkey—and it
works differently.

• There is no TLabeledEdit component in FireMonkey.

• There is no TRadioGroup; I had to place a TGroupBox and then add individual
TRadioButtons inside to replicate the functionality from the VCL version.

• Positioning components of a group box is independent of the bounds of the group
box; however, a component placed inside a group box and dragged outside of it still
shows in the Structure pane as being in the GroupBox's container.

• The FireMonkey version of the application runs slower on Windows than the VCL
version on the same platform.

You can see the migrated project on GitHub at the following link:

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Del-
phi/tree/master/Chapter05/02_RttiExplorerFM

Whether you start afresh or migrate your code, you'll end up with an application
whose GUI can work across platforms, no longer tied directly to Windows. The RTTI
Explorer project was a simple one to migrate but, as it was originally designed, doesn't
lend itself well to small screens. If all you're targeting are desktop platforms (for example,
Windows and macOS), that's fine but it will be a common problem when you evaluate the
future of legacy desktop applications and need to factor in phone-sized screen real estate.

So, once you have your FireMonkey application ready for cross-platform deployment, how
do you actually get it onto other platforms? It takes a little preparation.

88 Multiple Platforms, One Code Base

Preparing other platforms
You're probably very eager to see your new cross-platform code running on your phone or
tablet. But there is a little setup to get it deployed to other platforms. Fortunately, Delphi
provides tools to greatly simplify the process.

When I say "other platforms," that means anything other than what Delphi is, a Windows
32-bit application. So, even Window 64-bit is technically another platform. However, since
Windows supports both 32-bit and 64-bit applications running side by side, deploying to
Windows 64-bit is really straightforward but it is a good thing to keep in mind. There is
no preparatory step for Windows 64-bit.

Note
If you have the Enterprise or Architect versions of Delphi, you'll also have
the ability to write Linux applications. Out of the box, Delphi only supports
console applications on Linux as Delphi's current implementation of
FireMonkey does not support Linux but KSDev, the original producers of
what later became FireMonkey, have ported the code to Linux and made this
available under the name FMXLinux. You can download this through the GetIt
Package Manager. We'll cover deploying apps to the Linux platform in
Chapter 12, Console-Based Server Apps and Services.

The two main platforms outside of Windows that we will discuss in this chapter are the
Mac and Android platforms. iOS apps require a Mac to deploy, so we'll cover that in
conjunction with the discussion of setting up the Mac platform. Let's start there.

Preparing a Mac for cross-platform development
Debugging and deploying Delphi applications on Apple platforms (Mac or iOS) requires
installing the Platform Assistant Server (PAServer) on a Mac accessible over a local
network that is connected to your development PC. Delphi will then communicate with
the PAServer, sending your packaged application and receiving application execution
information back when it's running. Some developers use a Mac and run Windows
in a virtual machine—and that works quite well with the Windows session able to
communicate with the local Mac session.

PAServer21.0.pkg is the installer for the Mac and can be found in the PAServer
folder in your Delphi directory. Simply copy it over the network to the Mac and run it.
Installing the PAServer is a simple step-by-step process leading you through a common
wizard interface. Click Continue through the steps until the last page where it lets you
know it's installed and where to find it:

Preparing other platforms 89

Figure 4.3 – PAServer for the Mac, installation complete

Now, navigate to the Applications folder on the Mac and look for it:

Figure 4.4 – PAServer application icon

Launching the PAServer starts a command-line application on the Mac:

Figure 4.5 – PAServer running on a Mac

90 Multiple Platforms, One Code Base

This brings up the PAServer command interface.

Note
On some systems, a terminal window opens in addition to the PAServer
window. macOS is based on the NeXT operating system (which has a lot of
history with BSD Unix) and so the terminal window's command shell and
utilities are similar to what you'd see in Unix or Linux. In fact, the default shell
for many versions of macOS is the Bash shell, which is very familiar on Unix
and Linux.

When you start the PAServer, it asks for a connection profile password. If you're working
in an environment requiring high security or you just want to make sure you'll be the only
one accessing this PAServer, type in a password here; otherwise, you can simply press
Enter for no password. The PAServer then shows the port currently configured and drops
to a prompt. You can type ? for a list of available commands:

Figure 4.6 – PAServer commands

From here, you can get information about the currently running PAServer and its
connected clients or terminate processes running on it. That's it—now we're ready to get
our first application connected and running on a Mac!

Running your first cross-platform application
Create a new multi-device application based on the Master-Detail template. It runs
without modification immediately and gives us an easy starting point. Get familiar with
it by selecting the Windows 32-bit target and running it. It uses Live-Binding to connect
details in labels and a memo on the right side of the screen with the selected person from
ListView on the left side of the screen. Now that you know what it looks like and how it
should behave on Windows, let's run it on the Mac.

Preparing other platforms 91

For Delphi to know where to send your Mac app, it has to connect to the PAServer we set
up in the previous section. Since you can have multiple PAServer instances running on
various machines in your network, Delphi needs a way to identify them and allow you
to switch between them. This is done with connection profiles. To manage these, open
Tools | Options from the Delphi menu and select the Deployment | Connection Profile
Manager screen. Here, you can add, copy, rename, and test connection profiles—even
share them with other developers on your team.

Tip
You can also simply right-click and select Properties on your project's target
platform in the Project Manager to select and edit a single connection profile.

Our first target platform will be macOSX 64-bit and will connect to the PAServer we
installed in the previous section. From the Connection Profile Manager, click Add… and
the following dialog shows:

Figure 4.7 – Creating a new PAServer connection profile

92 Multiple Platforms, One Code Base

Give a descriptive name for the PAServer to which you're connecting (I named mine
mac mini) and change the selected platform to macOS 64-bit, then click Next. Enter
the remote machine's name or IP address, set the port (if it's different from the default),
and optionally, enter a password if you configured your PAServer with one. Once enough
information has been entered, the Test Connection button will become enabled. Click it
to verify the connection.

Now that Delphi knows where to send your app, it needs to know what type of device is
on the other end of that platform connection. Under the same Deployment section of
Delphi's Options screen, drop down to SDK Manager and click Add:

Figure 4.8 – Add a New SDK for Mac OS X

In this screen, select the platform (macOS 64-bit in this case), the profile just created, and
the version of the SDK, or software development kit, that matches the Mac on the other
side. Clicking OK will download the files necessary for this SDK (if not already installed).

Now that a connection profile exists and the SDK is installed for the macOS 64-bit
platform, the profile shows up next to the macOS platform:

Figure 4.9 – Mac target platform using the new connection profile and SDK

Preparing other platforms 93

With the PAServer running on a Mac in your network and a connection profile
successfully configured and tested in Delphi for your selected macOS 64-bit target, there's
only one thing left to do: run it!

Figure 4.10 – The ClientList app running on a Mac

It doesn't launch as quickly as a Windows application on your local computer—and you
may wonder whether it will even start—but after a few moments, you'll be rewarded.

I'll call this app ClientList; the code for it is on GitHub and we'll be using it several
more times in this chapter:

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Del-
phi/tree/master/Chapter05/03_ClientList

Now, let's hook up an iPhone.

94 Multiple Platforms, One Code Base

Preparing for iOS development and deployment
Now that the PAServer is successfully running on your Mac, Delphi can use it to deploy
both Mac and iOS apps. If you haven't already, connect your iOS device (iPhone, iPad, or
iPod) to your Mac via a USB (or lightning) cable. Now, the PAServer running on the Mac
will see it and send the connected device info to your Delphi session.

So, back in Delphi, you need to revisit the SDK Manager on the Options screen and add
support for your device. I connected an iPhone to a Mac Mini and added the iPhoneOS
14.0 SDK for the iOS Device 64-bit platform:

Figure 4.11 – Adding a new SDK for iOS

Again, you'll note the new profile is now showing next to the iOS platform for the project:

Figure 4.12 – iOS target platform and SDK

Preparing other platforms 95

It also shows up in Delphi's title bar:

Figure 4.13 – iPhone device selected

Now that Delphi knows the type of iOS device to build and where to send it, the last
part of getting your app prepared involves putting several pieces of information into
your app so that the Xcode utilities know how to sign it and your iOS device accepts it
and runs it. But there's a problem: the PAServer doesn't know how to tell Xcode to sign
code that comes straight out of Delphi without an Apple Developer account. So, follow
the link at the end of this chapter to sign up for one—it'll cost $99 per year but allows
you to distribute apps on the Apple App Store and prevents your apps' digital certificates
from expiring.

Note
It is possible to get Delphi apps onto iOS devices without an Apple Developer
account but it's convoluted. You have to create a simple app in Xcode and
name it exactly what your Delphi app is named, deploy it, then once the iOS
device is prepped to receive an app by that name, and has allocated the security
clearance for it, copy the "bundle" information found in the Xcode project to
the Version Info fields of your Delphi project and run it through the PAServer.
Your iOS device will then see your app as an update to the one that is already
there. The process requires some navigating through Xcode and is outside the
scope of this book. (But for the record, I have done it!)

Setting up an Apple Developer account isn't terribly difficult. Just follow the instructions
at the Apple Developer Program link in the Further reading section at the end of this
chapter and soon you'll be able to log in and manage your account. This will allow
you to create identities for the apps you will build and certificates that will be used to
sign them.

96 Multiple Platforms, One Code Base

You only need one or two certificates to sign all the apps you will build, so let's set that up
first. There are several different certificate types; the one we're interested in for developing
and testing Mac and iOS apps is Apple Development (you could get more specific and get
one just for iOS App Development if you choose—read about the various types and select
the one that works for you and your team; you can create additional ones as needed).
You'll use the Keychain Access app on your Mac to create a certificate request file via its
Certificate Assistant, and save it to disk:

Figure 4.14 – Creating a certificate request

Then, from your Apple Developer account, create a new certificate, select your certificate
type, then upload the certificate request file you just created. Your signing certificate is
created immediately, allowing you to download your new signing certificate to your Mac
and add it to the certificates in your Keychain Access list:

Preparing other platforms 97

Figure 4.15 – New certificate added to Keychain Access

You now need to create app identities for each app you deploy. In your Apple Developer
account, go to the Identifiers list and create a new identifier. As with certificates, there are
several types of identifiers; we'll just use the standard App ID type for now.

Fill out the Description and Bundle ID settings for your app (I recommend an Explicit
ID for now; we'll cover Wildcard IDs much later). Follow the recommended naming
convention when setting up the bundle ID; it must be unique among all app IDs, so prefix
it with the name of your organization and append a unique, descriptive app name. For the
sample ClientList app created in the previous section, the app identifier I created is
book.fearless-crossplatform-delphi-dev.ClientList:

Figure 4.16 – Creating a new app ID

98 Multiple Platforms, One Code Base

Now that we have an app ID and a signing certificate, we hook those together into a
provisioning profile. This is done under Profiles (still in your Apple Developer account).
As might be expected, there are several profile types to choose from. Later, when you're
ready to deploy an app to the App Store or to unknown devices within your organization,
you'll choose the appropriate type under Distribution. For our testing and development,
select iOS App Development, select the app ID you just created, select the certificate you
just created, and lastly, select the iOS device connected to your Mac. Then, give your new
profile a name:

Figure 4.17 – Creating a provisioning profile

Preparing other platforms 99

With a completed provisioning profile now present in your Apple Developer account,
enter the app ID into the CFBundleIdentifier field of the Version Info screen for the iOS
target platform. If your application name exactly matches the last part of the app ID, you
can replace that part with $(ModuleName):

Figure 4.18 – Adding the app ID into the Delphi project's version info CFBundleIdentifier field

100 Multiple Platforms, One Code Base

Finally, in the project's Deployment | Provisioning options, select the Build type,
Provision Profile, and Developer Certificate settings associated with this app in your
Apple Developer account (usually, Auto will suffice):

Figure 4.19 – Setting the Provisioning information for the project

At last, launch the application and soon you'll see it appear on your device:

Preparing other platforms 101

Figure 4.20 – The ClientList app running on an iPhone

These steps can be repeated for other devices (create additional device identities in your
Apple account for testing) and other applications (create a provisioning profile for every
application you will deploy).

Now that we've got the Mac and iOS platforms under our belt, let's move on to Android.

102 Multiple Platforms, One Code Base

Preparing your PC to deploy to an Android device
Android development in Delphi is not done through the PAServer. Instead, Android
devices connect directly to your PC running Windows, then Delphi deploys and debugs
it over the USB cable. Additionally, Android apps do not need to be signed, saving several
steps in the development process.

Because they connect directly and because there are many different manufacturers of
Android devices, not only do you have to install an SDK for the version of Android you
want to support (similar to the Mac and iOS platforms), you also have to install a device
driver to support each device type that you want to test with. For example, I have an old
ZTE phone for testing, an Amazon Kindle Fire tablet, and a new Google Pixel phone. In
order to test each of these, I have to download and install two different device drivers, one
for each of my non-Google devices, onto my Windows PC. Fortunately, the drivers are
fairly easy to find and it's a one-time install. Many of them can be found by following links
for your device manufacturer under Android device driver links in the Further reading
section at the end of this chapter.

Once the driver is installed, you need to set up your device for USB debugging. On most
Android devices, this is done by going into Settings and enabling the setting under
Developer options. If Developer options is not visible, select About and click the build
number seven times (this may seem a little strange if you've never done this before but
that's what you have to do!). You'll likely want to enable a few other developer options,
such as Stay awake while charging, so look through the ones available on your device.

If you selected Android development when you installed Delphi, chances are the Android
SDK and NDK (native development kit) are already installed. If not, or if you need to use
a different version of the Android tools that were originally installed, you'll need to revisit
the SDK Manager in the Options window. See the Adding an Android SDK link in the
Further reading section at the end of this chapter for details.

Now, everything should be configured and in place for Delphi to see your device. With
the ClientList app we were working with previously, select the Android 32-bit target
platform in the project. If your Android device is configured and connected properly, it
should show up next to the target platform:

Figure 4.21 – Android target selected with an Android device detected

Preparing other platforms 103

Running the app is as simple as other Delphi apps and automatically deploys and launches
it on your Android device:

Figure 4.22 – The ClientList app running on an Android phone

Well, there it is! A single code project deployed to four very different platforms: Windows,
Mac, iPad, and an Android phone. Now, let's dig under the hood and see what it took to
make this happen—and some tricks you'll take to other projects.

104 Multiple Platforms, One Code Base

Working with various screen sizes
The first thing you probably noticed when working with the ClientList app we used in
the previous section is that Delphi's design-time view shows a master list of people on the
left and a Detail view of a single person on the right. This is the standard desktop interface
and was how both the Windows and Mac desktop applications looked. However, when
we deploy the app to a mobile device in portrait mode, the master list disappears and all
you see is a button at the upper left of the screen that, when clicked, reveals the master list
in a slide-out list over the detail, allowing you to scroll and select a different person, after
which it hides again.

How does the app look and behave differently on a smaller screen?

Exploring target views
Before I answer that, look at the right side of the toolbar at top of the design view for the
ClientList project. There's a combo box labeled View, and if you drop down the list,
you'll see the various combinations of target devices and screen sizes:

Figure 4.23 – View selector showing several target views

The first view that is automatically selected when you load a FireMonkey project is the
Master view. This is the base view upon which all others inherit from. The one selected
above shows what the app would look like on a 4" iPhone.

Writing code to support multiple platforms 105

Look in the upper-left corner of the detail toolbar, in either an Android or iPhone view, at
the MasterButton component, a TSpeedButton that has the StyleLookup property
set to detailstoolbutton. This is the button that shows the Master list on a small
screen when in portrait mode. On an Android, it's three vertically aligned dots; on an
iPhone, it's three horizontal lines.

Having different views allows you to arrange components differently and set properties
differently for the different devices that will use those views. You can add and remove
components only on the Master view, not any of the other views; however, some
properties will be available on some views and not on others depending on the capabilities
of the device that supports that view. Also, different views have different styles that
correspond to that device's native look and feel. MasterButton's property is the same in
all views—the view's style is what dictates how it appears. We will cover these concepts in
greater detail later in the book.

Let's get back to the question of how a particular view is selected. Views are tied to Delphi
devices, defined in Tools | Options | User Interface| Form Designer | Device Manager.
These devices have properties that define the size and orientation of the form (you can
create custom devices from this screen for your use in Delphi if you need to). When your
application runs, the FireMonkey framework goes through the defined views for the
current platform and picks the closest match based on the device size and class.

In addition to customizing the layout and properties of components on forms at design-
time, you can also write code that executes only on specific devices.

Writing code to support multiple platforms
While the bulk of your code will be the same regardless of the platform upon which it's
running, there will be some cases where you want to do things differently or provide
different options if the application is running on a specific device. These unique
application characteristics cannot always be implemented by simply customizing
properties on a view but must be specifically handled by the code you write. And
sometimes that code will only run on devices with very particular hardware architectures.
To handle these cases, use conditional compilation.

In previous chapters, you've seen specially formatted comments that tell Delphi to
link in resources (for example, {$R *.fmx}) or to create a console app (for example,
{$APPTYPE CONSOLE}). This same type of syntax is used to include or exclude specific
lines of code based on defined constants. These are not code identifiers, which are defined
in a const section, but compilation identifiers defined during the compilation process
depending on the target platform.

106 Multiple Platforms, One Code Base

For example, if you're compiling a Windows application, the MSWINDOWS identifier is
defined. If your target is Windows 32-bit, then WIN32 is also defined, whereas if your
target is Windows 64-bit, then WIN64 is also defined.

The Mac OS X platform defines MACOS and MACOS64. Here are several more
common ones:

• Android platforms: ANDROID, ANDROID32, ANDROID64

• iOS platforms: IOS, IOS32, IOS64

• Linux platforms: LINUX, LINUX32, LINUX64

There are also compilation identifiers for various CPU architectures, for example,
CPU386, CPU64BITS, and CPUARM. Some are useful for libraries that span several
versions of Delphi and need to know whether certain language features are supported,
such as UNICODE.

To use these identifiers, surround lines of code with conditional directives such as {$IF}/
{$IFDEF}/{$IFNDEF}, {$ELSE}/{$ELSEIF}, and {$ENDIF}.

Check out this FormCreate procedure to see them in action:

procedure TfrmHello.FormCreate(Sender: TObject);

begin

 {$IFDEF MSWINDOWS}

 lblHello.Text := 'Hello Microsoft!';

 {$ELSEIF DEFINED(MACOS)}

 lblHello.Text := 'Hello Apple!';

 {$ELSEIF DEFINED(ANDROID)}

 lblHello.Text := 'Hello Android device!';

 {$ELSE}

 lblHello.Text := 'Hello Unknown device!';

 {$ENDIF}

end;

This was taken from the sample project on GitHub at the following link:

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Del-
phi/tree/master/Chapter05/04_HelloDevice

Summary 107

There are several other compiler identifiers available—see the Conditional compilation
link in the Further reading section at the end of this chapter. You can create your own.
When we talked about build configurations in Chapter 2, Delphi Project Management,
you learned that Delphi's default Debug and Release configurations define DEBUG
and RELEASE, respectively. You can customize the list of defined identifiers in the
configurations or in your code using the {$DEFINE} directive. One reason you might do
this is if you want to build multiple versions of your application for different customers or
with different features.

Conditional compilation is another powerful management tool for the professional cross-
platform developer.

Summary
In this chapter, we've migrated your skills as a Windows VCL developer to the
FireMonkey framework, walked you through preparing devices from other platforms
for development and testing, and finally, saw your Delphi apps running on them. We
also showed you how different devices can utilize custom form views and how to execute
different code based on conditional compilation.

Before we look deeper into advanced aspects of multi-device development, the next
chapter talks about strategies for sharing code with other projects or other members of
your team with libraries, packages, and components and how that is done with cross-
platform goals in place.

Questions
1. What FireMonkey project template most closely resembles a new VCL project?

2. List two ways a FireMonkey checkbox differs from a VCL checkbox.

3. What can you use in FireMonkey to mimic the VCL's data-aware capability?

4. What GUI framework is available on Linux that is similar to FireMonkey?

5. Where can you find PAServer installers for other platforms?

6. What does a provisioning profile for iOS consist of?

7. Besides the SDK, what must be in place for testing and debugging Android apps?

8. How does a FireMonkey application know which view to use when it runs?

9. What compiler identifier would you use to compile code only on 64-bit platforms?

108 Multiple Platforms, One Code Base

Further reading
• The FireMonkey platform: https://en.wikipedia.org/wiki/

FireMonkey

• FireMonkey versus VCL: http://delphi.org/2016/10/firemonkey-vs-
vcl/

• Mida Converter: http://midaconverter.com/

• FMX Linux: https://www.fmxlinux.com/

• PAServer, the Platform Assistant Server Application: http://docwiki.
embarcadero.com/RADStudio/Sydney/en/PAServer,_the_
Platform_Assistant_Server_Application

• iOS Mobile Application Development: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/IOS_Mobile_Application_Development

• Apple Developer Program: https://developer.apple.com/programs/

• Apple app signing certificates: https://help.apple.com/xcode/mac/
current/#/dev3a05256b8

• Android device driver links: https://developer.android.com/studio/
run/oem-usb

• Configure Your System to Detect Your Android Device: http://docwiki.
embarcadero.com/RADStudio/Sydney/en/Configuring_Your_
System_to_Detect_Your_Android_Device

• Adding an Android SDK: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/Adding_an_Android_SDK

• Using FireMonkey Views: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/Using_FireMonkey_Views

• Adding a Customized View to the View Selector: http://docwiki.
embarcadero.com/RADStudio/Sydney/en/Adding_a_Customized_
View_to_the_View_Selector

• Conditional compilation: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/Conditional_compilation_(Delphi)

https://en.wikipedia.org/wiki/FireMonkey
https://en.wikipedia.org/wiki/FireMonkey
http://delphi.org/2016/10/firemonkey-vs-vcl/
http://delphi.org/2016/10/firemonkey-vs-vcl/
http://midaconverter.com/
https://www.fmxlinux.com/
http://docwiki.embarcadero.com/RADStudio/Sydney/en/PAServer,_the_Platform_Assistant_Server_Application
http://docwiki.embarcadero.com/RADStudio/Sydney/en/PAServer,_the_Platform_Assistant_Server_Application
http://docwiki.embarcadero.com/RADStudio/Sydney/en/PAServer,_the_Platform_Assistant_Server_Application
http://docwiki.embarcadero.com/RADStudio/Sydney/en/IOS_Mobile_Application_Development
http://docwiki.embarcadero.com/RADStudio/Sydney/en/IOS_Mobile_Application_Development
https://developer.apple.com/programs/
https://help.apple.com/xcode/mac/current/#/dev3a05256b8
https://help.apple.com/xcode/mac/current/#/dev3a05256b8
https://developer.android.com/studio/run/oem-usb
https://developer.android.com/studio/run/oem-usb
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Configuring_Your_System_to_Detect_Your_Android_Device
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Configuring_Your_System_to_Detect_Your_Android_Device
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Configuring_Your_System_to_Detect_Your_Android_Device
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Adding_an_Android_SDK
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Adding_an_Android_SDK
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Using_FireMonkey_Views
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Using_FireMonkey_Views
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Adding_a_Customized_View_to_the_View_Selector
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Adding_a_Customized_View_to_the_View_Selector
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Adding_a_Customized_View_to_the_View_Selector
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Conditional_compilation_(Delphi)
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Conditional_compilation_(Delphi)

5
Libraries, Packages,

and Components
There's a joke listed as one of Murphy's computer laws that goes like this:

Any given program will expand to fill all the available memory.
Over the life of an application, customers demand more, operating systems get updated,
new devices are supported, and so on. It is inevitable that useful software will grow in size
and complexity over time.

Today's programs share code, call external services, and dynamically load resources in a
variety of ways. Delphi has supported these techniques for a long time, but a refresher is
in order, not only because it's more important than ever but also because there are some
cross-platform considerations.

110 Libraries, Packages, and Components

We'll start with the basics by simply pulling out procedures and functions into a
Dynamically Loaded Library (DLL) that can be called from any language. Then,
we'll move to working with packages and show you how to install your own custom
components into Delphi's Tool Palette. Finally, we'll show how your components in the
Delphi IDE can be made to link project code from other platforms. Here are the sections
for these topics covered in this chapter:

• Sharing code in libraries

• Modularizing applications with packages

• Building components for multiple platforms

Technical requirements
In addition to having Delphi 10.4 Sydney Professional installed in a Windows 10 64-bit
environment, you should also have access to a Mac and/or a mobile device to build the
sample applications discussed in this chapter for other platforms. For details, refer to the
Technical Requirements of the previous chapter.

NOTE
If you have Delphi Enterprise or Architect and want to try the examples in this
book on the Linux platform, you will also need 64-bit Ubuntu 14.04, 16.04,
or 18.04, or Red Hat Enterprise 7. If you don't have a separate machine with
Linux, you can install the Linux subsystem right within Windows 10 and it
works well as a test environment for Delphi server applications.

All the code for this chapter can be found on GitHub at https://github.com/
PacktPublishing/Fearless-Cross-Platform-Development-with-
Delphi/blob/master/Chapter05.

Sharing code in libraries
Let's begin with a simple Windows FireMonkey application that hides a string. Create
a blank multi-device application, and add a label for a prompt, an edit box for input, a
button to take action on the entered text in the edit box, and another label to display the
hidden text. Your form should look something like this:

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/blob/master/Chapter03
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/blob/master/Chapter03
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/blob/master/Chapter03

Sharing code in libraries 111

Figure 5.1 – Hide string demo FireMonkey main form

Add a function that takes a string and returns another with the original string hidden in
some way. Here's a simple example:

function TfrmHideStrMain.HideString(const MyString: string):
string;

begin

 // manipulate the string to hide its original contents

 for var i := 1 to Length(MyString) do

 Result := Result + Chr(Random(26) + Ord('A')) +
 MyString[i];

end;

Now, call that function from the button's OnClick event and display the results in the
result string (which I've called lblHidden):

procedure TfrmHideStrMain.btnHideStringClick(Sender: TObject);

begin

 lblHidden.Text := HideString(edtInput.Text);

end;

Compile and run this program as a Windows 32-bit application just as a quick test.

112 Libraries, Packages, and Components

Now, let's take the HideString function and extract it to a library. To do that, create a
Dynamic Library project, copy the HideString function, and add an exports clause:

library HideStringLib;

function HideString(const MyString: string): string; stdcall;

begin

 // manipulate the string to hide its original contents

 for var i := 1 to Length(MyString) do

 Result := Result + Chr(Random(26) + Ord('A')) +
 MyString[i]; end;

exports HideString;

begin

end.

Then, modify the main project code by taking out the declaration to the function in the
form and the body of the function in the implementation section and replace it with
just the declaration and a reference to the DLL in which it exists:

function HideString(const MyString: string): string;

 stdcall; external 'HideStringLib.dll' name 'HideString';

Compile the library project, making sure that the DLL will end up in the same folder as
the executable for the main demo app, then run the demo app to check that it still works.
The code for both projects is on GitHub at the following link:

https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter05/01_HideStringDLL

This is the quickest and simplest way to extract and use functions in a DLL—but it's not
the best way. There are a couple of things to discuss here. But first, a few tips about writing
DLLs for Windows.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter03/01_HideStringDLL
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter03/01_HideStringDLL

Sharing code in libraries 113

Things to keep in mind for the Windows platform
There are a couple of things to consider when writing DLLs for the Windows platform.
First of all, when you created the Dynamic Library project, did you see the big
comment inserted near the top of the project file that warned about using the Delphi
string type? Strings are easy to work with in Delphi, but they are not directly
compatible with other languages. Since DLLs should be written in a language-agnostic
way, you should avoid using the string type in DLLs. If your DLL will only be used with
your own applications, you can make dealing with strings simpler by adding the SharMem
unit as the very first entry in the uses clause of both the project and the library (which I
did in this example), plus ship the BORLANDMM.DLL library with your project.

Another language-agnostic tip to keep in mind only needs to be considered if you're
writing 32-bit libraries (which implies Windows only since you cannot build 32-bit Mac
or Linux projects). The parameter-passing mechanism in 32-bit Delphi applications is
different than other languages. By including the stdcall keyword, it forces parameters
to be internally used in the same order as other languages. In 64-bit compilations, there
is no difference, so the keyword is ignored in order to avoid having to use {$IFDEF}
compiler directives. It's a common practice to simply always include stdcall at the end
of your Delphi library procedures and functions to ensure compatibility.

Tip
You can also add the delayed keyword to the end of the declaration for
Windows-only libraries. If you do, the library won't be loaded until the
function is actually called.

This hardcoded reference to the DLL file in code is not the ideal way to call functions
in a library. It's what we call "brittle" because it breaks easily and inelegantly if the file is
missing. So, while it takes more work, there's a much better way to link external code—
since these are dynamic libraries, they should be loaded dynamically, right?

Loading libraries dynamically versus statically
The method of loading the library function shown previously is called static loading. It
should only be used for quick prototyping or when you can be assured that the file will
always be there. For example, the Winapi.Windows unit that comes with Delphi relies
on several Windows DLLs to be in place and statically links many Windows platform
Runtime Library (RTL) functions available in Delphi. This is acceptable because if
those files are missing, you have some serious problems with Windows, and many other
applications that rely on these DLLs would also break!

114 Libraries, Packages, and Components

Your application should ensure that the DLLs you supply are where you expect them to
be, and if not, display a nice message to the user, rather than just crash with an ugly error.
To load DLLs dynamically, you need to call the LoadLibrary function, which returns
a non-zero handle to the loaded library if it was successful. On Windows platforms, that
function is in the WinAPI.Windows unit, so you need to add that to the uses clause:

uses

 WinAPI.Windows, // ...

Continuing with our HideString demo app, we need to declare what type of function
we'll be expecting in the library once it's loaded and create variables to hold both
the handle to the library and a pointer to the function it contains. Add these in the
implementation section of the demo project's main form:

type

 THideStringFunc = function(const MyString: string): string;
 stdcall;

var

 DllHandle: HModule;

 HideString: THideStringFunc;

Now, we need to load the library before we use it and free it when we're done. You can do
that in several different ways, such as in some initialization code, a separate unit if you
have multiple libraries to load, the form's OnCreate and OnDestroy event handlers,
or as I've done in this example, using the OnActivate and OnDeactivate event
handlers:

procedure TfrmHideStrMain.FormActivate(Sender: TObject);

begin

 DllHandle := LoadLibrary('HideStringLib.dll');

 if DLLHandle = 0 then begin

 lblHidden.Text := 'Could not find function library';

 btnHideString.Enabled := False;

 end else

 @HideString := GetProcAddress(DllHandle, 'HideString');

end;

procedure TfrmHideStrMain.FormDeactivate(Sender: TObject);

begin

Sharing code in libraries 115

 FreeLibrary(DllHandle);

end;

In this code, I check to see whether the result of the call to LoadLibrary is 0, and if it
is, a label on the form gets an error message and I disable the button that would otherwise
call the function in the library. If it is successful, the HideString function variable gets
the address of the function in the library that matches the exported name.

Finally, once this is all set up and the library is successfully loaded, the button's event
handler can safely call the function as before. As a test, compile and run the demo app
before compiling the library so that you can see the nice error message that tells you the
library cannot be found. Then, compile the library and re-run the demo app to see that it
now works as expected. This version of the app is on GitHub at the following link:

https://github.com/PacktPublishing/Fearless-Cross-
Platform-Development-with-Delphi/tree/master/Chapter05/02_
HideStringDynamicDLL

Without touching the library, the application has been improved to dynamically load
it and run the same function—or give an error message and exit cleanly if the library
does not exist. You can see how this could be easily extended to search a folder for DLL
files, pass them into the LoadLibrary function, and enable or disable certain features
in your application depending on which ones exist. Additionally, you could replace
HideStringLib.DLL with a better string obfuscation routine—as long as the function
declaration does not change or is backward-compatible.

We will use this method of using libraries from here on.

Note
Although Delphi's identifiers are case-insensitive, most other languages'
identifiers are not. DLLs fall into the latter category, so when calling
GetProcAddress and looking up the name of an exported
function, the case is important. In other words, a library function
declared and exported as HideString will not be found with
GetProcAddress('HIDESTRING').

Before we move on, we should cover libraries on other platforms.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter03/02_HideStringDynamicDLL
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter03/02_HideStringDynamicDLL
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter03/02_HideStringDynamicDLL

116 Libraries, Packages, and Components

Things to keep in mind for non-Windows platforms
Delphi can create dynamic libraries on other desktop platforms as well (Mac and Linux).
Here's a list of the platforms and the filenames they will generate:

• Windows: ProjectName.dll

• Mac OS X: libProjectName.dylib

• Linux: libProjectName.so

Notice that on the Mac and Linux platforms, the base filename is prefixed with lib and
all three platforms have different extensions. This means that if your application needs to
call dynamic libraries on multiple platforms, it will need to construct the right filename
based on the platform it's running on using compiler directives.

Here are a few more coding differences for writing libraries for non-Windows platforms:

• Mac and Linux: The ShareMem unit is neither required nor available.

• Mac: All exported functions and procedures in the library should start with an
underscore (_) if you want them to be compatible with other languages.

• Mac: The exports clause cannot be in the main project file (.dpr) but must be in
a unit.

Let's take our previous example and extend it to also work on a Mac. There are several
changes to make. The first is that we only want to use the WinAPI.Windows unit on the
Windows platform, so use compiler directives to restrict that unit's inclusion in the uses
clause to only the Windows platform:

uses

 {$IFDEF MSWINDOWS} Winapi.Windows, {$ENDIF}

 System.SysUtils;

The second is to create a constant that references a platform-specific library name by once
again using compiler directives:

const

 {$IFDEF MSWINDOWS} LIB_NAME = 'HideStringLib.dll';

 {$ELSEIF DEFINED(MACOS)} LIB_NAME = 'libHideStringLib.dylib';

 {$ELSEIF DEFINED(LINUX)} LIB_NAME = 'HideStringLib.so';

 {$ENDIF}

Sharing code in libraries 117

Then, use that constant instead of the hardcoded string:

begin

 // initialize the DLL handle

 DllHandle := LoadLibrary(LIB_NAME);

 // ...

If your projects use the ShareMem unit as this example does, be sure to put that unit
reference in platform-specific compiler directives. Here's the library project modification:

library HideStringLib;

{$IFDEF MSWINDOWS}

uses

 ShareMem;

{$ENDIF}

// ...

Here's the demo application project modification:

program HideStringDynLibDemo;

uses

 {$IFDEF MSWINDOWS} ShareMem, {$ENDIF}

// ...

Finally, since the exports clause cannot be in the main library file on a Mac, move the
function to its own, new unit:

unit uHideStringFunc;

interface

function HideString(const MyString: string): string; stdcall;

implementation

function HideString(const MyString: string): string; stdcall;

begin

 // manipulate the string to hide its original contents

 for var i := 1 to Length(MyString) do

118 Libraries, Packages, and Components

 Result := Result + Chr(Random(26) + Ord('A')) +
 MyString[i];

end;

exports HideString;

end.

With the Windows 32-bit platform still active, run the project to see that it still works.
Then, add the macOS 64-bit platform to the project, compile, and run it through the
pre-established Platform Assistant Server (PAServer) to deploy and run it on your Mac:

Figure 5.2 – Hide String demo on a Mac without the library

But wait—why can't it find the function library? Delphi doesn't know that your compiled
application will load a library, so it only copied the demo app that you told it to run—and
nothing more. We need to modify the deployment properties of the demo app to include
the compiled library when it sends the package over to the PAServer on the Mac.

To do that, make sure the demo app is the active project, then click Project | Deployment
from the Delphi menu. A new tab in the IDE opens up with the files to deploy for the
selected project:

Figure 5.3 – Project Deployment files

Putting code into packages 119

To add the dynamic library to the package deployment, click the second toolbar button
from the left to Add Files, then select the compiled dynamic library file for the Mac—
libHideStringLib.dylib, in our example.

There's just one last step before this will work. The default folder for the dynamic library
isn't always correct. Make sure the remote path for the library file you just added is set
to Contents\MacOS\ so that the project will find the file when running on the Mac—
you don't even have to type it in as that column's value has a drop-down list of the most
frequent paths and you can simply select it. At last, compile and debug your app, click the
Hide button, and see your string obfuscated. The cross-platform version of this dynamic
library project is at the following link:

https://github.com/PacktPublishing/Fearless-Cross-
Platform-Development-with-Delphi/tree/master/Chapter05/03_
HideStringCrossPlatDLL

Now, let's find out what advantages there are to putting these functions into a package
instead of a dynamic library.

Putting code into packages
Runtime packages are another way to share code and are used far more frequently than
dynamic libraries as these are available on all platforms and are the basis of components—
which we will cover in the next section. Packages are simpler to write than dynamic
libraries because they don't have the parameter-passing issues to worry about, and
functions and objects can be called and passed around just as if the code were part of the
project. But they can only be used by Delphi packages and applications written in the
same version of Delphi that is used to compile the package.

Note
You also need to know how to write packages to use RAD Server (Enterprise or
Architect edition).

Let's turn our HideString library into a package. This actually involves taking out some
of the scaffolding code we put in to support a dynamic library. In fact, when we're done,
it simply looks like a collection of used units we'd link directly in the main application—
which is exactly what it is. Therefore, to make sure the demo application is actually
using the compiled package instead of linking in the source units directly, make sure the
package code is in a separate folder from the application code when you set up this set of
example projects.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter03/03_HideStringCrossPlatDLL
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter03/03_HideStringCrossPlatDLL
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter03/03_HideStringCrossPlatDLL

120 Libraries, Packages, and Components

Create a new Package project and add a unit for the HideString function:

package HideStringPkg;

{$R *.res}

requires

 rtl;

contains

 uHideStringFunc in 'uHideStringFunc.pas';

end.

The requires section lists other packages that may be needed. The contains sections
lists the source units that comprise this package.

The uHideStringFunc unit is virtually the same as the one from the dynamic library
project used in the last section; the only difference is that there's no longer an exports
clause and we don't need the cdecl keyword:

unit uHideStringFunc;

interface

function HideString(const MyString: string): string;

implementation

function HideString(const MyString: string): string;

begin

 // manipulate the string to hide its original contents

 for var i := 1 to Length(MyString) do

 Result := Result + Chr(Random(26) + Ord('A')) +
 MyString[i];

end;

end.

Copy the HideString demo application from the first example project in this chapter
to a different folder from the package project just created and remove the reference to the
static library.

Before we build and run this application, here's a short but important note on how your
packages get distributed with your application. By default, Delphi links all the packages
together into one large executable. This is very convenient, but there are some situations
where either this is not feasible due to some library constraint or you want a suite of
applications to share packaged code.

Putting code into packages 121

To change this so that Delphi compiles just a bare-bones executable and references
library code in shared packages instead, go to the project's options and click on Packages
| Runtime Packages, then uncheck the Link with runtime packages checkbox. When
you do that, the line below it, Runtime packages, is enabled and you can edit the list of
packages upon which the project depends:

Figure 5.4 – Editing runtime packages for a project

The default list of packages includes everything you might need. You will never need all of
them because they include both VCL and FireMonkey, which are incompatible, so be sure
and delete ones not used in your project. Also, be sure to select the right target platform
before editing the package list—initially, the selected platform is the one you're currently
working with (for example, Debug or Release) and you probably want the package list to
be the same for both configurations of a platform.

122 Libraries, Packages, and Components

Our demo application only needs one package, so delete all of the ones listed (the rtl
package is included by the Delphi compiler whether it's listed or not) and simply add
HideStringPkg.

Before you build the demo application, you need to build the package so that Delphi will
find the package when linking the demo app. So, back in the package project, make sure
its project options send the DCP and BPL (package output) files to the folder where the
demo executable will be built.

Tip
When a project is built without runtime packages, Delphi needs to link in the
Delphi Compiled Unit (DCU) files. But when a project is built with runtime
packages, Delphi needs the Delphi Compiled Package (DCP) files instead,
which contains a concatenated list of all the DCUs included in the named
package.

Now, you can build the package and then build and run the demo application that uses the
package. Compare your results with the set of projects on GitHub:

https://github.com/PacktPublishing/Fearless-Cross-
Platform-Development-with-Delphi/tree/master/Chapter05/04_
HideStringPackage

Before we move on, we need to talk about package file naming.

Working with package filenames
If you build the package for each of the platforms, you'll notice that the filenames
follow a similar pattern as was shown previously with dynamic libraries—with some
key differences:

• Windows: ProjectName.bpl

• Mac OS X: bplProjectName.dylib

• iOS/Android: libProjectName.a

• Linux: bplProjectName.so

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter03/04_HideStringPackage
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter03/04_HideStringPackage
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter03/04_HideStringPackage

Putting code into packages 123

Notice that both iOS and Android use the same naming scheme and they both prefix the
project name with lib, while the other platforms have bpl as part of the filename (from
Borland Package Library).

Take a look in Delphi's bin folder at all the BPLs there. Notice how they all have 270 on
the end? You can easily number your packages in a similar manner without changing the
package name. Go into Project Options and look at the Description page of the package
project you just created. Enter 270 for LIB suffix and save the options. Notice the package
name now has 270 appended, and when you build the Windows package, the filename is
HideStringPkg270.bpl. Similarly, LIB prefix will prepend text to the package name
and LIB version will append the version text to the end of the base filename with a period
and before the extension is added.

Applications and other packages find and use packages based on the package name
without these name extensions, so in our example projects, we didn't have to modify the
application's runtime package list to have it still load the HideStringPkg package, even
though its filename changed. This simplifies project management and helps identify and
separate different versions of packages, allowing multiple versions of packages to exist in
system paths without conflict. Another benefit is that you may want to modify a package
to fit in with other files in a specific scenario, such as prepending mod_ to packages that
get deployed as Apache web modules.

Tip
It is highly advised that you use some sort of unique file naming mechanism
for your packages (the LIB prefix and LIB suffix features are very convenient!)
even if you don't use multiple versions of Delphi. Hunting down the source of
why a unit seemingly isn't getting updated only to find out you have another
version of the same package name that is getting picked up earlier in the system
path is very frustrating, not to mention time-consuming.

Now that you have seen how simple it is to create a package and that there's nothing
more to a package than a few units put together, you will be delighted to know that it's
just a small step from there to make it a component that can be installed into Delphi's
Tool Palette.

124 Libraries, Packages, and Components

Turning a package into a component
Let's continue working with the HideString example and turn it into a component that
gets installed on Delphi's Tool Palette. First, we'll copy and rename the demo project and
package over to a new set of folders. Then, we'll use the New Component wizard to create
an empty design-time package that gets registered in Delphi as a component and brings
in our runtime package. Finally, we'll add some properties and expand the HideString
function to be a little more useful and make it easy to configure. Each step is detailed in
the following sections.

For reference through these steps, here are the project filenames I will use (everything will
be in the same folder for simplicity):

• HideStringComponentDemo.dpr: FireMonkey demo application (renamed)

• HideStringRT.dpk: Runtime package (renamed from HideStringPkg)

• HideStringDT.dpk: Design-time package (new)

Let's dive in!

Creating our first component
A component is simply a runtime package that has been installed by a design-time
package. What might surprise you even more is that a package can function as both
a runtime package and a design-time package! In fact, that's the default setting when
creating a new package (however, to get the component to actually show up on the Tool
Palette requires a little additional code, as we will soon see).

Open up Project Options of the HideStringRT package project and go to the
Description page. Near the bottom are some radio buttons for Usage options. There are
three options:

• Designtime only: The package's only purpose is to add functionality within the
Delphi IDE, by registering components, providing property editors for components,
or augmenting IDE functionality with special Delphi hook functions.

• Runtime only: The package contains code meant for distributing with other
packages and/or applications.

• Designtime and runtime: The package can act as both a design-time and a
runtime package.

Turning a package into a component 125

Up to this point, we've built only runtime packages; even though the package may be
marked as both design-time and runtime, we don't have any design-time code in place
yet. So, just for good measure (and partially to reduce possible confusion later), change
this project to Runtime only.

Let's build a design-time component to install our runtime HideStringRT package:

1. From the menu, select Component | New Component… (if your package project
is active, you'll be prompted for the framework—select FireMonkey for Delphi).
Click Next.

2. Select TComponent from the Ancestor Component list and click Next.

3. Enter THideString for Class Name, leave Palette Page at Samples, select the
destination folder in our project structure, and enter uHideStringComponent.
pas for Unit name, leaving Search path blank, and then click Next.

4. Select Install to a New Package and click Next.

5. Enter HideStringDT for Package Name (which becomes the component project
filename) in the same folder, add a description, and click on Finish.

It will confirm saving the unit file you selected, then compile and install the new
component. After reading the message that the component has been registered, it will load
the new project it just created.

Note
This is a non-visual component because it inherits from TComponent, the
most basic component from which all others descend. You can create a visual
control by selecting a different ancestor component in step 2, but that is beyond
the scope of this book.

So, what did this New Component wizard do for us? It created a package containing a unit
with enough code to register itself in the Delphi Tool Palette—and that's about it. It doesn't
yet link in the actual HideString runtime package we have. The important part of this
step is in the new unit: a class descending from TComponent and a Register procedure:

procedure Register;

begin

 RegisterComponents('Samples', [THideString]);

end;

126 Libraries, Packages, and Components

This tells the IDE what class to register and what category to list it under in the Tool
Palette. The class name becomes the component name you see in the Tool Palette
(viewable when designing a FireMonkey form or data module):

Figure 5.5 – Our new component in Delphi's Tool Palette

You can also see the new entry by selecting Component | Install Packages from Delphi's
menu and scrolling down to the description you entered (if you left the Description
field blank when creating the component, it'll just list the filename). You can edit the
HideStringDT project's description, rebuild the project, and then come back and see it
updated on this list.

As a final preparatory step to using this component, open up the design-time project
options and set Usage options to Designtime only.

Tip
A good practice to be in is to set each package's usage type to its specific
purpose, therefore marking HideStringRT as Runtime only and
HideStringDT as Designtime only. While I've seen some packages
combine design-time and runtime code in the same package, I would not
advise it as it adds unnecessary bloat to the distributed application since it
carries Tool Palette registration code (and sometimes custom property editor
code), which is only relevant to the Delphi environment.

Now, let's make this new component actually do something.

Adding in the code to a component
Linking in code to a design-time package is quite simple if you already have a runtime
package prepared. Open the new design-time project source, HideStringDT.dpr,
and add the name of the runtime package, HideStringRT, we created earlier under the
requires clause:

package HideStringDT;

{$R *.res}

Turning a package into a component 127

requires

 rtl,

 HideStringRT;

contains

 uHideStringComponent in 'uHideStringComponent.pas';

end.

Here, we have the new component package referencing our runtime package (with the
default compiler directives removed temporarily for brevity). But we're not done—we
need to make a way to actually use the code in that package.

Open the contained unit, uHideStringComponent.pas, which registers the
component, and add a new public Execute function in the class:

type

 THideString = class(TComponent)

 public

 function Execute(const OrigString: string): string;

 end;

Add the uHideStringFunc unit, included in the runtime package, to the uses clause
in the implementation section and fill in the body of the new Execute function:

uses

 uHideStringFunc;

function THideString.Execute(const OrigString: string): string;

begin

 Result := HideString(OrigString);

end;

Our new component now calls the HideString function in the runtime package we
wrote earlier. So, let's test it!

In the demo application's main form, remove the uses clause under implementation,
then switch to Design mode, find our new component in the Tool Palette, and drop it on
the form. (Later, when you save the form unit, this new component will notify Delphi of
any units it needs and Delphi will automatically add them to the interface's uses clause if
they are missing—try it, and watch uHideStringComponent get added.)

128 Libraries, Packages, and Components

Finally, modify the OnClick event handler for the button to call the Execute function
of the component instead of the HideString function directly:

procedure TfrmHideStrMain.btnHideStringClick(Sender: TObject);

begin

 lblHidden.Text := HideString1.Execute(edtInput.Text);

end;

Build everything and run the demo app to see it working.

The component, as it is, now works, but if we stopped here, there would've been no point
in going to the trouble of creating a component—we could've simply shipped the runtime
package and documented this function. But now that we have a component, we should
make it more useful with design-time properties.

Adding design-time properties to a component
Before adding properties to the component, we need to make a few additions to the
runtime code. Let's add options to use numbers instead of letters and also to optionally
reverse the characters. Modify the declaration of the HideString function in the
uHideStringFunc.pas unit by adding two optional parameters, like this:

function HideString(const MyString: string;

 const UseNumbers: Boolean = False;

 const ReverseStr: Boolean = False): string;

By providing default values to the two new parameters, we've kept the code backward-
compatible as they can be left out. This is useful if there are existing applications using the
runtime package that call HideString with only one parameter.

Now modify the HideString implementation to support these two new parameters:

function HideString(const MyString: string;

 const UseNumbers: Boolean = False;

 const ReverseStr: Boolean = False): string;

begin

 if ReverseStr then

 for var i := Length(MyString) downto 1 do

 Result := Result + RandomChar(UseNumbers) + MyString[i]

 else

 for var i := 1 to Length(MyString) do

Turning a package into a component 129

 Result := Result + RandomChar(UseNumbers) + MyString[i];

end;

Add the supporting function:

function RandomChar(const ReturnDigit: Boolean = False): Char;

begin

 if ReturnDigit then

 Result := Chr(Random(10) + Ord('0'))

 else

 Result := Chr(Random(26) + Ord('A'));

end;

With the runtime package updated and the HideString function ready
to accept additional parameters, add properties to the component in the
uHideStringComponent unit to support them:

type

 THideString = class(TComponent)

 private

 FReverse: Boolean;

 FUseDigits: Boolean;

 public

 function Execute(const OrigString: string): string;

 published

 property Reverse: Boolean read FReverse write FReverse;

 property UseDigits: Boolean read FUseDigits write
 FUseDigits;

 end;

With the properties and their corresponding fields in place, the Execute function can be
modified to call the HideString function's new parameters:

function THideString.Execute(const OrigString: string): string;

begin

 Result := HideString(OrigString, FUseDigits, FReverse);

end;

130 Libraries, Packages, and Components

Recompile the package, HideStringDT, which refreshes the component. Switch to the
Design view of the form in the demo app and look at the HideString component's
properties in the Object Inspector. See the new properties?

Figure 5.6 – The updated HideString component's new properties in the Object Inspector

Play around with the demo project, checking the boxes on or off and seeing how the
HideString function's results show up differently. You could even put a couple of
checkboxes on the form to manipulate those properties at runtime. The example on
GitHub does just this:

https://github.com/PacktPublishing/Fearless-Cross-
Platform-Development-with-Delphi/tree/master/Chapter03/05_
HideStringComponent

We now have a fully functional component that uses properties visible in the Object
Inspector and calls a function in a runtime package that is linked to an application.
But so far, it's limited to Windows 32-bit applications. We need to broaden our horizons.

Adding cross-platform support to components
Since the Delphi IDE is a Windows 32-bit application, and since packages can only
be loaded by packages or applications in the same version of Delphi and on the same
platform, component packages are, of course, limited to the Windows 32-bit platform. But
the IDE launches compilers and linkers to support eight different platforms. Certainly,
there's a way for components to instruct the IDE to bring in the right code?

Yes, there is. That is done by adding an attribute to the component class, THideString,
in the uHideStringComponent unit:

type

 [ComponentPlatforms(pidWin32 or pidWin64 or pidOSX64)]

 THideString = class(TComponent)

 // ...

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter03/05_HideStringComponent
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter03/05_HideStringComponent
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter03/05_HideStringComponent

Turning a package into a component 131

The attribute parameter is a bitwise or of platform identifiers, found in the
System.Classes unit. Here, I've added support for both Windows platforms and the
Mac. Windows 32-bit was already supported, but once the ComponentPlatforms
attribute is added, all platforms that need to be supported must be listed. There are preset
combinations of these bitwise identifiers for convenience. For example, pfidWindows
adds support for both 32-bit and 64-bit versions of Windows, and pidAllPlatforms
adds all supported platforms.

Recompile the package to update the definition in Delphi, then try running it on
other platforms.

Back in your sample application, you can test which platforms are supported for a
component by activating a target platform, pulling up a form in design mode and looking
in the Tool Palette. If the component is disabled, it's not available for that platform; if you
can add it to the form, it is.

Note
This idea of adding metadata to the design-time component is simply the
programmer telling the IDE that there is a runtime package available for the
platforms listed—there is no mechanism to check whether it will actually work.
It is up to the programmer to ensure that it will be available when it's time to
build the project.

After modifying the demo app by adding a couple of checkboxes to control the
component, I ran it on a Mac:

Figure 5.7 – HideString demo app with checkboxes to set component properties, running on a Mac

Now, you can create components, install them in Delphi's 32-bit Windows IDE, and tell
them to link 64-bit code for other platforms!

132 Libraries, Packages, and Components

Summary
You now know how to separate your code for working with teams or developers with
other tools by creating dynamic libraries. You also learned how to modularize your code
into runtime packages and then bundle them into components for quick placement on
forms. Throughout this chapter, tips and examples for supporting other platforms were
shown, giving you the flexibility to move forward in a way that best suits your workflow.
Organized libraries of code structured in ways to support a variety of scenarios will not
only increase the value and life of projects you develop but also add awareness to your
Delphi programming expertise.

Now let's dive into LiveBindings, a feature of Delphi that allows you to visually hook up
components at design time—basically, a way to make FireMonkey components data-aware.

Questions
1. What are the default file extensions for dynamic libraries on the three supported

platforms?

2. Where must the exports clause be in a dynamic library created for the Mac?

3. How do you add the Delphi compiler version to the end of a package without
changing its name?

4. What are the differences between design-time and runtime packages?

5. How does a 32-bit design-time package tell Delphi to link a 64-bit runtime package
for a cross-platform application?

Further reading
• Murphy's computer laws: http://murphys-laws.com/murphy/murphy-

computer.html

• Requirements for supported target platforms: http://docwiki.
embarcadero.com/RADStudio/Sydney/en/Installation_
Notes#Requirements_for_Supported_Target_Platforms

• Libraries and packages: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/Libraries_and_Packages_(Delphi)

• Sharing libraries on Mac: http://docwiki.embarcadero.com/
RADStudio/Rio/en/Shared_Libraries_for_macOS

http://murphys-laws.com/murphy/murphy-computer.html
http://murphys-laws.com/murphy/murphy-computer.html
 http://docwiki.embarcadero.com/RADStudio/Sydney/en/Installation_Notes#Requirements_for_Supported_Target_Platforms
 http://docwiki.embarcadero.com/RADStudio/Sydney/en/Installation_Notes#Requirements_for_Supported_Target_Platforms
 http://docwiki.embarcadero.com/RADStudio/Sydney/en/Installation_Notes#Requirements_for_Supported_Target_Platforms
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Libraries_and_Packages_(Delphi)
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Libraries_and_Packages_(Delphi)
http://docwiki.embarcadero.com/RADStudio/Rio/en/Shared_Libraries_for_macOS
http://docwiki.embarcadero.com/RADStudio/Rio/en/Shared_Libraries_for_macOS

Further reading 133

• Procedure and function calling conventions: http://docwiki.embarcadero.
com/RADStudio/Sydney/en/Procedures_and_Functions_(Delphi)

• Loading packages: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/Loading_Packages_in_an_Application

• Design-time packages: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/Design-time_Packages

• Making components available at design time and runtime: http://docwiki.
embarcadero.com/RADStudio/Sydney/en/64-bit_Windows_
Application_Development#Making_Your_Components_Available_
at_Design_Time_and_Run_Time

http://docwiki.embarcadero.com/RADStudio/Sydney/en/Procedures_and_Functions_(Delphi)
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Procedures_and_Functions_(Delphi)
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Loading_Packages_in_an_Application
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Loading_Packages_in_an_Application
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Design-time_Packages
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Design-time_Packages
http://docwiki.embarcadero.com/RADStudio/Sydney/en/64-bit_Windows_Application_Development#Making_Your_Components_Available_at_Design_Time_and_Run_Time
http://docwiki.embarcadero.com/RADStudio/Sydney/en/64-bit_Windows_Application_Development#Making_Your_Components_Available_at_Design_Time_and_Run_Time
http://docwiki.embarcadero.com/RADStudio/Sydney/en/64-bit_Windows_Application_Development#Making_Your_Components_Available_at_Design_Time_and_Run_Time
http://docwiki.embarcadero.com/RADStudio/Sydney/en/64-bit_Windows_Application_Development#Making_Your_Components_Available_at_Design_Time_and_Run_Time

6
All About

LiveBindings
Windows VCL programmers have often used data-aware controls to link data sources
with a user interface, reducing the amount of code they need to write. These data sources
can be redirected or disabled, fields can be combined on-the-fly by setting properties
or hooking into event handlers, and large datasets can be hooked up to powerful grids,
enabling complex views with minimal work. Data-aware controls enable prototypes that
can easily be turned into production applications.

FireMonkey's components do not come with data-aware controls, but we are not left to
code everything ourselves. Right alongside this new GUI framework, another framework
was introduced (in Delphi XE2) – one that used expressions to connect datasets to
objects in a powerful and flexible way. It's called LiveBindings, and it's not limited to just
FireMonkey controls – it works with VCL as well!

136 All About LiveBindings

The binding expressions can be as simple as connecting a label to a field in a database
table, or as complex as defining custom expressions for powerful manipulations at
runtime. We'll progress from the simple to the advanced by covering the following topics:

• Using the LiveBindings designer to get started quickly

• Creating magic with the LiveBindings Wizard

• Applying custom formatting and parsing to your bound data

• Coding your own LiveBindings methods

By the end of this chapter, you will be able to connect a wide array of components,
datasets, and objects to each other and amaze your colleagues with how little code you
have to maintain. Perhaps they'll be convinced to start using LiveBindings more as well!

Technical requirements
There are no special requirements for this chapter beyond what is needed to build Delphi
10.4 applications. All the examples will be built with the cross-platform FireMonkey
framework, but since the concepts presented here are not platform-specific, nothing more
than a Windows computer running Delphi is required. It is recommended that the sample
InterBase database that comes with Delphi is installed so that you can work with data in
some of the examples provided, all of which can be found on GitHub:

https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter06

Using the LiveBindings designer to get started
quickly
Let's start by creating a Multi-Device Application and using the Header/Footer with
Navigation template. Follow these simple steps:

1. Drop a couple of labels and an edit box onto the first tab of the TabControl so that
the first label prompts the user to type some text (for example, their name) into the
edit box; then, place the second label somewhere below the edit box. Change the
names of each of these controls so that they can be easily identified:

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06

Using the LiveBindings designer to get started quickly 137

Figure 6.1 – Hooking up the first controls – a label with an edit box

2. Now, right-click on the edit box you just placed and select Bind visually… from
the pop-up menu. The LiveBindings Designer window will appear, showing all
the components of the form in little rounded-corner boxes. If you took the time to
name your controls, they should be easy to pick out. You can drag the boxes around;
move all but the edit box and the label under it a little way away.

138 All About LiveBindings

3. To bind these together, simply drag a line from the Text property in the edit box
to the Text property of the label under it. Your LiveBindings Designer should look
somewhat like this:

Figure 6.2 – LiveBindings Designer – first link

With your first two components hooked up, run the program, type something into the edit
box, and hit Tab. As soon as your focus leaves the edit box, the LiveBindings expression
will update the label with the new value from the edit box. This is a one-way link and is
indicated as such by the arrow in the designer pointing from the edit box to the label.

Let's try another one. Right-click on TabControl1 and select Next tab from the pop-up
menu. On this second tab, place a TrackBar and another label. Again, give them unique
names to help identify them. In the LiveBindings Designer, hook the TrackBar's Value
property to the new label's Text property. When you run the program and switch to the
second tab, adjusting the TrackBar now displays its position in the new label.

Note
Notice that the numbers from the FireMonkey TrackBar are floating-point
values, not integers like the VCL equivalent. This is true for many FireMonkey
controls, giving you more control and enabling additional functionality we will
explore later in the book.

Using the LiveBindings designer to get started quickly 139

This is pretty simple, isn't it? Of course, nothing ever stays simple for long. So, before we
go any further, let's do organization inside the LiveBindings Designer.

Using layers to group LiveBindings elements
In the upper-right corner of the LiveBindings Designer is the word Layers. Follow these
steps to group the elements:

1. Click the little down arrow just to its left to reveal a drop-down menu. Initially,
there is only one layer, the Default layer.

2. Click the plus (+) sign to add another layer, then double-click on it to rename it.

3. Once you have a new layer defined, Ctrl + click various components in the Designer
or drag a box around a group of them, then right-click on one of them and select
Add to layer <LayerName>. They will be moved to that layer.

I created a layer for each of the two tabs we have so far, moved the first two labels and the
edit box to the Tab1 layer, and then moved the TrackBar and the third label to the Tab2
layer. Now, I can click the little eye icon next to either of the two new layers to highlight
only the elements in that layer:

Figure 6.3 – LiveBindings layers with "Tab2" selected

140 All About LiveBindings

This will be a tremendous help when you have a plethora of components on a form and
you're wading through them in the LiveBindings Designer, looking for the ones you need
to work with.

Tip
Start organizing early in the design process and always give descriptive names
to your components.

Another way to keep the designer clean is by hiding elements you won't be binding to
data. For example, the first label you added to the screen to prompt the user to enter
a name is static text. To hide components like this from cluttering the LiveBindings
Designer, select one or more component elements, right-click on one of them and select
Hide Element(s). To show them again or see the complete list of elements that you can
selectively show or hide, right-click in an empty area of the designer and select Show/
Hide elements….

Revealing embedded component properties
Not all properties of the components in the designer are initially shown. To demonstrate
when you might need more and how to show them, add a third tab to TabControl and put
the following components on it, along with some initial properties:

• A TRectangle, Align = Client

• A TSpinBox and a TLabel with the text Margins inside TRectangle

• A TComboColorBox and a TLabel with the text Background inside
TRectangle

• A TArcDial and a TLabel with the text Rotate Me! inside TRectangle

We want to bind the SpinEdit to the Margins properties of the Rectangle, but when
you click on that element in the LiveBindings Designer, they are not visible. This can
easily be solved by clicking on the ellipsis (…) button in the bottom-right of the element's
box in the Designer. A list of Bindable Members will appear. Scroll down until you find
Margins.Bottom, Margins.Left, Margins.Right, and Margins.Top; check
each of these to enable them and then click OK. With these properties now visible,
repeatedly drag a line from the Value property of the SpinBox to each of those properties
so that they'll all be updated together, setting the same margins all the way around. At
runtime, you can now change the margins of TRectangle by clicking the arrow buttons
of the SpinEdit control.

Using the LiveBindings designer to get started quickly 141

Changing the background color of TRectangle can be done in a similar manner:
reveal the Fill.Color property of TRectangle and then hook up the Color field of
TComboColorBox to it. Run it and try different background colors by selecting them
from the color combo.

Finally, show the RotationAngle property of the label with Rotate Me! as the text
and bind the ArcDial's Value property to it so that when it's running, turning the dial
will rotate the text.

Your form and LiveBindings Designer windows may now look something like this:

Figure 6.4 – Additional properties revealed and bound

You can find this sample project on GitHub at https://github.com/
PacktPublishing/Fearless-Cross-Platform-Development-with-
Delphi/tree/master/Chapter06/01_DesignerIntro.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06/01_DesignerIntro
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06/01_DesignerIntro
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06/01_DesignerIntro

142 All About LiveBindings

There are a few buttons on the left-hand side of the LiveBindings Designer that allow you
to fit all the controls in the window as best it can, zoom the Designer window in or out,
and have the designer rearrange all the elements for you. (These are also available in the
pop-up menu when you right-click inside an empty area of the designer.) The last button
is LiveBindings Wizard.

Let's explore the magic waiting for us there.

Creating magic with the LiveBindings Wizard
Now that you're getting the feel for connecting properties and how LiveBindings work in
the designer, the actions of the LiveBindings Wizard will make more sense as it combines
several actions you performed manually in the designer. Plus, you're probably now seeing
how the data-aware controls in Windows VCL will be replaced by this framework.

Tip
There's a quicker way to get to the LiveBindings Wizard than clicking the
button in the designer, but you have to enable it. Select Tools | Options from
the main Delphi menu, expand IDE, and then click on LiveBindings. From
here, enable the checkbox for displaying the wizard in the context menu. Once
you've done this, when you're in the form designer of a project, you can go
straight to the LiveBindings Wizard with a right-click and select it from the
pop-up context menu.

For this section, we will start with a blank multi-device application. Now, without placing
anything on the form, go straight to the LiveBindings Wizard. There are five types of
binding tasks available:

• Link a control with a field: Binds a control on the form with a field in a data source

• Link a grid with a data source: Binds the columns in a grid to the fields in a
data source

• Link a component property with a control: Binds a property of a component
(visual or non-visual) with a control on the form

• Link a component property with a field: Binds a property of a component
(visual or non-visual) with a field in a data source

• Create a data source: Creates a new data source

Based on which one of these you select, the tasks and options on the left will change.
We'll go through each of these and show what the wizard can do for us.

Creating magic with the LiveBindings Wizard 143

Choose the first option and click Next. Since this is a blank form, select TEdit from the
New Control list and click Next. Since there is no data source here, we need to create a
new one. We have three options in the New Source list:

• FireDAC

• TBindSourceDBX

• TPrototypeBindSource

The first two bind controls to database sources, FireDAC and dbExpress, respectively. The
third one allows us to prototype sample data from custom objects at design time, a very
useful mechanism we'll explore in a bit. Right now, let's make "data-aware controls" with
the LiveBindings Wizard using FireDAC, so select that and click Next.

Pulling in fields from a database
If you installed the InterBase database and sample data when you installed Delphi, then
you have a good option readily available: select IB for Driver, Employee (IB) for
Connection Name, Table for Command Type, and Employee (table) for Command
Text. You can click Test Command to make sure your connection works. If you get a
database login prompt during this process, the defaults for the sample InterBase database
are "sysdba" and "masterkey" for User Name and Password, respectively. After clicking
Next again, select FIRST_NAME from the Field Name list, click Next, and finally check
both option boxes; that is, Add data source navigator and Add control label.

Now, click Finish. You will see that a mess of components have been added to the middle
of the form. Spread them out to see what the wizard has created for you:

• FDConnectionEMPLOYEE: The FireDAC database connection component

• FDPhysIBDriverLink1: The FireDAC InterBase driver used by the connection

• FDTableEMPLOYEE: The FireDAC table component connected to the FireDAC
connection, which allows access to the Employee InterBase table

• FDGUIxWaitCursor1: Allows the FireDAC database components to switch
the mouse cursor to a wait cursor during long database operations in a
cross-platform way

• BindSourceEMPLOYEE: The LiveBindings equivalent of Windows VCL's
TDataSource component

144 All About LiveBindings

• EditFIRST_NAME: A TEdit control showing the contents of the
FIRST_NAME field

• LabelFIRST_NAME: A TLabel for the FIRST_NAME edit field (set as a child
of the TEdit control so that it follows it around like the TLabeledEdit VCL
component does)

Note
If your database uses a non-standard port or requires custom connection
parameters, then you might need to drop a TFDConnection component
and associated TFDPhysDriverLink descendant first and test the
connection. Then, you'll need to start over in the LiveBindings Wizard and
complete these steps, in which case you must select an existing driver and
connection instead of creating them.

You can go back through the LiveBindings Wizard multiple times to add more controls
to your form, selecting the existing source (for example, BindSourceEMPLOYEE) for
subsequent passes. I added LAST_NAME, HIRE_DATE, JOB_CODE, and SALARY and
ended up with this on my form:

Figure 6.5 – FireMonkey "data-aware" controls created by the LiveBindings Wizard

Creating magic with the LiveBindings Wizard 145

If you look in the LiveBindings Designer, you'll notice that most of the arrows of the
binding links are pointing in both directions now. This is because the data source can
update the edit controls and vice versa – if their values change. These are two-way
bindings, rather than the one-way bindings we saw in the Using the LiveBindings designer
to get started quickly section. This makes sense as labels and background colors cannot be
directly changed by a user (for example, you can't type on a label), so those are one-way
links, whereas the controls, such as the edit boxes on this form, can.

So, what we have so far is a nice start, but it needs something more.

Adding more controls through the wizard
Go back to the LiveBindings Wizard from the form and select the second option, Link
a grid with a data source. Click Next, select TGrid from the New grid tab, select the
BindSourceEMPLOYEE member we created previously, and then click Finish. (It'll look
best if you extend the height of the form and align the grid to the bottom.) Now, we have a
grid hooked up to the data source and can see all the fields in the Employee table.

Tip
The grid's headers and data are set from the fields in the Employee table, and
then linked through BindSourceEMPLOYEE the TBindSourceDB
component. You can right-click the grid and select Columns Editor to modify
the list of columns shown in the grid. If the dataset is active and you try to
add a column, you'll get errors as it tries to display data in the column before
it has a fieldname assigned. Click the Add All Fields button and then remove
the columns you don't want. If you don't, you'll see that as soon as you add
one grid column, you have to add all the ones you want to see. This is because
the columns in the data source are only automatically displayed if there are no
columns defined in the grid.

We linked a component property (TLabel.Text) to a control (TEdit) in the first
LiveBindings Designer example. The third option in the form's LiveBindings Wizard, Link
a component property with a control, will do that using the wizard. Here, you select
an existing component on the form, along with a property of that component, and then
either select an existing control or create a new one and bind the two. We'll skip this and
move on to the next one.

146 All About LiveBindings

What I'd like to do is add a big name banner at the top of the form. I created a
TRectangle aligned to the top, set its fill color to black, then placed a TLabel inside
it, and then aligned it with the client and with a large, bold, white font. To bind this
new label in the LiveBindings Wizard, select the fourth option, Link a component
property with a field, select the new label and its Text property, click Next, select the
BindSourceEMPLOYEE data source, click Next, select the FULL_NAME property, and
click Finish.

Now, when you run it, you might see something like this (I adjusted some labels and
formatting to make it look nice):

Figure 6.6 – Fully editable InterBase application built with LiveBindings Wizard

We have still not typed a single line of code! Of course, it's a pretty simple app, but we can
add a lot more to this through LiveBindings, as we'll soon discover.

You can find this project on GitHub at https://github.com/PacktPublishing/
Fearless-Cross-Platform-Development-with-Delphi/tree/master/
Chapter06/02_WizardBoundDB.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06/02_WizardBoundDB
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06/02_WizardBoundDB
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06/02_WizardBoundDB

Creating magic with the LiveBindings Wizard 147

Now that you know how to hook up databases to the GUI, is there a way to bind a list of
your own custom objects? Of course, there is! The drawback is that you can't see what
your data looks like at design time like you can by activating a data table. But don't worry
– LiveBindings provides a very handy solution for this.

Prototyping custom objects at design time
Starting again with the clean slate of a blank multi-device application, start up the
LiveBindings Wizard and click on the first option, Link a control with a field, select
TEdit, and click Next. The last item in the list of sources, TPrototypeBindSource,
provides sample data for us to see at design time when we are working with our own
custom objects. This is very cool!

After selecting the PrototypeBindSource and clicking Next, you will come to a blank
screen where it prompts you to add a Field Name. You should add fields that will mimic
your custom object as this data source will be replaced at runtime. You can add several
types of fields and when you're in the Add Field dialog, it will show you what the sample
data will look like, allowing you to click the Next Value button to see other sample values:

Figure 6.7 – Live Bindings Wizard – adding fields to the PrototypeBindSource dataset

148 All About LiveBindings

Once you have a few fields selected, click Next and, optionally, add a data source navigator
and control label, then click Finish. It actually only places a control and label for the last
field you added to the PrototypeBindSource, but now, you can go through the Wizard again
and add controls to the other fields you just created (or use the designer discussed in the
first section, whichever is easier for you). You can change the text of the labels and arrange
the controls on a form to make it look like a real-life application, and then add a grid and
the big name banner at the top of the form just like we did with the InterBase app earlier.

And when you run it, you won't be surprised to see something like this:

Figure 6.8 – Prototype app built with LiveBindings Wizard, with sample data, a grid, and a name banner

You can find my version of this sample project on GitHub at https://github.
com/PacktPublishing/Fearless-Cross-Platform-Development-with-
Delphi/tree/master/Chapter06/03_WizardBoundProto.

Again, you can throw this working prototype together in a few minutes with no database
and no code! But what do you do with the PrototypeBindSource when you're ready to go
to production with the real data in your objects?

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06/03_WizardBoundProto
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06/03_WizardBoundProto
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06/03_WizardBoundProto

Creating magic with the LiveBindings Wizard 149

Swapping out prototype data for your
own custom data
Inside the PrototypeBindSource is a public property that has been used in the
previous examples by the wizard. This is actually a separate component in the Tool
Palette that you can place on a form or data module manually. This is known as
TDataGeneratorAdapter. At design time, the PrototypeBindSource's internal
Adapter property gets its data from its internal DataGeneratorAdapter so that you can
see what the data will look like while you're developing it. To use your own data, that
Adapter property needs to be redirected so that it points to a different data source.

Your own data may have been populated from a parsed CSV file, filled in with the results
of a web service call, and so on. In any case, let's say your data structure looks like this:

type

 TEmployee = class

 private

 FContactBitmap: TBitmap;

 FContactName: string;

 FTitle: string;

 FHireDate: TDate;

 FSalary: Integer;

 FAvailNow: Boolean;

 public

 constructor Create(const NewName: string;

 const NewTitle: string; const NewHireDate: TDate;

 const NewSalary: Integer; const NewAvail: Boolean);

 property ContactBitmap: TBitmap read FContactBitmap write
 FContactBitmap;

 property ContactName: string read FContactName write
 FContactName;

 property HireDate: TDate read FHireDate write FHireDate;

 property Salary: Integer read FSalary write FSalary;

 property AvailNow: Boolean read FAvailNow write FAvailNow;

 end;

150 All About LiveBindings

This class would likely be created in a separate unit with a unique identifier field, unit
tested with ways to load data, and so forth. For the quick demo we've been building,
this class will simply be part of the main form's code. (In order to show images in the
LiveBindings example, I loaded some local images into the project as project resources
and provided names that matched my hand-created contacts. I then used those with my
hardcoded data to create the user-defined object data. You probably won't need to do this
in a real-life application, of course; the goal here is to quickly produce a variety of data
types to show you how LiveBindings works.)

Here is the constructor for the class, filling the bitmap field with the objects from the
project's built-in images:

constructor TEmployee.Create(const NewName: string;

 const NewTitle: string; const NewHireDate: TDate;

 const NewSalary: Integer; const NewAvail: Boolean);

var

 NewBitmap: TBitmap;

 ResStream: TResourceStream;

begin

 ResStream := TResourceStream.Create(HINSTANCE, 'Bitmap_' +
 NewName, RT_RCDATA);

 try

 NewBitmap := TBitmap.Create;

 NewBitmap.LoadFromStream(ResStream);

 finally

 ResStream.Free;

 end;

 FContactName := NewName;

 FTitle := NewTitle;

 FContactBitmap := NewBitmap;

 FHireDate := NewHireDate;

 FSalary := NewSalary;

 FAvailNow := NewAvail;

end;

Creating magic with the LiveBindings Wizard 151

At some point in your application, prior to showing the form containing controls with
LiveBindings, your data will be filled. For our demo, we'll just populate an object list
when the application is created so that our simulation mimics a real data source that has
been loaded:

constructor TForm1.Create(AOwner: TComponent);

begin

 FEmployeeList := TObjectList<TEmployee>.Create;

 FEmployeeList.Add(TEmployee.Create('Adam', 'Manager',
 EncodeDate(2012, 1, 1), 50000, True));

 FEmployeeList.Add(TEmployee.Create('George', 'Driver',
 EncodeDate(2017, 7, 11), 75000, False));

 FEmployeeList.Add(TEmployee.Create('Brenda', 'Coder',
 EncodeDate(2014, 11, 5), 68000, True));

 FEmployeeList.Add(TEmployee.Create('Jack', 'Janitor',
 EncodeDate(2019, 5, 20), 35000, False));

 inherited;

end;

You may have noticed that instead of using the form's OnCreate method, we added an
overriding constructor instead. Why? Because we embedded the data within the form and
must make sure the data is ready before we bind it. This happens when the form is created.
Therefore, the OnCreate method would be too late to start creating data.

Now, let's get back to the Adapter property of TPrototypeBindSource. To bind
it to our custom data at runtime, we can use the PrototypeBindSource's event handler,
OnCreateAdapter:

procedure TForm1.PrototypeBindSource1CreateAdapter(Sender:
TObject;

 var ABindSourceAdapter: TBindSourceAdapter);

begin

 ABindSourceAdapter := TListBindSourceAdapter<TEmployee>.
 Create(self, FEmployeeList, True);

end;

152 All About LiveBindings

This creates a TListBindSourceAdapter of the TEmployee type and hooks up our
global FEmployeeList object. Now that our BindSourceAdapter is pointing to our
data, running this version of the application shows our hardcoded data instead of the
randomly generated data we saw at design time, meaning our own data source is being
used successfully:

Figure 6.9 – Custom data objects replacing the prototype data at runtime

Note
This section only discusses bringing up the LiveBindings Wizard from the form.
If you enabled the LiveBindings Wizard context menu option, as described
earlier, and then chose to select that after right-clicking on one of the controls,
the wizard's options will be limited to those available for just that control.

What we've done thus far in this chapter has been fairly straightforward. We've only
written one line of code dealing with LiveBindings and have been able to hook up controls
in a variety of ways to both data and other controls, just by simply clicking and dragging
or stepping through a series of options.

There's so much more just below the surface! While working through these demos, you've
probably noticed a few things you'd like to change by manipulating or formatting the data.

Let's start digging into the properties of the LiveBindings links.

Applying custom formatting and parsing to your bound data 153

Applying custom formatting and parsing to
your bound data
To continue studying the capabilities of LiveBindings, we can simply build on the example
project we created in the previous section using the PrototypeBindSource. I copied the
project into a new folder, added a few data items, and enhanced the look a little.

Before we start manipulating the properties of the bindings, we need to know how to get
to them.

Getting to the BindingsList
You may have noticed that several fields have been added to your form's class
with types such as TLinkPropertyToField, TLinkControlToField, and
TLinkGridToDataSource. These have been added as you've added LiveBindings links
and they're components with properties and events, just like other non-visual components
you can place on a form or data module. However, you can't find them in the Tool Palette
menu as they are managed from the BindingsList component that appeared on the form
when you first started creating LiveBindings links.

To see and edit this list of bindings, either double-click on the BindingsList component
or right-click on it and select Binding Components… from the pop-up menu. A floating
window will appear, showing you the components that are used for binding controls,
properties, and fields:

Figure 6.10 – Binding Components List

154 All About LiveBindings

Clicking on one of the components in the Bindings List reveals its properties in the Object
Inspector and allows you to have full control over what and how it binds data. You can
manually create new ones and hook them up yourself rather than using the LiveBindings
Wizard or Designer. You can categorize them (several were automatically set to Quick
Bindings by the wizard). You can also change the direction of the binding. There are
two other properties for these link component's binding controls and properties that look
interesting: CustomFormat and CustomParse.

Customizing the display
The first thing we'll do is very simple: show the name banner all in uppercase. Click on its
TLinkPropertyToField component (in the Bindings List or the Designer) and type
this into the CustomFormat property in the Object Inspector:

UpperCase(%s)

UpperCase is one of the methods that can manipulate data in a LiveBindings expression,
and %s is a placeholder for the current value. %s has an implicit self prefixed to it,
representing the object that it belongs to. You could write UpperCase(self.%s)
instead. The owner of the object is referenced with Owner. So, if you wanted to access a
different field of the data source, you can. Let's see how that can be done.

I want to indicate in the banner whether the contact is available for a new position by
adding to the name if they are available but leaving it as-is if not. We can add to the string
in the CustomFormat property and use another method, IfThen, like this:

UpperCase(%s) + IfThen(Owner.AvailNow.Value, " (Yes!)", "")

This checks the AvailNow field (which is Boolean) and if it's True, it appends the (Yes!)
string to the name; otherwise, it appends nothing. Running it reveals the following:

Figure 6.11 – Custom formatting applied to the name banner

Applying custom formatting and parsing to your bound data 155

To see what other methods are available for use in LiveBindings expressions, click the
BindingList component and double-click the Methods property in the Object Inspector.
This is just a viewable list – you can't use them from here. However, you can enable and
disable one or many of them – if you disable one that is used in an expression, you'll get a
runtime error.

Note
LiveBindings expression method names are case-sensitive. Expressions can use
single or double quotes.

Let's make one more change, this time by adding a dollar sign ($) to the salary. In the
CustomFormat property of the TLinkControlToField member that binds TEdit
to the Salary field of the data source, type in the following:

'$' + %s

This is pretty simple, but when you run the application and try to change the amount
to 55000, for example, notice that the value that gets saved in the data source and
redisplayed is incorrect:

Figure 6.12 – Editing custom formatted data in the Salary field gives us strange results

The reason this happens is because the dollar sign that was added to the CustomFormat
property of the binding link has become part of the value. When that whole value gets
sent back to the data source, which is expecting an integer in this case, it interprets it
incorrectly. What we need to do is parse the dollar sign out of the edited amount.

156 All About LiveBindings

Parsing edited data
The property just below CustomFormat in the Object Inspector for the
TLinkControlToField component is CustomParse. This is what we'll use to undo
any formatting we made to allow the control to send the raw data back to the data source.
It's as simple as stripping off the first character:

SubString(%s, 1, 15)

The SubString method, just like in Delphi, takes a string value, a starting index, and a
character count to extract a substring. Unlike Delphi, the string is zero-based, so passing
in 1 for the starting index references the second character. There's no built-in method to
get the length of the string, so we just pass in a number higher than the maximum length
allowed on the field, which is 15 digits.

This version of our demo can be found on GitHub at

https://github.com/PacktPublishing/Fearless-Cross-
Platform-Development-with-Delphi/tree/master/Chapter06/04_
FormattedContcts.

But what if you'd like to format your data using an approach that's not supported by one
of the built-in methods? For this, you can create your own methods and register them,
which means it's time to write some code!

Coding your own LiveBindings methods
For this last section on LiveBindings, we'll continue with the prior project, but I've copied
it again to a new folder so that if you haven't compiled the package introduced in this
section yet, you'll still be able to run the sample in the previous section.

What I'd like to do here is show the number of years' experience each of the contacts in
this app has. Since the Hire Date field is a date and the date type is a double, all I will
need is a way to get the current date; then, I can subtract the two and divide it by 365 to
get the number of years difference. Surprisingly, there doesn't seem to be a way to do that.
However, with a little knowledge of how these methods are created, it's not too difficult to
create one ourselves.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06/04_FormattedContcts
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06/04_FormattedContcts
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06/04_FormattedContcts

Coding your own LiveBindings methods 157

LiveBindings methods are Delphi packages that are installed on the IDE to give us
various design-time functionality and syntax checking functionalities; the units also need
to be compiled into the application to perform the required functionality at runtime.
In the uses clause of the sample project we've been building is the Data.Bind.
EngExt unit, if you view the source to that, you'll see several Make... functions of the
IInvokable type. Then, in the initialization section, there should be a call to
RegisterMethods that registers them. This is what we'll do.

To start, create a new package project, set it to Designtime only, and add a new unit. I
named my unit Fearless.Bind in the same fashion as Delphi's binding expression
units. There won't be anything in the interface section, but the uses clause in the
implementation section needs several units:

uses

 System.SysUtils,

 System.Bindings.Methods, System.Bindings.EvalProtocol,

 System.Bindings.Consts, System.TypInfo;

Create a function that will make a LiveBindings invokable function; this function will be
sent an array of arguments and return a value:

function MakeNowMethod: IInvokable;

begin

 Result := MakeInvokable(function(Args: TArray<IValue>):
 IValue

 begin

 Result := TValueWrapper.Create(Now);

 end);

end;

For our purposes, we won't be using any arguments that have been passed in, so this
function can skip checking and validating them and simply return the value we're after:
the current date and time. This can be done by using the Now system function. The
TValueWrapper class wraps whatever value we send it into an IValue in order to
return it to the LiveBindings expression.

The only thing we need to do now is register it in the initialization section of the
unit and unregister it in the finalization section:

const

 sNowMethod = 'Now';

158 All About LiveBindings

 sNowDescription = 'Returns the current date/time';

initialization

 TBindingMethodsFactory.RegisterMethod(

 TMethodDescription.Create(MakeNowMethod, sNowMethod,

 sNowMethod, EmptyStr, True, sNowDescription, nil));

finalization

 TBindingMethodsFactory.UnRegisterMethod(sNowMethod);

end.

Now, compile and install it (right-click on the project and select Install) and that's it!
Click on the BindingList component in the form of the demo project and double-click
on the Methods property in the Object Inspector, then scroll down to view the new
Now function.

Note
Even though this package is installed and shows up immediately in the list of
bindings methods, trying to use it in a binding expression sometimes results in
it not being found. Closing and reloading the project, or even restarting Delphi,
fixes this.

Now, we can finally finish our quest and calculate the number of years' experience based
on the Hire Date. Place a label on the form and bind its Text property to the Hire
Date field – it should show exactly what the TEdit we already have on the form shows.
Now, click the new LinkPropertyToField binding link we just created and type the
following into the CustomFormat property:

"Experience: " + ToStr(Round((Now() - %s) / 365)) + " years"

Even though our Now function does not need any arguments, the syntax requires
parenthesis; otherwise, you'll get an Interface not supported error. %s in this
context is a TDate (double), which means we can do arithmetic on it. Subtracting
that value (the Hire Date field) from the current date gives us the number of days
difference, and dividing that by the number of days in a year gives us the number of years;
we'll round that to the nearest year. The label needs a string in the Text property so that
we can convert the result using ToStr(), prepend it with Experience:, and append it
with years to complete the expression.

Coding your own LiveBindings methods 159

Before you run it, remember that this same code needs to be registered with your
application (in addition to Delphi) because you want the LiveBindings expression to
work at runtime as well. This is done by simply including the unit name that created and
registered the new LiveBindings method (Fearless.Bind) in the uses clause of your
application. I placed the new Experience label directly under the Hire Date edit. If
that's where you placed yours, you should see the following:

Figure 6.13 – Custom LiveBindings Method showing experience in years

As an alternative to implementing the Now method, we could have done the calculations
in the method. Here's the code for a method called YearsSince that takes the given date
parameter and returns the number of years that have elapsed since that date:

function MakeYearsSinceMethod: IInvokable;

begin

 Result := MakeInvokable(function(Args: TArray<IValue>):
 IValue

 var

 InputValue: IValue;

 InputDate: TDate;

 YearsSince: Double;

 begin

160 All About LiveBindings

 if Length(Args) <> 1 then

 raise EEvaluatorError.Create(Format
 (sUnexpectedArgCount, [1, Length(Args)]));

 InputValue := Args[0];

 if not (InputValue.GetType.Kind in [tkFloat]) then

 raise EEvaluatorError.Create('Argument to YearsSince
 must be TDate');

 InputDate := InputValue.GetValue.AsExtended;

 YearsSince := TTimeSpan.Subtract(Now, InputDate).
 TotalDays / 365.25;

 Result := TValueWrapper.Create(YearsSince);

 end);

end;

Note that this time, we need one parameter, so we validate there's only one and that it's
a date type (double, also known as a float). With this binding method registered, the
experience-in-years expression is simplified to the following:

"Experience: " + ToStr(Round(YearsSince(%s))) + " years"

Now, you can fill in the register and unregister calls, or simply download this project from
GitHub at

https://github.com/PacktPublishing/Fearless-Cross-
Platform-Development-with-Delphi/tree/master/Chapter06/05_
ContactsWithCustomMethods.

There are many more examples that could be provided, but this is a good start. Look
through Delphi's code and online tutorials to learn more about validating arguments and
other nuances of creating LiveBindings methods. There are also examples to be found with
a quick search on GitHub.

Summary
In this chapter, we've showed you how LiveBindings not only replaces the need for
data-aware controls you've used in VCL applications but has greater potential and is
easier to extend. There are multiple ways to use it, and it's really quite intuitive once you
understand the basics.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06/05_ContactsWithCustomMethods
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06/05_ContactsWithCustomMethods
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter06/05_ContactsWithCustomMethods

Questions 161

First, we learned how to hook up controls to other controls and data sources, how you can
use both the Designer and the Wizard to your advantage to speed up prototyping, and then
how to transform your demos into production-ready applications with very little effort.
Now, you know how to manipulate how date is displayed through LiveBindings custom
formatting, and even how to extend the LiveBindings capabilities with custom methods.

This is not only a step forward in productivity due to it reducing your time to market
with the ease of use LiveBindings provides – it also lowers the barriers to improving your
interface in subtle ways that will make a big difference to your users.

In the next chapter, we will add to these user interface improvements in not-so-subtle
ways by taking control of the styles that FireMonkey uses to govern the entire look and
feel of your application.

Questions
1. Are there platform or GUI framework restrictions for using LiveBindings?

2. What are the two ways we can organize the elements in the LiveBindings Designer?

3. Which class type is the field of the TPrototypeBindSource component that
provides random data visible at design time, and which has a component in the Tool
Palette that can be used independently?

4. How do you access the properties of a TLinkPropertyToField or
TLinkControlToField component?

5. Do you always have to put something in the CustomParse property of a binding
link component if CustomFormat has something in it?

6. What needs to be included in your application's uses clause to provide a custom
method's functionality that has been used in a binding expression?

Further reading
• LiveBindings in RAD Studio: http://docwiki.embarcadero.com/

RADStudio/Sydney/en/LiveBindings_in_RAD_Studio

• Introduction to LiveBindings Wizard: https://youtu.be/tpipscFNTGA

• LiveBindings and Rapid Prototyping: https://youtu.be/FQminjTLS0E

http://docwiki.embarcadero.com/RADStudio/Sydney/en/LiveBindings_in_RAD_Studio
http://docwiki.embarcadero.com/RADStudio/Sydney/en/LiveBindings_in_RAD_Studio
https://youtu.be/tpipscFNTGA
https://youtu.be/FQminjTLS0E

162 All About LiveBindings

• Quickly Bind Your Data Source to Different Types of Data with LiveBindings:
https://blogs.embarcadero.com/quickly-bind-your-data-
source-to-different-types-of-data-with-livebindings-
delphi-adapterbindsource-sample-app/

• Developer Skill Sprint: LiveBindings From Forms to Code: https://youtu.
be/_sGeY_VWBMI

• Using Custom Format and Parse Expressions in LiveBindings: http://docwiki.
embarcadero.com/RADStudio/Sydney/en/Using_Custom_Format_
and_Parse_Expressions_in_LiveBindings

https://blogs.embarcadero.com/quickly-bind-your-data-source-to-different-types-of-data-with-livebindings-delphi-adapterbindsource-sample-app/
https://blogs.embarcadero.com/quickly-bind-your-data-source-to-different-types-of-data-with-livebindings-delphi-adapterbindsource-sample-app/
https://blogs.embarcadero.com/quickly-bind-your-data-source-to-different-types-of-data-with-livebindings-delphi-adapterbindsource-sample-app/
https://youtu.be/_sGeY_VWBMI
https://youtu.be/_sGeY_VWBMI
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Using_Custom_Format_and_Parse_Expressions_in_LiveBindings
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Using_Custom_Format_and_Parse_Expressions_in_LiveBindings
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Using_Custom_Format_and_Parse_Expressions_in_LiveBindings

7
FireMonkey Styles

Styles are fundamental building blocks of FireMonkey controls. All FireMonkey controls
can be colored, bordered, and animated, and most can glow when focused. There are
default styles for each platform to provide a native look and feel for various devices, but
you can customize them to suit your needs or add a creative flair to set your application
apart. You can share styles, package them with your applications, and install them in
the Delphi IDE. You can also build cross-platform applications without editing a single
FireMonkey style – but where's the fun in that?

This chapter will discuss the role FireMonkey styles play in your applications, how to
control and use them, how to modify them, and ways to share them. Due to this, we will
cover the following topics:

• Understanding and using FireMonkey styles

• Customizing FireMonkey styles with the Style Designer

• Styling your applications with ease

After reading this chapter, you'll have a firm grasp of how to use and manipulate
FireMonkey styles to suit your team's needs.

164 FireMonkey Styles

Technical requirements
This chapter will show you how applications are rendered on different platforms and how
styles make that happen; therefore, all the examples will be able to be run on Windows,
Mac, Android, and iOS devices, and screenshots will be provided throughout to showcase
these differences. At a minimum, a Windows computer running Delphi 10.4 will be
required– it is up to you to decide which other platforms to use for personal education
and testing.

Understanding and using FireMonkey styles
Every FireMonkey control has a default style for each platform. These come with Delphi
and are hardcoded to give you a consistent, platform-specific base to work from that
conforms to user interface guidelines. Back in Chapter 4, Multiple Platforms, One Code
Base, we showed you how to look at different views of a form to preview how it would
look on different devices. Instead of switching a view, you can keep the Master view active
and simply change its Style.

To illustrate this further, open the sample project; that is, MobileControls (this can
be found in your Delphi Samples folder under Object Pascal\Multi-Device
Samples\User Interface\Controls). You can switch Style to Android and see
how it will look without changing the view or running the application (or even having an
Android device hooked up):

Figure 7.1 – The Toolbars tab of the MobileControls sample application in Android style

Understanding and using FireMonkey styles 165

As we mentioned in that same chapter, running the application, unmodified, on various
platforms will result in a different look on each. The following is a collage of screenshots
from the MobileControls app running on four different platforms:

Figure 7.2 – MobileControls application with the "Editors" tab running on various platforms

This shows FireMonkey's default styles at work. The FireMonkey framework chooses the
appropriate view for the device it's running on, then uses the default style for that view.
Again, at design time, when you change the view, it selects the style for you (as it does at
runtime); when you're on the Master view, you can choose which platform's style is active.

But what if you'd like to override the style from its default so that your users can
uniquely color or shade the controls in your application? You've probably noticed
several styles available in the GetIt Package Manager. Let's learn how to use them in our
cross-platform apps.

Loading style sets
If you've used styles in a VCL application, you might have gone looking in a FireMonkey
project's options for a way to add styles directly to the project definition. There is a way
to do that, which we'll discuss later in this chapter. However, in this section, we'll use a
component that's been loaded at design time.

166 FireMonkey Styles

In the following steps, we will use a pre-packaged FireMonkey style that's been loaded in a
new app:

1. If you don't already have it, get the CopperDark FMX Premium Style from GetIt
Package Manager.

2. Create a new Multi-Device Application and choose the Blank Application template.

3. Put a variety of controls on the form: TRadioButton, TCheckBox, TButton,
TEdit, TListBox, TComboBox, TProgressBar, and TTrackBar. I also added
a TGroupBox

4. Finally, drop a TStyleBook component onto the form. This is not a control but, as
its name suggests, a book (or container) for holding style resources.

5. Double-click the StyleBook component to open the Style Designer window.

6. Click the Open button on the Style Designer's Toolbar:

Figure 7.3 – Style Designer Toolbar, Open button highlighted

7. Navigate to the platform-specific folder where your GetIt Package Manager
downloads styles and select the .style file for the selected platform's CopperDark
style. For example, the default path for Windows styles would be C:\Users\
Public\Documents\Embarcadero\Studio\21.0\Styles\Win, while the
file would be CopperDark.Win.style.

8. Repeat steps 6 and 7 with the different platform style files until all four platform's
versions of the CopperDark style have been loaded (besides the Windows style, the
other style files are CopperDark.MacOS.style, iOSCopperDark.style, and
AndroidCopperDark.style).

9. Close the Style Designer window and click Yes when you're prompted to apply
these changes.

10. Set the StyleBook property of the form to the StyleBook component.

As soon as the form's StyleBook property is assigned to a StyleBook component, all the
controls that have been defined in that style for the current platform will show the styled
controls. You can switch through the different platform styles and see how the controls
look for each one. Running it looks like this:

Understanding and using FireMonkey styles 167

Figure 7.4 – FireMonkey app with the CopperDark style running on the Windows platform

At runtime, the form's StyleBook property tells the FireMonkey framework to use the
style that has been loaded in the StyleBook component. This is how you establish a custom
style for your application without any code!

This project can be found on Github at https://github.com/PacktPublishing/
Fearless-Cross-Platform-Development-with-Delphi/tree/master/
Chapter07/07_01_DefaultStyleControls.

Now, let's learn how to use multiple sets of styles.

Selecting between multiple StyleBooks
Let's say you want to give your users the option to select a style of their preference. To
do that, we need to add another StyleBook to the project we've been working on. Let's
name the first one we added StyleBookDark and the second one StyleBookGreen.
Follow the steps provided in the previous section to add another style from the GetIt
Package Manager; for example, Emerald Crystal. Change the form's StyleBook property
to the new style book to see how the controls will look – this is how you can view your
application with different styles at design time. Providing the option to switch styles at
runtime for your users takes just a few lines of code.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter07/07_01_DefaultStyleControls
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter07/07_01_DefaultStyleControls
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter07/07_01_DefaultStyleControls

168 FireMonkey Styles

Change the items of the ComboBox that's on the form to the following item strings:
Default style, Dark style, and Green style. In the OnChange event, add the
following code:

procedure TfrmStylesIntro.cmbStyleChange(Sender: TObject);

begin

 case cmbStyle.ItemIndex of

 1: StyleBook := StyleBookDark;

 2: StyleBook := StyleBookGreen;

 else

 StyleBook := nil; // ItemIndex = 0

 end;

end;

By simply reassigning the StyleBook property of the form, the style of the controls
changes at runtime, just like it does at design time:

Figure 7.5 – Demo app using the Emerald Green style on a Mac computer

By setting the StyleBook property to nil, we have set the style back to its built-in default:

Understanding and using FireMonkey styles 169

Figure 7.6 – Demo app using the default style on a Mac computer

There are a couple more aspects to working with styles in FireMonkey that you should be
aware of before we talk about customizing a style. Most of the controls we've placed on the
form in this demo app have one defined style per platform. However, three of them have
more than one.

Accessing substyle definitions
If you select the TListBox component and then look at the StyleLookup property,
you'll see it's a drop-down list containing two items: listboxstyle (the default)
and transparentlistbox. If you switch the value to the latter, the ListBox
becomes transparent.

TEdit also has more than one item for its StyleLookup property. You can experiment
with its eight different substyles and see how they might be useful in various situations.

The most interesting one on this form is TButton. It has quite a few options for its
StyleLookup property. Some of them look the same on different platforms, while others
look quite different. For example, set the value to replytoolbuttonbordered and
then look at the different platform's styles:

Figure 7.7 – The replytoolbuttonbordered StyleLookup of a TButton is rendered differently on Windows,
MacOS, iOS, and Android

170 FireMonkey Styles

The StyleLookup property provides preset options for how a given control looks. The
great thing is that there are many of these pre-defined, platform-specific styles and lookup
options for many of the most common application needs. The downside is that it could
be quite tedious to customize the entire set of controls to create all these component style
definitions. Fortunately, you seldom need to do that as there are many that could serve as
excellent starting points and then modify for your needs. So, regardless of whether you
need to modify the style of just one or two controls or create an entire new look for all the
controls in your application, the built-in Style Designer will allow you to do that.

Customizing FireMonkey styles with the Style
Designer
With a good handle on using the StyleBook component and an easy way to switch sets of
styles, let's dig into the Style Designer to learn how to customize the look of a control.

As we continue through this chapter, we'll reuse the same project because it already
contains several controls that make it nice to see the effects of the style changes we'll
be making. To "reset" the styles to their built-in defaults, you can simply delete the
StyleBook components from the form. I will do that as well, but also copy the project
to preserve the state of the previous demo. This section's source can be found on
GitHub at https://github.com/PacktPublishing/Fearless-Cross-
Platform-Development-with-Delphi/tree/master/Chapter07/07_02_
CustomStyleControls.

If you right-click on a control, you will see two menu options for editing styles; here's what
they do:

• Edit Custom Style...: This creates and/or edits a style definition for the
selected control – and only that specifically named control – for the selected
platform style.

• Edit Default Style...: This creates and/or edits a style definition for all the
controls of the selected type for the selected platform style.

Let's illustrate the difference in our demo app by creating two more copies of the TEdit
component. First, we'll make changes to the default font and color used by all TEdit
controls and then customize the style of a specific TEdit.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter07/07_02_CustomStyleControls
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter07/07_02_CustomStyleControls
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter07/07_02_CustomStyleControls

Customizing FireMonkey styles with the Style Designer 171

Creating a default style for a control type
Right-click on the first Tedit and select Edit Default Style… from the pop-up menu
to get back into the Style Designer. Here's where the Structure window becomes very
useful. FireMonkey controls often have several style parts, and TEdit is a prime example.
Expand Editstyle and select the font subcomponent, which reveals its properties
in the Object Inspector window. Now, you can change the font's Family, Size, and
Style to whatever you'd like. You could also select the foreground style component
and change the color of the text. As you make these changes, a preview will appear on the
right-hand side of the designer. Here's what I did with mine:

Figure 7.8 – Creating a default style for the Editbox in the Style Designer

172 FireMonkey Styles

Click the Apply style button on the far right of the Style Designer's toolbar or simply close
the Style Designer and apply the changes. Then, back in the form, you will notice that all
three TEdit components have the new style of text:

Figure 7.9 – TEdits at design time with a new default style

All the edit boxes now have the same style. Additionally, all future edit boxes we drop on
this form will get this same style because it's now the default style for the TEdit controls
on this form.

Creating a custom style for a specific control
Now, right-click on the third TEdit control and select Edit Custom Style…. You'll see
the following in the Structure window:

Figure 7.10 – The Structure window shows a custom TEdit style available for Edit3 in the Style Designer

I named my TEdit components Edit1, Edit2, and Edit3. The custom style I'm now
editing, Edit3Style1, is only for the Edit3 component and will not affect the other
two Edit controls. After going through the same process we did previously but with a
different font and color to distinguish it from the others, this is how my form looks:

Customizing FireMonkey styles with the Style Designer 173

Figure 7.11 – Design time view of customized styles applied to our TEdit controls

If you deleted the previous StyleBook components from the form at the beginning of this
section, you'll notice that one has reappeared. It contains both the default style for all the
TEdit components on this form (though this may be added later) and the customized
style for Edit3. As we mentioned earlier, the hardcoded default styles for all the controls
on each of the platforms are part of the FireMonkey framework. As soon as you customize
any of them, a copy is made and is stored in the properties of a StyleBook. If no StyleBook
component is on the form, the only styles available are the built-in, default styles.

The styles we've just edited are only for the selected platform style. If you select the
StyleBook and double-click its Styles property, there will only be one platform listed
after Default. To edit the styles for other platforms, switch the style selector to the
desired platform and then go through the aforementioned process to modify additional
styles for those platforms. For example, if I create at least one style (either default or
custom) for the macOS platform in addition to Windows, my StyleBook's Styles list
would show this:

Figure 7.12 – Showing collections of custom styles in the StyleBook

174 FireMonkey Styles

The style collection lists the different platforms that have controls for custom styles. In this
example, the Android and iOS platforms have not been customized and are not listed so
they would continue using the built-in platform styles, regardless of what style is selected
for the other platforms.

So far, we've just been dealing with StyleBook components placed on a single form. This
has been great for simple demos and learning about styles, but it's not a good practice in
real-world applications with multiple forms. We'll need a good strategy going forward to
manage styles on a larger scale. The next section lists some ways to do that.

Styling your applications with ease
If your application contains many forms, putting these StyleBook components on each
form will quickly discourage many programmers from using styles. Fortunately, there are
three other ways to centrally manage styles in a Delphi project that will make this task
easier. Let's take a look at them.

Quickly setting a single, application-wide style
The first and simplest way to style your entire application is to drop a TStyleBook
component onto any form or data module in your application, load it up with the style of
your choice, as we've done earlier in this chapter, and then set its UseStyleManager
property to True. As soon as that component is created, it calls a global TStyleManager
class, which styles every active form. If your form is not auto-created when the application
starts up, no style will be applied until that form is created – at which point every form is
immediately styled.

Note
If you have more than one StyleBook component in your application that
has the UseStyleManager option checked, only the last one that you
created will affect the style of the application.

This approach is simple and takes the least amount of code but has some limitations, as
we'll soon see.

Styling your applications with ease 175

Customizing styles per form
If you'd like to give your users the option of selecting from a list of styles you've provided
or assigning different styles to different forms, consider putting several StyleBook
components on a shared data module. While only a form has a StyleBook property, the
TStyleBook component itself is non-visual and can reside on either.

An example of how to do this can be found on GitHub at https://github.com/
PacktPublishing/Fearless-Cross-Platform-Development-with-
Delphi/tree/master/Chapter07/07_03_MultiFormControls.

Follow these steps to learn how you can build this yourself:

1. Download four styles from GetIt Package Manager.

2. Create a new Multi-Device Application and use the Blank Application template.

3. Put a bunch of controls on the form to see what they'll look like when a style
is applied.

4. Add three more forms just like this one, naming them appropriately and copying
the controls to each of them.

5. Add the names of the units of the newly added forms to the uses clause in the
main form's implementation section.

6. Add a TActionList to the main form and create an action for each of the
other forms.

7. Create an OnExecute event for each of the TAction lists in the
ActionList that calls the Show method of the corresponding form.

8. Create three buttons and assign a different TAction to each.

9. Add a data module to the project and add its unit name to the uses clause in the
implementation section of every form in the project.

10. In the data module, add four TStyleBook components.

11. For each of the StyleBooks, double-click and add one of the downloaded styles
for each platform you'd like to run this application (for example, AndroidJet.
style, iOSJet.style, Jet.style, and Jet.Win.style to load the Jet style
for all four platforms into one of the StyleBooks).

12. Assign a different StyleBook from the data module to each of the form's
StyleBook properties.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter07/07_03_MultiFormControls
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter07/07_03_MultiFormControls
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter07/07_03_MultiFormControls

176 FireMonkey Styles

Now, run the application. I used the Jet, Material Patterns Blue, Coral Crystal, and Puerto
Rico styles. When I ran it on my Mac and opened all the forms, I saw the following:

Figure 7.13 – An example of multiple forms loading custom styles from a shared data module

By having multiple StyleBooks and assigning the StyleBook property of each form,
you've set the stage for independent and flexible styling in your application.

There's another way of styling your applications that is not only the most powerful and
flexible option, but also takes the most amount of code.

Managing style resources with code
The third way to accomplish centralized style management in your Delphi projects is with
the TStyleManager class in the FMX.Styles unit.

Styling your applications with ease 177

Note
This is what was used behind the scenes when you checked the
UseStyleManager option on a StyleBook component in the first part of
this section. But as we'll see, you have more control when managing the style
using the methods of the TStyleManager class in your code.

With this approach, styles are loaded as resources into the application instead of properties
on a component. Style files can be loaded at runtime for greater flexibility and so that we
can update or replace them after deployment, but our next demo will add them to the
project using the resource manager. Follow these steps to set up a project in this manner:

1. Create a new Multi-Device Application and use the Blank Application template.

2. Put a ListBox and three buttons on the form and save the project to a new folder.

3. Download four new styles from GetIt Package Manager or select ones you already
have; then, copy the .style files for as many platforms you want to support to
a subfolder of the project directory. For example, I selected the Calypso, Emerald
Crystal, Vapor, and Wedgewood Light styles and want to support all four platforms,
so I've got 16 files in my version of the project:

Figure 7.14 – List of style files to support four platforms for four styles

178 FireMonkey Styles

4. Select Project | Resources and Images... from the main Delphi menu and load the
style files, assigning descriptive resource names and setting the resource type to
RCDATA for each:

Figure 7.15 – Four sets style files for each of the platforms loaded into the project as embedded resources

5. Add a data module to the project and add its unit name to the uses clause in the
implementation section of the main form.

6. In the data module, create a class with four static procedures; name these
procedures based on the styles you're using:

type

 TStyleMgr = class

 class procedure LoadCalypsoStyle;

 class procedure LoadVaporStyle;

 class procedure LoadWedgewoodStyle;

 class procedure LoadEmeraldStyle;

 end;

7. Add the FMX.Styes unit to the uses clause in the implementation section of
the data module.

Styling your applications with ease 179

8. In the body of each procedure, call TStyleManager.
TrySetStyleFromResource for each resource, putting each call into
platform-specific compiler directives so that the right style is loaded for the right
platform. For example, here's my implementation of LoadCalypsoStyle:

class procedure TStyleMgr.LoadCalypsoStyle;

begin

 {$IFDEF MSWINDOWS}

 TStyleManager.TrySetStyleFromResource('Style_Calypso_
 Windows');

 {$ENDIF}

 {$IFDEF MACOS}

 TStyleManager.TrySetStyleFromResource('Style_Calypso_
 Mac');

 {$ENDIF}

 {$IFDEF IOS}

 TStyleManager.TrySetStyleFromResource('Style_Calypso_
 iOS');

 {$ENDIF}

 {$IFDEF ANDROID}

 TStyleManager.TrySetStyleFromResource('Style_Calypso_
 Android');

 {$ENDIF}

end;

9. Add the names of the four styles you added to the items of our ListBox; at this
point, your main form might look something like this:

Figure 7.16 – The main form for showing a variety of styles

180 FireMonkey Styles

10. Create three additional forms for demonstration purposes and put a bunch of
controls on them to show what they'll look like when a style is applied. Then, set
up the buttons to launch these forms in a similar manner to what we did in the
previous demo project.

11. In the OnChange event of our ListBox, call the corresponding static procedure
from the data module to load the named style:

procedure TfrmMultiFormsMain.lbStylesChange(Sender:
TObject);

begin

 case lbStyles.ItemIndex of

 0: TStyleMgr.LoadCalypsoStyle;

 1: TStyleMgr.LoadVaporStyle;

 2: TStyleMgr.LoadWedgewoodStyle;

 3: TStyleMgr.LoadEmeraldStyle;

 end;

end;

This should be enough to run the program, show some forms, and then look at different
styles by clicking on them in the ListBox component. Here's what it looks like on
Windows with the Calypso style selected:

Figure 7.17 – Application using TStyleManager to set the style for all the forms

Styling your applications with ease 181

The TStyleManager class affects all the forms in the application – just like the first
method we introduced at beginning of this section. You might worry that this removes
the flexibility of independently setting the style of one form, but setting the StyleBook
property on a form to a TStyleBook component with a loaded style overrides the global
effect of the TStyleManager class for that form.

Note
This concept of overriding a global style with form-level StyleBook
property settings also applies to the first approach of using the
UseStyleManager property on a StyleBook, as described at the beginning
of this section. However, mixing styling methods can lead to confusion and
increase debugging time in large projects or teams.

You can test this out by adding a StyleBook to one of the forms, loading a style, setting
the form's StyleBook property for the form, and then running the application and
switching styles from the main form, as you did previously. You'll see that the other forms
still follow the global style established by TStyleManager but that the form with the
assigned StyleBook remains unchanged:

Figure 7.18 – Application using the TStyleManager set to load the Vapor style globally but with Form3
loading the Ubuntu Clear Fantasy style via a StyleBook

182 FireMonkey Styles

The source code for this project can be found on GitHub at https://github.com/
PacktPublishing/Fearless-Cross-Platform-Development-with-
Delphi/tree/master/Chapter07/07_04_CentralStyle.

Note
If a style loaded by a StyleBook is not supported on a particular platform, the
global style set by the TStyleManager class will take effect. This can be
seen in the example project we used here, if you download the project from
GitHub and run it on iOS or Android. The preceding screenshot shows the
application running on Windows with the Vapor style selected globally but
Form Three using the Ubuntu Clear Fantasy style. Currently, that style is only
available for Windows and MacOS, so when you run it on iOS or Android, the
global style set by TStyleManager, which is Vapor in this example, would
take effect.

Remember that style files can be loaded at runtime. We embedded them into the
TStyleBook component and loaded them as resources to the project for the
TStyleManager class to simplify the examples we used in this section, but there's nothing
stopping you from bundling the .style files separately from your application to provide
selection options, or even to allow for style updates after deployment. To load a style file at
runtime using TStyleManager, simply use its SetStyleFromFile method.

Loading them at design time does make the code larger and adds an element of
inflexibility, but the options are there for you and your team, if you decide to use them.

Summary
This chapter has shown you that using different styles in your cross-platform applications
is not that much more involved than using them in VCL applications. Plus, there are a
couple of different ways to load and use them in your application. If your needs require
unique styling to be applied, then you now have a great start in terms of how to use the
Style Designer to make the necessary customizations.

Utilizing styling options in your application can greatly enhance an otherwise standard
interface. But there are other ways to help applications stand out from your competition.
Some of them may be useful, while others might just be for fun.

In the next chapter, we will explore components that can move and rotate in a three-
dimensional space, apply light sources for diffused color effects, and utilize other
graphically intensive operations you might have thought were out of your reach.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter07/07_04_CentralStyle
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter07/07_04_CentralStyle
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter07/07_04_CentralStyle

Questions 183

Questions
1. What are two ways we can change the visual style of a FireMonkey form?

2. Is it possible to change the built-in platform styles that come with FireMonkey?

3. What is the difference between a default style and a custom style?

4. How do you select the various style components in the Style Designer?

5. What resource type should be assigned to embedded styles?

6. How do you override the global style established by the TStyleManager class?

Further reading
• Customizing FireMonkey Applications with Styles: http://docwiki.

embarcadero.com/RADStudio/Sydney/en/Customizing_
FireMonkey_Applications_with_Styles

• Mobile Tutorial: Using a Button Component with Different Styles: http://
docwiki.embarcadero.com/RADStudio/Sydney/en/Mobile_
Tutorial:_Using_a_Button_Component_with_Different_Styles_
(iOS_and_Android)

• FireMonkey Style Designer: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/FireMonkey_Style_Designer

• Working with Custom and Native FireMonkey Styles: http://docwiki.
embarcadero.com/RADStudio/Sydney/en/Working_with_Native_
and_Custom_FireMonkey_Styles

http://docwiki.embarcadero.com/RADStudio/Sydney/en/Customizing_FireMonkey_Applications_with_Styles
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Customizing_FireMonkey_Applications_with_Styles
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Customizing_FireMonkey_Applications_with_Styles
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Mobile_Tutorial:_Using_a_Button_Component_with_Different_Styles_(iOS_and_Android
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Mobile_Tutorial:_Using_a_Button_Component_with_Different_Styles_(iOS_and_Android
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Mobile_Tutorial:_Using_a_Button_Component_with_Different_Styles_(iOS_and_Android
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Mobile_Tutorial:_Using_a_Button_Component_with_Different_Styles_(iOS_and_Android
http://docwiki.embarcadero.com/RADStudio/Sydney/en/FireMonkey_Style_Designer
http://docwiki.embarcadero.com/RADStudio/Sydney/en/FireMonkey_Style_Designer
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Working_with_Native_and_Custom_FireMonkey_Styles
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Working_with_Native_and_Custom_FireMonkey_Styles
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Working_with_Native_and_Custom_FireMonkey_Styles

8
Exploring the World

of 3D
Adding 3D capabilities to your application may not be at the top of the priority list for
many business applications, but the ease of use with which you can incorporate these
graphical capabilities may open your mind to creative new ways to enhance your product's
look and feel. Whether you're a game developer building a new world, a product designer
wanting to incorporate 3D controls and effects, or you're just programming for fun, this
chapter will get you on the road to crafting your next breed of visual interfaces with your
favorite cross-platform development tool.

The beauty of using Delphi and the FireMonkey framework is that you don't have to learn
a new language or application programming interface (API)—simply use a common
set of controls that are similar to others you have been using in this book. The framework
and controls hide the complexities of calling APIs to utilize the underlying graphics
processing unit (GPU) engines.

186 Exploring the World of 3D

We'll start simple and go over how to mix 2D and 3D controls in the same form and place
basic shapes in a viewport. Then, we go over adding more complex shapes and learn how
to add colored material to cover them and a light source to enhance the 3D look. Next,
we'll animate various objects and colors and show how to import a 3D model. Switching
camera views and testing everything out in our demo app will complete the introduction
to 3D. Taking these new concepts, we'll then build an actual game—and reveal a few more
tricks of the trade.

This will all be explained in the following sections:

• Getting started with 3D in Delphi

• Adding basic and extruded shapes

• Adding color, lighting, and movement

• Importing 3D models

• Changing the camera

• Let's write a game!

There's a lot in this chapter but don't skip it—we'll have a lot of fun!

Technical requirements
This chapter will show how to build 3D applications that run on different platforms and
how the FireMonkey framework gets you there. The examples will be able to be run on
Windows, Mac, Android, and iOS devices. As always, a Windows computer running
Delphi 10.4 will be the minimum requirement—it is up to you to decide which other
platforms to use for personal education and testing.

In addition to standard Delphi requirements, the 3D components discussed in this chapter
utilize the following advanced capabilities of the GPU engines expected to be available:

• DirectX on Windows

• OpenGL or Metal on Mac OS X

• OpenGL for Embedded Systems (OpenGL ES) on iOS and Android

Getting started with 3D in Delphi 187

Note
While OpenGL is still the default API used by FireMonkey on the Mac at the
time of writing, support for the Metal engine was added in Delphi 10.4 Sydney
and may someday be the default. Follow the Boost Mac performance with Metal
and Delphi 10.4 link in the Further reading section at the end of this chapter
to learn why this is important and how simple it now is to activate it in your
Mac applications. The source code for the examples and sample applications
used in this chapter is available on GitHub at https://github.
com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter08.

Getting started with 3D in Delphi
Building a FireMonkey application with 3D capabilities requires a TViewPort3D
component container for holding 3D objects. Starting a new 3D application gives you a
form unit based on TForm3D that conveniently bundles the TViewPort3D container in
for you. If you have an existing 2D FireMonkey application, you can add a TViewPort3D
container onto it, in which you can put 3D objects.

There's no better way to learn than to dive in and start playing in this new arena. I would
suggest creating a new multi-device application, selecting the 3D Application template,
and placing a few controls from the 3D Shapes section of the palette onto the form. As
you place each one, you'll notice the objects have four handles with which to resize and
rotate the object in 3D space. Most also have a default color of red.

Another thing you'll notice is that all 3D controls are initially placed in the center of the
viewport. ViewPort3D is measured in width (x axis), height (y axis), and depth (z axis).
The center of ViewPort3D is the center of your 3D space; more specifically, the x, y,
and z coordinates at the center are (0, 0, 0). This is a big difference from what you're used
to in the Visual Component Library (VCL) or 2D FireMonkey forms where the (0, 0)
position is in the upper-left corner. Additionally, the y axis increases as it goes down the
page, yielding negative values for both x and y positions in the upper-left quadrant of
ViewPort, and the z axis increases as you go further into the screen, so to pull something
forward where it looks as though it's in front of the screen, set its Position.Z property
to a negative. Finally, the position coordinates are floating-point values, not integers.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter08
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter08
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter08

188 Exploring the World of 3D

Here's a screenshot of a sample Delphi application we'll build in this chapter, with several
types of 3D objects represented in the four quadrants of the viewport's space:

Figure 8.1 – FireMonkey 3D application with a variety of objects in the four quadrants of the viewport

There are many interesting (and unrelated) objects in this app, all showing different
techniques we'll explore in this chapter. I suggest you try to create them on your own,
but if you get stuck, the source for this can be found on GitHub at https://github.
com/PacktPublishing/Fearless-Cross-Platform-Development-with-
Delphi/tree/master/Chapter08/01_Quadrants.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter08/01_Quadrants
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter08/01_Quadrants
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter08/01_Quadrants

Adding basic and extruded shapes 189

Adding 2D controls to a 3D form
We'll get to the 3D objects on the form shortly but first, notice the right side of
this application has what looks like a collapsed panel with an "arrow" button. By
starting with TForm3D as this application does, the only way to get 2D controls on
the form is by adding TLayer3D. When you do that, it covers over a portion of the
underlying viewport. Since I wanted the full space of the viewport, what I did was
aligned TLayer3D to the right of the form, made it very narrow, and added a button
that, when clicked, expands the TLayer3D area that shows the controls I've placed
there. I named the button btnShowOptions, and set its StyleLookup property to
'arrowlefttoolbutton'. Here's the OnClick event handler:

procedure Tfrm3DQuadrants.btnShowOptionsClick(Sender: TObject);

begin

 if Layer3DOptions.Width = 20 then begin

 Layer3DOptions.Width := 120;

 btnShowOptions.StyleLookup := 'arrowrighttoolbutton';

 end else begin

 Layer3DOptions.Width := 20;

 btnShowOptions.StyleLookup := 'arrowlefttoolbutton';

 end;

end;

We'll be back later to put some controls into this area to work with our 3D shapes.
Speaking of which, let's get to the fun part by adding some simple shapes.

Adding basic and extruded shapes
The first 3D object I added to this application was a TCube object. When initially
placed, it's in the center, or (0, 0, 0) in the 3D coordinate space. By changing its x and y
position coordinates to -5 each, it moves the cube to the upper-left portion of the screen,
which I've called Quadrant 1. By using the handles of the cube in Delphi's 3D Form
Designer, I increased the size and rotated it slightly. Adjusting rotation and size with
the mouse is a little clumsy at first—the handles rotate the shape in the direction of the
long side of the handle. Sometimes, it's easier to adjust the Height, Width, and Depth
properties manually to get the size to your liking; I set RotationAngle.X to 5 and
RotationAngle.Y to 45 in the demo app.

190 Exploring the World of 3D

Next, add a TCone object and set its X and Y position properties to (5, -5) to place it in
the upper-right quadrant of the viewport. Again, adjust the size properties to your liking.

Another common shape is a TSphere shape. Add this with x and y coordinates of -5
and 5, respectively, to place it in the bottom-left quadrant.

Showing lines for the axes
For this app, I wanted to highlight the four quadrants of the viewport. To emphasize
the x and y axes, I wanted to show horizontal and vertical lines. There are a few different
shapes you could use to do that. One of the simplest is a TPlane object, which I
implemented for the x axis. This is a 2D plane, and since I didn't need any depth for a
simple line, it works perfectly. I set its Height property to 0.1 and its Width property
to the width of the viewport.

Note
Since the TPlane object is a descendant of TShape3D, it has a Depth
property but, by definition, does not have any depth; therefore, the Depth
property of this component is set at 0.001 and cannot be changed.

The y axis is similar, but I wanted to emphasize the fact that its values decrease in the
viewport by showing a down arrow. To do this, I built an arrow out of a thin cylinder
with a small cone at the end. First, add a TCylinder with a Width property of 0.1
and a Height property just short of the viewport (to allow for the arrow tip at the
bottom). Then, add a small TCone with its RotationAngle.X property set to 180
to turn it upside down; adjust its Position.Y property so that it is at the end of the
cylinder just placed.

To further emphasize what the lines are for, I'd like to add some text to the y axis. This
calls for a TText3D object, which is in a class of extruded shapes.

Extruded shapes
2D shapes can be useful in the 3D world, but all objects on TViewPort3D must be 3D
objects. Therefore, in order to display a 2D shape, it must be extruded onto a 3D shape.
What this does is create a 3D shape with the 2D shape on the front, a mirror image of the
2D shape on the back, and a section of the 3D shape connecting the two, called the shaft.
The resulting object can be placed on a 3D form or viewport just like with any other 3D
object—and, in fact, has all the same placement, sizing, and rotating properties found in
other 3D objects.

Adding basic and extruded shapes 191

The standard FireMonkey objects declared as descendants of TExtrudedShape3D are
listed as follows:

• TRectangle3D (very similar to TCube)

• TEllipse3D (very similar to TCylinder)

• TText3D—allows text to be added to a 3D viewport

• TPath3D—extrudes a 2D user-defined polynomial onto a 3D shape

We want to add some text to the form to identify the y axis, so add a TText3D and set its
Text property to Y-Axis and its Position.Y property to -2 to move up just above
the x axis.

Your design form should now look something like this:

Figure 8.2 – Basic shapes added to a 3D form

We want to add one more object before moving on—a star. This isn't a predefined shape
but one we must build ourselves using TPath3D.

192 Exploring the World of 3D

User-defined shapes
TPath3D is a very versatile object because it's free from the predefined rectangular or
spherical shapes; however, it does mean every line and curve must be explicitly specified
with an array of TPathPoint coordinate instructions in its Path property. These
graphical instructions are given in the common Scalable Vector Graphics (SVG) format
supported by all modern web browsers and many graphical applications. Fortunately, you
don't have to learn how to write SVG commands; you can download a free tool, such as
Inkscape, draw an image, and simply export them.

For example, to add a star to our application, I followed these instructions:

1. Download and install Inkscape.

2. Using the Star tool, draw a star in a new document.

3. Select Edit | XML Editor... from Inkscape's menu.

4. Find the path node and copy the value of the d parameter.

5. Switch back to the Delphi project and add a TPath3D component to the form.

6. Click the ellipsis button for its Path property to bring up the Path Designer.

7. Paste the SVG code copied from Inkscape, then click OK.

The component suddenly looks like a star! And since it's a 3D object, it can be resized,
rotated, and colored, just like any other extruded 3D shape. If you open up the Path
property again, you'll see it has reformatted the coordinates into an array of TPathPoint
strings, as illustrated in the following screenshot:

Figure 8.3 – SVG data for a star

Adding color, lighting, and movement 193

Now that you can create almost any kind of 3D object (we'll save one more for later),
it's time to get rid of all this red. Let's add some color and texture!

Adding color, lighting, and movement
Adding color is pretty simple. Let's start by coloring the axes black. Add a
TColorMaterialSource component to the form. This won't show up as a clickable
object, but you can see it in the Structure pane. Set its Color property to Black.

Now, select the TPlane object you added for the x axis, find its MaterialSource
property, and drop down the Property Editor to select the black material source
component you just added. The x-axis line should now be black. You can do the same for
the y-axis cylinder and its cone arrow if you'd like; if you do, notice that the red y-axis text
looks as though it goes through the y-axis line. To fix that, you can pull that TText3D
object forward by setting its Position.Z value to -0.5.

How would you like to transform the sphere in the lower-left quadrant into a globe?
Applying a material source with the right texture bitmap makes it simple, but finding
the right texture source isn't always so simple. Fortunately, https://visibleearth.
nasa.gov has some great freely downloadable images. Once you find one you like,
follow these steps:

1. Add a TTextureMaterialSource component to the form.

2. Click the ellipsis button for the Texture property, then select Edit....

3. When the Bitmap Editor comes up, click Load to load the earth image you
downloaded, and then click OK.

4. Select the TSphere object and set its MaterialSource property to the
TTextureMaterialSource component, with the earth image loaded.

https://visibleearth.nasa.gov
https://visibleearth.nasa.gov

194 Exploring the World of 3D

The sphere in the lower-left quadrant should now look like this:

Figure 8.4 – A TSphere object textured with a world map

We haven't forgotten about the objects in the upper-left and upper-right quadrants.
We'll add more colors and textures but with an added touch: light!

Adding a light source to colors and textures
The colors and textures we've applied so far are constants applied with the same intensity
over the object to which they are applied. To get closer to photorealism, a light source can
be added that affects the brightness of a texture or color depending on the angle at which
the light source is hitting the object. This calls for a material that knows about light: a
TLightMaterialSource component.

To add a light-affected blue color to the cube, follow these steps:

1. Add a TLightMaterialSource component to the form.

2. Set the Ambient property to MidnightBlue.

3. Set the Diffuse property to SkyBlue.

4. Set the Emissive property to Blue.

5. Set the MaterialSource property of the TCube object to the blue material
source component we just added.

Adding color, lighting, and movement 195

The three different color properties affect the color that will be applied to the object, but
since we don't yet have a light source, the Emissive property is the only one affecting
the cube.

Add a TLight to the form, and instantly, the color of the cube changes. Now, the
Ambient and Diffuse properties come into play, the former affecting the shadowed
areas and the latter setting the color when a direct white light is hitting the surface.
Notice in the following screenshot that the top of the cube is dark, and the front of the
cube, where the light is hitting it directly, is close to the skyBlue color:

Figure 8.5 – Our cube with a blue color applied that is affected by a light source

Light can also affect texture. Add another TLightMaterialSource component and
this time, instead of setting the color properties, click the ellipsis button on the Texture
property and load a green texture. I found one that has a rough look to it and from a
distance could look like trees or bushes. Apply this material source to the TCone object
in the upper-right quadrant. Notice the texture is brighter in the center and darker on the
sides because the light source is hitting it from the front. You can add a brown cylinder
at the bottom then duplicate these objects to simulate a forest. I added several small red
spheres to make it look like a Christmas tree.

But a Christmas tree isn't complete without a star on top, right? So, let's attach the star
we created out of TPath3D earlier to the top by making it a child of the Cone object and
adjusting its Position properties. We'll leave it at the default color of red for now.

196 Exploring the World of 3D

Now, it's starting to look how we want, as we can see here:

Figure 8.6 – A Christmas tree made from a textured cone, red spheres, a star, and a brown cylinder

Suppose you want to see what these objects look like with the light off. You can simply
select the TLight object and set its Enable property to False. You can also do this
at runtime. Follow these steps to set that up:

1. Expand the TLayer3D component on the right side of the form.

2. Add TGroupBox and change its caption to Light.

3. Add TSwitch inside the group box and TLabel below it with the Text property
set to On/Off.

4. Right-click on the switch and select Bind Visually....

5. Hook up the switch's IsChecked property to the light's Enabled property.

6. Reset the Width property of TLayer3D to 20.

Now, when you run the program, you can expand the side panel and turn the light on
and off to see how this affects the coloring of objects at runtime. This will become more
interesting once we add animation later in the chapter.

Back over to the cube—it's a nice shade of blue but could use some colored text, which
deserves a special mention.

Adding color, lighting, and movement 197

Coloring extruded objects
Add another TText3D object to the form and set its Text property to Quadrant 1,
then make it a child object of the cube. Adjust the Depth, Height, and Width
properties so that it looks as though it sticks out from the side of the cube.

TText3D and other extruded objects have three material source properties, listed
as follows:

• MaterialSource—The material applied to the 2D object on the front

• MaterialBackSource—The material applied to the mirror image on the back

• MaterialShaftSource—The material applied to the 3D shaft between the front
and back of the 3D object

Since this text is partially embedded in the side of the cube, the back will never be seen,
so we can leave the MaterialBackSource property blank. Set the other two material
source properties to either ones already added to the form or new ones you create to
uniquely color this text. I used the same material source with black applied to the x axis
for the MaterialSource property and the brown material source used for tree trunks
for the MaterialShaftSource property.

Now, my cube looks like this:

Figure 8.7 – My cube with colored text anchored to the side

While the text's position is relative to the center of the cube, the sizes of the cube and text
are independent of each other; thus, you could increase or decrease the width or depth of
the cube without changing the text's size properties to show or hide the child text object.

In fact, the text object could also be made to look completely outside of the cube, which
might make it appear to be disconnected—until you rotate the cube and see the text rotate
with it!

Speaking of rotating, it's time to add some movement to our objects.

198 Exploring the World of 3D

Adding animation
We have a globe in the lower-left quadrant; let's spin it, as follows:

1. Add a TFloatAnimation component to the form.

2. Set the StartValue property to 0, the StopValue property to 360, and the
Duration property to 20.

3. Using the Structure pane, drag the float animation component so that it's a child of
the TSphere component with the world map texture.

4. Now, the PropertyName field can access one of the sphere's numerical properties;
select RotationAngle.Y.

5. The default animation direction around the y axis is clockwise, so set the Inverse
property to True to simulate the earth's actual rotation.

6. Set the Loop property to True so that it doesn't stop spinning once it's reached the
StopValue property.

7. Set the Enabled property to True so that it starts when the application runs.

Now, run the application and see the globe spinning. What we've done should be obvious:
the sphere's property being animated is RotationAngle.Y and it continuously loops
from 0 to 360 degrees counter-clockwise around the vertical axis.

Let's add another TFloatAnimation, this time for the cube in Quadrant 1. Seeing the
back of the cube isn't important, so set the StartValue and StopValue properties
of the animation component to 10 and 150 and set both the Loop and AutoReverse
properties to True. As before, drag the animation component in the Structure pane to
be a child of the cube, select the RotationAngle.Y property for PropertyName, and
enable and run it.

It's hard to capture animation in print, but here is a sequence of screenshots to indicate
what's happening at runtime with the cube:

Figure 8.8 – Sequence of screenshots showing the cube's rotation at runtime

Adding color, lighting, and movement 199

Notice the shades of blue change as the cube turns to face the light, which is coming from
the center of the screen.

There are several more types of animation components. We'll look at one more that will
make the star on top of the tree twinkle.

Animating color
Animation is simply changing a property through a sequence of values. If that property is
a color, then instead of moving an object, it'll simply change its color.

Follow these steps to animate the color of the TPath3D component we used to form the star:

1. Add a TColorMaterialSource component.

2. You can leave its Color property at the default of Red or set it to Yellow or Null;
this initial color will only be seen at design time.

3. Add a TColorAnimation component and make it a child property of the color
material you just added.

4. Set PropertyName of the new color animation component to the Color field of
the star object, its parent.

5. Set the StartValue property to Yellow and the StopValue property
to Orange.

6. Set both AutoReverse and Loop to True.

7. Leave the Duration property at 0.2 and set Enabled to True.

8. Assign the TColorMaterialSource component to all three material
properties of the star (MaterialSource, MaterialShaftSource, and
MaterialBackSource).

9. Run the application.

Now, the Christmas tree has a blinking star on top. Just for fun, how would you like to also
blink the lights on the tree?

200 Exploring the World of 3D

In this case, let's just blink them on and off, so instead of changing their color, we'll just
set Opacity to 0 and then back to 1, but there's a lot of them and we want them to blink
at different times, so this will take a little coding. I named all the TSphere objects on
the Christmas tree starting with a bulb prefix and appended these with an incrementing
number, so this will be fairly simple. Call this procedure from the OnCreate event of the
form, as follows:

procedure Tfrm3DQuadrants.StartTreeLightsBlinking;

var

 NewFloatAnimation: TFloatAnimation;

begin

 for var bulb := 1 to 8 do begin

 NewFloatAnimation := TFloatAnimation.Create(self);

 NewFloatAnimation.Parent := FindComponent('bulb' + bulb.
 ToString) as TSphere;

 if Assigned(NewFloatAnimation.Parent) then begin

 NewFloatAnimation.Duration := 0.5 + Random;

 NewFloatAnimation.Delay := 0.5 + Random;

 NewFloatAnimation.StartValue := 0.0;

 NewFloatAnimation.StopValue := 1.0;

 NewFloatAnimation.Loop := True;

 NewFloatAnimation.AutoReverse := True;

 NewFloatAnimation.PropertyName := 'Opacity';

 NewFloatAnimation.Enabled := True;

 end;

 end;

end;

That's pretty cool! Now, the Christmas tree is complete.

There's one conspicuously empty space in our application: the lower-right quadrant.
Let's import a complex model and display it there.

Importing 3D models
So far, we've shown how to add fairly simple objects in our 3D world—objects that can be
defined with a few lines or curves. Even the TPath3D component with its array of path
points is only a 2D object at its root.

Importing 3D models 201

To create a 3D object not constrained to a handful of lines requires a TMesh. Its parent
class, TCustomMesh, is actually the base class for all non-extruded 3D shapes, with
properties hidden and methods overridden to make them easy to use. A mesh allows a
set of connected points and—optionally—textures to define a 3D object. What we want
is something even more complex.

Enter TModel3D. This component has a MeshCollection property that connects
several mesh objects into one comprehensive object. What's more, MeshCollection
can import standard 3D model files built into many kinds of popular 3D modeling
software, such as Autodesk or Blender. Three formats are supported: ASE, DAE, and OBJ.

3D modeling software has a steep learning curve and if that's not where you want to
spend your time, there are websites that offer subscriptions to libraries of 3D models and
people that specialize in creating them. There are also some free ones to be found. One
such place is https://www.turbosquid.com/Search/3D-Models. They have
a filter for price, and setting that to FREE will let you try this out without spending a
dime—however, it will require you to create a free account. I found a model of an elk and
downloaded that.

Once a file in one of the supported formats has been downloaded, place a TModel3D on
the form, position it so it's in the bottom-right quadrant, and click the MeshCollection
property's ellipsis button to bring up the Mesh Collection Editor. Click the Load button,
select the 3D file, and then click OK. The model displays in its default color of red.

Remember that TModel3D is a collection of several TMesh objects, each of which can
have a unique color or material. So, TModel3D does not provide a way to assign one at
design time. The code to do it at runtime is fairly simple, though; I implemented it in
the form's OnCreate event and assigned it to the brown material I created earlier, as
illustrated in the following code snippet:

procedure Tfrm3DQuadrants.Form3DCreate(Sender: TObject);

begin

 for var AMesh in Model3DElk.MeshCollection do

 AMesh.MaterialSource := ColorMaterialSourceBrown;

end;

https://www.turbosquid.com/Search/3D-Models

202 Exploring the World of 3D

Now, when you run it, you should see a brown elk. Since I didn't use
TLightMaterialSource, it's not very realistic as there are no shadows, just a solid
brown elk. I tried setting its Opacity property to 0.8 and it looks a little better, as we
can see here:

Figure 8.9 – A 3D model of an elk

To add a little interactivity in order to take a closer look at the model we imported, let's
add some 2D controls to rotate and zoom the model, as follows:

1. Expand the TLayer3D side panel.

2. Add a TGroupBox and set its Text property to Elk.

3. Add a TTrackBar and corresponding TLabel with a Text value of Rotate in
the group box.

4. Add another TTrackBar and corresponding TLabel with a Text value of
Scale, also in the group box.

5. Select one of the TrackBar components, right-click, and select Bind Visually....

6. Add the TModel3D component to the LiveBindings Designer and add the following
bindable members: RotationAngle.Y, Scale.X, Scale.Y, and Scale.Z.

7. Bind the Value property of the TrackBar used for rotating to the Model3D
object's RotationAngle.Y property.

8. Bind the Value property of the TrackBar used for changing the scale to the
Model3D object's Scale.X, Scale.Y, and Scale.Z properties.

9. Resize TLayer3D back to its original Width property of 20.

Changing the camera 203

Your LiveBindings Designer window should now contain these bindings, as illustrated in
the following screenshot:

Figure 8.10 – Rotation and scaling TrackBar components bound to the elk model

Running the program, you will now be able to scale and rotate the elk.

What if you'd like to zoom in and show only the elk or a different object? This calls for a
different camera.

Changing the camera
Every 3D view (TForm3D or TViewPort3D) has the concept of a camera to capture
objects in the 3D world. The default camera used at design time points at the very center
of the area but is located back from the screen, toward the viewer (-20 on the z axis). This
gives a nice, viewable area of your 3D world.

But this is just the start—there can be several cameras.

Multiple cameras
You can add one or more cameras and switch between them and the default one. Their
position and rotation can be customized to the specific views you're after, and if you want
one of them to focus on one object, you can set the Target property to that object. Any
change to a camera view at runtime requires a call to the camera's Repaint method to
tell the output about the updated camera view.

204 Exploring the World of 3D

Here are the steps to add a camera view that focuses on the elk—and how to switch it
at runtime:

1. Add a TCamera component to the form and set its Position properties to
(5, 4, -7) and its RotationAngle properties to (355, 30, 0).

2. Set the Target property of the new camera object to the Model3D object used for
the elk.

3. Expand the TLayer3D side panel and add a TGroupBox component with a label
of Camera.

4. Add a couple of TRadioButton objects inside the group box—one labeled
Default, and the other labeled Elk.

5. Set the OnClick event of the radio button for the elk to the following code:

procedure Tfrm3DQuadrants.radCameraElkChange(Sender:
TObject);

begin

 UsingDesignCamera := False;

 Camera := CameraElk;

 Camera.Repaint;

end;

6. Set the OnClick event of the radio button for the default camera to the
following code:

procedure Tfrm3DQuadrants.radCameraDefaultClick(Sender:
TObject);

begin

 UsingDesignCamera := True;

 Camera.Repaint;

end;

7. Reset the width of the TLayer3D side panel back to 20.

Changing the camera 205

When you run the program and expand the side panel, you can now switch between a
close view that focuses only on the elk and the default view of the whole screen.

You can apply these same concepts to add a camera that focuses on the cube. Set this
camera's Position properties to (-3, -4.5, -10) and the RotationAngle properties
to (350, 350, 0). Add another radio button to switch it at runtime with this code:

procedure Tfrm3DQuadrants.radCameraCubeClick(Sender: TObject);

begin

 UsingDesignCamera := False;

 Camera := CameraCube;

 Camera.Repaint;

end;

Think of your computer screen as a TV where you're watching a movie with different
camera angles. If you think about it, the views are changing constantly to show close-ups
of people or objects. Using multiple cameras can greatly enhance your 3D application if
used properly.

In addition to cameras placed at stationary points of the scene, you can also place cameras
that are relative to a specific object.

Satellite camera
If you add a camera as a child of another object instead of directly on the form as we've
done here, its position and rotation properties are relative to that object. If there's any
animation applied to the object, the child camera will (as any other child object would)
move right along with it.

206 Exploring the World of 3D

Try adding a camera as a child to the globe; it's Position and RotationAngle
properties can all be left at 0 except for Position.Z, which you will want to bring away
from the globe by setting it to -15. This camera will act like a satellite fixed on one spot
on the globe, making it look as though the rest of the 3D space is spinning around it, as
illustrated in the following screenshot:

Figure 8.11 – View from an earth satellite camera as the 3D space spins around it

There are many aspects to manipulating objects, views, cameras, and lighting. In some
ways, it's amazing this works so well and so similarly across platforms. Still, it's always a
good idea to test on as many different devices as is practical.

Testing on phones
I ran all my initial tests of this application on a Windows machine—it's quick and easy. As
I was nearing the end of development, I decided to make sure it worked on other devices
and, as you might expect, found some things that needed to be addressed. The first thing
I noticed was that when the app ran on a small phone in portrait mode, the sides of the
viewport were cut off.

Changing the camera 207

So, the first improvement was to go into Project | Options and force it to only use
landscape mode. That setting is found under the Application | Orientation section, as
illustrated in the following screenshot:

Figure 8.12 – Project Options set to use only landscape mode

Next, I noticed the 2D panel on the side was really crowded. On Windows and Mac
desktops, the mouse is ubiquitous in selecting objects and can pinpoint the spot to click
in radio buttons with relative ease. But fingers on a mobile device take up a much larger
percentage of the area, requiring a lot more space between the options. The FireMonkey
views show this, but I had failed to check them.

To free up space in the side panel, I changed how the camera views are selected from a
group of radio buttons by clicking directly on the objects; a second click would reset the
camera view back to the default view.

Here's how the OnClick event for the globe, and the procedure it calls, are coded:

procedure Tfrm3DQuadrants.SphereGlobeClick(Sender: TObject);

begin

 if Camera = CameraEarthSat then

 SwitchToCameraDefault

 else begin

208 Exploring the World of 3D

 UsingDesignCamera := False;

 Camera := CameraEarthSat;

 Camera.Repaint;

 end;

end;

And the procedure it calls to reset the camera to default is also quite simple, as illustrated
in the following code snippet:

procedure Tfrm3DQuadrants.SwitchToCameraDefault;

begin

 UsingDesignCamera := True;

 Camera.Repaint;

end;

For the cube, you need to hook into the OnClick event handlers for both the cube and its
embedded text object in case the click occurs over the text instead. The elk didn't respond
to clicks until I set the HitTest property to True; most 3D objects enable that property
but TModel3D passes mouse events to objects (or the form) behind it by default.

Finally, I found the group boxes didn't show up very well on Android, so I loaded a style just
for Android that made them stand out better, as illustrated in the following screenshot:

Figure 8.13 – Quadrant's demo app running on an Android phone showing styled group boxes

Let's write a game! 209

This has been a great introduction to several aspects of using 3D objects with Delphi,
but there are several more things we should cover before leaving this topic. One way to
explain them is to use them in more of a real-life application—for example, a game!

Let's write a game!
A vast majority of video games involve immersive graphics. We don't have the time or
space to build a 3D world with artificial intelligence (AI)-controlled moving objects and
lots of interactivity, but we can build a small "escape" game. The idea behind games of this
genre is that you're stuck in a room that is pictured on the screen and you click on various
objects to find clues to get out of the room.

As I looked through some old stock images that might be fun to implement, I came across
one of a small room with a couple of computer racks, an old phone on the wall, and an
engineer at a computer desk with his back to us. There's also a clipboard on the table, a
perfect place to hold clues about how to set controls on one of the server racks. One of my
favorite science-fiction movies is The Matrix, where the characters in the movie use old
land phones to transfer their digital conscious between real and virtual worlds, so this will
be the escape point, rather than a door as you'd find in most escape-type games, with the
idea that we're stuck in 1985 and want to escape the time period back to the present day
rather than just walk out of the room.

So, there are three clickable objects in my escape game: a notepad, a control panel,
and a phone; the main screen is just a simple image of the room, as illustrated in the
following screenshot:

:

Figure 8.14 – Escape game main screen

210 Exploring the World of 3D

I started, of course, by creating a new multi-device application and choosing the 3D
Application template. Before I started placing objects on the form, I placed a container
object for 3D controls called a TDummy object. This is a somewhat strange name for a
component but represents the idea that it doesn't have separate functionality or controls
like other 3D objects—it's just a dumb container, if you will. Its whole purpose is to
group other 3D objects and allow you to perform manipulations on them as a whole by
manipulating the dummy component instead of each of your objects individually.

On top of the dummy container, I added a TImage3D and loaded the image of the room.
I stretched the image out and fixed the form size by setting its BorderStyle property
to Single.

A couple of other setup things to mention before we explore the depths of the game include
setting up a custom TCamera and adding a TLight. The camera is placed at (0, 0, -15) to
simulate a person at the back wall looking at the room. The light is at (0, -5, -5) to represent
a light on the ceiling. This will give a realistic look for a few objects we will add.

The interesting part of this game is implementing hidden clickable objects. We want the
user to click around and find the clues without them being too obvious. Let's see how to
do this.

Implementing hidden clickable areas
All 3D objects have an Opacity property, set by default at 1, which means the object is
completely visible and hides objects behind it. Set it to 0 and the object is transparent. This
means you can place an object on top of another and make it completely invisible, which
is perfect for our needs because it can still react to a mouse click (or finger touch).

Now, let's pause our application building and think about the mechanics of the game.
When you click on an object, you want the object to get big enough to see and interact
with. For example, clicking on the notepad on the desk should look and act as though
you've picked it up and are looking at it closely; when you're done, you can put it back
down and move on to something else. The control panel should zoom forward (as if we
walked up to it) so that we can see the individual controls and interact with it. Finally,
the phone doesn't really need much interaction but we'll bring it forward as well for
consistency in the user interface (UI) and as a visual confirmation to the game player that
it was actually clicked.

Let's write a game! 211

The phone is our simplest clickable object, so let's start with that. We will use the TDummy
object again to group each of the clickable objects, so create a dummy container for the
phone and place it over the room image in the upper-left corner. Add a TImage3D on top
of the phone container and load an image of the phone. As we're working with the objects,
it's easier to work in the "zoomed-in" state and then hide them when the program starts,
so build with the dummy container an image in the size you'd want to see once it's been
clicked while playing the game, as illustrated in the following screenshot:

Figure 8.15 – The phone object and image in a dummy container, at design time

In addition to the full size, we also need to know the small size and assign it when the
application starts so that the clickable area just barely covers the actual object in the
room image. But instead of modifying the x and y properties, we can simply scale the
phone's dummy container up and down, and all the components inside it (only one, in
this case) will scale down with it. With the full size of the phone, as shown in Figure 8.15,
the scale would be 1. Playing around with the scale a little bit, we find that setting the X
and Y sub-properties of Scale to 0.4 will be the appropriate size for our small, hidden,
clickable object. We won't need to adjust Scale.Z.

To provide a nice visual effect of zooming, instead of simply changing the scale from 0.4
to 1 and showing the image instantly zoomed, it's nice to show a quick animation of the
object coming forward. This is fairly simple to accomplish with the animation components
in FireMonkey we learned about earlier in the chapter.

212 Exploring the World of 3D

Add a TFloatAnimation component for each of the two Scale properties we need
to adjust as child components of the phone container, set StartValue to 0.4 and
StopValue to 1.0 in each, and set one of them to affect the Scale.X property and the
other to affect the Scale.Y property. We want the zoom to be quick and smooth, so set
the Duration property of each to 0.4.

Lastly, remember that before the user clicks on the phone, it is invisible; the Opacity
property is 0. We also need to animate that property to make it smoothly appear while it's
zooming forward, so add another TFloatAnimation component, this one as a child of
the phone image, as it's the image's transparency that needs to change. We set the duration
of the zooming at 0.4 seconds, so the duration of the opacity change should be the same.
I think it should start zooming just before we actually see it, so I set a Delay property of
0.1 and a Duration property of 0.3. You can set these values to your own liking.

We're almost ready—we just need to initialize the settings when the application starts.
We'll work with these objects in their "full zoom" state at design time to make it easier to
adjust properties, but we want the objects set up for actual use in their "unzoomed" state
at runtime. So, I wrote a procedure called from the form's OnCreate event to set up the
phone object, as illustrated in the following code snippet:

procedure TfrmEscape1985.SetupPhone;

begin

 DummyPhone.Scale.X := FloatAnimPhoneScaleX.StartValue;

 DummyPhone.Scale.Y := FloatAnimPhoneScaleY.StartValue;

 DummyPhone.Position.Z := CLICKABLE_OBJECTS_Z;

 Image3DPhone.Opacity := 0;

end;

At design time, our scale values are 1 but we need to start at 0.4. The animation
component's StartValue property is 0.4, so we can just assign that value—then, if we
ever decide to change the scale, we can simply change the StartValue animation in the
Object Inspector and won't have to worry about this code.

The Z position of these objects should always be just in front of the room image but
behind any zoomed image because if any hidden object is at the same distance as
the visible object, the click event might be attributed to the wrong image. I set the
CLICKABLE_OBJECTS_Z value to -0.8.

So, then, what happens when the object is actually clicked?

Let's write a game! 213

Activating and deactivating an object
The OnClick event of an object should make the object appear only if it's not already
showing. Clicking the object again should do something different—or nothing at all.
Clicking on the room image should make the object disappear so that you can click on
something else.

To allow for that, a variable—private to the form—is created for each of the clickable
objects to indicate the state of the selected object; they are initialized in the form's
OnCreate event to False. For the phone object, clicking on it when it's showing will
try to escape the room—we'll get to that later. If it's not showing (and none of the other
objects are showing either), then it should show the phone. The code is illustrated in the
following snippet:

procedure TfrmEscape1985.Image3DPhoneClick(Sender: TObject);

begin

 if FPhoneShowing then

 TryEscape

 else if (not FNotepadShowing) and (not FPhoneShowing) and

 (not FControlsShowing) then

 ShowPhone;

end;

The interesting part is the ShowPhone procedure where we activate the animations, as
illustrated in the following code snippet:

procedure TfrmEscape1985.ShowPhone;

begin

 if FPhoneShowing then begin

 FPhoneShowing := False;

 FloatAnimPhoneScaleX.Inverse := True;

 FloatAnimPhoneScaleX.Enabled := True;

 FloatAnimPhoneScaleY.Inverse := True;

 FloatAnimPhoneScaleY.Enabled := True;

 FloatAnimPhoneOpacity.Inverse := True;

 FloatAnimPhoneOpacity.Enabled := True;

 DummyPhone.Position.Z := CLICKABLE_OBJECTS_Z;

 end else begin

 FPhoneShowing := True;

214 Exploring the World of 3D

 DummyPhone.Position.Z := ZOOMED_OBJECTS_Z;

 FloatAnimPhoneScaleX.Inverse := False;

 FloatAnimPhoneScaleX.Enabled := True;

 FloatAnimPhoneScaleY.Inverse := False;

 FloatAnimPhoneScaleY.Enabled := True;

 FloatAnimPhoneOpacity.Inverse := False;

 FloatAnimPhoneOpacity.Enabled := True;

 end;

end;

This procedure is used to make the object both appear and disappear. When appearing,
it will zoom forward and remove its transparency; that happens in the second half of the
procedure, where it sets the FPhoneShowing variable to True and moves the object
forward slightly by setting the Position.Z property to the ZOOMED_OBJECTS_Z
(-1) constant.

Notice also that it sets the Inverse property to False in the second half of the
procedure. Why is that? Because the first half of the procedure sets it to True in order to
reverse the process when the object is disappearing. The same animation components are
used, but with the Inverse property set to True, the values go in the opposite direction,
from StopValue to StartValue. This allows us to use the same animation component
for both zooming forward and backward at different times.

One important thing to note about the animation components is that they are short-lived
animations, as opposed to the constant blinking lights or rotating globe we saw earlier in
the chapter. Sure—they stop when the affected Property value reaches StopValue, but
the animation component itself is still enabled. What this means is that the animation won't
reset its values and won't start again until the Enabled property is set to False first. The
animation components have an OnFinish event that activates when StopValue (or
StartValue, in the case where Inverse is True) is reached, so it's pretty simple to hook
into that and change the Enabled property. Furthermore, we can use the Sender property
of the event handler to make this routine generic for all animation components that need to
disable themselves, as illustrated in the following code snippet:

procedure TfrmEscape1985.FloatAnimationFinish(Sender: TObject);

begin

 (Sender as TFloatAnimation).Enabled := False;

end;

Let's write a game! 215

The phone object taught us a lot but the notepad is a little more complicated, mostly
because we want the interface to show that it's being picked up from the desk at an angle
and rotated into view. With this one, we not only scale it up and down but also animate
the Height, Width, Position.X, and Position.Y properties, and even
the RotationAngle.Z properties. The SetupNotepad and ShowNotepad
procedures are similar in concept to the SetupPhone and ShowPhone procedures but
are obviously much longer—we won't show them here.

The background of the notepad is a TRectangle3D object, a simple 3D object that
can be rotated in 3D space; it has a white material applied and doesn't need any other
capabilities. On the notepad, I placed a TLayer3D object holding some TLabel
components to show important clues for the game—I had to set the HitTest property
of these components to False to prevent them from hijacking the OnClick event the
notepad rectangle uses to show itself. Finally, the Position.Z property of Layer3D
had to be set to -0.1 to raise it slightly from the notepad itself; otherwise, the label text
would not show.

The most complex clickable area in our escape game is the control panel. This mixes 2D
and 3D controls in a unique way to provide a nice interface that works across all devices.

Mixing 2D and 3D controls for best use of each
My idea for the game is that to escape, you have to use the phone while the power level is
at exactly 115%, but there are protections for raising the power level that require a specific
code to be entered—which changes every 60 seconds.

The control panel has TRectangle3D as the background and TLayer3D on top of it
that holds all the other controls. Entering security codes is done by clicking on a row
of square buttons whose caption changes each time you click it to the subsequent digit,
wrapping around to 0 when it advances from 9. I based this design off of other escape
games I've played on various devices; the simple interface works well on touch devices
such as a phone. I originally tried to use TCube3D, but implementing a click where the
depth is quickly reduced then increased and setting TText3D on top of it was slow and
ugly—and took a lot of work. Using TButton was quite straightforward.

216 Exploring the World of 3D

The power meter was initially TTrackBar, which would've been simple to implement,
but on Mac and iOS devices, the track bar's width is very narrow. I wanted a wide meter
and because of its size, it had to look 3D, so I implemented it with a dark outer cylinder
and a colored inner cylinder. As the power level rises past certain points, its color changes
from green to yellow to red. The challenging part of building that is keeping the bottom
of the inner cylinder even with the bottom of the outer cylinder as the Position.Y
property moves when the Height property is adjusted. Here's the procedure that took
care of all of this:

procedure TfrmEscape1985.SetPowerLevel(const NewPwrPcnt:
Integer);

const

 PWR_100_PCNT_HT = 3.4;

 PWR_MAX_PCNT_HT = 3.8;

var

 CalcHt, CalcY: Single;

begin

 if NewPwrPcnt >= 0 then begin

 FCurrPwrPcnt := NewPwrPcnt;

 Text3DPowerPercent.Text := FCurrPwrPcnt.ToString + '%';

 CalcHt := Min((NewPwrPcnt / 100.0) * PWR_100_PCNT_HT, PWR_
 MAX_PCNT_HT); CalcY := (PWR_MAX_PCNT_HT / 2.0) -
 (CalcHt / 2.0);

 CylPwrLvlInner.Height := CalcHt;

 CylPwrLvlInner.Position.Y := CalcY;

 if (FCurrPwrPcnt >= 0) and

 (FCurrPwrPcnt <= PWR_LVL_GREEN_MAX) then

 CylPwrLvlInner.MaterialSource := LitMatGreen

 else if FCurrPowerPercent <= PWR_LVL_YELLOW_MAX then

 CylPwrLvlInner.MaterialSource := LitMatYellow

 else

 CylPwrLvlInner.MaterialSource := LitMatRed;

 end;

end;

Let's write a game! 217

There are some variables and constants that are defined at the form level, but it should be
obvious from the context and identifier names what they represent. When the power is
over 90%, the meter turns yellow, and when it's over 100%, it turns orange, as illustrated
in the following screenshot:

Figure 8.16 – The control panel in the escape game with the power level set dangerously high

Notice the power meter looks round because of the TLightMaterialSource applied.
The TMemo on the right is partially transparent (Opacity is set to 0.7) to make it look
like a faded label on an old machine.

The two rows of buttons look a little different—the top row has white text while the
bottom row has dark text. How did I do that? Remember the discussion in Chapter 7,
FireMonkey Styles? I created a custom style for TButton and applied it to the bottom row
of buttons.

Once the right security code is entered and the power raised to the correct level, the user
can click out of here and go to the phone object to "escape" and win the game.

You may be wondering how best to manage the editing of the various objects at design
time. Let me share with you a trick I used.

Working with layered objects at design time
While working on various objects that will at different times be visible or invisible, it's
handy to remember that you're working in a 3D space. In other words, in addition to
height and width, you also have layers of objects closer and further back. In this game, we
have the main image showing a room at the Z position of 0. So, any object with a z value
greater than that (that isn't rotated on the y axis and has some point sticking out at us) is
behind the room, rendering it invisible, and it follows that any z value less than that (for
example, -1) is in front of the room image and thereby visible (if its opacity is not 0).

218 Exploring the World of 3D

So, what I did is kept the dummy containers that I was not working with at a Z value of 2
to keep them behind the room. If I wanted to work on the notepad, for example, I would
set the Position.Z property of the dummy container for the notepad to -1 to bring it
to the front. When I was done, I would set it back to 2.

Why 2 and not 1? Because some of the containers have controls sticking up from them
and I wanted to be sure they were completely hidden. In our case, the notepad's Layer3D
value was only -0.1 above the notepad itself, so that wasn't a problem, and the phone
didn't have anything, but the control panel has a cylinder on it with depth, then text
sticking up from that. I kept seeing part of the text showing through the notepad while
I was testing until I increased the z value to 2. I used 2 for all the objects for consistency.

So, what happens when the game is over?

Deciding on the end game
Most escape games simply take you to the next room when you finally find a way out of the
one you're in. Our game only has a single room, and there's no menu or score or anything
after you finish—just a message saying You escaped, but I also wanted to indicate what
happens if you try to leave the room with the power set too high. Both cases darken the
room to indicate it's over and leave you with a message. In the case where the power is too
high, there is large 3D text telling you such. Again, I used animation to pull the text forward;
additionally, I animated the shaft of the 3D text, alternating between red and black, which,
combined with the bright yellow face, gave it a pulsating, emergency-warning look.

Finally, I wanted to close the application down after the message was acknowledged,
which works fine on Windows, macOS, and Android but is not allowed on iOS, so I used
a compiler directive that specifically excludes that platform, as illustrated in the following
code snippet:

 {$IFNDEF IOS}

 Close;

 {$ENDIF}

This leaves iOS versions of the app just sitting there with a dark room after the game is
over, probably not something I'd do for a game out on the app market.

Video games often include sounds, and this game would certainly be enhanced with
some sounds at key points, but we'll save that discussion for a later chapter. You can
download the code for what's been discussed here at the GitHub repository, found at
https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter08/02_Escape1985.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter08/02_Escape1985
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter08/02_Escape1985

Summary 219

Play around with the game, tweak the settings, and change some things to see how the 3D
controls work, and have fun continuing to explore the world of 3D.

Summary
The small demo at the start of this chapter packed a lot into it: a variety of 3D objects
with techniques used to color, texture, and animate them; an area for 2D controls, a little
interactivity, and some considerations when using it on various platforms.

These are great to get started, but to really learn the nuances of 3D programming and
how humans interact with virtual objects, putting together a game reveals things you may
not have considered. The escape game we wrote showcased many of those aspects, such
as when and how to set the Position.Z property to work with controls at design time,
how rotating an object on one axis affects the position and rotation along other axes, how
to tastefully mix 2D and 3D objects for the best interactivity, how lights and colors can
greatly enhance visual appeal, or when to disable HitTest to allow a click event to pass
through to a parent control.

When working with 3D objects on mobile devices, it's important to remember there's
often no keyboard or mouse and that gestures (not just simple taps) are increasingly
expected to manipulate the objects with swipes or two-finger drags. We didn't get into that
in this chapter, but the techniques you will learn in later chapters will be useful if you want
to come back and try them out with the apps introduced here.

There are many more aspects to working with 3D controls that could be explored, several
animation types we didn't cover, some lighting and camera properties left unmentioned—
and we barely scratched the surface of 3D models.

This chapter was a fun digression into a niche area of programming but there are many
more topics to explore in the cross-platform arena. The next chapter switches gears to
focus on data storage and explores two popular, but very different, database libraries and
what you need to know to work with them on various platforms.

Questions
1. Which are the three GPU engines used by the FireMonkey 3D objects?

2. Which property of a 3D object would you change to make the object appear closer
or further away, and in which cases would the values be positive or negative?

3. Which component can be placed on a TForm3D to allow 2D FireMonkey controls?
Conversely, which component can be added to a 2D FireMonkey form to allow
3D controls?

220 Exploring the World of 3D

4. How do you turn a 3D object upside down?

5. If no light source is available, which of the TLightMaterialSource properties
will be used to color the object to which it is applied?

6. How do you set a 3D object to be transparent?

7. How do you set the color of TModel3D?

8. How do you make a camera follow a 3D object when its movement is changing
through animation?

9. How does an animation component's value get reset when it reaches the end value?

10. Which 3D component is used solely for grouping other 3D components?

11. What's a technique you can use to work on objects at design time that will be placed
behind other objects at runtime?

12. On which platform are you not allowed to programmatically close an application?

Further reading
• FireMonkey 3D: http://docwiki.embarcadero.com/RADStudio/

Sydney/en/FireMonkey_3D

• FireMonkey Quick Start Guide - Creating a 3D Application: http://docwiki.
embarcadero.com/RADStudio/Sydney/en/FireMonkey_Quick_
Start_Guide_-_Creating_a_3D_Application

• Boost Mac performance with Metal and Delphi 10.4: https://blog.grijjy.
com/2020/05/25/boost-mac-performance-with-metal-and-
delphi-10-4

• Import Path from Inkscape: https://i-logic.com/delphi/path.htm

• Creating 3D scenes dynamically in FireMonkey: http://www.adug.org.au/
technical/fmx/creating-3d-scenes-dynamically-in-firemonkey

• Eight 3D demos in Delphi FireMonkey: https://blogs.embarcadero.
com/eight-3d-demos-featuring-volume-rendering-textures-
shaders-materials-polygons-and-models-in-delphi-firemonkey

• 3D models by TurboSquid: https://www.turbosquid.com

http://docwiki.embarcadero.com/RADStudio/Sydney/en/FireMonkey_3D
http://docwiki.embarcadero.com/RADStudio/Sydney/en/FireMonkey_3D
http://docwiki.embarcadero.com/RADStudio/Sydney/en/FireMonkey_Quick_Start_Guide_-_Creating_a_3D_Application
http://docwiki.embarcadero.com/RADStudio/Sydney/en/FireMonkey_Quick_Start_Guide_-_Creating_a_3D_Application
http://docwiki.embarcadero.com/RADStudio/Sydney/en/FireMonkey_Quick_Start_Guide_-_Creating_a_3D_Application
https://blog.grijjy.com/2020/05/25/boost-mac-performance-with-metal-and-delphi-10-4
https://blog.grijjy.com/2020/05/25/boost-mac-performance-with-metal-and-delphi-10-4
https://blog.grijjy.com/2020/05/25/boost-mac-performance-with-metal-and-delphi-10-4
https://i-logic.com/delphi/path.htm
http://www.adug.org.au/technical/fmx/creating-3d-scenes-dynamically-in-firemonkey
http://www.adug.org.au/technical/fmx/creating-3d-scenes-dynamically-in-firemonkey
https://blogs.embarcadero.com/eight-3d-demos-featuring-volume-rendering-textures-shaders-materials-polygons-and-models-in-delphi-firemonkey
https://blogs.embarcadero.com/eight-3d-demos-featuring-volume-rendering-textures-shaders-materials-polygons-and-models-in-delphi-firemonkey
https://blogs.embarcadero.com/eight-3d-demos-featuring-volume-rendering-textures-shaders-materials-polygons-and-models-in-delphi-firemonkey
https://www.turbosquid.com

Section 3:
Mobile Power

In this section, we concentrate on Android and iOS phones and tablets, showing where to
store data, and how to access smartphone features such as the camera, location services,
and mapping APIs. It also discusses Bluetooth technology, both classic and low-energy—
with BLE being the basis for beacons and IoT devices, which opens up a world of device
interactivity for the Delphi programmer. Finally, we tell you how to get a running Delphi
app on a Raspberry Pi 3.

This section comprises the following chapters:

• Chapter 9, Mobile Data Storage

• Chapter 10, Cameras, the GPS, and More

• Chapter 11, Extending Delphi with Bluetooth, IoT, and Raspberry Pi!

9
Mobile Data Storage

As we will be focusing on mobile devices in the next few chapters, we'll need a way to
save settings, pictures, audio clips, and a plethora of other pieces of information. Mobile
applications often communicate with a server to send data back and forth, as we'll see in
the next section of this book, but it's also useful to be able to store data locally. Sometimes,
this is for looking up information, such as downloaded maps, while other times, you just
want to store data temporarily to conserve cell phone data and then upload when you're
in proximity to Wi-Fi. And, of course, there are times when no network is available at all
–mobile apps are expected to be flexible and robust, no matter the situation.

If your data needs are simple, one or more files may be all you need to deal with. But
sooner or later, the benefits of a relational database will encourage you to look at the
powerful storage and retrieval mechanisms of using a database engine in your app.

Delphi has always had good database support. Its FireDAC library is a mature framework
that supports both large, server-based enterprise databases and, as we'll discuss in this
chapter, embedded ones that you can distribute on a handheld phone. We used FireDAC
briefly in Chapter 6, All About LiveBindings, and we'll take things a step further here as we
look at deploying to mobile devices.

In this chapter, we will show you how to use two database options available to Delphi
developers: Embarcadero's embedded InterBase editions, IBLite or IBToGo, and the open
source SQLite library. We'll explore free management tools, show you how to deploy your
database and then load and display it, and share tips for providing a usable interface for
editing data on a small device.

224 Mobile Data Storage

We will be covering the following topics:

• Comparing different approaches

• Managing databases

• Setting up access to tables and queries

• Deploying your database

• Updating data on a mobile device

Data storage is a very important step toward becoming an expert in cross-platform
development.

Technical requirements
Delphi 10.4 on the Windows platform will be the starting point for building our apps
and prototyping, but talking about the key points of deploying to mobile devices will be
our main focus. Additionally, some discussion and code examples will involve SQL, the
Structured Query Language that's used by modern databases, and familiarity with it will
be assumed.

This chapter discusses two different databases: InterBase and SQLite. SQLite is free and
open source and is supported on every platform. InterBase's embedded editions (IBLite
and IBToGo) are geared for mobile platforms, and either can be used depending on the
license you have. When developing and testing from Delphi in Windows, an InterBase
server needs to be running – the Developer Edition that comes with Delphi serves this
purpose. The Mac desktop will not be used in this chapter.

The code for the two projects we will cover in this chapter can be found on GitHub at the
following URL: https://github.com/PacktPublishing/Fearless-Cross-
Platform-Development-with-Delphi/tree/master/Chapter09.

Note
This book's GitHub repository does not include the two databases that were
used as the data sources for the two applications. The one for InterBase,
EMPLOYEE.GDB, comes with Delphi; the one for SQLite, chinook.db,
can be downloaded from https://www.sqlitetutorial.net/
sqlite-sample-database.

Let's get started.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter09
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter09
https://www.sqlitetutorial.net/sqlite-sample-database
https://www.sqlitetutorial.net/sqlite-sample-database

Comparing different approaches 225

Comparing different approaches
There are several database options available for Delphi programmers when you have the
power of a desktop environment, but this isn't the case in the cross-platform arena. The two
we'll look at in this chapter use very different approaches to provide database capabilities,
and each has their pros and cons. First, we'll look at InterBase and its several editions.

Learning about InterBase's editions
InterBase is Embarcadero's database offering and has a long history of being a pioneer
of small footprint databases requiring little management, while still providing solid
performance with multiple connected users. It's renowned for being able to quickly
recover from backups and provides 256-bit encryption, role-based security, scalable
replication with change views, robust transactional support, and strict compliance with
SQL standards. Its rich language supports building complex stored procedures and
triggers with generators, custom exceptions, and event alerters.

There are several editions available. The first three listed here are considered "server"
editions in that they utilize a server process that's running, and they differ mostly in
their licensing:

• Server Edition: In the enterprise, the Server Edition, which runs on Windows or
Linux, competes head-to-head with well-known database products. It provides
strong encryption at both the database and column level, journal archiving, write-
ahead logging, remote SSL support, hundreds or thousands of simultaneously
connected clients, and SQL-based connection monitoring. It is sold on a
per-connection basis.

• Desktop Edition: The Desktop Edition is basically the same database engine as
the Server Edition but only runs on Windows. More importantly, it only supports
one local connection. This is a great way to deploy an application that starts with a
powerful database at a low cost, which can later be scaled up to the Server Edition if
you wish to support multiple users in a client-server environment.

• Developer Edition: The Developer Edition, a free download and which comes with
Delphi Professional and up, has many of the higher-end features found in the Server
Edition – it even supports up to 20 simultaneous users. However, it is the only
edition that cannot be deployed to end users – it is strictly for internal development
and testing and requires a restart every other day.

226 Mobile Data Storage

• IBToGo: This is an "embedded" edition of InterBase, which means that it can be
deployed without a separate server engine running. As with the other editions
described here, it supports Windows and Linux, but is specifically targeted at iOS
and Android, making it an excellent choice for mobile database storage. IBToGo
provides database file encryption, can securely connect to remote databases, allows
up to eight simultaneous connections, and supports change views. A license for
deploying IBToGo on mobile devices comes with Delphi Enterprise and Architect
or can be purchased separately on a per-user basis.

• IBLite: This embedded edition of InterBase also works on mobile devices. It is
free and a royalty-free distributable license comes with all versions of Delphi. It
is limited to one connection and one transaction at a time, does not provide any
built-in encryption, and limits the database's file size to 100 MB.

This chapter will concentrate on mobile data storage, so when we discuss data access using
InterBase, the embedded editions will be implied. Which one you should use depends on
the license you have.

As you consider putting data on a mobile device, the security of the file itself is more of
a concern than if the file is on a locked-down server behind a firewall. If your mobile
device is lost or stolen and your database is not encrypted, the potential for exposing the
data is much greater. This, and the 100 MB file size limit, restricts IBLite's general use to
educational purposes or situations where data security is not a concern.

InterBase is a great solution for deploying professional applications with relational
database needs as you can scale from mobile devices up to enterprise servers with a single
code base, have a consistent SQL language, and have a full feature set.

Before we start showing you how to use it, let's talk about an alternative, known as SQLite,
and why you might choose that instead.

Introducing SQLite
SQLite is a free library of database routines and exists on all mobile smart phones; it's also
available for download for any platform. Unlike many other database offerings, SQLite
does not have a server component for any platform. Instead, all data creation, access, and
manipulation is done through library calls, requiring no configuration to get it running.

Similar to InterBase, the entire database, including all tables, indices, and data, resides
in one cross-platform file; its maximum file size is virtually unlimited at 281 TB. You
can access the data through blobs, thus improving performance often above raw disk file
access. SQLite is open source, fully tested, and internationally supported. There are no
"editions" of SQLite; it has the same functionality and limitations on every platform.

Comparing different approaches 227

There are several considerations for using SQLite that need to be weighed up in light of
your application needs. Because SQLite is purely serverless, it's well-suited for embedded
devices or situations where no data administration or setup is possible. On the other hand,
there is no security outside the statements that are called by your application as there is no
connection to be made and authenticated. Since all SQLite's data is in one file, accessing
a large one could be a bottleneck on some systems without any proper disk caching or
spanning. Furthermore, while multiple reads can be made simultaneously, only one write
can take place at a time.

SQLite has several other differences from "mainstream" databases that should be noted as
well. They are listed here:

• Data fields are considered "flexible" in that string values can be stored in INTEGER
fields; if a string value being saved to a numeric field contains digits and it can
be converted into a number; otherwise, it's simply stored verbatim as if the field
was a TEXT field. Additionally, TEXT values longer than the defined field will not
be truncated when they're stored, so no error will be raised and retrieving it later
gives you the full, original value. SQLite is designed to work this way, which can
be considered a feature if all you work with is SQLite. However, this can cause
problems if you're porting data to another system with the expectation of strict data
types.

• There is no support for stored procedures.

• There are no GRANT or REVOKE commands as there is no user security.

• Table constraints, including primary and foreign keys, can only be established when
a table is created with the CREATE TABLE statement; they cannot be added later.

• Columns can be renamed or added to the ALTER TABLE statement, but they
cannot be dropped or modified in any other way.

• In SELECT statements, the RIGHT OUTER JOIN and FULL OUTER JOIN
expressions are not supported, although LEFT OUTER JOIN expressions are.

• Row triggers are supported but statement triggers are not.

There are other quirks to using SQLite that, if you have experience with other database
products, could be surprising and trip you up. Take a look at the links in the Further
reading section to learn more.

Despite these limitations, as some may view them, SQLite is deployed on more devices
than any other database and is used by many well-known products. Its simplicity,
ubiquitous presence, and price makes it a natural choice for many scenarios.

228 Mobile Data Storage

Now, let's work with these two database products and see how they compare in
an application.

Managing databases
To get started working with databases, we need a tool to manage them. Sure, you can
write SQL to create tables, indices, views, and so on, but database management tools
do that tedious work for us. There are many tools available that work with a variety
of database products. First, we'll cover the one that comes with Delphi for managing
InterBase databases.

Using the InterBase Server Manager and IBConsole
All versions of Delphi come with a tool for working with InterBase, IBConsole, and some
sample databases (if you included InterBase when you installed Delphi). When working
with InterBase on your Windows desktop, you must start the local InterBase server with
the InterBase Server Manager (if it's not already running). This can be found in the
InterBase2020\bin folder of your Delphi installation and is called IBMgr.exe;
it may also be found in the Windows Start menu as "Embarcadero InterBase 2020." Its
interface is very simple:

Figure 9.1 – InterBase Server Manager, ready to be started

Managing databases 229

The Startup Mode option allows you to automatically start the server when Windows
starts, and its Status shows whether the server is currently running. Notice that the
Run the InterBase server as a Windows service checkbox is currently disabled in the
preceding screenshot. That's because this screenshot is of the Developer Edition of
InterBase running on my development machine. The Server Edition has a few additional
options, including running as a background Windows service. We'll cover these in greater
detail in a later chapter.

Note
The InterBase tools mentioned here only run on Windows. Like Delphi, it is
intended that you develop your application and database on Windows and then
deploy it to other platforms.

Click Start to get your InterBase server running. Once it's running, start IBConsole,
which can be found in the same folder as IBMgr:

Figure 9.2 – IBConsole, a tool for managing InterBase databases

230 Mobile Data Storage

Now, you can create or add databases. Let's look at a sample one that comes with Delphi,
most likely found in your public documents folder. Follow these steps to get it loaded into
IBConsole:

1. Right-click on Databases and select Add....

2. Click the ellipsis button next to the prompt for File, navigate to the
Embarcadero\Studio\21.0\Samples\Data folder in your public
documents area, and select EMPLOYEE.GDB.

3. Optionally, set an alias name that you can use to refer to the database later.

4. Use the default User Name and Password settings of SYSDBA and masterkey.

5. Check the Save Password checkbox for convenience and click OK.

You have now configured a database that you can work with.

Historical note
The .GDS default file extension for InterBase databases goes back to its routes
in 1984, when it was started as Groton Database Systems, named after the
Boston suburb of Groton, Massachusetts.

Double-click the Employee entry under Databases to connect to it. Here's a quick
explanation of the actions that are available:

• Domains: Allows you to create data definitions, package the data type, and use
several attributes in field and parameter declarations

• Tables: Creates and manages tables, keys, and check constraints

• Indices: Defines the indices for your tables

• Views: Creates pre-packaged SELECT statements that can be referenced like tables
in your code

• Stored Procedures: Manages the list of stored procedures in your database

• Triggers: Establishes before/after triggers for your tables when records are inserted,
updated, or deleted

• External Functions: Loads DLLs containing additional functionality for use within
your InterBase database

• Generators: Defines autoincrementing values

• Exceptions: Assigns global error message identifiers

Managing databases 231

• Blob Filters: Sets up special external functions that work with blob data

• Roles: Groups user permissions

• User Permissions: Controls fine-grained access to various database objects

If you click on these various actions in IBConsole, the right-hand side pane will show the
list of that type of object in the selected database. Let's take a brief look at the CUSTOMER
table; double-click on its entry under the Tables action to see its properties:

Figure 9.3 – The CUSTOMER table's properties in IBConsole

The first tab shows the fields that have been defined in this table; the Metadata tab
shows all the SQL statements that were used to create this table and the surrounding
infrastructure; Permissions shows who can access it and in what ways; the Data tab
contains a grid you can use to browse the rows of data, allowing you to add, delete, and
edit all the data in that table; and finally, the Dependencies tab shows objects that depend
on the selected table.

Switch to the Metadata tab to view the SQL definition for the CUSTOMER table. At the top
of the code shown here, there are several domain definitions:

CREATE DOMAIN ADDRESSLINE AS VARCHAR(30);

CREATE DOMAIN COUNTRYNAME AS VARCHAR(15);

CREATE DOMAIN CUSTNO AS INTEGER CHECK (VALUE > 1000);

232 Mobile Data Storage

CREATE DOMAIN FIRSTNAME AS VARCHAR(15);

CREATE DOMAIN LASTNAME AS VARCHAR(20);

CREATE DOMAIN PHONENUMBER AS VARCHAR(20);

Domains establish an alias to a predefined list of data type attributes that can be used in
CREATE TABLE statements; for example, the ADDRESSLINE domain is defined as a
VARCHAR(30) and is used in two fields of the table definition:

CREATE TABLE CUSTOMER

(

 CUST_NO CUSTNO NOT NULL,

 CUSTOMER VARCHAR(25) NOT NULL,

 CONTACT_FIRST FIRSTNAME,

 CONTACT_LAST LASTNAME,

 PHONE_NO PHONENUMBER,

 ADDRESS_LINE1 ADDRESSLINE,

 ADDRESS_LINE2 ADDRESSLINE,

 CITY VARCHAR(25),

 STATE_PROVINCE VARCHAR(15),

 COUNTRY COUNTRYNAME,

 POSTAL_CODE VARCHAR(12),

 ON_HOLD CHAR(1) DEFAULT NULL,

 PRIMARY KEY (CUST_NO)

);

This table defines a primary key, CUST_NO, and then adds to the definition with a foreign
key and a check constraint:

ALTER TABLE CUSTOMER ADD FOREIGN KEY (COUNTRY) REFERENCES
COUNTRY (COUNTRY);

ALTER TABLE CUSTOMER ADD CHECK (on_hold IS NULL OR on_hold =
'*');

Managing databases 233

There is no built-in autoincrement data type in InterBase, so a before-insert trigger
is set up for the primary key field, CUST_NO, which then gets the next value of the
CUST_NO_GEN generator:

CREATE TRIGGER SET_CUST_NO FOR CUSTOMER ACTIVE BEFORE INSERT
POSITION 0

AS

BEGIN

 new.cust_no = gen_id(cust_no_gen, 1);

END;

After this, the table definition is complete, so the transaction is committed to the database:

COMMIT WORK;

Permissions are assigned outside the definition of the table and are always immediate (no
transaction is created or needs to be committed):

GRANT DELETE, INSERT, SELECT, UPDATE, REFERENCES, DECRYPT ON
CUSTOMER TO PUBLIC WITH GRANT OPTION;

Without IBConsole, or some other visual database management tool, the only way to
create tables would be by executing these SQL statements from the supplied command-
line tool, isql, or from your code. You can do that, and there are several scenarios where
that is necessary, but you can also use IBConsole in Windows and then ship the database
file with your application. Before we get to that, though, let's look at a tool for SQLite.

Trying out SQLite Studio
There is no "official" database management tool for Windows recommended by the
developers of the SQLite project. It is a platform-agnostic library and all that is supplied
is a command-line shell for running SQL statements (but it has some nifty extensions you
may find useful). If you look around for a Windows-based tool, you'll find a great many of
the general database management programs that are available that support SQLite, along
with many other databases. You're free to use any of them to create and manage your
SQLite databases. In this chapter, we'll use an open source one that is geared specifically to
SQLite called SQLite Studio. You can download it from https://sqlitestudio.pl.

https://sqlitestudio.pl

234 Mobile Data Storage

The quickest way to get started is by looking at a sample database. I found one at
https://www.sqlitetutorial.net called Chinook. After downloading and
extracting the database file, run SQLite Studio and select Database | Add a database
from the menu, click the folder icon, navigate to the extracted file, and click OK to add
chinook.db to the list of databases managed by SQLite Studio. Double-click on the
chinook database to see a list of tables and views defined in the database. Double-click
on the customers table to see the structure:

Figure 9.4 – SQLite Studio showing the customers table of the sample chinook database

Similar to what we saw when viewing table properties in IBConsole, there are multiple
tabs in the right-hand pane. The Structure tab lists the fields and various attributes; the
Data tab contains a grid to browse the rows of data, allowing you to add, delete, and edit
all the data in that table; the Constraints tab lists primary and secondary keys and check
constraints; the Indexes tab allows you to view, create, modify, and delete indices for the
table; the Triggers tab manages before/after triggers for your tables when records are
inserted, updated, or deleted; and the DDL tab shows the SQL in the data description
language for that table.

https://www.sqlitetutorial.net

Managing databases 235

There are no domains in SQLite. It supports autoincrement integers; any constraints for
a table must be established when it's created, and there are no SQL-level permissions
supported in SQLite, so the CREATE TABLE statement for the Customers table is much
simpler than for the similar one we saw in the sample InterBase database – it is contained
in just one statement:

CREATE TABLE employees (

 EmployeeId INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,

 LastName NVARCHAR (20) NOT NULL,

 FirstName NVARCHAR (20) NOT NULL,

 Title NVARCHAR (30),

 ReportsTo INTEGER,

 BirthDate DATETIME,

 HireDate DATETIME,

 Address NVARCHAR (70),

 City NVARCHAR (40),

 State NVARCHAR (40),

 Country NVARCHAR (40),

 PostalCode NVARCHAR (10),

 Phone NVARCHAR (24),

 Fax NVARCHAR (24),

 Email NVARCHAR (60),

FOREIGN KEY (ReportsTo) REFERENCES employees (EmployeeId) ON
DELETE NO ACTION ON UPDATE NO ACTION

);

Now that we have a sample database for both InterBase and SQLite and a tool to manage
each, let's set up grids and data controls on the screen to hook them up.

236 Mobile Data Storage

Setting up access to tables and queries
Connecting to databases from Delphi is very straightforward. We mentioned FireDAC in
Chapter 6, All About LiveBindings, when we showed you how to hook up controls to live
data, but now, let's give it a proper introduction.

Utilizing FireDAC, Delphi's cross-platform Data Access
Component
FireDAC provides a lightweight, flexible, yet highly optimized data access layer for a
multitude of database systems, with many of the differences between them abstracted to
greatly simplify working with them in Delphi. The initial connection often provides the
most variance as user credentials, server ports, and encryption settings often define many
aspects of the underlying engine. After that, the components provide a consistent and
seamless interface to the data your application needs while still allowing vendor-specific
options to pass through or optimized SQL to be executed.

Note
The exception to the idea of consistency when using various database products
is, of course, when you're writing SQL. The differences in SELECT statements,
JOIN clauses, and a host of expressions between the database vendors are
many, and there's no getting around learning those nuances for complex or
optimized queries.

To get started using FireDAC with both InterBase and SQLite, let's create two
applications, one for each, and see how this all works. Follow these steps to set up the base
of each application:

1. Create a multi-device application and select the Tabbed with Navigation template.

2. Select a place to save your application and call it MobileSalesIB.

3. Add a new data module to the project and give it a good name.

4. In the Data Module, add a TFDConnection component and a
TFDPhysIBDriverLink.

5. In the main form, add the new data module to the uses clause in the
implementation section.

Setting up access to tables and queries 237

6. Repeat steps 1 through 5, but in step 2, give this application the name
MobileSalesSQLite. Then, in step 4, add a TFDPhysSQLiteDriverLink
instead of the one for IB.

Before you go any further, make sure that both applications compile and run on whatever
various mobile devices you have available without any databases – it's always a good idea
to establish a baseline for testing before introducing new concepts. Here's what it looks
like on an Android phone:

Figure 9.5 – Standard "Tabbed with Navigation" template app running on an Android phone

238 Mobile Data Storage

We'll only use two of the main tabs, so delete the third and fourth ones if you so wish. Set
the Text values of the first two to Sales and Customers. Note that the first tab item of
the main tab control contains another tab control with two tabs in it, which makes that a
total of four tabs we will be using.

Tip
With multiple tabs and with a tab control inside one of the tabs, it can be
difficult selecting the right tab to work with at design time. One technique I
often use is to make the tabs visible at design time by setting TabPosition
to Top or Bottom, and then programmatically setting it to the desired visual
appearance (None, Dots, or PlatformDefault) at runtime from the
form's OnCreate event. Another way that doesn't involve adding code is to
use the Structure Pane window.

To prevent confusion as we discuss placing components, we need to rename the tab
controls and tabs. Since the template project came with code that uses them, I suggest
modifying the code that references them as you make each change shown here:

• Outer (main) tab control: tabCtrlMobileSalesIB

• First outer tab of tabCtrlMobileSalesIB: tabSales

• Second outer tab of tabCtrlMobileSalesIB: tabCustomers

• Inner (second-level) tab control, residing on tabSales: tabCtrlSales

• First tab of tabCtrlSales: tabSaleList

• Second tab of tabCtrlSales: tabSaleDetails

Now, let's fill them in.

Getting table and query records from InterBase
First, let's focus on getting InterBase data inside the MobileSalesIB project:

1. Double-click on the TFDConnection component in the data module to pull up
FireDAC Connection Editor.

2. Set Driver ID to IB (or IBLite if that's the version you have).

Setting up access to tables and queries 239

3. In the Parameter list, select EMPLOYEE.GDB for Database from Embarcadero's
sample data.

4. Next, in the Parameter list, enter sysdba and masterkey for the User_Name
and Password parameters, respectively.

5. Test the connection and click OK.

6. In Object Inspector, uncheck the LoginPrompt property.

7. Add a TFDTable component to the data module and ensure that its connection
gets automatically assigned to the TFDConnection component.

8. Set the Table property of TFDTable to SALES by selecting it from the drop-
down list of tables found in the InterBase database, and set its Active property
to True.

9. On the main form, add TStringGrid to tabSalesList and set its Align
property to Client.

10. Right-click on the grid and select Bind Visually... to bring up the LiveBindings
Designer.

11. You should see both the grid and the table with fields from the SALES table in the
LiveBindings Designer. Connect the asterisks of both to bind the grid to the sales
data. The grid should instantly populate with data.

The default grid view, when connected to a data source, is to show all columns, so right-
click on the grid, select Columns Editor…, and then click the Add All Fields button and
remove the columns you don't want, adjusting the rest to suit your preference. I also set
the TabPosition property of our main TTabControl to Bottom as I think it looks
better and set the StyleLookup property of TSpeedButton in the top-right corner
of the toolbar to nexttoolbutton to change it to an arrow. As a final touch, I added a
TStyleBook and loaded the WedgewoodLight style for all four platforms.

240 Mobile Data Storage

Run this in your Windows development environment to confirm it looks similar to this:

Figure 9.6 – Sales from the InterBase sample database running on Windows

It may seem like it takes a lot to get to this point, but once you do it a few times, the steps
almost become automatic.

Next, we want to see the details of a sale with some customer fields, so set up a query by
dropping a TFDQuery component on the data module, right-click on the component and
select Query Editor ..., and then enter the following SQL in the SQL Command area:

SELECT * FROM CUSTOMER WHERE CUST_NO = :CUST_NO

Setting up access to tables and queries 241

In the Parameters tab, set a couple of options for the CUST_NO parameter:

• Param Type: ptInput

• Data Type: ftInteger

You can optionally set Value to one of the CUST_NO values in the database and then click
Execute to see your data right in FireDAC Query Editor. I entered 1004 and up came
"Elizabeth Brocket of Central Bank" from my sample data:

Figure 9.7 – Query Editor with sample data showing

Click OK to save the changes and close the Query Editor.

242 Mobile Data Storage

To set this up in a master-detail relationship with the sales table, create a TDataSource
and set its DataSet property so that it points to the sales table component we established
earlier. Then, set the MasterSource property of our new query component to that new
data source and select CUST_NO for the MasterFields property. Since the master field
matches the CUST_NO parameter of the query, we don't have to write any code to get the
master-detail link to work – it happens automatically.

When a row on the sales grid is selected and double-clicked, or the right-arrow button in
the top-right corner of the screen is clicked, we want to show the details of the selected
sale, along with its associated customer information. We'll switch to tabSaleDetails
programmatically at runtime to do that, so let's add the fields we want to that tab.

Tip
Switching the tabs of a tab control at design time with TabPosition set
to Dots or None is not obvious – there's no visible tab to click on. You must
select the tab control and change its ActiveTab property to the tab you want
to see. You can select the tab control in the Structure pane or by clicking
on the grid and hitting Escape to select its owner, and then the tab item, and
then Escape once more to select the tab's owner; that is, the tab control.

First, let's add a few fields from the currently selected sale. We can do that easily by using
the LiveBindings Wizard by right-clicking on the BindingSourceDB component we
added when we put the grid in place. (I renamed my autonamed BindSourceDB1
component to BindSourceSales to make it easier to identify.) Select Link a field of
BindSourceSales to a control in the LiveBindings Wizard for each of the following fields
and create the corresponding controls with an added control label:

• PO_Number: TLabel

• SHIP_DATE: TDateEdit

• ORDER_STATUS: TEdit

• PAID: TCheckBox

Arrange these fields near the top of the tabSaleDetails tab. We'll add customer
details next.

Setting up access to tables and queries 243

Note
The LiveBindings Wizard will add controls to the form, not the currently
selected tab. So, after adding these controls, you'll need to move them by simply
dragging them into the Structure pane. If you cut and paste the controls, it'll
break the LiveBinding link, which you won't discover until you save the form
or run the app

To link up customer fields, we'll need another TBindSourceDB component. The easiest
way to do that is to simply make a copy of the first one that was used for linking the
sales data to the grid and then change its DataSet property so that it points to the data
module's FDQuery component we created for getting a customer's fields. I named my
second copy of the BindSourceDB BindSourceSaleCustomer.

Note
If the dataset being pointed to by the BindSourceDB component that's used
for LiveBindings does not have any fields defined, the LiveBindings Wizard
will not be able to create and link any controls. Simply set the table or query to
active at least once – then all the fields will be available for linking.

Link the following fields from BindSourceSaleCustomer to new TEdit controls
with control labels. Then, put them on the second tab under the fields containing the sales
fields we just added:

• CUSTOMER

• CONTACT_FIRST

• CONTACT_LAST

• PHONE_NO

• ADDRESS_LINE1

• ADDRESS_LINE2

• CITY

• STATE_PROVINCE

• COUNTRY

• POSTAL_CODE

244 Mobile Data Storage

After arranging them nicely, the Sales Detail tab should look similar to this at runtime:

Figure 9.8 – Details of a sale from the sample InterBase database

We're now showing data from both tables and queries using FireDAC from InterBase in
a Windows app – and we've not added any Delphi code yet, just one line of SQL. Before
we show you how to deploy this to a mobile device, let's get our SQLite project up to the
same point.

Setting up access to tables and queries 245

Getting table and query records from SQLite
This process is similar for preparing the MobileSalesSQLite project, but the initial set of
instructions will be repeated here for completeness and to cover a few unique aspects
of SQLite:

1. Double-click the TFDConnection component in the project's data module.

2. Select SQLite for Driver ID.

3. Select the chinook.db file you downloaded earlier for the Database parameter.

4. Click the Test button (you'll be prompted for user credentials, just like you were
for the InterBase connection, but you can leave the fields blank as there is no user
security for SQLite).

5. If all is well, clicking OK will confirm that the database can be accessed.

6. Uncheck the LoginPrompt property in the Object Inspector window.

7. Add a TFDTable component to the data module and ensure its connection gets
automatically assigned to the TFDConnection component.

8. Set the Table property to invoices by selecting it from the dropdown list of tables
found in the SQLite database, and set its Active property to True.

We'll use a TStringGrid again as it plays better with LiveBindings. We can use
the LiveBindings Wizard to set this up for us, but since the tab control is an aligned
client, we can't right-click on the form to get to the LiveBindings Wizard in the right
context; launching the wizard from the LiveBindings Designer gives us the options
we need, so we'll go there first.

9. Pull up the LiveBindings Designer and click the LiveBindings Wizard button.

10. Select Link a grid with a data source, select TStringGrid from the New grid tab,
and select the table component from the data module that points to the invoices
table. Then, click Finish.

11. Align the new grid to the client of the tab and modify its columns.

As with the InterBase version of this app, I set the TabPosition property of our
main TTabControl to Bottom and added a TStyleBook, this time loading the
Emerald Dark style.

246 Mobile Data Storage

A quick preview of the app running in Windows looks like this:

Figure 9.9 – Sales from our SQLite sample database running on Windows

Again, we want to see the details of a sale with some customer fields. Add a TFDQuery
component to the data module and enter the following SQL inside the Query Editor:

SELECT * FROM customers WHERE CustomerId = :CustomerId

Setting up access to tables and queries 247

Set the Param Type section of the CustomerId parameter to ptInput and Data Type
to ftInteger. Then, click OK to save the changes and close the Query Editor.

Create a TDataSource and set its DataSet property so that it points to the sales table
component. Then, set the MasterSource property of our new query component to the
new data source and select CustomerID for the MasterFields property to establish
a master-detail relationship. Then, right-click the BindingSourceDB component for
the invoices table and use the LiveBindings Wizard to link the following two fields and
controls from the invoice:

• InvoiceID: TText

• InvoiceDate: TDateEdit

Arrange these fields near the top of the Sale Details tab.

To link up customer fields, add another TBindSourceDB component by making
a copy of the first one that was used for linking the sales data to the grid, and then
changing its DataSet property to point to the data module's FDQuery component we
created for getting a customer's fields. I named my second copy of the BindSourceDB
BindSourceInvoiceCustomer.

Link the following fields from BindSourceSaleCustomer to the new TEdit controls
with control labels. Then, put them on the second tab under the fields containing the sale
fields we just added:

• Company

• FirstName

• LastName

• Phone

• Email

• Address

• City

• State

• PostalCode

• Country

248 Mobile Data Storage

After arranging them nicely, the Sale Details tab should look similar to this at runtime:

Figure 9.10 – Sale details from our SQLite sample database running on Windows

As we did with our InterBase data, we're now showing data from both tables and queries
using FireDAC by utilizing SQLite in a Windows app. Now, it's time to actually deploy
these to a mobile device!

Deploying your database
Database deployment could be a deciding factor for which database you select for your
mobile app. If you own the Enterprise or Architect versions of Delphi, you have a license
to deploy IBToGo on mobile devices (IBToGo for desktop platforms is sold separately);
otherwise, you either need to purchase distributable licenses from a reseller, use IBLite, or
use a different database such as SQLite.

Deploying your database 249

Regardless of which one you choose, the database file itself will need to be deployed –
unless you're creating it from scratch once the application has been installed on the mobile
device. The project deployment feature of Delphi automatically places support files where
they need to go, so all we need to do is add the file to the project and then use a platform-
aware function in the IOUtils unit, TPath.GetDocumentsPath, which embeds
the Application ID as part of the folder name on mobile devices. That function should
be called in the BeforeConnect event of the FDConnection component in our data
module, like this:

procedure TdmSQLiteSales.FDConnSQLiteBeforeConnect(Sender:
TObject);

var

 DataPath: string;

begin

 {$IF DEFINED(iOS) or DEFINED(ANDROID)}

 DataPath := TPath.GetDocumentsPath;

 {$ELSEIF DEFINED(MSWINDOWS)}

 DataPath := TPath.Combine(TPath.GetPublicPath,

 'MobileSalesSQLiteData');

 {$ENDIF}

 FDConnSQLite.Params.Values['Database'] := TPath.
 Combine(DataPath, 'chinook.db');

end;

This code was written for SQLite, but the same concept applies to IBLite or IBToGo
database deployments.

Note
For SQLite, if you do not deploy the database file or it can't be found, it will
simply be created automatically. So, either check for its existence before
connecting or handle the exception when it tries to open a table that doesn't
exist – the tables are not automatically created.

Adding the database file to the Delphi project triggers a deployment aid called Featured
Files, which is for detecting database file types. Delphi realizes it will also need to deploy
some library packages to support it and presents a list of what you might need, prompting
you to select the appropriate options. This list is different based on the type of file you're
adding. For SQLite, the libraries are already present on both iOS and Android devices, so
you only need to add support files if you're using a ClientDataSet (which uses MIDAS.
DLL) or dbExpress.

250 Mobile Data Storage

There are more files you need to distribute for InterBase applications, but the process is
quite similar.

Deploying IBLite and IBToGo
SQLite is an open source product and was designed to be small and self-contained.
InterBase started as a large enterprise server product and has recently added a small
portable version. Due to its background, and to provide as much compatibility as possible,
there are more files to be deployed with an IBLite or IBToGo distribution.

Here's what the Featured Files prompt includes when you're including an InterBase
database file:

Figure 9.11 – Adding an InterBase database to your project prompts you to add IB libraries

Deploying your database 251

The first two files listed under each platform show the license type you have. Either
IBToGo or IBLite should be selected but not both.

If you need to modify this list later, you can select Project | Deployment to bring up the
Deployment list for your project and click on the Add Featured Files button. The list of
featured files will not be context-sensitive to the file you're adding, so it will list all the
database drivers that are available.

After selecting the files and license type, Delphi takes care of compiling the appropriate
libraries, bundling the application and database file, and putting them into your mobile
device pretty seamlessly. Our deployed InterBase application on an Android phone looks
like this:

Figure 9.12 – The MobileSalesIB app running on an Android phone

We've done it! A database-enabled application is actually running on a mobile device. And
to think this database technology was once relegated to large, back-office servers not too
long ago.

But we're not quite done yet. We have shown you how to deploy a database to a phone, but
there are some big differences to editing data on a small device.

252 Mobile Data Storage

Updating data on a mobile device
Now that you have a database on your mobile device, we will mention some of the
techniques you can use to edit and save data as there are a few differences from
desktop-based applications.

First, you're probably accustomed to presenting a screen filled with edit fields and
allowing the customer to click OK or Cancel to decide whether to keep the changes
they've made or discard them all. Mobile device users expect everything to always be
saved automatically. In fact, the Apple guidelines for app design encourage fluidity to
help users interact with their devices in a smooth and seamless manner; stopping to ask
for confirmation should only be done when essential to prevent the loss of data or to
alert the user to an important notice or decision to be made. For example, a point-of-sale
application should allow a receipt-in-progress to be tendered or canceled, depending on
the customer's choice to proceed with the purchase, but a change in font size should take
effect immediately.

At this point in the discussion, we'd typically talk about transactions, but in a single-
user mobile application, that's seldom a worry. Both InterBase and SQLite have good
transaction support, and FireDAC sets up auto-start and auto-commits by default so that
editing and saving your data is as seamless as possible.

Second, and of much greater concern, is the user interface – the actual layout and controls
that are used for editing data on a handheld computer.

Understanding touch-oriented interfaces
Arguably the biggest paradigm shift when moving from writing desktop applications to
mobile devices is getting used to programming for touch-centric user interfaces, where
the fingertip is often the smallest pointing device in use and there are no "mouse-over"
events or scroll wheel actions to capture. Instead, you need to be cognizant of the fact
that a virtual keyboard will likely cover the bottom half of your screen, drop-down lists
and radio buttons need to be big enough that the user won't get frustrated by constantly
"fat-fingering" a different control, and everything fits on a variety of form factors.

Updating data on a mobile device 253

As a final addition to our two mobile apps, let's add a list of customers to the second
tab and make some edits. I won't list all the steps here as they should be very familiar
by now. Put a TFDTable on the data module for each app. In the InterBase app, select
the CUSTOMER table; in the SQLite app, select the customers table. Use LiveBindings to
connect these customers to a TStringGrid and open the table at runtime, along with
the other ones in the DataModuleCreate procedure.

At runtime, try to navigate the customers on your phone using your finger. Gestures work
really well, but if you have too many columns or they're too wide, not only will you scroll
up and down but also side to side. And take note of the keyboard that comes up when you
click in a cell to edit a value.

Back in Delphi, move the grid to the bottom half of the tab and put a couple of TEdit
boxes with labels in the top half, hooked up to the first and last names of the customer.
Also, mark the grid as ReadOnly – we want all the editing to happen in the top half of
the screen in bigger edit controls, and we wish to prevent the keyboard from inadvertently
covering the grid while we're scrolling records.

Looks pretty decent, right? Try switching the design-time view to iPhone 4 and take a
look. You will likely have to adjust things. Try other views of the form, adjusting the grid
height and the placement and width of the other controls so that it looks appropriate
for each device type. When I switched to an Android 10" tablet, the grid was not even
showing on the screen – I had to scroll down the view to find it and adjust the height up.
Don't forget landscape mode – the screenshots in this chapter have all been in portrait
mode, but your users may want the option to change this.

Once you're satisfied, run it on your mobile device. Notice that after making an edit in one
of the name fields, the grid is updated immediately after the focus leaves the control. And
if you shut down the app and restart it, those changes are persisted. That's an indication
of LiveBindings working and both FireDAC's and the underlying database's automatic
transaction support working well to save your data.

254 Mobile Data Storage

Here's what MobileSalesSQLite looks like while we're editing the First Name field on
an iPhone:

Figure 9.13 – Editing a field in the MobileSalesIB app on an Android phone

Making your app usable and presentable while looking natural on each type of device is an
acquired skill that can be tedious, but it pays off when your apps are well-accepted.

Summary
In this chapter, we've examined ways to store and retrieve relational data on mobile
devices and showed how FireDAC can work with a variety of products. We learned about
several editions of the enterprise-grade InterBase database that have been made available
for mobile devices, thus providing advanced security and scalability within an application
that can be held in your hand. SQLite, a robust and open source library that is available
everywhere, was shown to be quite capable, despite its simplicity and price.

Questions 255

Free database management tools were then introduced for each of these products. After
that, we loaded those databases and showed you how to access tables and queries from
your Delphi environment, as well as how to set up the connections to edit the same
data when it's deployed to a mobile device. Finally, considerations for working with edit
controls were presented, giving you a great start toward managing mobile data in a user-
friendly way.

Now that you're comfortable with storing and displaying data on a mobile device, we can
use this in various ways as we move forward in our study of mobile devices.

Questions
1. Which edition(s) of InterBase come with Delphi Professional?

2. What happens if you try to store a character string in an integer field in SQLite?

3. How are autoincrement values supported in InterBase?

4. At what point can table constraints be established for tables in SQLite?

5. What function does Delphi provide to give convenient access to an application's
data folder?

6. Do you need to distribute a license file with IBLite?

7. Where should edit fields be placed in a mobile app to prevent them from being
overlaid by a virtual keyboard?

Further reading
• InterBase 2020: https://www.embarcadero.com/products/interbase

• History of InterBase: https://en.wikipedia.org/wiki/
InterBase#History

• Command-line isql tool: http://docwiki.embarcadero.com/
InterBase/2020/en/Command-line_isql_Tool

• InterBase for RAD Studio Developers: https://youtu.be/hFAyAqoZLrE

• Getting started with InterBase for RAD users: https://blogs.embarcadero.
com/getting-started-with-interbase-for-rad-users/

• InterBase Editions: http://docwiki.embarcadero.com/
InterBase/2020/en/InterBase_Editions

https://www.embarcadero.com/products/interbase
https://en.wikipedia.org/wiki/InterBase#History
https://en.wikipedia.org/wiki/InterBase#History
http://docwiki.embarcadero.com/InterBase/2020/en/Command-line_isql_Tool
http://docwiki.embarcadero.com/InterBase/2020/en/Command-line_isql_Tool
https://youtu.be/hFAyAqoZLrE
https://blogs.embarcadero.com/getting-started-with-interbase-for-rad-users/
https://blogs.embarcadero.com/getting-started-with-interbase-for-rad-users/
http://docwiki.embarcadero.com/InterBase/2020/en/InterBase_Editions
http://docwiki.embarcadero.com/InterBase/2020/en/InterBase_Editions

256 Mobile Data Storage

• InterBase ToGo Quick Start Guide: http://docwiki.embarcadero.com/
InterBase/2020/en/ToGo_Quick_Start

• IBLite and IBToGo Deployment Licensing: http://docwiki.embarcadero.
com/RADStudio/Sydney/en/IBLite_and_IBToGo_Deployment_
Licensing

• What is SQLite? https://sqlite.org

• Quirks, Caveats, and Gotchas in SQLite: https://sqlite.org/quirks.html

• SQLite Tutorial: https://www.sqlitetutorial.net

• SQLite Studio: https://sqlitestudio.pl

• Using SQLite with FireDAC: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/Using_SQLite_with_FireDAC

• Quickly Learn How to Connect and Manage a SQLite Database for Delphi:
https://blogs.embarcadero.com/quickly-learn-how-to-
connect-and-manage-a-sqlite-database-for-delphi-c-builder-
with-sqlite-sample-app/

• Embarcadero's FireDAC – Universal Enterprise Data Connectivity: https://
www.embarcadero.com/products/rad-studio/firedac

• Using InterBase ToGo to Secure Mobile Data: https://blogs.embarcadero.
com/using-interbase-togo-to-secure-mobile-data

• Deployment Manager – Add Featured Files: http://docwiki.embarcadero.
com/RADStudio/Sydney/en/Deployment_Manager_-_Add_Featured_
Files

• Apple's Human Interface Guidelines for iOS: https://developer.apple.
com/design/human-interface-guidelines/ios/overview

http://docwiki.embarcadero.com/InterBase/2020/en/ToGo_Quick_Start
http://docwiki.embarcadero.com/InterBase/2020/en/ToGo_Quick_Start
http://docwiki.embarcadero.com/RADStudio/Sydney/en/IBLite_and_IBToGo_Deployment_Licensing
http://docwiki.embarcadero.com/RADStudio/Sydney/en/IBLite_and_IBToGo_Deployment_Licensing
http://docwiki.embarcadero.com/RADStudio/Sydney/en/IBLite_and_IBToGo_Deployment_Licensing
https://sqlite.org
https://sqlite.org/quirks.html
https://www.sqlitetutorial.net
https://sqlitestudio.pl
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Using_SQLite_with_FireDAC
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Using_SQLite_with_FireDAC
https://blogs.embarcadero.com/quickly-learn-how-to-connect-and-manage-a-sqlite-database-for-delphi-c-builder-with-sqlite-sample-app/
https://blogs.embarcadero.com/quickly-learn-how-to-connect-and-manage-a-sqlite-database-for-delphi-c-builder-with-sqlite-sample-app/
https://blogs.embarcadero.com/quickly-learn-how-to-connect-and-manage-a-sqlite-database-for-delphi-c-builder-with-sqlite-sample-app/
https://www.embarcadero.com/products/rad-studio/firedac
https://www.embarcadero.com/products/rad-studio/firedac
https://blogs.embarcadero.com/using-interbase-togo-to-secure-mobile-data
https://blogs.embarcadero.com/using-interbase-togo-to-secure-mobile-data
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Deployment_Manager_-_Add_Featured_Files
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Deployment_Manager_-_Add_Featured_Files
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Deployment_Manager_-_Add_Featured_Files
https://developer.apple.com/design/human-interface-guidelines/ios/overview
https://developer.apple.com/design/human-interface-guidelines/ios/overview

10
Cameras, the GPS,

and More
In this chapter, we'll look specifically at smartphone features, such as accessing the built-in
camera, utilizing location and mapping services, and sharing data with other applications.

There are several sample projects available from Embarcadero that come with Delphi or
can be downloaded via the GetIt Package Manager. We will not cover these specifically but
will build our own app throughout this chapter that takes code from these projects and
puts them together in a fun, park-visiting app.

The idea for this app will be that we want to build a list of all the parks in our
neighborhood, take pictures, and save their locations to a small database. You can
easily tweak this app to apply to museums or clients or whatever you want—or even
a combination of these by adding a category. This will be a thorough introduction to
accessing mobile app services.

We'll keep it simple, building it through the following sections:

• Establishing a base

• Getting permission

• Capturing your neighborhood

• Marking your spot

258 Cameras, the GPS, and More

• Mapping your way

• Sharing your pictures

Let's learn how to access your phone's features programmatically.

Technical requirements
The Windows platform will play a minor role in this chapter, being used only as the
development base. Android and iOS devices will be the focus of our discussion and the
target for the deployment and testing of our applications, showcasing various features of
these constantly evolving platforms. For the most part, any Android- or iOS-based phone
or tablet supported by Delphi 10.4 will work—we will mention a few things to keep in
mind about device capabilities along the way.

You can find the code present in the chapter on GitHub at https://github.com/
PacktPublishing/Fearless-Cross-Platform-Development-with-
Delphi/tree/master/Chapter10.

Setting up
Before we get into the meat of this chapter, let's quickly set up the app we'll work with.
Create your app for this chapter by starting, as usual, with a multi-device application;
select the Tabbed with Navigation template, then follow these steps:

1. Remove the fourth tab and name the three remaining tabs of the main
TTabControl property tabParkList, tabParkEdit, and tabParkMap;
rename the tab control tabCtrlMain.

2. Remove the tab control residing on the tabParkList property and add a
TToolBar aligned to bottom, and to that, add a left-aligned button with a
StyleLookup property of additembutton.

3. Also, on that tab, drop a TListView in the center of the tab area and align it
to Client.

4. We'll be calling NextParkTabAction from an event on the list view, so remove the
Next button in the top toolbar and change the title's Text property to My Parks.

5. On tabParkEdit, add a TToolBar aligned to bottom, just as you did on
tabParkList, and then add a left-aligned button with a StyleLookup property
of pagecurltoolbutton and a right-aligned button with a StyleLookup
property of trashtoolbutton.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter10
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter10
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter10

Technical requirements 259

6. We don't want to see the tabs at runtime but we don't want to hide them at design
time, as it's much more convenient to move around when they're visible. So, put this
code in the form's OnCreate event:

procedure TfrmMyParks.FormCreate(Sender: TObject);

begin

 tabCtrlMain.TabPosition := TTabPosition.None;

 tabCtrlMain.ActiveTab := tabParkList;

end;

7. Add a data module and drop both a TFDConnection component and a
TFDPhysSQLiteDriverLink component on it. We'll use SQLite to store our
data for the app, building on the skills we learned in the previous chapter, so set up
the connection for a SQLite database in a cross-platform manner; we'll name this
database MyParks.db.

8. Bring up your favorite SQLite database management tool and create two tables. The
first, Parks, will hold the park name, an x and y Global Positioning System (GPS)
location, a picture of the park, whether the park has a playground, and some notes.
Here's the Structured Query Language (SQL) code to create it:

CREATE TABLE Parks (

 ID INTEGER PRIMARY KEY AUTOINCREMENT
UNIQUE NOT NULL,

 ParkName STRING (50) UNIQUE NOT NULL,

 LocX REAL,

 LocY REAL,

 MainPic BLOB,

 HasPlayground BOOLEAN

);

9. Add the data module to the implementation uses clause of the main
form, and then use the LiveBindings wizard to hook the TListView up to the
ParkName field of the Parks table.

10. Optionally, add a TStyleBook and choose a style for both Android and iOS
platforms. (I chose EmeraldCrystal, which you will see in the screenshots in
this chapter.)

260 Cameras, the GPS, and More

11. Use the SQLite database management tool to add one or two records in the Parks
table, setting the ParkName field value so that we'll have something to see when we
start the app, and then disconnect.

12. Add the database file to the project so that it will get deployed to your mobile device.

13. Run it and make sure you see something like this:

Figure 10.1 – The start of the "My Parks" app on an Android phone, with two parks in the database

Technical requirements 261

To edit and save entries to the park database from the mobile app, we'll also need to set
up the Edit tab. Switch to the tabParkEdit tab and add a TEdit with a label for the
ParkName field, and a checkbox for the HasPlayground Boolean field (I used panels
and alignment to make it look good on various device sizes). Use LiveBindings to hook
these two new controls to the tblParks.ParkName and tblParks.HasPlayground
fields, respectively. In the toolbar at the bottom of the page, add a right-aligned button to
delete the current park. Create an action to delete a park after prompting to make sure the
user really wants to do it, and assign it to the new Delete button.

Here's how I implemented mine:

procedure TfrmMyParksMain.actDeleteParkExecute(Sender:
TObject);

begin

 TdialogServiceAsync.MessageDialog(

 'Are you sure you want to delete this park?',

 TMsgDlgType.mtWarning, [TMsgDlgBtn.mbYes, TMsgDlgBtn.mbNo],

 TMsgDlgBtn.mbNo, 0,

 procedure (const AResult: TModalResult)

 begin

 if AResult = mrYes then begin

 dmParkData.tblParks.Delete;

 ParkEditDoneTabAction.Execute;

 end;

 end);

end;

262 Cameras, the GPS, and More

Your edit screen should now look similar to this:

Figure 10.2 – The park edit screen on an Android phone

The final piece is to create an action to add a park; hook it up to the button at the bottom
left of tabParkList, as follows:

procedure TfrmMyParksMain.actAddParkExecute(Sender: TObject);

begin

 dmParkData.tblParks.Insert;

 NextParkTabAction.Execute;

end;

Run the application and make sure you can add, edit, and delete park entries.

Establishing a base 263

To keep the edits in the mobile database, you need to make one deployment modification.
In Delphi's Project | Deployment screen, modify the Overwrite setting for the
MyParks.db file you added earlier and change it from its default of Always to Never.
Otherwise, every time you compile and redeploy the project, the database file on the
mobile device will get overwritten with the initial database you set up on your Windows
machine. Setting it to Never will still deploy it if it doesn't already exist.

Having built this app, you've successfully mastered several prior chapters of this
book—congratulations on expanding beyond Windows! I recommend writing a few
different apps such as this yourself, to get used to working with FireMonkey, LiveBindings,
FireDAC, and mobile device deployment. To compare what you're building, the
finished source for this app can be found on GitHub at https://github.com/
PacktPublishing/Fearless-Cross-Platform-Development-with-
Delphi/tree/master/Chapter10/01_MyParks.

Now that we have a basic database-enabled app on our mobile device, let's put its services
to work for us.

Establishing a base
Not every mobile device supports every service and some people don't update their
devices, meaning they could have an old version of the application programming
interface (API) that doesn't support a new service you'd like to use.

You need to be aware of the various versions of devices your users will have and pick a
minimum-supported API. You may recall reading in Chapter 4, Multiple Platforms, One
Code Base, the minimum versions supported by Delphi for each platform. There are a lot
of smartphones out there and while some people are constantly upgrading to the latest
and greatest, a larger percentage hang on to their devices for several years. Additionally,
not all devices support all features.

Instead of building a long list of devices and versions and which ones have which
capabilities, there's a far simpler way to figure out what you can do on a device: just
ask it! The FireMonkey platform has done all the hard work for you and provides a
class in the FMX.Platform unit called TPlatformServices, which contains a
SupportsPlatformService Boolean function, returning whether or not the given
service is available. Here's how you would check whether your device supports modal
dialogs (hint: iOS devices do, while Android ones do not):

if TPlatformServices.Current.SupportsPlatformService(

 FMX.Platform.IFMXDialogServiceSync) then ...

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter10/01_MyParks
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter10/01_MyParks
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter10/01_MyParks

264 Cameras, the GPS, and More

Not all the services available are in the FMX.Platform unit. What may be more
interesting is to see whether the device is capable of making a phone call. That particular
service is listed in the FMX.PhoneDialer unit, which means you'd have to include both
units to make this check, as illustrated in the following code snippet:

if TPlatformServices.Current.SupportsPlatformService(

 FMX.PhoneDialer.IFMXPhoneDialerService) then ...

This will return True for Android phones and iPhones, but False for iPads. Here are a
couple of units we'll need for this chapter:

• FMX.MediaLibrary.IFMXCameraService

• FMX.Maps.IFMXMapService

To see a complete list of services available, follow the FireMonkey Platform Services link in
the Further reading section at the end of this chapter.

Now that you have established what you can do, make sure you have all the permissions
needed to access those services.

Getting permission
One of the first things you'll encounter when trying to use mobile services is that some
require express permissions to be granted by the user before allowing your app to
access them. That's a good thing—a person's tablet or phone is often a huge collection
of personal information. Things such as photos, addresses, emails, passwords, and your
current location are not the kind of data that should just be blindly accessed by anyone or
any app. Users should be in charge of who gets access to which information.

It used to be that when a new app was being installed, apps would ask the user to confirm
all the possible permissions the app would need in order to be installed. These days, the
apps are installed, and if and when they need to do something sensitive, that permission is
requested and either denied, preventing access for that feature, or approved, allowing the
app to proceed. This second method gives the user a more fine-grained control over what
apps can and cannot do—for example, they may allow an app to take pictures but deny
location services. We'll need to take this into account and make sure our app works for the
user in the capacity the user has granted.

Setting up permissions in Android and iOS is done quite differently. Let's look at what it
takes to allow an Android app to do what you need.

Getting permission 265

Setting up permissions for Android apps
A FireMonkey's project options has a section under Application called Uses Permissions
that, for Android targets, presents a long list of permissions for you to check off according
to what your app needs to do, as illustrated in the following screenshot:

Figure 10.3 – Some of the Android permissions available in Project Options

As you can see, there are many, very specific, permissions. The early days of permissions
saw much more generalized levels such as accessing external storage, which is now split to
reading and writing external storage. The permissions section under Dangerous (runtime
user approval) requires user approval before the app is allowed to perform the named
function; the other permissions are allowed by default if selected, and cannot be denied.
You can read about what each permission does by following the link titled Android
Developers documentation – Manifest.permission in the Further reading section at the end
of this chapter. These permissions are put into a manifest file associated with Android
apps and automatically built and packaged for you by the Delphi integrated development
environment (IDE).

266 Cameras, the GPS, and More

Note
Manifest files are Extensible Markup Language (XML) files that accompany
every Android project and describe several aspects of how the app interacts
with the Android operating system (OS). They specify which hardware
and software features are required, declare the activities, content providers,
broadcast receivers, and other components of the app, and establish the
permissions needed to access these features and components. You will
likely never need to worry about the details of an Android manifest file
as Delphi builds it for you based on several parts of the project options.
However, if you're interested, there is a default manifest file template in your
%APPDATA%\Embarcadero\BDS\21.0 folder that gets copied to new
project folders.

Once the permissions required are defined in the project, you can check to see whether
one has been allowed by the user. If you do not check one of the permissions considered
dangerous, it doesn't give the user the chance to approve it and it is therefore automatically
denied, resulting in an ugly error, as illustrated in the following screenshot:

Figure 10.4 – Error message if permission not requested to take and store pictures on Android

The FireMonkey framework provides a way to check permissions and take
action if granted, all in one statement, by calling PermissionsService.
RequestPermissions from the System.Permissions unit. This procedure has
three parameters, listed as follows:

• Permissions: A dynamic array of strings, each of which must match a
permission constant

• Request result event handler: A non-blocking procedure that should
check to see whether the permissions were granted and take the appropriate action

• Rationale event handler: A non-blocking procedure to display the reason a
permission is being requested if the first request was denied

The permissions constants can be found in the Manifest.permission link mentioned
earlier. If you click on a permission link, look down until you find the constant value. For
example, to request access to the camera, you would pass ['android.permission.
CAMERA'] in for the first parameter.

Getting permission 267

Many demo programs show an alternate way that you may prefer; these use some helper
units that come with Delphi, as illustrated in the following code snippet:

uses

{$IFDEF ANDROID}

 Androidapi.Helpers,

 Androidapi.JNI.JavaTypes,

 Androidapi.JNI.Os,

{$ENDIF}

With these units available, you can assign the string constant pulled from the manifest file
to a local variable, as illustrated in the following code snippet:

var

 FPermCamera: string;

...

{$IFDEF ANDROID}

 FPermCamera := JStringToString(TJManifest_permission.
 JavaClass.CAMERA);

{$ENDIF}

Then, pass that string variable in for the permissions parameter.

The request result event handler procedure is a special procedure that, in
addition to the traditional Sender: TObject parameter used by many event handlers,
has two more parameters, the first containing an array of permission constants and the
second containing an array of results for each of the permission constants. This lets you
go through each permission and discover whether it was granted or not; you can act
independently on these results if you'd like.

Once the permission constants and event handlers are set up, the rest is done in one
statement, as follows:

PermissionsService.RequestPermissions(['android.permission.
CAMERA'],

 TakePicturePermissionRequestResult);

We will discuss how to actually take a picture from the request result event
handler procedure later in this chapter, in the Capturing your neighborhood section.

268 Cameras, the GPS, and More

The PermissionsService class is very useful for checking permissions on the
Android platform. So, what do you have to do for iOS?

Nothing.

Using sensitive services on iOS
On iOS devices, any call to services that require user permissions is automatically handled
by the OS. If the user should be queried, the OS pauses the app and waits for the user to
answer a message—without any extra coding to handle it. In other words, you can simply
attempt to take a picture, make a phone call, read from the address book, write to external
storage, or carry out another of the other functions that might require specific user
permissions, and not do any checking as to whether the user wants you to do it or not.

But if your app is truly cross-platform, you can use the same PermissionsService
class used by Android apps to keep your code simple—the iOS implementation of the
class does nothing more than call the result event handler.

Note
Be aware that your app may not act in the way you expect if a requested
permission is denied by a user—for example, if you attempt to access the
camera and the user does not allow you to, the app will still appear to use the
camera but the picture will be black. When attempting to get contacts from
TAddressBook, a disallowed iOS device will inform the user the operation
could not be performed. Different services will act differently when denied.

While there's a lot of setup and coding for Android devices, there's more control in how
your app responds to user choices. Most of the time, users just give apps whichever
permissions they request; this puts a responsibility on you, the developer, to follow the
Apple guidelines on requesting permissions, which advise to keep requests for sensitive
information to the minimal amount necessary.

The rest of this chapter will check for permissions, as described previously, but assumes
they will be given for the functionality we'll be implementing. So, without further ado, let's
take some pictures!

Capturing your neighborhood 269

Capturing your neighborhood
Delphi has made it very simple to take pictures regardless of which platform you're
on. This capability is provided in one of the standard actions. Double-click on a
TActionList and click on the little arrow to the right of the New Action list to drop
down the menu of new action types, select New Standard Action... and scroll to the
Media Library section, where you'll find TTakePhotoFromCameraAction. Click to
add this new action to your action list, set its name to something appropriate, and leave
all the properties at their default. The one thing you want to do with this is create an
event handler for the OnDidFinishTaking event. In here, you'll add the code to do
something with the image returned by the camera-taking action.

Before you hook up this new action to a button, remember that the camera can only
be accessed if it's been granted permissions. What I like to do is create a custom action
that will be linked to a button or menu item, and that action's OnExecute event
will ask for permissions and then call the camera action. You caught a glimpse of this
technique in the Setting up permissions for Android apps section, where we looked at
PermissionsService.RequestPermissions. The second parameter of that call
is a procedure parameter, and instead of creating a separate procedure, as was indicated
previously, we can simply create an anonymous procedure in its place. This way, we can
ask for the permissions, check the results, and call TakePhotoFromCameraAction all
in one step. Here's the OnExecute event for my custom action that I have hooked up to a
button on tabParkEdit:

procedure TfrmMyParksMain.actTakeParkPicExecute(Sender:
TObject);

begin

 PermissionsService.RequestPermissions(

 ['android.permission.CAMERA',

 'android.permission.WRITE_EXTERNAL_STORAGE'],

 procedure (const APermissions: TArray<string>;

 const AGrantResults: TArray<TPermissionStatus>)

 begin

 if (Length(AGrantResults) = 2) and

 (AGrantResults[0] = TPermissionStatus.Granted) and

 (AGrantResults[1] = TPermissionStatus.Granted) then

 TakePhotoFromCameraAction.Execute

 else

 TDialogServiceAsync.ShowMessage('Camera denied
 access');

270 Cameras, the GPS, and More

 end);

end;

Here are a few things to note about the preceding block of code:

• We requested two permissions—access to the camera and writing to external
storage. Using the camera also requires reading from external storage, and many
demos will show all three permissions requested. The Android documentation says
that if permission is granted to write to external storage, then reading from it is
implicitly granted; so, I left it out.

• Many sample apps will show more detailed messages, with the code looping
through all permission requests and checking each corresponding grant result,
showing a message for each; I skipped that and combined them all together in one
pass-or-fail case.

• The call to TakePhotoFromCameraAction.Execute is how we call the standard
TAction that does the photo-taking for us and calls the OnDidFinishTaking
event when the picture has been confirmed by the user for use.

• Android event handlers must be non-blocking, even when displaying
messages. The simplest way to show a non-blocking message is to include the
FMX.DialogService.Async unit and call TDialogServiceAsync.
ShowMessage.

Using this technique and some of the other standard actions, you can see how simple it is
to expand your app to include many other features. Before we explore those techniques,
let's look at the event handler that saves the camera's image.

Saving an image to the database
The standard action, TTakePhotoFromCameraAction, does all the work of utilizing
the camera on various platforms. When a picture has been taken, it provides the image
in a simple event handler, aptly named DidFinishTaking. The single parameter is a
TBitmap, allowing you to simply assign it to an image component on your form.

I created one called imgParkPic on tabParkEdit, so my event handler looks like this:

procedure TfrmMyParksMain.
TakePhotoFromCameraActionDidFinishTaking

 (Image: TBitmap);

begin

 imgParkPic.Bitmap.Assign(Image);

Capturing your neighborhood 271

 SaveImageToDatabase;

end;

As you can see, assigning it to the image is straightforward; however, saving it to the
database—not so much. LiveBindings works to pull the image out and display it on the
form, but when you hook it up, the Direction property of TLinkControlToField
is automatically set to linkBidirectional; you need to change that to
linkDataToControl so that LiveBindings only reads from the database and doesn't
try to update it.

Saving the image to the database requires a bit of code involving TMemoryStream, as
illustrated in the following snippet:

procedure TfrmMyParksMain.SaveImageToDatabase;

var

 PicStream: TMemoryStream;

begin

 PicStream := TMemoryStream.Create;

 try

 imgParkPic.Bitmap.SaveToStream(PicStream);

 PicStream.Position := 0;

 dmParkData.tblParks.Edit;

 dmParkData.tblParksMainPic.LoadFromStream(PicStream);

 dmParkData.tblParks.Post;

 finally

 PicStream.Free;

 end;

end;

If you're not familiar with using streams in Delphi, the bitmap's SaveToStream method
fills the memory stream and leaves the pointer to the memory stream at the end of the
stream; so, it needs to be reset to the beginning, or 0. Then, we put the table into Edit
mode, use the bitmap field's LoadFromStream method to read from the memory stream
we just wrote out, and save the modified record in the database with the Post method.

272 Cameras, the GPS, and More

And that's it—you now have a mobile app working on both iOS and Android that takes
pictures and saves them in a database.

Note
If you encounter an error containing java.lang.
NullPointerException on Android with advice to modify your
manifest file, go to your project's options and under Application | Entitlement
List, make sure Secure File Sharing is checked.

What if you had already taken a picture and just wanted to load it from your photo library?

Loading previously taken images
While you were scrolling down through the standard actions, you may have noticed another
one in the Media Library section: TakePhotoFromLibraryAction. This one is very
similar to the camera-taking one we just looked at but only needs one permission: reading
from external storage. Here's how I implemented my custom action to load a picture:

procedure TfrmMyParksMain.actLoadParkPicExecute(Sender:
TObject);

begin

 PermissionsService.RequestPermissions(

 ['android.permission.READ_EXTERNAL_STORAGE'],

 procedure (const APermissions: TArray<string>;

 const AGrantResults:
 TArray<TPermissionStatus>)

 begin

 if (Length(AGrantResults) = 1) and

 (AGrantResults[0] = TPermissionStatus.Granted) then

 TakePhotoFromLibraryAction.Execute

 else

 TDialogServiceAsync.ShowMessage('Storage access was
 denied.');

 end);

end;

Capturing your neighborhood 273

As you can see, this code is nearly identical to the code that takes a photo with
the camera, which we explained earlier. The OnDidFinishTaking event
handler of TakePhotoFromLibraryAction has the exact same signature as
TakePhotoFromCameraAction, so we can simply reuse it.

Assign your two new custom actions to a couple of buttons at the bottom of
tabParkEdit and then go take a picture of a park. Here's a screenshot of a picture of a
park, taken with the app:

Figure 10.5 – A park picture taken in the app with an Android device

This is the simplest way to take a picture but doesn't allow very much control. It's also
limited to still pictures using the default camera on the phone.

274 Cameras, the GPS, and More

Expanding your use of the camera
You can take videos, switch to the front-facing camera (if the device has one) and
adjust other settings of your mobile device's built-in camera so that you can use a
TCameraComponent. There aren't many properties surfaced in the Object Inspector
but there are plenty you can adjust manually in code, and one important event handler:
OnSampleBuffer.

Instead of calling a method to snap a picture and getting that completed picture back in a
callback event, the camera component must be enabled with the Active property. In that
state, you control several aspects of the image being captured, such as whether the flash is
on, the resolution of the image, and which camera to use if there's both a front and back
camera. While it's active, you capture images in the OnSampleBuffer event. This allows
you the ability to save one frame, several frames, or a whole series in a video, or simply
display it on screen as a preview.

Here are some of the public properties you can manipulate at runtime:

• Kind: This determines which camera is in use and can be set to Default,
FrontCamera, or BackCamera.

• Quality: The quality can be set to PhotoQuality, HighQuality,
MediumQuality, LowQuality, or CaptureSettings (custom).

• CaptureSetting: This encapsulates Height, Width, FrameRate, and other
properties that determine overall resolution.

• TorchMode: The torch, also referred to as the flash, can be set to automatically turn
on when needed, turned on and left on to work as a flashlight, or manually disabled.
The property values are ModeOff, ModeOn, or ModeAuto.

With this increased control also comes the responsibility of knowing which settings
work with each other. For example, on my Android phone, the torch is only available
for the rear-facing camera. So, if in the following code the Camera variable is of type
TCameraComponent, an exception would be raised on the second line if run on such
a phone:

Camera.TorchMode := ModeOn;

Camera.Kind := FrontCamera;

We won't incorporate the use of video or advanced features of camera manipulation in our
park app, but there's a great sample CameraComponent project that comes with Delphi
in the Object Pascal\Mobile Snippets folder that showcases these capabilities.

Marking your spot 275

So, now that we have a picture of the park, wouldn't it be nice to automatically record
the location?

Marking your spot
There are three sensors on Delphi's Tool Palette and they deal with location, motion, and
direction. Three sample apps that get installed with Delphi in the Object Pascal\
Mobile Snippets folder demonstrate their use: Location, Accelerometer, and
OrientationSensor, respectively. The one we're interested in for this chapter is the
first one.

If you look over this simple app, TLocationSensor is the key to recording our
geographical coordinates. Run it to get a sense of how it works, and you'll notice that no
location information is gathered until the component is made active. Furthermore, after it's
turned on, there's a bit of delay while it gathers location details to calculate its exact position.

Drop a TLocationSensor component onto the main form of our park app and on
tabParkEdit, add a button that will be used to record our current location.

When viewing the list of parks on the tabParkList tab, we don't need location services
to be active. It's only when we're editing data that we might want to record the location
of the park, so a good location in our app for activating the component would be in the
OnUpdate event for the TAction that goes to the tabParkEditMain tab. But we also
need to remember to ask for permission.

Getting permission for location services
In the project's options, check the Uses Permissions section for both Android platforms
and select Access fine location.

Note
Some users are cautious about granting fine-grained location data to apps,
so you may want to select Access course location instead, which gives an
approximate location and is more acceptable for those concerned about privacy
because it's less accurate. For the purposes of the code in this demo, I'll assume
Access fine location has been selected—adjust your code accordingly.

276 Cameras, the GPS, and More

In addition to setting the Android user permissions, when iOS devices ask the user to
allow access to location services, they also include an explanation as to why the user
should do so. This explanation is pulled from special Version Info keys in Delphi. There
are two types of access granted, each with a special key name and outlined as follows:

• NSLocationWhenInUseUsageDescription: This explanation is for when the
app asks whether you want to use location services.

• NSLocationAlwaysAndWhenInUseUsageDescription: This explanation
shows up in iOS settings when you select Privacy | Location Services on your app;
it shows just under the Always option.

You should set these descriptions in your project's settings, overriding the default ones
initialized by Delphi.

Once permission has been set at the project level, we need to ask for it at runtime for
Android devices and then turn the service on for all devices. We could ask for this
permission right when the application starts—and that would be simplest—but I prefer
waiting until a service is actually needed before attempting to use it. The problem
(discovered while building this demo) is that the code executed in the event handler
happens simultaneously with the slide transition, which stops the transition effect halfway
through, leaving the park list view still partially on the screen and the park edit tab not
fully slid into place.

This will never do, but is easily resolved by putting our permission-requesting code in
a separate execution thread so that both the slide transition and the permission request
happen without stepping on each other. By simply including the System.Threading
unit, we can wrap our permission request in an anonymous method and pass it off to the
TTask class. Here's how this is done in the OnUpdate event for NextParkTabAction:

procedure TfrmMyParksMain.NextParkTabActionUpdate(Sender:
TObject);

begin

 tabctrlParkEdit.ActiveTab := tabParkEditMain;

 TTask.Run(procedure

 begin

 PermissionsService.RequestPermissions([

 'android.permission.ACCESS_FINE_LOCATION'],

 procedure(const APermissions: TArray<string>;

 const AGrantResults:
 TArray<TPermissionStatus>)

Marking your spot 277

 begin

 if (Length(AGrantResults) = 1) and

 (AGrantResults[0] = TPermissionStatus.Granted)
 then

 LocationSensor.Active := True

 else

 TDialogServiceAsync.ShowMessage(

 'Park location data will not be available.');

 end);

 end);

end;

Running it on an iOS device for the first time will now look something like this:

Figure 10.6 – iPhone asking permission to use location services with a custom explanation

278 Cameras, the GPS, and More

Now that location services are available, we can capture the current longitude and latitude
and store that data with our park.

Saving coordinates in the database
The location sensor component does not store coordinates for us to access any time we
need them. Instead, an event provides that data whenever it changes—which could be
frequently if the device is in motion, or not at all if it's stationary. What we'll do then is
capture the data every time the event fires and, when a button to save the park's location is
clicked, use the last-saved coordinates as the location for that park.

In the private section of the main form of our app, create a couple of variables of type
Double, as follows:

FParkLongitude: Double;

FParkLatitude : Double;

The event to use is OnLocationChanged, and we'll grab the NewLocation parameter
passed in (we won't use OldLocation as we're not charting our course over a map), as
illustrated in the following code snippet:

procedure TfrmMyParksMain.LocationSensorLocationChanged(

 Sender: TObject;

 const OldLocation, NewLocation: TLocationCoord2D);

begin

 FParkLongitude := NewLocation.Longitude;

 FParkLatitude := NewLocation.Latitude;

end;

We'll now be able to save those coordinates when the user is ready for it in the database.
Add a TButton to the bottom toolbar on tabParkEditMain and attach a TAction to
it with the following event handler:

procedure TfrmMyParksMain.actSaveParkLocExecute(Sender:
TObject);

begin

 dmParkData.tblParks.Edit;

 dmParkData.tblParksLocX.AsFloat := FParkLatitude;

 dmParkData.tblParksLocY.AsFloat := FParkLongitude;

 dmParkData.tblParks.Post;

Marking your spot 279

 TDialogServiceAsync.ShowMessage(Format(

 'The park''s location (%0.3f, %0.3f) has been saved.',

 [FParkLatitude, FParkLongitude]));

end;

The short message The park's location (x,y) has been saved. at the end
of this procedure is nice to show that something happened and to verify the coordinates
saved. We'd also like a way to know which parks have saved location data later when we
come back to the app. Depending on your preferences and device size, you could do that
in the park edit tab, but I'd like to show the coordinates in the list view on the main park
list tab.

Showing the location in the list view
Back on the tabParkList tab, let's modify TListView to indicate whether
location data has been saved. Right-click on the list view component and
select Toggle DesignMode. Expand the ItemAppearance property and
change the ItemAppearance sub-property from ImageListItem to
ImageListItemBottomDetail. This adds a detail line for each item that we can use
to display the coordinates, if set. It also exposes this newline to LiveBindings so that we
can easily hook it up to our table. The problem is there's one newline but two coordinate
values. We could modify the list view and add another field, or add a field to our table that
produces what we want and just use that. Let's do the latter.

In the data module, open up the field list of the Parks table component, add a new string
field called Coordinates, and set its Field type setting to Calculated. In the table's
OnCalcFields event, add the following code:

procedure TdmParkData.tblParksCalcFields(DataSet: TDataSet);

begin

 if tblParksLocX.IsNull or tblParksLocY.IsNull then

 tblParksCoordinates.AsString := EmptyStr

 else

 tblParksCoordinates.AsString := Format('(%0.3f, %0.3f)',

 [tblParksLocX.AsFloat, tblParksLocY.AsFloat]);

end;

280 Cameras, the GPS, and More

It will show nothing when the park location is not set and a small parenthetical set of
coordinates for the park when its location is known. Now, hook it up with LiveBindings to
the detail line of the list view. Here's what my LiveBindings Designer looks like:

Figure 10.7 – LiveBindings Designer showing coordinates hooked up to the list view's Item.Detail
property

So, with location services granted, captured, saved, and bound to the list view, we should
be able to go to some parks, grab the coordinates, and see them on the main form of our
app, as follows:

Mapping your way 281

Figure 10.8 – Coordinates are now showing for parks with saved location data

There are other ways to indicate location. You could add a glyph and enable it or disable
it based on this data instead of showing the actual coordinates. In any case, now that
location data is stored with the parks, let's put it to use.

Mapping your way
Plotting coordinates on a map is where the usefulness of saved coordinate data really
comes into play. This service also requires the permission of location services, but we
covered that in the previous section so we don't need to address it again. However,
viewing coordinates on a map introduces another layer of APIs, detailed as follows:

• For iOS, the MapKit framework is ready to use, with no additional setup.

• For Android, the Google Maps Android API requires a special API key you have to
request through a Google account.

These are the only two platforms supported by Delphi's TMapView component.

282 Cameras, the GPS, and More

Note
Not all devices based on Android support Google Maps. For example, Amazon
Kindle Fire tablets use a variant of Android but provide their own Amazon
Maps API; apps that try to access the Google Maps Android API on such
devices will raise an error.

Since there's nothing extra to do for iOS devices, let's go straight to getting set up to view
maps on Android phones before we proceed.

Setting up a Google Maps API key for Android
You'll need to register an application and generate an API key for each app you build that
uses Google Maps. These API keys are free for mobile apps but take a few steps to set them
up. Proceed as follows:

1. Create a Google account at https://console.developers.google.com
if you don't already have one. This is free but since Google provides many services,
some paid, it will ask you to set up a billing account. The mapping service we'll use
is free for mobile devices.

2. Once signed in to your Google account, create a new Google project. You'll need
to give it a unique project name (make it a good one, as it cannot be changed later).
Assign it an organization name and/or a billing account (depending on how you
configured your Google account).

3. After your Google project is established, you'll need to create credentials with a
credential type of API key. There can be multiple API keys per project but we'll
only need one; there are also other types of credentials, OAuth client and Service
account, which we won't use here.

Once your API key is created, you can optionally restrict it to specific APIs and
application types. This is highly recommended to prevent unauthorized use of
your API key, which could result in usage quota overages and unwanted charges.
Additionally, it prevents you from inadvertently calling non-free APIs or calling
APIs that are free on mobile platforms but not elsewhere. The next two steps tell you
how to do this.

4. To restrict your API key usage to the Maps API we'll use in this project, select the
API key to edit its settings, then select Restrict key under API restrictions and
select Maps SDK for Android from the list.

https://console.developers.google.com

Mapping your way 283

5. Your API key is not yet secured—it needs one more restriction. Select Android
apps under Application restrictions and add an item. Android app restriction
items require two pieces of information that uniquely identify your app: a certificate
fingerprint and a package name. The package name is simply the package
key from the version information section of your Delphi project. You should
prepend a reverse domain name that identifies you or your business to the default
of $(ModuleName) for all apps you produce. For samples in this chapter, I'm
using book.FearlessCrossplatformDelphiDev.$(ModuleName),
where ModuleName gets assigned the name of the Delphi project when it's built.
Therefore, an API key restricted to our sample parks app would be assigned the
package name of book.FearlessCrossplatformDelphiDev.MyParks
(spaces and dashes are not allowed but underscores are, if you prefer; it is case-
sensitive). The certificate fingerprint is far more complicated.

There are two different fingerprints you'll need to generate, one for debug mode and one
for release versions of your app. We'll explain the lengthy process of generating release-
mode fingerprints in Chapter 15, Deploying an Application Suite; for now, we'll concentrate
on the debug fingerprint, which can be used for all the apps you build on your machine.

The Java Development Kit (JDK) that is installed with the Android platform
development tools contains a command-line utility called keytool.exe that is used
to manage key and certificate information for your Android projects. Using a Command
Prompt shell, go to Embarcadero's APPDATA folder for your version of Delphi; for Delphi
10.4, you can get there by typing this from Command Prompt:

cd "%APPDATA%\Embarcadero\BDS\21.0"

If you've built at least one Android app in debug mode, you should find a special file in
this folder that contains the certificate information we need: debug.keystore. Once
that file is located, run this command (assuming the JDK is in your PATH variable):

keytool.exe -list -v -keystore debug.keystore -alias
androiddebugkey -storepass android -keypass android

This lists a whole bunch of information on the screen, including three lines of certificate
fingerprints, as illustrated in the following screenshot:

Figure 10.9 – Certificate fingerprints extracted from the debug.keystore file

284 Cameras, the GPS, and More

The one we're interested in is SHA1. Copy the hexadecimal (hex) digits for that entry,
and we can finish Step 5 by filling in the SHA-1 certificate fingerprint box for the new
restricted Android app item.

The Google API key is now set up and ready to be used. Let's switch back to Delphi.

Setting up your Delphi project to use Google Maps
The final step to use the Google Maps API involves three adjustments to settings in your
Delphi project for Android targets, all made in Project | Options. Proceed as follows:

1. Under Application | Entitlement List, check the Maps Service checkbox.

2. Under Application | Uses Permissions, check Access network state, Access course
location, and Access fine location.

3. Under Application | Version Info, set the apiKey value to the new API key
generated in your Google account for the new Google project.

Note
It is important to protect your applications' API keys. If your project file is
published on a public site, as this project is to GitHub, then Google will send
you an email warning that your private key has been made publicly accessible
and gives you options to remedy the situation. In my case, I simply regenerated
the API key on my Google account after sending the updates to GitHub,
updated the project with the new key, and continued developing, knowing the
previously generated key would be useless within 24 hours.

You're now ready to show maps on both Android and iOS.

Plotting park points
Let's set up the tab that will display our park map, as follows:

1. On tabParkMap, add a small TPanel aligned to Top.

2. Inside the panel, add a Left-aligned button with a StyleLookup of
arrowlefttoolbutton; create a TPreviousTabAction, assigning its
TabControl to tabCtrlParks, and assign an action to the new button.

3. On the right side of the panel, add a TComboBox with three string items: Map,
Satellite, and Hybrid. We'll add code to an event handler later.

Mapping your way 285

4. Between the two controls in the panel, add a TLabel and use LiveBindings to hook
it up to the park name.

5. Below the panel, fill the rest of the tab area with a TMapView, aligned to Client.

The map view component, once all the permissions and APIs are set up, is really pretty
simple to use. We simply give a location and it takes care of showing itself, even providing
finger gestures for zooming, rotating, and moving, without any extra coding. (You can
disable this functionality if you'd like to provide more of a static map interface; just
uncheck the Zoom, Tilt, Scroll, and Rotate properties of GestureOptions.)

To show a park's location on the map, create a TAction, actMapPark, and assign it
to a new button in the toolbar on tabParkEdit. Then, fill in the Execute event for
actMapPark, as follows:

procedure TfrmMyParksMain.actMapParkExecute(Sender: TObject);

begin

 if dmParkData.tblParksLocX.IsNull or

 dmParkData.tblParksLocY.IsNull then

 TDialogServiceAsync.ShowMessage(

 'There are no coordinates saved for this park.')

 else begin

 var SavedLocation: TMapCoordinate;

 SavedLocation.Latitude := dmParkData.tblParksLocX.AsFloat;

 SavedLocation.Longitude := dmParkData.tblParksLocY.AsFloat;

 MapViewParks.Location := SavedLocation;

 NextParkTabAction.Execute;

 end;

end;

In the preceding code snippet, we first check to make sure we actually have coordinates
for the selected park. Next, we create a temporary TMapCoordinate to contain the
saved latitude and longitude values of the park's location. Then, simply assigning that
TMapCoordinate to TMapView brings it to life, with a display of the park map.

286 Cameras, the GPS, and More

But one thing is missing. When viewing mobile maps that have been given specific
coordinates, there's usually a location marker to pinpoint those coordinates. We can add
that to our action event handler with just a few more lines of code, as follows:

 var ParkMarker: TMapMarkerDescriptor;

 ParkMarker := TMapMarkerDescriptor.Create(SavedLocation,

 dmParkData.tblParksParkName.AsString);

 ParkMarker.Draggable := True;

 ParkMarker.Visible := True;

 MapViewParks.AddMarker(ParkMarker);

This code should be inserted immediately after assigning SavedLocation to the map
view. Creating a TMapMarkerDescriptor with the saved location and giving it a name
associates a labeled pin with the exact coordinates, producing a view like this:

Figure 10.10 – Map with a labeled marker, showing the park's saved coordinates

The map view component has a LayeredOptions property that allows you to add
points of interest, buildings, and traffic to the display, and even show a special marker
highlighting your current location.

So, what is the combo box for?

Mapping your way 287

Changing the map style
Both the Apple and Google map APIs support three map types, as follows:

• Normal, which is just a basic street map, excellent for following directions
while driving.

• Satellite, which is a bird's-eye view of the location.

• Hybrid, which overlays a street map onto the Satellite view.

• Additionally, the Android map API provides a fourth: Terrain, which shows
elevation on the map.

Let's add an OnChange event handler to the combo box on tabParkMap to change the
map type, as follows:

procedure TfrmMyParksMain.cmbMapTypeChange(Sender: TObject);

begin

 case cmbMapType.ItemIndex of

 0: MapViewParks.MapType := TMapType.Normal;

 1: MapViewParks.MapType := TMapType.Satellite;

 2: MapViewParks.MapType := TMapType.Hybrid;

 3: MapViewParks.MapType := TMapType.Terrain;

 end;

end;

As you may recall, there were only three string items added when we set this page up. We
don't want the fourth option to be there unless we're on an Android device, so let's take
care of that when the application starts up. Add these three lines somewhere in the form's
OnCreate event:

 {$IFDEF ANDROID}

 cmbMapType.Items.Add('Terrain');

 {$ENDIF}

288 Cameras, the GPS, and More

On an Android device we now have a fourth map type, and if I visit a park that has some
hills, the Terrain map type looks quite interesting, as we can see here:

Figure 10.11 – Android's Terrain map type

Sharing your pictures 289

This app is really starting to be useful! Now that you are building a collection of parks
with pictures and map locations, wouldn't it be nice if you could easily share them with
your friends?

Sharing your pictures
Almost every mobile app has some way of sharing pictures and text on social media
services, through file-sharing sites and as attachments in text messages or emails. It's
been made super-simple to do so in your Delphi app by simply using another one of the
standard actions similar to taking a photo. From the action list in your app, add a new
standard action and select TShowShareSheetAction in the Media Library section.
Assign it to a new button in the toolbar at the bottom of tabParkEdit.

We'll hook into just one of the events, OnBeforeExecute, which lets us set up what
we're going to share, as follows:

procedure TfrmMyParksMain.
ShowShareSheetActionBeforeExecute(Sender: TObject);

begin

 ShowShareSheetAction.Bitmap := imgParkPic.Bitmap;

 ShowShareSheetAction.TextMessage := Format('%s (%0.5f,
 %0.5f)',

 [dmParkData.tblParksParkName.AsString,

 dmParkData.tblParksLocX.AsFloat,

 dmParkData.tblParksLocX.AsFloat]);

end;

The main goal of this sharing action is to share an image. We're sending text along with
it, but not all sharing services support both images and text. In this event, we don't know
which sharing service will be selected, so we just assign what we have—an image and
some information to go along with it—and let the user's selected service determine what
it can use.

290 Cameras, the GPS, and More

Sending a park picture via text message from our app will look something like this:

Figure 10.12 – Sharing a park picture with its name and coordinates in a text message on an iPhone

Sharing photos is one of the simpler mobile programming tasks, but it's limited to the
capabilities of the services to which the data is shared. Later in this book, we'll explore
other ways of sharing data that are a lot more involved. In fact, we'll come back to this
app and show how the park information you've collected can be synchronized to a server,
allowing you to share much more than just a picture and a line of text.

Summary
There are many ways you could change or add to this app. For example, instead of a
collection of parks, perhaps you'd rather have a list of craft stores or ski resorts. A database
table could be added to store an unlimited number of pictures instead of just one main
image per entry. The possibilities are limitless with your newfound skills of utilizing
mobile services and APIs.

Questions 291

There are other capabilities of mobile devices we did not explore, such as setting
appointments and alarms, auto-answering certain phone calls, tracking your speed and
elevation while moving, or vibrating the phone. The information you've learned in this
chapter should be a springboard to learning more advanced features and helping you
understand how to utilize other related services that you discover.

This chapter also leads nicely into the next, where we continue to work with unique device
features, exploring how to put our code onto credit-card-sized computers, communicate
with Bluetooth devices, use do-it-yourself electronic kits with our projects, and access
devices through various technologies previously relegated to obtuse libraries. Delphi's
mobile power continues to go deeper!

Questions
1. Which two things does an Android app need to do in order to use dangerous or

sensitive services?

2. Which three permissions are needed to take pictures?

3. How do you get an image from a standard action that takes a picture or loads a file
from your photos?

4. If you wanted to chart your course over a map, which component would you use?

5. Which two mapping APIs are supported by Delphi's TMapView component?

6. In addition to acquiring an API key for the Google Maps API, which three things
do you have to do to your Delphi project to use a TMapView on Android devices?

Further reading
• Android Version List: A Complete History and Features :https://www.temok.

com/blog/android-version-list/

• iOS version history: https://en.wikipedia.org/wiki/IOS_version_
history

• FireMonkey Platform Services: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/FireMonkey_Platform_Services

• Android Developers documentation: Manifest.permission: https://
developer.android.com/reference/android/Manifest.
permission

https://www.temok.com/blog/android-version-list/
https://www.temok.com/blog/android-version-list/
https://en.wikipedia.org/wiki/IOS_version_history
https://en.wikipedia.org/wiki/IOS_version_history
http://docwiki.embarcadero.com/RADStudio/Sydney/en/FireMonkey_Platform_Services
http://docwiki.embarcadero.com/RADStudio/Sydney/en/FireMonkey_Platform_Services
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission

292 Cameras, the GPS, and More

• Guide to Android App Permissions & How to Use Them Smartly: https://www.
avg.com/en/signal/guide-to-android-app-permissions-how-to-
use-them-smartly

• GT Explains: Understanding Android App Permissions: https://www.
guidingtech.com/67272/android-app-permissions/

• Apple's Human Interface Guidelines: Requesting Permission: https://
developer.apple.com/design/human-interface-guidelines/ios/
app-architecture/requesting-permission/

• Taking Pictures Using FireMonkey Interfaces: http://docwiki.embarcadero.
com/RADStudio/Sydney/en/Taking_Pictures_Using_FireMonkey_
Interfaces#Taking_a_Picture_with_a_Device_Camera

• Mobile Tutorial: Using Location Sensors (iOS and Android): http://docwiki.
embarcadero.com/RADStudio/Sydney/en/Mobile_Tutorial:_
Using_Location_Sensors_(iOS_and_Android)

• Delphi: Taking and Sharing Pictures and Text (iOS and Android): https://
youtu.be/eMSKyt5cmvw

• Configuring Android Applications to Use Google Maps: http://docwiki.
embarcadero.com/RADStudio/Sydney/en/Configuring_Android_
Applications_to_Use_Google_Maps

https://www.avg.com/en/signal/guide-to-android-app-permissions-how-to-use-them-smartly
https://www.avg.com/en/signal/guide-to-android-app-permissions-how-to-use-them-smartly
https://www.avg.com/en/signal/guide-to-android-app-permissions-how-to-use-them-smartly
https://www.guidingtech.com/67272/android-app-permissions/
https://www.guidingtech.com/67272/android-app-permissions/
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/requesting-permission/
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/requesting-permission/
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/requesting-permission/
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Taking_Pictures_Using_FireMonkey_Interfaces#Taking_a_Picture_with_a_Device_Camera
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Taking_Pictures_Using_FireMonkey_Interfaces#Taking_a_Picture_with_a_Device_Camera
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Taking_Pictures_Using_FireMonkey_Interfaces#Taking_a_Picture_with_a_Device_Camera
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Mobile_Tutorial:_Using_Location_Sensors_(iOS_and_Android)
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Mobile_Tutorial:_Using_Location_Sensors_(iOS_and_Android)
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Mobile_Tutorial:_Using_Location_Sensors_(iOS_and_Android)
https://youtu.be/eMSKyt5cmvw
https://youtu.be/eMSKyt5cmvw
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Configuring_Android_Applications_to_Use_Google_Maps
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Configuring_Android_Applications_to_Use_Google_Maps
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Configuring_Android_Applications_to_Use_Google_Maps

11
Extending Delphi

with Bluetooth, IoT,
and Raspberry Pi

As electronic devices proliferate and communication between them becomes more
ubiquitous, the ability to collect and share information among nearly anything offers
boundless opportunities. Delphi embraces this new field of the Internet of Things
(IoT) wholeheartedly. We'll start by examining Bluetooth technologies, the foundation
for connecting small devices in many ways. It not only provides wireless connection
capabilities to nearby paired devices but also allows ad hoc information polling from
IoT devices, allowing many specialized applications in a wide variety of fields. We'll also
demonstrate how to put your apps on a Raspberry Pi.

We'll explore these platforms in the following sections:

• Starting with Bluetooth Classic

• Learning about low-energy Bluetooth

• Utilizing beacons

294 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

• Doing more with the Internet of Things

• Using a Raspberry Pi

Pull out your discarded phones and ask a friend to donate theirs—we're going to fill our
desk with electronic gadgets!

Technical requirements
Once again, the Windows platform will not be a major part of the discussion in this
chapter. After using it as the starting point for compiling your project, you will be
deploying apps to other devices running a variety of OSes. Each section will introduce
what will be covered and expected. The list will include the following:

• Bluetooth: Your app will need to run on a platform that supports Bluetooth,
and you will need to have two Bluetooth-capable devices that can connect and
run your apps.

• Raspberry Pi: You will need a Raspberry Pi Model 3 or 4 or newer and the ability
to burn an image onto a microSD card for booting the Pi.

You may want to have more than two Bluetooth devices, preferably ones on which you
can install your own apps, in order to gain the most experience, as we talk about distance
calculation and beacons.

The complete code for this chapter can be found online on GitHub:

https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter11

Starting with Bluetooth Classic
There are two broad categories of Bluetooth technology, Classic Bluetooth and Bluetooth
LE (or low energy). The classic version only became known as "classic" once the LE
version came into widespread use. Classic uses more energy than its newer LE version and
is therefore not the best solution for mobile devices where battery size and weight are big
considerations. However, it provides a much higher transfer rate. Classic Bluetooth is not
accessible on Apple iOS devices and is not supported on Windows Servers but is available
on all the other platforms we've been working with so far.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter11
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter11

Starting with Bluetooth Classic 295

When you work with Bluetooth, think of it as short-range wireless networking. It doesn't
know about your application and your application uses it just like any other method of
sending data. Two applications that support Bluetooth but don't know anything about
each other can share information if they can work with the same data structure.

Bluetooth applications use a client-server method of communication. One of the
Bluetooth-enabled applications serves, or publishes, a service for other Bluetooth
devices to connect to. A Bluetooth client will then be able to connect to and then send and
receive data with the Bluetooth server application. Both devices can act as both a client
and server simultaneously.

Classic Bluetooth requires a little setup before you can use it. Let's cover that before
we go on.

Configuring Classic Bluetooth
In order to use Classic Bluetooth, the device to which you're connecting must be
discovered and paired to establish a communication pipe between the two. Of the two
devices, one must be discoverable, and the other discovers it (it doesn't matter which
does which). This process of pairing can be done either with the standard Bluetooth
configuration settings of your device or you can provide this capability as a convenience
directly within your application.

Let's create a sample application and walk through the steps:

1. In Delphi, create a Multi-Device Application using the Tabbed template.
2. Name the four tabs tabBTDiscover, tabBTDevices, tabBTServices, and

tabBTChat; modify the FormCreate procedure to set the ActiveTab
to tabBTDevices.

3. On both the tabBTDiscover and tabBTDevices tabs, add a toolbar with
a button using a StyleLookup of refreshtoolbutton.

4. On the tabBTDiscover tab, add a TListView named lvDiscoveredDevices
and aligned to Client, and set its ItemAppearance.ItemAppearance
property to ImageListItemBottomDetail. Do the same on the
tabBTDevices tab, naming the ListView, lvBTPaired.

5. Add two instances of TFDMemTable to the form and call one tblFoundDevices
and the other tblPairedDevices. Edit the list of fields of each and add
DeviceName and Address as string fields.

296 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

6. Right-click on one of the memory tables and select Edit DataSet... from the pop-up
menu. Add a record with a sample device name and address so that you'll be able
to see something show up on the screen in the next step. Repeat for the other table
component (keep these datasets active at design time to preserve the sample data).

7. On tabBTDiscover, right-click on ListView on tabBTDiscover and select
LiveBindings Wizard..., linking the ListView's Item.Text property with the
DeviceName field of tblFoundDevices and the ListView's Item.Detail
property with the Address field. Repeat the linking with the ListView on
tabBTPairedDevices and tblPairedDevices.

8. Finally, drop a TBluetooth component on the form.

Now you should have a ListView on each of the first two tabs showing a couple of records
from a memory table. We will empty and refill those memory tables at runtime. In fact, we
should make sure that when the application starts, the tables are cleared from the design-
time data we have in there, so add these two lines to the FormCreate procedure:

 tblFoundDevices.EmptyDataSet;

 tblPairedDevices.EmptyDataSet;

Most of the sample Bluetooth applications I've seen do all the Bluetooth manipulation
in code. It's not very complicated, but we'll use the component out of convenience.
It automatically pulls in the right units for us and puts a wrapper around the global
Bluetooth classes, which saves us a few lines of code. The only thing we need to do is
enable it. You could do this at design time by simply checking the Enabled property
of the component, but I prefer to use the OnActivate and OnDeactivate form
events to manage it:

procedure TfrmBTC.FormActivate(Sender: TObject);

begin

 Bluetooth.Enabled := True;

end;

procedure TfrmBTC.FormDeactivate(Sender: TObject);

begin

 Bluetooth.Enabled := False;

end;

Starting with Bluetooth Classic 297

Next, we want to get the list of paired Bluetooth devices to display in the ListView. Create
a form-level variable to hold the list:

 private

 var

 FPairedDevices: TBluetoothDeviceList;

Now, add an ActionList and create an action, name it actBTCDeviceRefresh, and
assign it to the Refresh button on tabBTDevices to refresh the paired Bluetooth device
list, adding each one found to the memory table:

procedure TfrmBTC.actBTCDeviceRefreshExecute(Sender: TObject);

begin

 if Bluetooth.CurrentManager.Current.ConnectionState =
 TBluetoothConnectionState.Connected then begin

 tblPairedDevices.EmptyDataSet;

 FPairedDevices := Bluetooth.CurrentManager.Current.
 GetPairedDevices;

 for var LPairdDevice in FPairedDevices do

 tblPairdDevices.InsertRecord([LPairdDevice.DeviceName,

 LPairdDevice.Address]);

 end;

end;

298 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

Since the table is hooked up to the ListView with LiveBindings, that should be all you
need to run the app on a Bluetooth-enabled device. Click the Refresh button, and see the
Bluetooth devices already paired with it:

Figure 11.1 – Paired Bluetooth devices on an Android phone

Now that we can get the list of currently paired devices, let's discover and pair a
new device.

Discovering and pairing devices
Bluetooth pairing is a two-way street—both devices must agree to be connected to each
other. It doesn't matter which one looks for the other, but one of them needs to search for
and initiate the connection. Once you enable the Bluetooth component, it is immediately
discoverable by other Bluetooth devices. One nice thing to do in a Bluetooth-enabled app
is to let others know the name of your device so that it can be found by other Bluetooth
devices. Let's do that right after we enable the component.

Starting with Bluetooth Classic 299

First, add a label in the toolbar on the tabBTDiscover tab called
lblDiscoverableName, so we can see what the name is, and then add this to the
OnActivate event handler:

procedure TfrmBTC.FormActivate(Sender: TObject);

begin

 Bluetooth.Enabled := True;

 if Bluetooth.CurrentManager.Current.ConnectionState =
 TBluetoothConnectionState.Connected then begin

 lblDiscoverableName.Text := 'Device''s BT Name: ' +

 Bluetooth.CurrentManager.CurrentAdapter.AdapterName;

 end else

 lblDiscoverableName.Text := 'No Bluetooth device Found';

end;

Now that the name is clearly visible in the app, try running it and then using a different
Bluetooth app to search for it.

Note
Some Bluetooth devices may not be discoverable in both directions. For
example, my iPad cannot see my Kindle Fire, but the Kindle can discover the
iPad and initiate the connection.

In addition to being discoverable, we also want to be the discoverer! Searching for
Bluetooth devices can take several seconds, so add a TAniIndicator, named
AniIndicatorDiscover, to provide a standard way to let the user know they should
be patient during a long process. We'll make it visible when the discovery process starts
and invisible when it ends.

The Bluetooth discovery mechanism is an asynchronous process, so we'll need to provide
an event handler that is called when the discovery process is finished. The event handler
will need a TBluetoothDeviceList to store its results in, similar to the paired device
list we created earlier, so add that in at the form level first:

 private

 var

 FDiscoverDevices: TBluetoothDeviceList;

300 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

Now, to create the event handler, simply double-click on the Bluetooth component's
OnDiscoveryEnd event to create the method:

procedure TfrmBTC.BluetoothDiscoveryEnd(const Sender: TObject;

 const ADeviceList: TBluetoothDeviceList);

begin

 TThread.Synchronize(nil, procedure begin

 AniIndicatorDiscover.Visible := False;

 AniIndicatorDiscover.Enabled := False;

 actBTCDeviceDiscover.Enabled := True;

 tblFoundDevices.EmptyDataSet;

 FDiscoverDevices := ADeviceList;

 for var i := 0 to FDiscoverDevices.Count - 1 do

 tblFoundDevices.InsertRecord([FDiscoverDevices[i].
 DeviceName,

 FDiscoverDevices[i].Address]);

 end);

end;

Create a field in the form class declaration that will contain a handle to the current
Bluetooth adapter:

private

 var

 FAdapter: TBluetoothAdapter;

The new action, actBTCDeviceDiscover, will be attached to the Refresh button on
tabBTDiscover and should disable itself, enable the activity indicator, save a handle to
the current adapter, and start the Bluetooth discovery:

procedure TfrmBTC.actBTCDeviceDiscoverExecute(Sender: TObject);

begin

 btnBTDiscoverDevices.StyleLookup :=
 'transparentcirclebuttonstyle';

 AniIndicatorDiscover.Visible := True;

 AniIndicatorDiscover.Enabled := True;

 actBTCDeviceDiscover.Enabled := False;

Starting with Bluetooth Classic 301

 if Bluetooth.CurrentManager.Current.ConnectionState =

 TBluetoothConnectionState.Connected then begin

 FAdapter := Bluetooth.CurrentAdapter;

 Bluetooth.CurrentManager.Current.StartDiscovery(10000);

 end;

end;

The StartDiscovery method's single parameter is the maximum number of
milliseconds to search.

Note
I've found that the Bluetooth discover functionality in Delphi does not
always return the list of devices that its OS-level functionality does. If this
functionality doesn't work in your app, use the device's native Bluetooth
preferences to search for and pair a device.

The list returned is pretty simple—on a Mac with five devices found, it looks like this:

Figure 11.2 – Several discovered Bluetooth devices ready to be paired on a Mac

302 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

When the discover process ends, the list of available Bluetooth devices is shown in the
ListView. Add an action and assign it to a new button on the toolbar to pair the newly
discovered device. The code to do that is really simple:

procedure TfrmBTC.actBTCPairDeviceExecute(Sender: TObject);

begin

 if (lvDiscoveredDevices.ItemCount > 0) then

 FAdapter.Pair(FDiscoverDevices.Items[lvDiscoveredDevices.
 ItemIndex])

end;

Once a new device has been paired, you can go back to the Devices tab in the app, click
the Refresh button, and see the updated list.

So, what can you do with a paired Bluetooth device?

Publishing Bluetooth services
Bluetooth applications publish services for other Bluetooth applications to use. When an
app publishes a service, it acts as a server and the Bluetooth app that finds and connects to
it is its client. Publishing a service is done by opening a Bluetooth Server Socket and then
listening for incoming requests.

The sample we're building will be a simple chat program, allowing users on two devices to
type messages and send them to each other. Either one of the devices can be the server or
the client—our application will handle both. Let's add to our user interface to support this:

1. On the tabBTChat tab, add an edit box with a label prompting for text to send and
a button called btnSendChatMsg, which will be used to actually send the message
with an attached TAction later. Put these controls near the top of the tab area.

2. Below them, add another label with the Text property set to "Conversation:"
and in the rest of the area, place a memo aligned to Client.

3. Back on tabBTDevices, add another button on the toolbar called
btnStartChat. This will be assigned an action to connect as a client to another
device's chat service.

Starting with Bluetooth Classic 303

When the app is acting as a server, it's best done as a multithreaded process so it can be
listening for messages from the connected client in the background while allowing the user
to continue using the app. Here's the thread class we'll declare in the interface section:

type

 TBTServerThread = class(TThread)

 strict private

 FServerSocket: TBluetoothServerSocket;

 FSrvrClientSocket: TBluetoothSocket;

 protected

 procedure Execute; override;

 public

 property ServerSocket: TBluetoothServerSocket read
 FServerSocket write FServerSocket;

 property ClientSocket: TBluetoothSocket read
 FSrvrClientSocket;

 constructor Create(ACreateSuspended: Boolean);

 destructor Destroy; override;

 procedure ConnectClientDevice(ADevice: TBluetoothDevice;
 ServiceGUID: TGUID);

 end;

The constructor simply initializes the local client socket field. The bulk of the work is
done in the Execute procedure:

procedure TBTServerThread.Execute;

var

 Msg: string;

 LData: TBytes;

begin

 while not Terminated do begin

 while (not Terminated) and (FClientSocket = nil) do begin

 FClientSocket := FServerSocket.Accept(100);

 if Assigned(FClientSocket) then

 Synchronize(procedure

 begin

 frmBTC.btnSendChatMsg.Action := frmBTC.
 actSendServerChatMsg;

 end);

304 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

 end;

 while not Terminated do begin

 LData := FClientSocket.ReceiveData;

 if Length(LData) > 0 then

 Synchronize(procedure

 begin

 frmBTC.ChatConversationAdd(TEncoding.UTF8.
 GetString(LData));

 end);

 Sleep(100);

 end;

 end;

end;

A brief explanation of this procedure is in order. The first inner while loop waits for
a client to connect—if it never does, the rest of the procedure is never encountered.
A timeout of 100 milliseconds is passed to the Accept method of the server socket,
which is attempted in a continuous loop in this background thread. If it ever returns a
socket, that socket becomes the server's connection to the client Bluetooth device and is
used in the next loop. We synchronize a call to the application's main thread to assign an
action to a button that we'll describe shortly.

The second inner while loop takes effect after a client is connected and incoming
messages are encountered and synchronized with the application's main thread to show
the message on the screen in the memo control. The ChatConversationAdd method
simply adds the given string parameter as a new line in the memo.

All of the rest of the code in this section will rely on Bluetooth being active and
connected. It's always a good idea to double-check this is the case before attempting
(and timing out) any communication, so let's create a convenience function we can call
from many other places:

function TfrmBTC.BluetoothActive: Boolean;

begin

 Result := Bluetooth.CurrentManager.Current.ConnectionState =

 TBluetoothConnectionState.Connected;

end;

Starting with Bluetooth Classic 305

Publishing a Bluetooth service requires a service name and a universally unique identifier,
or UUID. Create constants for these values in the private section of the form's class as
they'll be needed in a few different places, as seen in the following code block:

 const

 CHAT_SERVICE_NAME = 'Classic Chat';

 CHAT_SERVICE_GUID = '{61FD1F5E-4945-4A09-B7F5-
66E64F5BF69D}';

We're now ready to publish the service, which is done in the thread we set up. So, when
does the thread get created? You could provide a button to start and stop listening for
client connections, and that's what some sample programs do. We've got a lot going on
in this app already, so let's just make it automatically start listening when the app starts.
I added a call to StartChatService from the OnActivate event of the main form:

procedure TfrmBTC.StartChatService;

begin

 if (FChatServerThread = nil) and BluetoothActive then

 try

 FAdapter := Bluetooth.CurrentAdapter;

 FChatServerThread := TBTServerThread.Create(True);

 FChatServerThread.ServerSocket := FAdapter.
 CreateServerSocket(CHAT_SERVICE_NAME,
 StringToGUID(CHAT_SERVICE_GUID), False);

 FChatServerThread.Start;

 mmoConversation.Lines.Clear;

 ChatConversationAdd('Started chat service: ' + CHAT_
 SERVICE_NAME);

 ChatConversationAdd(' ' + CHAT_SERVICE_GUID);

 except

 on e:Exception do begin

 ChatConversationAdd(E.Message);

 end;

 end;

end;

306 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

This creates the server socket that publishes the Bluetooth service for this app. It's now
finally time to actually use the service!

Connecting and communicating
As mentioned earlier, one of the Bluetooth devices publishes a service and becomes the
server, while the other connects to it as a client. We just saw how to publish a service, so
now let's see how to connect to it as a client. Before we do that, remember there could
be several Bluetooth devices paired, each with multiple services published. We need to
connect to a specific service on a specific device.

In the tabBTDevices tab of our app, we can get a list of paired devices with the Refresh
button that lists the available devices in a ListView. When the app is running, the user
will select a device and then click btnStartChat, the button we created in Step 3 of the
previous section.

Just before we show the action event handler for that button, we need to write a lookup
function. The ListView shows the names of the devices, but the actual devices are stored
in FPairedDevices. This function looks through that list for the device with the name
passed in and returns the actual device:

function TfrmBTC.FindBTDevice(BTDeviceList:
TBluetoothDeviceList; const SearchDeviceName: string):
TBluetoothDevice;

begin

 Result := nil;

 for var LBTDevice in BTDeviceList do

 if SameText(LBTDevice.DeviceName, SearchDeviceName) then
begin

 Result := LBTDevice;

 Break;

 end;

end;

Now, create the actStartChatClient action and assign it to btnStartChat on the
toolbar on tabBTDevices. Its Execute method should look like this:

procedure TfrmBTC.actStartChatClientExecute(Sender: TObject);

var

 LDevice: TBluetoothDevice;

begin

Starting with Bluetooth Classic 307

 if BluetoothActive and (lvBTPaired.ItemIndex > -1) then begin

 LDevice := FindBTDevice(FPairedDevices, lvBTPaired.
 Items[lvBTPaired.ItemIndex].Text);

 if Assigned(LDevice) then begin

 tabctrlBTC.ActiveTab := tabBTCChat;

 ChatConversationAdd('Connecting to "' + CHAT_SERVICE_NAME
 + '" on ' + LDevice.DeviceName);

 FClientSocket := LDevice.CreateClientSocket
 (StringToGUID(CHAT_SERVICE_GUID), False);

 if FClientSocket <> nil then begin

 FClientSocket.Connect;

 ChatConversationAdd('Connected.');

 btnSendChatMsg.Action := actSendClientChatMsg;

 actSendClientChatMsg.Enabled := True;

 tmrClientChatRcvr.Enabled := True;

 end else

 ChatConversationAdd('Could not connect to chat
 service.');

 end;

 end

end;

After checking to make sure Bluetooth is active and a paired device is selected,
this method switches to the chat tab and attempts to connect to the chat service of
the selected device. If that's successful, the action for btnSendChatMsg is set to
actSendClientChatMsg as we've just connected as a client.

Another important thing this method does is start a timer to receive chat messages.
If we're acting as the server, the thread we set up earlier is already listening for messages.
We could've set up another thread to listen for messages as a client, but I chose this
technique as it's simpler for demonstration purposes. Here's the OnTimer event handler
for the chat message timer:

procedure TfrmBTC.tmrClientChatRcvrTimer(Sender: TObject);

var

 LData: TBytes;

begin

 tmrClientChatRcvr.Enabled := False;

308 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

 LData := FClientSocket.ReceiveData;

 if Length(LData) > 0 then

 ChatConversationAdd(TEncoding.UTF8.GetString(LData));

 tmrClientChatRcvr.Enabled := True;

end;

Now that everything should be hooked up and listening for messages, let's write the last
two actions we'll need to send data between the two devices. When the app acts as a client
to another device's service, a client Bluetooth socket in the main application's thread is
used, but when it acts as a server, the background thread watching for client connections
will create its own client Bluetooth socket. Therefore, two different actions will be used
to send text to the other end of the connection. First, create actSendClientChatMsg
to send a message from the app as a client to a connected server and write its Execute
method like this:

procedure TfrmBTC.actSendClientChatMsgExecute(Sender: TObject);

begin

 if BluetoothActive then

 try

 var ToSend: TBytes;

 if FClientSocket <> nil then begin

 ToSend := TEncoding.UTF8.GetBytes(edtChatText.Text);

 FClientSocket.SendData(ToSend);

 ChatConversationAdd('Cli > ' + edtChatText.Text);

 end else

 ChatConversationAdd('[No server connected]');

 except

 on e:Exception do

 ChatConversationAdd(e.Message);

 end;

end;

Starting with Bluetooth Classic 309

Since the other client socket was created in the background server thread, the action will
need to call a property of the thread class to send the data in the Execute method for
actSendServerChatMsg:

procedure TfrmBTC.actSendServerChatMsgExecute(Sender: TObject);

begin

 if BluetoothActive and (FChatServerThread <> nil) then

 try

 if FChatServerThread.ClientSocket <> nil then begin

 var ToSend: TBytes;

 ToSend := TEncoding.UTF8.GetBytes(edtChatText.Text);

 FChatServerThread.ClientSocket.SendData(ToSend);

 ChatConversationAdd('Srv > ' + edtChatText.Text);

 end else

 ChatConversationAdd('[No client connected]');

 except

 on e:Exception do

 ChatConversationAdd(e.Message);

 end;

end;

With these two actions ready, we assign one or the other to btnSendChatMsg, depending
on how we're connected to the other Bluetooth device. This was done in the code shown
earlier—first, when a server detects a connection from a client in the TBTServerThread.
Execute method, it assigns the actSendServerChatMsg action, and second, when
connecting as a client to a published service in the actStartChatClientExecute
method, it assigns the actSendClientChatMsg action.

310 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

Running it on an Android phone and communicating with an Amazon Fire Tablet looks
like this:

Figure 11.3 – Bluetooth Classic chat app on an Android phone sending and receiving messages

This has been quite a lot of work and it has given me a greater appreciation for what goes
on behind the scenes of Bluetooth devices that seem to just work—and more patience for
when they don't.

The source code for this app can be found on GitHub:

https://github.com/PacktPublishing/Fearless-Cross-
Platform-Development-with-Delphi/tree/master/Chapter11/01_
BluetoothClassic

Now, let's turn our attention to a newer variant of Bluetooth that is less work to use.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter11/01_BluetoothClassic
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter11/01_BluetoothClassic
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter11/01_BluetoothClassic

Learning about low-energy Bluetooth 311

Learning about low-energy Bluetooth
With our understanding of what it takes to use Classic Bluetooth, we can build on that
to understand the newer version, Bluetooth Low Energy (BLE), also known as Smart
Bluetooth. Here are the differences:

• BLE works well with low-powered devices.

• BLE runs on Macs and Android devices like its classic predecessor, but also on iOS
devices; for Windows, you need Windows 10 or newer.

• BLE publishes discoverable services, just like Classic Bluetooth, but there is no need
for pairing—clients simply connect and start using a service.

• BLE's published services are defined with a profile, rather than just the raw stream
of bytes that you get with Classic Bluetooth. A widely used profile is the Generic
Attribute Profile (GATT).

• BLE is primarily used for information reporting from IoT devices such as heart
rate or blood pressure monitors, or cycle speed and cadence measuring, but is not
limited to one-way communication.

There are many published BLE profiles and manufacturers can create their own
custom ones. The GATT profile has several dozen services called sub-procedures; you
can download specifications for the ones you want to implement from the Bluetooth
Specifications List found in the Further reading section at the end of this chapter. A pair
of sample applications that comes with Delphi in the Samples\Object Pascal\
Multi-Device Samples\Device Sensors and Services\Bluetooth\
ProximityClientServer folder implements three of them:

• Link Loss Service: Defines what happens when a link is lost between two devices.

• Immediate Alert: Allows a connected device to cause an immediate alert by setting
the server device's alert level.

• TX Power Service: Reports the current device's power level.

The server application uses the BluetoothLE component and the client application
simply calls the TBluetoothLEManager class in the System.Bluetooth unit to use
the BLE functionality. When the Start Announce button is clicked on the server app, the
Bluetooth Manager is established, all three services are published, and it begins listening
for clients to connect to. The services are assigned specific names and UUIDs and must
conform to their specifications.

312 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

When the client app finds the server and connects to the services identified with the same
UUID, it starts a timer, fired every 2 seconds, that checks the distance to the server, and
sends an alert level to the server based on how far away it is—the further away, the higher
the alert level. The server responds by logging messages and setting the color of an alert
box. Here's what a mild alert level looks like:

Figure 11.4 – Bluetooth LE sample, ProximityServer, running on Android

We won't cover the details of the implementation but the code is readable and can
be followed or even expanded for your own learning without much difficulty. The
Embarcadero documentation (in the Using Bluetooth Low Energy link in the Further
reading section at the end of this chapter) explains additional information you'll need to
explore this topic further.

Building on BLE technology, devices that advertise their location are called beacons,
which we'll discuss in the next section.

Utilizing beacons 313

Utilizing beacons
The previous section introduced the GATT profile as a way for Bluetooth LE devices
to communicate once connected. But BLE devices can also send data without being
connected by using the Generic Access Profile (GAP) in "advertising" mode. In this
mode, data is sent out in specially formatted data packets on a periodic basis, thus acting
as a beacon for any device that is listening.

There are currently three general beacon formats:

• iBeacon: Apple was the first to create a beacon format; it is simple and robust.

• AltBeacon: This open format, created by Radius Networks, is very similar to
iBeacon but has a little more data available and is not company-specific.

• EddyStone: Google created this open source, cross-platform format that defines
different types of frames for a variety of applications; it is part of their Physical Web
initiative.

To use beacons in your Delphi app, you may be thinking that you have to learn about the
underlying protocols and sub-formats and then figure out how to implement them in the
BluetoothLE component. But Delphi provides the TBeaconDevice component to create
a beacon server app and TBeacon to create a beacon client app, both with very little effort.
What's more, these two components support all three of the aforementioned formats.

You won't often build your own beacon server device—you're much more likely to build
apps that use pre-made beacon devices. But it's nice to be able to set up your own test lab.
Let's show how simple it is to do this by writing a beacon server app. We'll use the iBeacon
format as it's the simplest to implement and does all we need right now.

Setting up a beacon server app
Follow these steps to build an app that will act as a beacon server:

1. Create a new Multi-Device Application using just the blank template.
2. Place a few labels aligned to the top. We'll use these to display the beacon

server parameters.
3. Add a couple of buttons—one will be used to start the beacon and the other to stop

it. I put them in a one-row grid-panel layout.
4. Add a TActionList and create a couple of actions assigned to the two buttons

you just added; I called mine actBeaconStart and actBeaconStop.

314 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

5. Underneath the buttons, add a memo that will be used to display log messages.
6. Finally, add a TBeaconDevice. We don't need to set any of its properties at design

time—we'll just use the defaults.

As explained earlier in this chapter, Bluetooth services are identified by a UUID. Since
we're building both a client and a server, they'll need to reference the same UUID to
prevent finding beacons that are not relevant to our app. To make this simple, we'll share
a unit between the two apps with a global constant declaring the UUID we'll generate and
assign it at runtime.

1. Add a unit called uBeaconConsts.pas and add it to the uses clause in the
implementation section.

2. Create a constant in the interface section with a new UUID (a GUID will suffice
for our purposes).

Tip
The default keyboard shortcut to create a new GUID in the Delphi editor is
Ctrl + Shift + G. It puts square brackets around the string, which you need
to remove.

3. Create another constant in that unit for a manufacturer ID of your choosing; it must
be four characters.

4. Back in the main form, create an event handler for the form's OnCreate event
and assign the BeaconDevice's GUID and ManufacturerId properties from the
new constants.

There are three other properties of the BeaconDevice that need some explaining. The
Major and Minor properties may seem like they specify a version, but they're used
instead as an identifier for a particular beacon. The idea is that you might have several
rooms full of beacons (like in a museum) and as you walk around the room and to other
rooms, each beacon needs to be uniquely identified from all the others. Use these two
properties to do that. One strategy is to use the Major property to specify a room and the
Minor property for a sequential numbering of the devices in the room. For our simple
demonstration, we'll simply hardcode a number, deploy it to a device, then change the
hardcoded number and deploy it to a different device. However, a real-life scenario would
have some way to define these two properties externally for properly mapping the devices
in a logical manner.

Utilizing beacons 315

The TxPower property is the power level that is output by the device the beacon server
app is running on. This value must be carefully measured and calibrated as it is used to
help calculate the distance to the beacon. It's beyond the scope of this book to explain how
this is done—follow links at the end of this chapter for further study on this topic. For
now, just assign a random number for testing.

1. Continue the OnCreate event handler by assigning the Major, Minor, and
TxPower properties of the BeaconDevice as discussed.

2. Finish the OnCreate event handler by assigning appropriate values for the Text
property of the labels on the form to display our beacon server's parameters.

One property that we left at its default, but which is very importantm is the BeaconType
property. This specifies which of the formats is used and has the following options:

• Standard: This uses the iBeacon format from Apple.

• Alternative: This uses the open format from Radius Networks.

• EddystoneURL and EddystoneUID: The two formats from Google—the first
broadcasting a compressed URL and the second broadcasting a Namespace
and an Instance ID; both of these require additional properties to be set in the
BeaconDevice component.

The default is Standard, which is what we want.

The last part of our simple beacon app is to start and stop the BeaconDevice. We'll do this
in the two actions we created earlier. Here's the one that starts it:

procedure TfrmBeaconServer.actBeaconStartExecute(Sender:
TObject);

begin

 try

 BeaconDevice.Enabled := True;

 actBeaconStart.Enabled := False;

 actBeaconStop.Enabled := True;

 mmoBeaconMessages.Lines.Add('Beacon started at ' +

 FormatDateTime('yyyy-mm-dd hh:nn:ss', Now));

 except

 on E: Exception do begin

 mmoBeaconMessages.Lines.Add('Problem starting: ' +
 E.Message);

 BeaconDevice.Enabled := False;

316 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

 end;

 end;

end;

The event handler to stop the beacon is very similar and not given here.

Before you run the app, you must check a couple of permissions in the project options for
either or both of the Android platforms you want to run:

• Bluetooth

• Bluetooth admin

These two permissions flag the Android system that Bluetooth will be used by this app.

That's all there is to it. There are no timings or other properties to set as the frequency and
data broadcast from beacons is established in the protocol selected, iBeacon in our case.
Once enabled, it broadcasts the UUID, major and minor IDs, and the power level at which
it was calibrated every 100 milliseconds, or 10 times per second, until disabled. When
running on an iPhone, it looks like this:

Figure 11.5 – Beacon server broadcasting from an iPhone

You can download the source for this section's apps from GitHub:

https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter11/02_Beacons

With the server broadcasting its identity, it's time to create a client that can read it.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter11/02_Beacons
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter11/02_Beacons

Utilizing beacons 317

Finding and reacting to beacon messages
The user interface of the client beacon app is very similar. We won't need labels to
identify a server but we will need two memos, one for the log as usual and the other to
display a continuously updated list of the beacons we find. There is one more obvious
exception to setting up the user interface and components of the client app—instead
of a BeaconDevice, drop a TBeacon component on the form.

Before we start writing code, select the beacon component and look at the properties
in the Object Inspector. You'll notice fewer properties and a new one called
MonitorizedRegions. That's a strange name for holding a collection of beacon search
parameters. Click the ellipses button on that property to edit the items in the list and add
one. It adds a TBeaconRegionItem with some properties that resemble what you saw
for the BeaconDevice component in the server app.

What happens when the beacon component starts scanning for beacons is that this list
defines what types of beacons it will search for. There could be a plethora of beacons for
many different applications, all broadcasting their device info, and if you don't have a
meaningful way of sifting through that, you would be flooded with unnecessary noise.
The first obvious filter we'll apply was alluded to when we built the server—the UUID.
This will immediately limit the discovered beacon list down to just the ones running
the server we wrote. A further filter we should already be familiar with is
IDManufacturer (called ManufactureId in the server's BeaconDevice).

The Major and Minor properties can be left at -1, which tells the beacon to scan for all
values of those properties. Your application could set these values as well to further limit
the returned list of beacons found. EddyInstance and EddyNamespace are only used
for the Google format.

The KindofBeacon property specifies, as the name implies, what kind of beacon to find.
The options should be familiar except for a strange one, iBAltBeacons. Choosing that
option allows this BeaconRegionItem to include both iBeacons and AltBeacons in its
result list. I chose to limit the list to just iBeacons.

With the understanding of how the beacon component will search and filter the beacons
we want to see, create the OnCreate event handler. However, setting the UUID isn't so
straightforward as the beacon search filters are in a list. Just in case you ever want to add
another item to the list, it's best to write the code in a flexible way now:

procedure TfrmBeaconClient.FormCreate(Sender: TObject);

begin

 for var i := 0 to Beacon.MonitorizedRegions.Count - 1 do

 Beacon.MonitorizedRegions.Items[i].UUID := FEARLESS_

318 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

BEACON_UUID;

end;

So why would you want more than one item in the MonitorizedRegions list? Perhaps
there is more than one type of beacon your app supports? When the client app gets the list
of beacons, it can branch on the beacon information and provide custom functionality for
each type, each UUID, each major or minor ID value, and so forth.

Before we discuss starting and stopping the beacon scan, let's look at the events we'll want
to capture. The BeaconDevice had no events at all—broadcasting beacon information as a
server is very simple and well defined. Listening for them has a lot more opportunity for
custom functionality and event branching.

Each of the entries in the MonitorizedRegions list can be thought of as a group or
region of beacons. Whenever a new beacon is detected that matches the filters in one
of those regions, it fires the OnBeaconsEnterRegion event, and for the first beacon
found in a region, it fires OnEnterRegion. This would allow you to, for example, detect
when a person walks into a new room and encounters a new set of beacons. Similarly, the
OnBeaconExitRegion and OnExitRegion events notify when a region (or group) of
beacons is no longer reachable.

This sample beacon client app makes use of the OnBeaconEnter and OnBeaconExit
events, which conveniently provide the list of current beacons. Here's one of them and the
associated procedure that adds the beacon information to one of the memos:

procedure TfrmBeaconClient.BeaconBeaconEnter(const Sender:
TObject; const ABeacon: IBeacon; const CurrentBeaconList:
TBeaconList);

begin

 UpdateBeaconList(CurrentBeaconList);

end;

procedure TfrmBeaconClient.UpdateBeaconList(const ABeaconList:
TBeaconList);

const

 ProximityStr: array[TBeaconProximity] of string =

 ('Immediate', 'Near', 'Far', 'Away');

begin

 mmoBeacons.Lines.Clear;

 for var i := 0 to Length(ABeaconList) - 1 do

 mmoBeacons.Lines.Add(Format('Beacon ID %d-%d: ' +

Utilizing beacons 319

 'RSSI = %d Distance = %f Proximity = %s',

 [ABeaconList[i].Major, ABeaconList[i].Minor,

 ABeaconList[i].Rssi, ABeaconList[i].Distance,

 ProximityStr[ABeaconList[i].Proximity]]));

end;

Now that we have something to catch broadcast information from a beacon, we can
start scanning for available beacons. But remember, part of the reason we're accessing
beacons is to determine proximity, an aspect of location, which is sensitive information
for a personal mobile device. So, we have to ask permission from the user on an Android
device (and you should recall from an earlier chapter that permissions are automatic on
iOS devices—the code is transparent). Once permission is granted, starting the scan on a
client is just as easy as starting the broadcast from the server:

procedure TfrmBeaconClient.actBeaconStartScanExecute(Sender:
TObject);

begin

 PermissionsService.DefaultService.RequestPermissions(

 ['android.permission.ACCESS_FINE_LOCATION'],

 procedure(const Permissions: TArray<string>; const
 GrantResults: TArray<TPermissionStatus>)

 begin

 if (Length(GrantResults) = 1) and (GrantResults[0] =
 TPermissionStatus.Granted) then

 try

 Beacon.Enabled := True;

 Beacon.StartScan;

 actBeaconStartScan.Enabled := False;

 actBeaconStopScan.Enabled := True;

 AddLog('Scanning for beacons...');

 except

 on e:Exception do

 AddLog('Problem starting scan: ' + e.Message);

 end;

 end,

320 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

 procedure(const Permissions: TArray<string>; const
 PostRationaleProc: TProc)

 begin

 ShowMessage('no permission to scan for beacons!');

 end);

end;

Just like the server app, make sure both Bluetooth and Bluetooth admin permissions are
checked in the project options. In addition to that, the client app will also need location
permissions, so check off Access course location and Access fine location as well.

Running the client app from a Fire HD tablet and finding two devices nearby running the
server version of the beacon app looks like this:

Figure 11.6 – Android client app showing two beacons

I have not calibrated the TX Power values for these apps so got quite a few errors—this
screenshot only shows the top portion of the tablet's screen.

Both the client and server beacon sample apps can be found on GitHub:

https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter11/02_Beacons

Now you can detect a beacon and get some minimal data from it. Managing multiple
beacons, calculating their distance, and triangulating your position is the next logical step,
but sounds like a bunch of work. Fortunately, Embarcadero offers a couple of components
to help us out.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter11/02_Beacons
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter11/02_Beacons

Doing more with the Internet of Things 321

Fencing your application
To make the most of beacons with their distance data, BeaconFencing components
manage multiple beacons and provide accurate positional data. You can use either the
TBeaconZonesFencing or the TBeaconMapFencing components, with the latter
providing an interactive map for your application. These build on TBeaconManager to
allow you to monitor beacons, trigger proximity events, place your position on a map, and
calculate routes between points using optimized algorithms.

Note
Use of the BeaconFencing components is not free—and they're not even
available for the Professional edition. Delphi Enterprise lets you download the
BeaconFencing components and demo apps from the GetIt Package Manager
and test your application with a limited number of devices, but to deploy and
use these on a larger scale requires additional licensing from Embarcadero.

These components will save you a lot of work building professional applications that offer
location-sensitive features and positional event handling.

The point at which we started discussing the concept of the "Internet of Things"
necessarily started with the introduction of Bluetooth LE since, by definition, it's the basis
of all low-energy device communication we'll discuss in this chapter. Beacons are one type
of IoT device not always thought of as part of this category. The next section gets into the
more popular concepts of IoT, wearable devices and gadgets of all sorts, and how they are
simply an extension of the BLE concepts we've covered thus far.

Doing more with the Internet of Things
Bluetooth LE opens the door to a broad spectrum of applications and devices. The
protocols we've explored are just the beginning of the many options for sharing data.
Small devices lurking in corners of the building, throughout your car, on exercise
equipment, in your appliances and entertainment system, all broadcasting and sharing
little bits of information that can be picked up and read in various ways, serve specific
functions and work without the need for manual interaction to enhance our lives.
To some, this proliferation of information sharing is a little disconcerting, but by
understanding the types of information being shared and how it's being used, we can see
that there's far less magic and quite a bit of usefulness in these technologies.

322 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

The Bluetooth, Bluetooth LE, Beacon, and BeaconDevice components come with all
versions of Delphi. As mentioned, Bluetooth LE, with its GATT and related profiles, is the
basis of several IoT components that you can expand to work with any IoT device. To save
you a lot of research and work, there are many that can be downloaded using the GetIt
Package Manager. Each one comes with custom components and most come with a demo
program. They are installed in your tool palette under the Internet of Things category:

Figure 11.7 – Some IoT components you can download from GetIt

The first two, dealing with beacon fencing, are ones we covered in the previous section
(the absence of the beacon components gives credit to the confusion over where, exactly,
the idea of the IoT begins). The rest of the components in that list make up the bulk of
what Embarcadero considers part of the "Internet of Things."

Doing more with the Internet of Things 323

Discovering and managing your device
You can spend time studying specs and constructing BLE components and libraries
to work with the myriad devices out there that speak Bluetooth, but why do that if
that work has been done for you? Embarcadero has several dozen devices supported
on the GetIt Package Manager and you can download these components along
with a demo of how to use each one. These components are affectionately known
as ThingConnect components and they each have one component in common, the
TbluetoothDeviceDiscoveryManager component. Every time you download
a ThingConnect component, it will come with one of these discover managers and
install it if you don't already have one. Each of the device-specific components needs
this component connected.

Even though these components encapsulate much of the work needed to deal with the
various profiles, you'll still have to understand not only the peculiarities of the devices
to which you connect but also the platform your app will be running on. There are
differences between how Windows and other platforms scan and connect to BLE
devices and some devices may respond differently, necessitating different ways of
reacting to data events.

Speaking of reacting to data events, let's take a peek at one of these IoT device components
and get a sense of how to use it.

Getting data from IoT devices
If you had to write your own methods for getting and parsing data from IoT devices,
you'd have to dig deeply into the GATT profile, learn about BLE profile characteristics,
and then study the specification for the device you're supporting and write the code to
parse the bytes returned. With the high-level ThingConnect components, this work is
done for you.

For example, the Blood Pressure Service specification is 31 pages long, but there are only
three events in addition to the standard discovery, connection, and error events:

• OnBloodPressureFeatureUpdate

• OnBloodPressureMeasurementUpdate

• OnIntermediateCutoffPressureUpdate

These events, along with the supplied helper classes, make parsing the variety of data
quite simple.

324 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

The topic of IoT and the many applications of BLE communication could take up a
book by itself. The goal of this chapter was to give you a glimpse of information-sharing
capabilities in the world of small devices and whet your appetite for expanding your
programming skills beyond monolithic desktop applications.

You may suddenly be interested in acquiring more electronic gadgets on which to test
ideas with your newfound skills, whether that involves capturing images of your front
door when you're not around, building your own array of beacons around your yard,
or monitoring temperature in different parts of your home.

This new hobby could get expensive if you had to use regular Windows or Mac computers.
You may be able to find some used phones or tablets, but they're not well-suited for
long-term, unattended, single-purpose use, such as broadcasting location and ID data,
or capturing pictures on a regular basis.

However, there are small devices that are often used for such applications, and we should
cover them before completing this book's section on mobile devices. And even though
they're not always mobile, they are low-power and support BLE quite nicely. They're also
very inexpensive.

Using a Raspberry Pi
Before the 1980s (and even for some time after that), computers were huge, taking up
large air-conditioned rooms, and requiring massive amounts of energy and a highly
trained staff. Today's hand-held smartphones are far more powerful than those behemoths
and require almost no training at all. As the power of computers continues to increase
and the size continues to decrease, the physical devices humans use to interact with a
computer (such as keyboards and mice) can take more space than the computer itself.
The term "fat finger" means more than just making a mistake on the keyboard; it now
represents the limiting factor on user interfaces.

The Raspberry Pi is one of the more popular examples of this great reduction of computer
size where the actual computer—CPU, memory, and interface ports—is the smallest
component of the system, with the keyboard and monitor dwarfing the tiny case housing
the electronics. Indeed, there are some keyboards that come with a complete computer
built inside, and I have used Velcro to attach a Raspberry Pi case to the back of a monitor.
The entire board upon which its ARM-based CPU and supporting chips reside is about
the length and width of a credit card—and depending on what you add on top of the card,
it starts at barely an inch high.

Using a Raspberry Pi 325

These small computers started out running a slim version of Linux, but as these devices
have become popular, chips have advanced in power, and more RAM has been added,
specialized versions of Android and even an ARM version of Windows can now be
installed. So how can we utilize these with Delphi?

Deploying Delphi apps on Windows or Linux is currently relegated to the Intel x86
architecture (there may be ways around this if you research and have the time to
experiment), and you can't separate Apple from its hardware. So, the only directly
supported method for deploying an app to a Raspberry Pi is to do it with Android.

Let's show how this is done.

Using Android to run your apps on a Raspberry Pi
We won't go into great detail on installing Android on a Raspberry Pi as that's beyond
the scope of this book. But there's an excellent tutorial in the Further reading section
at the end of this chapter called How to FULLY Install Android 9 on Raspberry Pi 3
(you can search for other YouTube videos that may be more relevant to your needs). It
really is as simple as it looks and only took me a few minutes on the first try.

You'll need a microSD card and a way to burn a .ISO image onto it. There are many
places from which to download these .ISOs and links are constantly being upgraded,
so do a quick internet search, follow the directions using one of several different free
image-burning tools, and soon you'll be booting up your Raspberry Pi with a fresh
copy of Android.

My Raspberry Pi 3 is shown in the following figure, next to my blue Logitech mouse:

Figure 11.8 – Raspberry Pi 3 single-board computer with a heat sink

326 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

To debug Delphi apps on true Android phones and tablets, you connect a USB cable
directly, turn on Android's debug mode in the device, and Delphi sees it. When using
a Raspberry Pi, you can do the same thing but it might not always be as convenient,
especially if you've mounted a Pi behind a TV or under the eaves of your house and you
don't want to move it just to give your app an update. You can, however, deploy and debug
Android apps over the network, either wired or wireless depending on which Pi you have
and your configuration. To do this, use the freely available Android Debug Bridge (adb).

There are two parts to this. The first, adb, is the daemon, or background process, running
on the Android devices. This provides the connection to external devices. You probably
don't need to download adb because most Android installations come with it built-in.
The version of Android I installed on my Raspberry Pi, LineageOS 16.0, already has it
built-in, and I followed the same instructions laid out in Chapter 4, Multiple Platforms,
One Code Base (under the section Preparing your PC to deploy to an Android device) to
enable USB debugging. While in the Developer Options, also enable ADB debugging over
network so that you can deploy your Android apps directly from Delphi.

The second part to getting this set up is to run adb.exe from your Windows machine
to connect to the adb process on Android and provide visibility to it from within Delphi.
This command-line utility can be found in the platform-tools folder where your
Android SDK was installed. (To recall the location of your SDK, you can check in Delphi's
options under Deployment | SDK Manager) You'll need to know the IP address of your
Raspberry Pi. Then, bring up a Command Prompt and run adb.exe connect
<IP_Address>, and put in your Pi's address:

Figure 11.9 – Windows PC connected to Android debugging on a Raspberry Pi over the network

Once adb is connected to your Pi, it'll act just the same as if a phone or tablet were directly
connected to your PC, so just select the target like you would any other Android device:

Using a Raspberry Pi 327

Figure 11.10 – Selecting the Raspberry Pi 3 target platform in Delphi

You can now run your own custom-written Android apps on a Raspberry Pi! To see this
demonstrated, check out the YouTube video link in the Further reading section at the end
of this chapter called Delphi and C++Builder on Raspberry Pi and SBC.

I took an open source project, DelphiVersions, and ran it, unmodified, on mine:

Figure 11.11 – Delphi app running on a Raspberry Pi 3

328 Extending Delphi with Bluetooth, IoT, and Raspberry Pi

The DelphiVersions project can be downloaded from GitHub:

https://github.com/corneliusdavid/DelphiVersions

So, now your world has been expanded!

Summary
This chapter trudged through the complexities of Bluetooth, starting with its origins
of discovery, pairing, and connection, then moving to the more efficient low-energy
version that allowed smaller devices to take advantage of the technology. Newer still,
beacons allow connectionless identity querying and proximity calculations for tracking
the movement of devices and providing apps with the ability to be contextually aware.
Finally, we showed how small, credit card-sized computers can help with budget and
space concerns, without having to sacrifice features or switch to a different development
tool—Delphi shines through all these scenarios in providing a rich development tool.

Now that we've had our fun with small, mobile devices, it's time to turn our attention to
powerhouse servers where Delphi can just as effortlessly crunch monstrous SQL queries
against massive databases as it can manage multiple requests from a variety of web servers.
Read on!

Questions
1. How do you start searching for Bluetooth devices?
2. What are some differences between Classic Bluetooth and Bluetooth LE?
3. What are BLE Profiles?
4. What is a beacon?
5. Do beacon servers use the same component as beacon scanners?
6. What is ThingConnect?
7. What OS can you put on a Raspberry Pi to allow Delphi apps to run?

Further reading
• Learn About Bluetooth Versions: https://www.bluetooth.com/learn-

about-bluetooth/radio-versions/

• Using Bluetooth: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/Using_Bluetooth

https://github.com/corneliusdavid/DelphiVersions
https://www.bluetooth.com/learn-about-bluetooth/radio-versions/
https://www.bluetooth.com/learn-about-bluetooth/radio-versions/
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Using_Bluetooth
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Using_Bluetooth

Further reading 329

• Using Classic Bluetooth: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/Using_Classic_Bluetooth

• Microsoft's Bluetooth Low Energy Overview: https://docs.microsoft.
com/en-us/windows/uwp/devices-sensors/bluetooth-low-
energy-overview

• Using Bluetooth Low Energy: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/Using_Bluetooth_Low_Energy

• Bluetooth Specifications List: https://www.bluetooth.com/
specifications/specs/

• Bluetooth Low Energy Applications: https://en.wikipedia.org/wiki/
Bluetooth_Low_Energy#Applications

• Beacons and Delphi in Amsterdam – a blog from CodeRage XI: https://
community.embarcadero.com/blogs/entry/beacons-and-delphi-
in-amsterdam

• Beacons and Delphi: https://www.youtube.com/watch?v=ieoIZ40MOjM

• Understanding the Different Types of BLE Beacons: https://os.mbed.com/
blog/entry/BLE-Beacons-URIBeacon-AltBeacons-iBeacon/

• A Museum Adventure with a Delphi Integration: https://blogs.
embarcadero.com/plunge-into-a-museum-adventure-with-this-
delphi-integration

• What the Internet of Things (IoT) Is and How It Works: https://
appinventiv.com/blog/what-is-internet-of-things/

• BeaconFence: http://docwiki.embarcadero.com/IoT/en/
BeaconFence

• Working with ThingConnect Devices: http://docwiki.embarcadero.com/
IoT/en/Working_with_ThingConnect_Devices

• How to FULLY install Android 9 on a Raspberry Pi 3: https://www.youtube.
com/watch?v=EZxbQ5iveO4

• Android Debug Bridge (adb): https://developer.android.com/studio/
command-line/adb

• Delphi and C++Builder on Raspberry Pi and SBC: https://youtu.be/f_
Wjqin9SXU

• WebBroker on Android and Raspberry Pi 3: http://delphi.org/2019/04/
webbroker-on-android-and-raspberry-pi-3/

http://docwiki.embarcadero.com/RADStudio/Sydney/en/Using_Classic_Bluetooth
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Using_Classic_Bluetooth
https://docs.microsoft.com/en-us/windows/uwp/devices-sensors/bluetooth-low-energy-overview
https://docs.microsoft.com/en-us/windows/uwp/devices-sensors/bluetooth-low-energy-overview
https://docs.microsoft.com/en-us/windows/uwp/devices-sensors/bluetooth-low-energy-overview
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Using_Bluetooth_Low_Energy
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Using_Bluetooth_Low_Energy
https://www.bluetooth.com/specifications/specs/
https://www.bluetooth.com/specifications/specs/
https://en.wikipedia.org/wiki/Bluetooth_Low_Energy#Applications
https://en.wikipedia.org/wiki/Bluetooth_Low_Energy#Applications
https://community.embarcadero.com/blogs/entry/beacons-and-delphi-in-amsterdam
https://community.embarcadero.com/blogs/entry/beacons-and-delphi-in-amsterdam
https://community.embarcadero.com/blogs/entry/beacons-and-delphi-in-amsterdam
https://www.youtube.com/watch?v=ieoIZ40MOjM
https://os.mbed.com/blog/entry/BLE-Beacons-URIBeacon-AltBeacons-iBeacon/
https://os.mbed.com/blog/entry/BLE-Beacons-URIBeacon-AltBeacons-iBeacon/
https://blogs.embarcadero.com/plunge-into-a-museum-adventure-with-this-delphi-integration
https://blogs.embarcadero.com/plunge-into-a-museum-adventure-with-this-delphi-integration
https://blogs.embarcadero.com/plunge-into-a-museum-adventure-with-this-delphi-integration
https://appinventiv.com/blog/what-is-internet-of-things/
https://appinventiv.com/blog/what-is-internet-of-things/
http://docwiki.embarcadero.com/IoT/en/BeaconFence
http://docwiki.embarcadero.com/IoT/en/BeaconFence
http://docwiki.embarcadero.com/IoT/en/Working_with_ThingConnect_Devices
http://docwiki.embarcadero.com/IoT/en/Working_with_ThingConnect_Devices
https://www.youtube.com/watch?v=EZxbQ5iveO4
https://www.youtube.com/watch?v=EZxbQ5iveO4
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://youtu.be/f_Wjqin9SXU
https://youtu.be/f_Wjqin9SXU
http://delphi.org/2019/04/webbroker-on-android-and-raspberry-pi-3/
http://delphi.org/2019/04/webbroker-on-android-and-raspberry-pi-3/

Section 4:
Server Power

The last section of the book provides you with many options for writing backend servers:
Windows services, Linux daemons web modules under IIS for Windows, or Apache for
Windows or Linux, or by using the power of a pre-built REST server by building modules
for the RAD Server with the modifications necessary for a client app with it. The book
concludes by tying everything you've learned together into a finished and deployed
application suite, both server and client, to your end customers and app stores.

This section comprises the following chapters:

• Chapter 12, Console-Based Server Apps and Services

• Chapter 13, Web Modules for IIS and Apache

• Chapter 14, Using the RAD Server

• Chapter 15, Deploying an Application Suite

12
Console-Based

Server Apps and
Services

At the opposite end of the spectrum from microdevices, embedded electronics, beacons,
and single-board computers (SBCs), you will find large data centers with racks of servers
processing terabytes of data at lightning speed to millions of users across the internet.
These machines run 24 hours a day and, except for the initial installation process and
occasional maintenance, are seldom seen by humans. These machines are called "headless"
computers because they run unattended without monitors, keyboards, or mice.

You might immediately point out that Raspberry Pi and other SBCs are often used as
headless mini servers and work quite well. Additionally, some small offices often use
one of their more powerful workstations as a server machine with shared access to other
workers. There is definitely some crossover in the variety of hardware that is available and
how it's put to use. However, in this chapter, we'll focus on Windows and Linux operating
systems that run on typical enterprise-class, data-center hardware, which is based on the
x86 architecture.

334 Console-Based Server Apps and Services

Most server applications are built to automatically start up when the machine starts, listen
and respond to multiple client requests simultaneously, handle errors gracefully, and,
typically, log all activity. In the following sections, we will cover these topics:

• Starting with console apps on Windows and Linux

• Providing server connectivity for clients

• Logging activity

• Creating a Windows service

• Adopting a Linux daemon

• Exposing your server to the world

Get ready to get serious on the backend!

Technical requirements
This chapter, which focuses on server technology, will primarily require a Windows
machine—your Delphi development machine will suffice quite nicely for testing and
debugging Windows services.

If you have Delphi Enterprise, you can also develop and run Linux console applications
and server apps. They can be deployed over your network to a standalone Linux server or
onto a virtual machine. Only Ubuntu 16.08 or 18.04 or RedHat Enterprise 7 are currently
supported by Embarcadero.

You can find the code for this chapter on GitHub at https://github.com/
PacktPublishing/Fearless-Cross-Platform-Development-with-
Delphi/tree/master/Chapter12.

We'll start simply by going back to square one: console apps.

Starting with console apps on Windows and
Linux
Unarguably, console apps are the simplest type of application you can create in Delphi.
All the code for an entire project can be contained in one unit; you don't have to deal with
the nuances of any graphics engine, display framework, or even style. Of course, your user
interface is quite rudimentary, but if your end goal is a server app deployed to a headless
machine such as a remote Windows or Linux server, then this is the perfect starting point.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12

Starting with console apps on Windows and Linux 335

As a quick review, to create a console app in Delphi, select File | New | Other from the
main menu and select Console Application. This creates a simple program that does
nothing more than trap an error. Add a couple of lines of code between the try and
except lines that were provided for us:

begin

 try

 Writeln('Hello from Delphi!');

 Readln;

 except

 on E: Exception do

 Writeln(E.ClassName, ': ', E.Message);

 end;

end.

These simply write out a line of text to the console. Next, pause and wait for the user to
press Enter. Now, let's make it cross-platform, but instead of adding iOS and Android,
we're going to add Linux.

First, we need to set up a simple testing environment that can be done right on your
Windows 10 desktop.

Installing the Windows subsystem for Linux
There are many ways to get a Linux machine built and running on your network—along
with many books, blogs, and videos to help you get there. Additionally, you can put Linux
on a virtual machine on your computer (using VMWare, VirtualBox, Hyper-V, and more).
You are free to use any of these methods as your experience and time allow.

However, if you don't want to wade through that learning curve right now, there's a pretty
simple way to get Linux on your Windows 10 machine that takes care of a lot of details for
you. Just follow these steps:

1. Go to the Start menu from Windows and type in Features. Then, select Turn
Windows features on or off.

2. When the list of selectable features comes up, scroll to near the bottom and check
Windows Subsystem for Linux. Then, click on OK. It is likely that your computer
will need to reboot during this process.

336 Console-Based Server Apps and Services

3. Pull up the Microsoft Store, search for Linux, and install Ubuntu 18.04 LTS.
(18.04 is the first stable release of Ubuntu in 2018; a newer version of Ubuntu
might be supported by the time you read this.)

Once it has been installed, you can launch it just like any other app, and you'll get
a Linux prompt! (This is real Linux, not an emulator.) What's really nice is you can
access your Windows filesystem from Linux through the /mnt folder and your
Linux filesystem from Windows through a virtual network device exposed through
\\wsl$ (which is made from the abbreviation for Windows Subsystem for Linux).
This makes it very simple to share files between the two systems. The first file we
need to share is the Platform Assistant Server (PAServer).

With Linux running, copy and paste LinuxPAServer21.0.tar.gz from the
PAServer folder, which is inside your installed Delphi folder, to the
/home/<username> folder inside your Linux subsystem. You can get to this
from Windows easily enough with Explorer by navigating to \\wsl$\Ubuntu-
18.04\home or \\wsl$\home, depending on your system. Then, navigate to
your user subfolder.

4. From the Linux prompt, make sure you're in the same folder where the compressed
LinuxPAServer was just placed (for example, /home/david). If not, you can
get there by typing in cd /home/david or simply cd ~/ from the Linux
command line; then, extract the platform assistant server using the tar xvf
LinuxPAServer19.0.tar command.

The PAServer is now ready on Linux for Delphi to connect to and send console
applications.

Running our first Linux app
If you extracted the LinuxPAServer from the home folder in Linux, you can type in the
following command to start it from the Linux prompt: ~/PAServer-21.0/paserver.
Similar to the PAServer running on the Mac, which we learned about in Chapter 4, Multiple
Platforms, One Code Base, it prompts you for a password, which you can leave blank.

Now, switch back to Delphi and set up the connection profile to the Linux PAServer:

1. Add the Linux 64-bit platform to our project.
2. Create a connection to the PAServer; right-click on the platform and

select Properties.

http://\\wsl$\Ubuntu-18.04\home
http://\\wsl$\Ubuntu-18.04\home

Starting with console apps on Windows and Linux 337

3. Underneath SDK, select Add New… and then click on Select a profile to connect:.
4. Give this new profile a name and then click on Next >>.
5. Enter 127.0.0.1 for the Remote machine (if you're using Linux on a separate

computer, you will need to use the i command from the PAServer to list the IP
addresses and then enter one of them onto your Linux connection profile instead).

6. Make sure that the Port number and Password match what you have in the PAServer
running on Linux (if you accepted the defaults when you started the PAServer, you
shouldn't have to change them here). The port number is listed when PAServer starts;
you can use the p command to list it again. Note that it is usually 64211.

7. Click on Test Connection and OK. Then, select Finish and Save and Delphi will
start updating the local cache of Linux files.

The project can now be compiled and run. If simply debugging with the F9 key
doesn't work for some reason, try one of the following ways to launch the app:

A. Click on Run Without Debugging (Shift + Ctrl + F9).
B. Within the Linux PAServer prompt, you might need to "wake up" the process by

typing in a key or hitting Enter for the app to actually start.
C. You can also manually launch the app from the Linux prompt by going to the

~/PAServer/scratch-dir/ folder, then navigating into the folder that
matches Delphi's profile name for this Linux system. Finally, navigate to the folder
for the project and run the app that has been deployed there.

This simple, cross-platform console app can be downloaded from GitHub at
https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter12/00_SimpleConsole.

Now that we can write a console application for Linux, let's make it do something useful.

Adding a simple database lookup module
In Chapter 9, Mobile Data Storage, we created a mobile app called MyParks. Instead of
forcing the user to figure out the name of the park and type it in, what if we could send the
coordinates captured by the phone to a server and have the server tell us which park we're
at? There are GPS converter APIs that can convert longitude and latitude coordinates
into an address; however, typically, they cost money and don't necessarily have the park
names attached. Besides, we're here to learn how to write servers in order to extend these
capabilities to other scenarios. So, we'll construct a small database and learn how to
provide this service to our client app.

338 Console-Based Server Apps and Services

Note
I won't take up space to detail how you should set up your database. You can
use whatever database product you're familiar with or to which you have
access. I'll use InterBase since it's an Embarcadero product and is the default
database that is used with RAD Server (we'll be exploring this in Chapter 14,
Using the RAD Server). Therefore, the database syntax shown in the code
examples will be that of InterBase.

Your database should have a table, named Parks, with the following fields:

• PARK_ID – INTEGER

• PARK_NAME – VARCHAR(50)

• LONGITUDE – NUMERIC(9,6)

• LATITUDE – NUMERIC(9,6)

The end goal is to create a server that listens for coordinates, looks up a matching park
in the database, and sends the results to our MyParks app, which will update its local
database. However, first, we want to test the basic functionality of the database lookup.

So, create a new console application, add a data module with the FireDAC connection
and query components, hook them up to the database, and test the connection. Once
we've proven this works, we'll continue building our real server.

Note
For database connectivity with FireDAC, make sure that you use the Connection
Editor of the TFDConnection to set up your database and test the
connection. Remember that this data module will be used with both Windows
and Linux projects, so if your database is on your Windows machine, the
InterBase protocol will need to be set to Remote for it to connect to Linux.

GPS coordinates can vary depending on the accuracy of the device and wherein the park
you're at, especially if it's a big park. So, when we construct the lookup query, we should
write it in such a way that the location could vary a little from what is stored in the database.
For instance, you could make that variance a setting in your application, provide a nice
configuration utility, and perhaps even provide a way to change the lookup precision in the
mobile app. For demonstration purposes, we'll hardcode this variance into the query by
searching for our longitude and latitude values between the stored value plus or minus 0.002:

select PARK_ID, PARK_NAME, LONGITUDE, LATITUDE

from Parks

Starting with console apps on Windows and Linux 339

 where :long between (LONGITUDE - 0.002) and (LONGITUDE +
 0.002)

 and :lat between (LATITUDE - 0.002) and (LATITUDE +
 0.002)

The identifiers that start with a colon create parameters to the query. These are the two
values that the MyParks app will send. We'll need to add a public function inside the data
module that takes two double parameters and returns a record—let's define the record first:

 public

 type

 TParkDataRec = record

 ParkID: Integer;

 ParkName: string;

 Longitude: Double;

 Latitude: Double;

 procedure Clear;

 end;

The record type will be what the function returns after querying the database:

function TdmParksDB.LookupParkByLocation(

 const ALongitude, ALatitude: Double): TParkDataRec;

begin

 Result.Clear; // procedure to clear the record's fields

 try

 qryParkLookup.ParamByName('long').AsFloat := ALongitude;

 qryParkLookup.ParamByName('lat').AsFloat := ALatitude;

 qryParkLookup.Open;

 if qryParkLookup.RecordCount > 0 then begin

 Result.ParkID := qryParkLookupPARK_ID.AsInteger;

 Result.ParkName := qryParkLookupPARK_NAME.AsString;

 Result.Longitude := qryParkLookupLONGITUDE.AsFloat;

 Result.Latitude := qryParkLookupLATITUDE.AsFloat;

 end;

 finally

340 Console-Based Server Apps and Services

 qryParkLookup.Close;

 end;

end;

Before we leave the data module, you need to remember an important difference between
the console apps and the GUI apps you're used to writing. When writing either VCL or
FireMonkey windowed apps, the form units are automatically added to the project file in
the main begin-end loop with Application.CreateForm() statements so that the
forms are readily accessible in your application code (you can turn this off by navigating
to Tools | Options | User Interface | Form Designer and then unchecking Auto create
forms & data modules). No data modules are automatically created in the console
applications—you have to write the code to create them yourself before you try to access
them; otherwise, you'll get an access violation error.

Since this data module could be used by a console app or a different kind of server app
that we'll create later in this chapter, it'll be more convenient to create and free the data
module class in the initialization and finalization sections of the unit. That
way, it's created when the app starts, automatically freed, and accessible to any program
or module that uses this data module. I named the data module TdmParksDB, so the
autogenerated global variable is dmParksDB and the creation and freeing code looks
like this:

initialization

 dmParksDB := TdmParksDB.Create(nil);

finalization

 dmParksDB.Free;

Now our data module is ready to be tested.

Testing the data module with a console app
As we touched upon a moment ago, the console app we're building right now is just to test
the functionality that the eventual server we're building will provide. A console app is a
really easy way to do that. We put all the common functionality for the "real" server into
data modules and other units. Then, we write a simple interface that collects and displays
data in the main part of the test console app, which calls methods from the used units.
Our strategy will become clearer in later sections when we build a Windows service and
a Linux daemon.

Starting with console apps on Windows and Linux 341

Our console app for testing the new database lookup function needs to write some code to
read values from the console, call the lookup function from the data module, and display
the results back to the console. Here's the main project code:

var

 long, lat: Double;

 ParkRec: TdmParksDB.TParkDataRec;

begin

 Writeln('--MyParks Lookup Test--');

 Write('Enter the longitude: ');

 Readln(long);

 Write('Enter the latitude: ');

 Readln(lat);

 ParkRec := dmParksDB.LookupParkByLocation(long, lat);

 if ParkRec.ParkID > -1 then

 Writeln(Format('Park %d: "%s" (%0.3f, %0.3f)',

 [ParkRec.ParkID, ParkRec.ParkName,

 ParkRec.Longitude, ParkRec.Latitude]))

 else

 Writeln(Format('Coordinates (%0.3f, %0.3f) not found.',
 [long, lat]));

 Write('Press Enter...');

 Readln;

end.

Running it looks like this:

Figure 12.1 – The console app on Windows looking up data from InterBase

342 Console-Based Server Apps and Services

Everything is set up for you on the Windows platform. To get this to run on the Linux
platform, we have to tell Linux about some extra files that will need to deploy in order to
access InterBase (note that if you're using a different database product, your file selection
will be different):

1. Add the Linux 64-bit platform to the Target Platforms in your project manager.
2. Open up the Deployment tab (that is, navigate to Project | Deployment from the

main menu).
3. Make sure Linux 64-bit platform under All configurations has been selected.
4. Click on the Add Featured Files button (this is the folder icon with a plus sign;

it is the fourth from the left-hand side)
5. Expand InterBase Client and select Linux64. Then, click on OK.

With the Linux 64-bit target selected as the active platform, and the PAServer running on
your Linux system, run the app and switch to your Linux shell. You should see the same
interface show up and run exactly the same way as it does on Windows.

You can download the source for the MyParksConsoleApp project on GitHub at
https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter12/01_ParksConsole.

Now that the data module works with a lookup function, it's time to turn our app into a
real server by actually serving data outside of itself.

Providing remote server connectivity for
clients
Our console app isn't really a true server yet because it has a user interface (albeit a crude
one) that accepts input and displays output and then exits—no client app interacts with it.
Our next step, then, is to replace the Readln and Writeln statements in the body of the
main program loop, which waits for a human to type something into the console, with a
way to start a listening and response mechanism that can be used by a client app.

Copy the data module (both the .pas and .dfm files) into a new folder and create a new
app with it added; call this new app MyParksTCPServerConsole.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/01_ParksConsole
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/01_ParksConsole

Providing remote server connectivity for clients 343

There are many ways for server and client applications to talk to one another. We
discussed how Bluetooth was used in the previous chapter, which works when two devices
are close together. In this chapter, we will use a very common method of communication
used across the internet, which works anywhere a network connection is available, that
is, through a port over TCP/IP. One popular set of components that support TCP/IP
communication is known as Internet Direct (Indy).

Indy is a set of tried-and-true components for handling both the server and client sides
of a wide assortment of internet protocols such as FTP, SMTP, Echo, TraceRoute, SSH,
Telnet, and even HTTP (yes, you can write your own web server with these components).
The one we'll use is the TCP server, which listens on a port for requests and sends back
responses. Our server will listen for coordinates from a client app and respond with
park information.

Let's add another data module to our new server app and place TIdTCPServer on it.
It listens on a port that we define for incoming requests; we will parse the request, look
up the data, format a response, and then send it out on that same port back to the client.
Therefore, our client and server apps need to coordinate regarding the port and data
formats to use in order to communicate effectively. Here's what we'll use:

• Port: 8081

• Request: longitude=x.xxxx,latitude=y.yyyy

• Response: ParkName=<park_name>

The requests, expected on port 8081, take the form of a string with two coordinates,
separated by a comma; the response back to the client will simply be the park name. For
example, if the server receives longitude=-122.813,latitude=45.517, we would
parse the coordinates, pass them to the database module's lookup function that we wrote
earlier, and respond with the park name stored in the database for those coordinates.
In my database, as we saw earlier, it should respond with ParkName=Commonwealth
Lake Park.

Note
Why did I choose port 8081? There are 65,535 TCP ports to choose from.
Many of them are standard ports, which are defined and used in public
contexts. For example, port 80 is used for unsecured web pages or HTTP, 443 is
for HTTPS, 25 is for SMTP, and so on. Many sample web applications or local
servers use 8080 as an example or as a temporary port. I guess this is because
it's easy to remember by thinking of it as the common port "80" twice. I simply
incremented that port number by one to avoid possible conflicts, but you can
use a different one if you wish—as long as it isn't already in use.

344 Console-Based Server Apps and Services

Setting the port is easy; there's a property on the component for that, which is
DefaultPort. Detecting requests and sending responses requires writing some code in
the event handler, OnExecute. Since there are two values we're expecting, separated by a
comma, we can use TStringList to read them in and conveniently parse them for us.
Additionally, we'll need a couple of variables to hold the longitude and latitude values we
parse and a response string. This is how we'll set up the initial part of the procedure:

procedure TdmTCPParksServer.IdTCPMyParksServerExecute(AContext:
TIdContext);

var

 ValidRequest: Boolean;

 Requests: TStringList;

 ReqLong, ReqLat: Double;

 ResponseStr: string;

begin

 ValidRequest := False;

 ResponseStr := EmptyStr;

Next, we'll parse the string and do some error checking:

 Requests := TStringList.Create;

 try

 Requests.CommaText := Trim(AContext.Connection.Socket.
 ReadLn);

 if Requests.Count = 2 then begin

 if TryStrToFloat(Requests.Values['longitude'], ReqLong)
 and

 TryStrToFloat(Requests.Values['latitude'], ReqLat)
 then begin

 var ParkInfo := dmParksDB.
 LookupParkByLocation(ReqLong, ReqLat);

 if ParkInfo.ParkName.Length > 0 then begin

 ResponseStr := ParkInfo.ParkName;

 ValidRequest := True;

 end else

 ResponseStr := '<Unknown Park>';

 end;

Providing remote server connectivity for clients 345

 end;

 finally

 Requests.Free;

 end;

Finally, we'll check to see whether we have had any errors. Then, we'll set the response
accordingly and return it:

 if (not ValidRequest) and (ResponseStr.Length = 0) then

 ResponseStr := 'ERROR: Invalid request';

 AContext.Connection.Socket.WriteLn(ResponseStr);

end;

We'll also provide the public Start and Stop procedures to hide the actual component
in use from the calling module. This is in case we want to change to a different TCP server
component in the future:

procedure TdmTCPParksServer.Start;

begin

 IdTCPMyParksServer.Active := True;

end;

procedure TdmTCPParksServer.Stop;

begin

 IdTCPMyParksServer.Active := False;

end;

The last thing we need is a way for the calling module to tell whether the server
component is still active. I created a public property, Running, and wrote its getter
function like this:

function TdmTCPParksServer.IsRunning: Boolean;

begin

 Result := IdTCPMyParksServer.Active;

end;

346 Console-Based Server Apps and Services

Note that there are a few other events you can hook into that are useful for reporting
when a client connects and disconnects or when an error occurs. It's a good idea to use
them for unattended server applications running on a remote server. This is so it can log
activity that can be queried periodically to check whether things are running properly.
You can do this by creating event handlers in the data module that can be hooked into the
calling module. The current app we're writing will just write the activity to the console;
however, in the next section, we'll turn this into a service. This data module should work
in either situation, so don't assume anything about the interface or have any dependencies
regarding how it will be used.

To support this concept of event-driven programming, we recommend that you write
public properties that are checked at key points in your code and call the appropriate
notification procedures. For example, when a client connects to this server, you should
provide a way to notify the calling module with the following public property:

 public

 property OnConnect: TNotifyEvent read FOnConnect write
FOnConnect;

The private variable should be declared like this:

 private

 FOnConnect: TNotifyEvent;

I like to write Do procedures to check to see whether the event handler is hooked up by
the calling module and, if so, call the calling event handler:

procedure TdmTCPParksServer.DoOnConnect;

begin

 if Assigned(FOnConnect) then

 FOnConnect(self);

end;

Then, double-click on the OnConnect event in the IdTCPServer component and
simply call the Do procedure:

procedure TdmTCPParksServer.IdTCPMyParksServerConnect(AContext:
TIdContext);

begin

 DoOnConnect;

end;

Providing remote server connectivity for clients 347

This might seem like an unnecessary simplification, but implementing this technique as a
habit in all of your applications makes your code readable, consistent, and flexible. We'll
now be able to use this data module, unchanged, in a variety of ways; first, in a simple
Windows console app for testing, and then again in the next couple of sections when we
write a Windows service and a Linux daemon.

The main loop of the project will still be a console app. However, instead of asking for
coordinates and making the call ourselves, it'll simply be used to start and stop the TCP
server and display some messages as clients connect and send requests. In fact, it could be
as simple as this:

begin

 Writeln('Starting MyParks TCP Server on port ' +

 dmTCPParksServer.IdTCPMyParksServer.DefaultPort.ToString);

 dmTCPParksServer.Start;

 while dmTCPParksServer.Running do

 Sleep(100);

 Writeln('MyParks TCP Server quitting ');

end.

Running it simply displays the Starting ... message; it then silently listens and
processes TCP messages until it's shut down. To utilize the event handler we wrote, we
have to create a class; I called it TConsoleParkDisplay, and the implementation of
the OnConnect and OnDisconnect procedures looks like this:

procedure TConsoleParkDisplay.OnConnect(Sender: TObject);

begin

 Writeln('>> client connected');

end;

procedure TConsoleParkDisplay.OnDisconnect(Sender: TObject);

begin

 Writeln('<< client disconnected');

end;

To add them to the main loop just requires you to create the class and assign the
event handlers:

var

 ConsoleDisplay: TConsoleParkDisplay;

begin

348 Console-Based Server Apps and Services

 Writeln('Starting MyParks TCP Server on port ' +

 dmTCPParksServer.IdTCPMyParksServer.DefaultPort.ToString);

 ConsoleDisplay := TConsoleParkDisplay.Create;

 try

 dmTCPParksServer.OnConnect := ConsoleDisplay.OnConnect;

 dmTCPParksServer.OnDisconnect := ConsoleDisplay.
 OnDisconnect;

 dmTCPParksServer.Start;

 while dmTCPParksServer.Running do

 Sleep(100);

 finally

 ConsoleDisplay.Free;

 end;

 Writeln('MyParks TCP Server quitting ');

end.

I implemented a few more events in the full version of this project. Check out
the MyParksTCPServerConsole project in GitHub at
https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter12/02_ParksServer.

Note
If you are downloading and running this project from GitHub, you might want
to look ahead and read the Logging activity section before trying to compile it,
so you can get the logging library installed.

To view this in action, we need to build a client.

Testing with a console client
Now, we'll build one more console app because it's quick and simple and keeps us focused
on the client-server interaction. As with the server counterpart we just finished, we'll
add a data module to hold the TCP component, but on this one, of course, we'll add
TIdTCPClient. Additionally, instead of starting and stopping a server, we'll add the
public procedures of Connect and Disconnect:

procedure TdmTCPParkClient.Connect;

begin

 IdTCPMyParksClient.Connect;

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/02_ParksServer
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/02_ParksServer

Providing remote server connectivity for clients 349

end;

procedure TdmTCPParkClient.Disconnect;

begin

 IdTCPMyParksClient.Disconnect;

end;

We'll also provide a few event handlers that the calling module can use. For example,
when the TCP client's OnConnected event handler is triggered, we'll call our Do
procedure, which checks whether an event handler we created, OnClientConnected,
is hooked up and if so, calls it.

The most important method of the data module is the call to the server that actually looks
up park information by passing longitude and latitude coordinates to the server:

function TdmTCPParkClient.GetParkName(const ALong, ALat:
Double): string;

begin

 IdTCPMyParksClient.IOHandler.WriteLn(Format(

 'longitude=%1.4f,latitude=%1.4f', [ALong, ALat]));

 Result := IdTCPMyParksClient.IOHandler.ReadLn;

end;

The main body of the client console project needs to ask for the coordinates, call the TCP
data module for the park name, and then write the result out on the console. Variables
and constants are left out of the following code snippet for brevity, but they can be implied
by context; GetCoordinates, the function that asks for the coordinates, is also not
shown here:

begin

 dmTCPParkClient.IdTCPMyParksClient.Host := '127.0.0.1';

 dmTCPParkClient.IdTCPMyParksClient.Port := 8081;

 dmTCPParkClient.Connect;

 done := False;

 repeat

 cmd := GetCoordinates(Long, Lat);

 if SameText(cmd, QUIT_CMD) then

 done := True

 else if SameText(cmd, QUERY_CMD) then

350 Console-Based Server Apps and Services

 Writeln(dmTCPParkClient.GetParkName(Long, Lat))

 else

 Writeln(cmd);

 until done;

 Writeln('Good-bye');

 dmTCPParkClient.Disconnect;

end.

Running the client from Windows looks like this:

Figure 12.2 – The MyParks console client app on Windows requesting park information from a server

The server, running from a Linux subsystem, receives the client requests via TCP, queries
the InterBase database for the park information, and returns the result:

Figure 12.3 – The MyParks console server on Linux processing TCP requests for park information

The source for the console-based client app can be used to test variations of the server that
we write in the rest of this chapter. Its source code is available from GitHub at
https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter12/03_ParkClient.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/03_ParkClient
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/03_ParkClient

Logging activity 351

Note
If you are downloading and running this project from GitHub, you could
encounter an error, as it can't find the logging library that we will add to the
project in the Logging activity section.

Now we have a true server running, and it has been client-tested. However, it has to be
started and stopped manually and only runs under a user account. The next step will be to
create a background process that starts when the machine boots up, enabling a complete
unattended operation on a headless server. The problem is that background processes
can't write to the console in the same way as these test apps. So, we will have to make a
side trip and implement logging.

Logging activity
In this chapter, our focus is on building robust server applications that run in the
background without human intervention, providing services to clients. In a similar way
to the beacons and IoT devices we learned about in Chapter 11, Extending Delphi with
Bluetooth, IoT, and Raspberry Pi, addresses and data formats must be agreed upon by both
the client and server for there to be useful communication. However, one big conceptual
difference is that IoT devices don't wait for clients to request data; instead, they just
continually spew forth information, including the services they provide and what format
to use, over Bluetooth for anyone close enough to pick it up. The servers we're building in
this chapter listen for specific requests on a specific port and then respond. This requires a
little more coordination to get right because there's no advertisement mode for the service
that is provided.

Because of the "silent waiting" mode that these server applications are in, and because
servers are often managed en masse by only a few IT people, logging is a very useful and
commonly expected feature for server apps. Disk space is cheap compared to knowing
what an application you can't see is doing.

Application logging can be as simple as adding a line to a text file every time something
happens or as complex as capturing detailed diagnostics about the running process, which
requires specialized log-viewing tools to parse compressed data. Some logging data is
encrypted to protect it from snooping by unauthorized users; some is automatically sent
to tech support to help fix a problem before it is detected by the general public.

352 Console-Based Server Apps and Services

A good logging library will provide options for setting file size limits, automatically
purging old log files, and sending log messages to multiple places. One such library for
Delphi is LoggerPro, which is a well-supported open source project on GitHub.You
can find it at https://github.com/danieleteti/loggerpro. We will add this
library to our project, test it in our console app, and then demonstrate how it can be used
on both Windows and Linux.

After downloading LoggerPro to a folder of your choosing, building the project for all
of the platforms we'll be working with (that is, Windows 32-bit, Windows 64-bit, and
Linux 64-bit), and, finally, making sure the compiled package and units are in the Delphi
library path for each platform, reopen the MyParksTCPServerConsole project and
add LoggerPro.GlobalLogger to the uses clause. That unit establishes some good
default options so that you can use the library right away and in the simplest way possible
by creating a global Log variable.

LoggerPro implements four types of log messages by calling one of the following methods,
Info, Debug, Warning, or Error. Each method takes two string parameters: the first
one is the message that is to be logged, and the second is a tag that puts the message into
a separate log file for additional categorization.

Just underneath the uses clause, create a constant to define the tag we'll use for each
log call:

const

 LOG_TAG = 'console';

Then, wherever there is a Writeln statement, duplicate the line to call Log and one of its
log message methods. For example, in the OnConnect procedure, add the following line:

 Log.Info('Client connected', LOG_TAG);

The OnException procedure would use this:

 Log.Error(s, LOG_TAG);

Before we run this, do the same thing to the two data modules we added so that we can
get a full report of activity. In both cases, add LoggerPro.GlobalLogger to the uses
clause, in the implementation section. Then, create a string constant defining the log
tag for that unit. Afterward, go through the important methods where you might want to
see activity logged and add Log.Info calls (or other log methods, as appropriate).

https://github.com/danieleteti/loggerpro

Logging activity 353

Now, after you run the server, connect to a client, run a park lookup, and disconnect,
you'll find one or more log files in your project folder. For my database module,
udmParksDB, I set my LOG_TAG constant to 'database'. And in my TCP module,
udmTCPParksServer, I set my LOG_TAG constant to 'tcp'. Therefore, I had three
log files, as follows:

• MyParksTCPServerConsole.00.console.log

• MyParksTCPServerConsole.00.database.log

• MyParksTCPServerConsole.00.tcp.log

Each of these filenames starts with the project name, followed by a number, and ends with
the tag as the base filename for the log file. This helps us to keep the files together, but it
also separates them based on the log tag you used. As log entries are added and the files
reach a maximum size, the number is incremented, the file is kept as a backup, and a new
file with '00' is started.

Here are the contents of the first file, which have been generated from the main body of
the project:

Figure 12.4 – The sample log entries of the console server

There's a lot of information in these lines to just add a few log lines. LoggerPro adds a lot
of useful information such as the exact date and time of the entry, a thread ID, the type of
log entry (such as info, debug, warning, or error), the message, and the tag used.

Let's take a look at the TCP log (note that I cut off the date/time and thread ID columns):

Figure 12.5 – Sample log entries from the TCP data module of the server

354 Console-Based Server Apps and Services

These entries show the requests and responses processed in the TCP communications of
the server using several different log types. One technique that I like to use is indenting
the lines to indicate multiple log messages within a procedure. You can see this in the
preceding screenshot after each entry containing Received Request.

Finally, let's take a look at the database log file:

Figure 12.6 – Sample log entries from the database module of the server

There are two things I dislike about how we implemented this: first, the main body of
the server duplicates each activity message, once for the log file and once for the console;
and second, the data modules don't log into the console in the same way as the main body.
It would be easier to simply remove the Writeln statements from the project file, but
then the console application wouldn't display anything while it's running. This can easily
be solved.

Sending logs in two directions
Earlier in this section, I mentioned that a good logging library could send log entries to
multiple places. LoggerPro supports this—and without much difficulty, we can satisfy
both of my complaints.

The LoggerPro.GlobalLogger unit that is included in each of the data modules
and the main project defines a global variable, Log, that we have used for logging. If
you look within that unit, you can see the declaration and that it is initialized by calling
BuildLogWriter([TLoggerProFileAppender.Create]). This writes the
default log files that we've seen. However, note that the parameter is an array. That
means we could add other ILogAppender instances. LoggerPro comes with some of
these supplied in its directory, which you can take advantage of. There's one for Delphi's
OutputDebugString, one to send emails, one to send a VCL memo, and more. The
one we're interested in is ConsoleAppender.

Logging activity 355

To use this, we'll replace LoggerPro.GlobalLogger with our own unit that houses
our global Log variable and includes that in the project and data modules, and then we'll
initialize it the way we want in the project. With the MyParksTCPServerConsole
project still open, create a new unit called uMyParksLogging that uses the LoggerPro
unit and declares our global Log variable:

unit uMyParksLogging;

interface

uses

 LoggerPro;

var

 Log: ILogWriter;

implementation

end.

It's a very tiny unit but gives us a chance to initialize it. Replace the LoggerPro.
GlobalLogger unit with these three: LoggerPro, LoggerPro.ConsoleAppender,
and LoggerPro.FileAppender. Then, right after the main program's begin, add
the following:

 Log := BuildLogWriter([TLoggerProFileAppender.Create,

 TLoggerProConsoleAppender.Create]);

The only significant difference between our initialization of the Log variable and
the one in LoggerPro's GlobalLogger unit is that ours will log to both a file
and to the console. You can add more log destinations by simply adding another
"appender" unit to the uses clause and another ILogAppender instance to the
array parameter of BuildLogWriter. When I write VCL applications, I like to use
TVCLListBoxAppender in addition to the file appender. You can also write your own
appenders for your own custom needs.

356 Console-Based Server Apps and Services

Now you can remove all of the Writeln statements from the project and data modules
we used and simply let the Log statements send information where they need to. Once
that has been done and you have run the server with a client connected, you will be able
to view all of the log statements from the project and each of the data modules inside the
console without needing to dig through the log file:

Figure 12.7 – Sample log entries from multiple units of our server (with the date/time and thread ID
columns removed)

This works great for Windows, but unfortunately, the console appender that comes with
LoggerPro only works on Windows, so we can't compile this for the Linux platform.
However, this does present us with an opportunity to write our own custom appender that
does work on Linux. And it's not as hard as you might think.

Adding a custom logging mechanism
We can create a new, custom appender right inside our project folder that depends on
the LoggerPro library. So, create a new unit in this project and call it LoggerPro.
SimpleConsoleAppender. All LoggerPro appenders must descend from
TLoggerProAppenderBase, which is found in the LoggerPro unit. So, include that
unit and create a class that descends from it, overriding the three abstract procedures in the
base class and adding a TFormatSettings field that we'll use when writing the log entry:

 TLoggerProSimpleConsoleAppender =
 class(TLoggerProAppenderBase)

 private

Logging activity 357

 FFormatSettings: TFormatSettings;

 public

 procedure Setup; override;

 procedure TearDown; override;

 procedure WriteLog(const aLogItem: TLogItem); override;

 end;

The Setup procedure simply initializes the format field:

procedure TLoggerProSimpleConsoleAppender.Setup;

begin

 FFormatSettings := LoggerPro.GetDefaultFormatSettings;

end;

We don't need to do anything in the TearDown procedure, but it must be overridden
since the base class declares it as abstract:

procedure TLoggerProSimpleConsoleAppender.TearDown;

begin

 // do nothing

end;

The only other thing we need to do is actually write out the log entry, formatting the data
in the way we'd like to see it:

procedure TLoggerProSimpleConsoleAppender.WriteLog(const
aLogItem: TLogItem);

var

 lText: string;

 ds: string;

begin

 ds := DateTimeToStr(aLogItem.TimeStamp, FFormatSettings);

 lText := Format('[%-8s] %s [%2:-10s] %s', [aLogItem.LogTag,

 ds, aLogItem.LogTypeAsString, aLogItem.LogMessage]);

 Writeln(lText);

end;

358 Console-Based Server Apps and Services

In the main project file, change the uses clause to include LoggerPro.
SimpleConsoleAppender, change the BuildLogWriter function to use
TLoggerProSimpleConsoleAppender, and run this on Linux. The output isn't as
colorful, but it is now cross-platform and still very functional:

Figure 12.8 – Sample log entries sent to the console from a Linux server

LoggerPro is very configurable; from the parts of the filenames to the order and selection
of fields in each log line, comments in the accompanying sample projects demonstrate
how you can customize everything to your liking.

It's useful to list parameters, return values, sometimes SQL queries, and even byte streams,
as they can become extremely useful to diagnose obscure problems. By using the proper
log type, log-viewing tools can filter out information that will get in the way of finding
what you need quickly.

Once again, the full MyParksTCPServerConsole project is on GitHub at
https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter12/02_ParksServer.

Note
LoggerPro is by no means the only logging option out there. A recent addition
in the GetIt Package Manager is QuickLogger by Exilon Soft. There are
undoubtedly others as well. Do some research, write some tests, and see what
works for you.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/02_ParksServer
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/02_ParksServer

Creating a Windows service 359

With flexible logging in place in addition to the data modules for real functionality, we
now have everything ready to move our server to the background and still have visibility
of what is happening. Both of the two headless server applications that we'll build in this
section are very specific to their respective platforms. The other application types that
we cover in this book include conditional compilation to allow the application to work
on different platforms by simply switching the target and recompiling. There's so much
"scaffolding" code for Windows and Linux background processes that the best approach
here is to put the bulk of the functionality into data modules, as we've done, and then
include those data modules in separate, platform-specific applications.

Let's start this discussion by building a Windows service.

Creating a Windows service
There are dozens of services running on every Windows machine all of the time: some
to keep your machine updated or secure, some to provide access to installed databases,
others to watch for malicious activity, and many others to provide myriad functionality.
Delphi has supported building Windows services for a long time. In fact, it's pretty simple
to get one up and running—just follow these steps to bring the data modules from our
console app into a new service app:

1. Create a new Windows Service application (navigate to File | New | Other from the
menu, and then expand Delphi and Windows).

2. Answer "Yes" to enable the Visual Component Library framework.
3. Add the two data modules we created for the server: udmParksDB and

udmTCPParksServer.
4. Add the logging units of LoggerPro, LoggerPro.FileAppender, and

uMyParksLogging (these are the same ones from the previous server project
except for the console logging unit).

5. Initialize the Log variable right after the service has been created and just before the
Application.Run line:

 Log := BuildLogWriter([TLoggerProFileAppender.Create]);

360 Console-Based Server Apps and Services

6. Save the automatically created data module as udmMyParksService and the
project as MyParksTCPServerService.

7. In the new udmMyParksService unit, set the Name and DisplayName
properties to what you'd like to see listed in the Windows services list. The Name
property should be short but unique and not have any spaces—I named mine as
MyParksIBService. You can set the DisplayName property to be something
more descriptive, and it can include spaces. However, don't make it much longer
than the Name property—it's shown in the Name column in Windows Services; I
set mine to MyParks InterBase Lookup Service.

8. Include the udmTCPParksServer unit in the implementation section. Then,
in the Object Inspector for the udmMyParksService unit, double-click on both
the OnStart and OnStop events to create the following event handler procedures
for them:

procedure TMyParksIBService.ServiceStart(Sender:
TService; var Started: Boolean);

begin

 dmTCPParksServer.Start;

end;

procedure TMyParksIBService.ServiceStop(Sender: TService;
var Stopped: Boolean);

begin

 dmTCPParksServer.Stop;

end;

That's all that is necessary since we've already built and tested the real working parts of
the service (that is, the TCP port listening and the database lookup). After compiling it,
start Command Prompt as an administrator, go to the directory where the .exe file is
generated, and type in the following command:

MyParksTCPServerService.exe /install

A message should pop up telling you the Service installed successfully.

Creating a Windows service 361

You can go to Services and see it listed as follows:

Figure 12.9 – First version of MyParks Windows service installed

Pay attention to a couple of things here. The Name property we set cannot be seen
anywhere, and the Description column is blank. If you right-click on the service and
select Properties, you'll see the Service Name set to our Name property and the value
under the Name column in the Windows Services list is now shown as the Display name,
matching our DisplayName property:

Figure 12.10 – The MyParksIBService properties

So, how do we set the description for the service? Windows services are listed and
described in the Windows registry under HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services. You can access a specific service by its unique name
(this is where the Name property of our service data module comes in). A perfect time
to do that is right after the service has been installed. So, create an event handler for the
AfterInstall event and write the following code:

procedure TMyParksIBService.ServiceAfterInstall(Sender:
TService);

var

 Reg: TRegistry;

begin

 Reg := TRegistry.Create(KEY_READ or KEY_WRITE);

 try

 Reg.RootKey := HKEY_LOCAL_MACHINE;

362 Console-Based Server Apps and Services

 if Reg.OpenKey('\SYSTEM\CurrentControlSet\Services\' +

 Name, False) then begin

 Reg.WriteString('Description', 'Listens for Longitude and
 Latitude data, returns the matching park name.');

 Reg.CloseKey;

 end;

 finally

 Reg.Free;

 end;

end;

Navigate back to Command Prompt as an administrator, uninstall the service, and then
reinstall it:

MyParksTCPServerService.exe /uninstall

MyParksTCPServerService.exe /install

Now refresh the Windows Services list and you'll see the description show up. Start
the service either with the Start Service toolbar button or by selecting Start from the
right-click pop-up menu; if you have the Extended tab view selected, you can also
simply click on the Start link.

Let's check our logging.

Logging to the Windows Event Log
Remember the logging that we added in the previous section? Since it was embedded in
the data modules we added to this project, the file logging is automatically part of this
Windows service. However, we also added a module, udmMyParksService, to handle
the Windows service management. If we take a look at that unit, there are several obvious
places in which you can add logging.

By default, LoggerPro puts the log files for Windows services in the same folder as the
executable for the service itself, so we don't need to change anything to get our data modules
to work equally well from a console app or a Windows service. However, service apps often
send messages to the Windows Event Log, not files. We can keep our file logging, but for
best practices, we should also learn how to do it the preferred way—especially since it's
so simple.

Creating a Windows service 363

The service data module that was automatically created for us descends from TService.
By simply calling its LogMessage method and passing in a message string and an event
type (such as the integer constants defined in Delphi's Winapi.Windows unit), we can
log to the Windows Event Log—yes, it's that simple! Try it out by adding a few in our
service data module:
procedure TMyParksIBService.ServiceStart(Sender: TService; var
Started: Boolean);

begin

 dmTCPParksServer.Start;

 Log.Info('Started', LOG_TAG);

 LogMessage('Started', EVENTLOG_INFORMATION_TYPE);

end;

procedure TMyParksIBService.ServiceStop(Sender: TService; var
Stopped: Boolean);

begin

 dmTCPParksServer.Stop;

 Log.Info('Stopped', LOG_TAG);

 LogMessage('Stopped', EVENTLOG_WARNING_TYPE);

end;

I added ones in the AfterInstall and AfterUninstall events, too. Then, after
installing, starting, stopping, and uninstalling, I pulled up the Windows Event Viewer,
expanded the Windows Logs to Application, looked for the name of my service,
MyParksIBService, and saw the events:

Figure 12.11 – The MyParks server sending messages to the Windows Event Log

364 Console-Based Server Apps and Services

All of them sent informational messages except for the ServiceStop procedure; I used
EVENTLOG_WARNING_TYPE for that one to simply show how it looks in the Event
Viewer. The Started word, which is displayed in the screenshot, is what I sent as the
Message parameter. I left the Category and ID parameters off, which kept them at
their default settings.

So, now, of course, we would like LoggerPro to take care of that for us since we're already
using it in the data modules, which are still logging only to files. It's time for another
custom log appender!

Again, it's really simple. Create another unit called LoggerPro.
WindowsEventLogAppender, and use the Vcl.SvcMgr and LoggerPro units. Create
a class that descends from TloggerProAppenderBase, just as we did with the last one.
However, this time, add a reference to the Windows service and provide a new constructor:

 TLoggerProWindowsEventLogAppender =
 class(TLoggerProAppenderBase)

 private

 FService: TService;

 public

 constructor Create(AService: TService); reintroduce;

 procedure Setup; override;

 procedure TearDown; override;

 procedure WriteLog(const aLogItem: TLogItem); override;

 end;

The Windows event log will record the date and time of each entry, so we don't need
to format the date and time as part of our log message. This means that we won't need
anything in the Setup procedure; the TearDown procedure will, once again, be unused.
Here's the short constructor:

constructor TLoggerProWindowsEventLogAppender.Create(AService:
TService);

begin

 inherited Create;

 FService := AService;

end;

Creating a Windows service 365

The WriteLog procedure is where we'll log different types of Event Log messages based
on LoggerPro's TLogItem.LogType:

procedure TLoggerProWindowsEventLogAppender.WriteLog(const
aLogItem: TLogItem);

begin

 case aLogItem.LogType of

 TLogType.Debug,

 TLogType.Info:

 FService.LogMessage(aLogItem.LogMessage, EVENTLOG_
 INFORMATION_TYPE);

 TLogType.Warning:

 FService.LogMessage(aLogItem.LogMessage, EVENTLOG_
 WARNING_TYPE);

 TLogType.Error:

 FService.LogMessage(aLogItem.LogMessage, EVENTLOG_ERROR_
 TYPE);

 end;

end;

Note that there's no separate event type for debug messages. You can pass an ID and
Category (which are both numeric) to the Windows event log if you wish to.

With this new custom appender sending messages to the Windows Event Log, we can
take out our tests, leave the LoggerPro calls, and implement standard logging from our
completed Windows service.

You can view my version of the MyParksTCPServerService project on GitHub at
https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter12/02_ParksServer.

Test out the new service by running the MyParksTCPClientConsole app we built
earlier. It should work exactly the same as when we started the TCP server manually
from the console server.

Now, let's examine how background processes work on Linux.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/02_ParksServer
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/02_ParksServer

366 Console-Based Server Apps and Services

Adopting a Linux daemon
Getting a background process up and running in Linux isn't straightforward. It involves
a deep understanding of Linux processes that most Windows developers (and even many
who work on Linux) never worry about.

A Linux daemon is a background process owned by the system initialization process
(Init). Usually, they are spawned (or created) by Init, but they can be started by
applications that then fork a child process (somewhat like creating a separate thread) and
then exit. When that happens, the spawned child process becomes orphaned—at which
point Init adopts it. You can find a very brief overview of what takes place, with many
of the details left out, in the Building a (real) Linux daemon in Delphi blog at http://
blog.paolorossi.net/2017/09/04/building-a-real-linux-daemon-
with-delphi-part-2.

Note
If you know a thing or two about Linux, you might be aware that you can start
an app and send it immediately to the background by simply appending an
ampersand after the application on the command line. While this does return
control to the user at the command line with the application running in the
background, it is not a true Linux daemon; if the terminal from which the
process was started is logged out, it kills the background processes along with
it. This is not what we want.

Note that there is no "Linux daemon" type of application when starting a new project;
you have to create a regular Linux console app and get it to spin off a daemon process.
Instead of walking through the details of how to build this and trying to explain the
nuances of processes, signals, and filehandles, I'd like to invite you to simply download
the completed project from GitHub at https://github.com/PacktPublishing/
Fearless-Cross-Platform-Development-with-Delphi/tree/master/
Chapter12/04_ParksLinuxDaemon.

Looking through the code of this project is quite different from anything else in this book.
It diverges significantly from what you typically find in a Delphi program. However, it
shows that given enough knowledge about a system and an understanding of how to hook
into the right libraries, you can build any type of application you need.

This project has been modified only slightly from the GitHub project, which was
referenced in the blog that was mentioned earlier in this section. There were a few things
not needed, and, of course, the data modules were added and the TCP server was started.

http://blog.paolorossi.net/2017/09/04/building-a-real-linux-daemon-with-delphi-part-2
http://blog.paolorossi.net/2017/09/04/building-a-real-linux-daemon-with-delphi-part-2
http://blog.paolorossi.net/2017/09/04/building-a-real-linux-daemon-with-delphi-part-2
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/04_ParksLinuxDaemon
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/04_ParksLinuxDaemon
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/04_ParksLinuxDaemon

Exposing your server to the world 367

You'll notice that LoggerPro is not used in this project; instead, calls to syslog from the
original code are used because that is the preferred way a Linux daemon should log.
However, I put the calls to syslog in conditional compilation directives, so this modified
data module is still quite capable of being compiled for any of the other project types
we've discussed in this chapter. After connecting to it with our test console client, making
a typical query, and then shutting it down, I listed the contents of the syslog:

Figure 12.12 – Syslog entries generated by our Linux daemon

I also had to make a minor change to the park lookup data module. With the other
platforms, I've been lazy in terms of leaving the database connected at runtime, but the
Linux daemon only encountered database problems once I ran the first query and had
activated it —that's very likely due to the main process being forked and killed when it starts
up! With these small changes, however, the data modules can be ported back to be used in
our previous Windows or Linux console apps, Windows services, or Linux daemons.

With the server ready and having been tested with a simple console client, it's time to
make it available outside of our small test environment.

Exposing your server to the world
If you've been following along with these examples and testing the servers on your own
machine, the connection is practically guaranteed. The IP address we've used, 127.0.0.1,
always points to the local machine, which typically allows connections from itself without
question. However, the purpose behind building a server is to provide information to
a wider audience rather than just ourselves. This final section of the chapter will briefly
discuss some methods and considerations to bear in mind when you are making a server
app publicly available. Additionally, we will test them by modifying the MyParks app from
Chapter 10, Cameras, the GPS, and More, and actually using our new park lookup feature
at an actual park.

368 Console-Based Server Apps and Services

First, if you have one available, run the server of your choice from this chapter on another
computer on your network and try to connect to it. Any Windows or supported Linux
computer will do; I have a Windows server on my network and have copied the Windows
Service app we built over to it. Additionally, I have installed and started it. After checking
the event log to confirm it was running, I pulled up the console client app we built,
changed the IP address in the body of the program to point to the machine on which the
server app was running, and ran it. By doing so, I successfully connected to it and was able
to get the name of the park back as expected.

Typically, local networks are shielded from the internet by firewalls. Additionally, IP
addresses on a local network are usually configured to use a local range of addresses that
are not exposed to the internet. When a request comes in from outside of your home
or organization, it tries to connect to the specified port on the router, and if that router
isn't configured to handle that port, the request will either time out or get bounced back
with an error. Depending on your level of expertise, your familiarity with configuring
routers, and your security concerns, you can configure your router to forward a port to
the computer running the server app. It's a good idea to forward ports to computers with
static IP addresses; otherwise, every time it changes, you'll have to reconfigure your router.

Note
The information provided here concerning IP address ranges, port forwarding,
and security is an extremely brief list of the considerations you can face
when deciding whether to expose your server to the outside world. There are
many issues at stake and further study and/or consulting with security and
networking experts is highly recommended.

Instead of installing your server app on your own hardware and dealing with the
infrastructure yourself, you could rent server space. Microsoft Azure, Amazon Web
Services, Rackspace, and many other service providers offer many such options. It's also
possible that if have you have a website, your hosting provider might allow custom-written
applications to run. Any of these scenarios will require a little bit of effort to research and
configure, but since you can now write applications that work on either Linux or Windows
as console apps or background processes, your options are much broader.

After your server has been established with an open port to the world, we'd like to actually
make use of it in our MyParks app, which we built in Chapter 10, Cameras, the GPS,
and More.

Exposing your server to the world 369

Modifying our client app to use the new server
I've made a copy of the MyParks app inside a new folder on GitHub at https://
github.com/PacktPublishing/Fearless-Cross-Platform-Development-
with-Delphi/tree/master/Chapter12/05_MyParksAppClient.

We need to add a button that grabs the current location and sends a request to our server
at an IP address and port. Ideally, we would add a screen to allow the configuration of
these values, but we'll save that for a later chapter. For now, we'll just hardcode the address
and port.

To begin, first address the user interface. On the main form, add an image, a button to
the panel at the bottom of tabParkList, and an action to the ActionList, called
actParkNearMe. This new action needs to grab the coordinates and make the call
to our server.

Calling the server can be done using a TIdTCPClient component. We already built a
data module to do this when we wrote the client console app earlier in this chapter, so we
can simply copy and paste the two files comprising that module (udmTCPParkClient.
pas and udmTCPParkClient.dfm) into this project folder and add the unit name to
the project. In addition to this, add the unit to the uses clause in the implementation
section of the main form.

Note
It is perfectly reasonable to share files between projects, just as we did with
multiple servers sharing the data modules. The TCPParkClient data
module could be in a shared folder or the MyParks app could've been copied to
the folder where we created the client console app. I've put them in a separate
folder simply for the organizational purposes of this chapter.

When we originally wrote the MyParks app, we left the location services option off until
we entered the park edit tab. By adding the park query button to the first tab, which is
displayed as soon as the app starts, we'll need location services immediately rather than
waiting for an event to arise. So, before we go further, we need to move the section of code
that asks for permission to use location services and subsequently turns on the location
sensor, if permission is granted, to the OnCreate event of the app. That code was in the
OnItemClick event of the ListView. After moving that code, only one line is left in the
event handler:

procedure TfrmMyParksMain.lvParksItemClick(const Sender:
TObject; const AItem: TListViewItem);

begin

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/05_MyParksAppClient
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/05_MyParksAppClient
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter12/05_MyParksAppClient

370 Console-Based Server Apps and Services

 NextParkTabAction.Execute;

end;

The updated OnCreate event of the form is a little fuller now:

procedure TfrmMyParksMain.FormCreate(Sender: TObject);

const

 PermissionAccessFineLocation =

 'android.permission.ACCESS_FINE_LOCATION';

begin

 (* other FormCreate code ... *)

 PermissionsService.RequestPermissions(

 [PermissionAccessFineLocation],

 procedure(const APermissions: TArray<string>;

 const AGrantResults: TArray<TPermissionStatus>)

 begin

 if (Length(AGrantResults) = 1) and

 (AGrantResults[0] = TPermissionStatus.Granted) then

 LocationSensor.Active := True

 else begin

 actParkNearMe.Enabled := False;

 TDialogServiceAsync.ShowMessage(

 'Park location data will not be available.');

 end;

 end);

end;

With our location sensor continuously grabbing coordinates when the app starts, we can
simply snag those values whenever the park query button is clicked on, just like we did
when saving the coordinates for the new park we entered. This time, however, we'll send
the coordinates to the remote server and let it tell us which park we're at.

Exposing your server to the world 371

The servers we've built in this chapter using the TIdTCPServer component are
multithreaded. This means that they can handle multiple requests with ease. Additionally,
InterBase is very capable of handling many connections and queries simultaneously. Still,
it's always a good idea to connect, query, and disconnect as quickly as possible. We do this
in the new action event handler that is assigned to the park query button:

procedure TfrmMyParksMain.actParkNearMeExecute(Sender:
TObject);

var

 QueriedParkName: string;

begin

 // replace the Host IP address with your external internet
address

 dmTCPParkClient.IdTCPMyParksClient.Host := '192.168.1.15';

 dmTCPParkClient.IdTCPMyParksClient.Port := 8081;

 dmTCPParkClient.Connect;

 try

 QueriedParkName := dmTCPParkClient.GetParkName(

 FParkLongitude, FParkLatitude);

 finally

 dmTCPParkClient.Disconnect;

 end;

 TDialogServiceAsync.ShowMessage(

 Format('The park at location (%6.3f, %6.3f) is "%s"',

 [FParkLongitude, FParkLatitude, QueriedParkName]));

end;

372 Console-Based Server Apps and Services

The assignment of the host address and port would normally be done elsewhere in the
program and, as mentioned earlier, be saved in a configuration file. Another obvious
feature is automatically creating a new park entry in your database for you to use once
a park name has been successfully created. We'll address these and more as we continue
to expand on the usefulness of connecting to servers in the next couple of chapters. For
now, the app simply displays the name of the park found in the database matching the
current coordinates:

Figure 12.13 – The coordinates sent to a custom server returning with the name of the park

The final test of our server shows the app connected across the internet, through the
port that has been forwarded from my router to my Windows server. It has queried the
database successfully and returned the name of the park back to my Android phone.

Summary 373

Summary
We have begun building server applications that can provide data to a client app that
we wrote in earlier chapters. We demonstrated how you can simply start with a console
application, putting the bulk of the functionality into data modules, testing to make
sure they work well on both Windows and Linux, and then creating the platform-
specific project that utilizes the data modules. Logging data is an important element
of background processes that are not managed directly and work without interaction.
We learned how to implement this feature into our server applications in a way that
is appropriate for each platform. Finally, we tested our new servers with both a simple
console app locally and then with a real app over the internet, completing our goal of
producing a usable server in a progressively more complex but completely manageable
fashion. Your skillset has now expanded to include the ability to create true native servers
for both Windows and Linux!

In the next couple of chapters, we will give you more options for server-based applications:
first, by integrating them with web servers, and second, by utilizing RAD Server.

Questions
1. What edition of Delphi is required to build Linux server applications?
2. How do you access files on a Windows subsystem for Linux?
3. Why is testing a new server as a console app recommended?
4. Which common component set that is included with Delphi is often used for TCP/

IP communication?
5. What is a common method of logging from Windows services?
6. What is a common method of logging from a Linux daemon?
7. How is the description for a Windows service set?
8. What is the IP address of the local machine on any computer?
9. What does port forwarding mean?

374 Console-Based Server Apps and Services

Further reading
• Configure Delphi and RedHat or Ubuntu for Linux development: https://

chapmanworld.com/2016/12/29/configure-delphi-and-redhat-
or-ubuntu-for-linux-development/

• What is the Windows Subsystem for Linux?: https://docs.microsoft.com/
en-us/windows/wsl/about

• Developing on Windows with WSL2 (Subsystem for Linux), VS Code, Docker, and the
Terminal: https://www.youtube.com/watch?v=A0eqZujVfYU

• List of TCP and UDP port numbers: https://en.wikipedia.org/wiki/
List_of_TCP_and_UDP_port_numbers

• Internet Protocol: https://en.wikipedia.org/wiki/Internet_
Protocol

• Service Applications: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/Service_Applications

• Writing to the Windows Event Log using Delphi: https://stackoverflow.
com/questions/30229826/writing-to-the-windows-event-log-
using-delphi

• Linux Jargon Buster: What are Daemons in Linux?: https://itsfoss.com/
linux-daemons/

• Building a (real) Linux daemon with Delphi: http://blog.paolorossi.
net/2017/09/04/building-a-real-linux-daemon-with-delphi-
part-2

https://chapmanworld.com/2016/12/29/configure-delphi-and-redhat-or-ubuntu-for-linux-development/
https://chapmanworld.com/2016/12/29/configure-delphi-and-redhat-or-ubuntu-for-linux-development/
https://chapmanworld.com/2016/12/29/configure-delphi-and-redhat-or-ubuntu-for-linux-development/
https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about
https://www.youtube.com/watch?v=A0eqZujVfYU
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Internet_Protocol
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Service_Applications
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Service_Applications
https://stackoverflow.com/questions/30229826/writing-to-the-windows-event-log-using-delphi
https://stackoverflow.com/questions/30229826/writing-to-the-windows-event-log-using-delphi
https://stackoverflow.com/questions/30229826/writing-to-the-windows-event-log-using-delphi
https://itsfoss.com/linux-daemons/
https://itsfoss.com/linux-daemons/
http://blog.paolorossi.net/2017/09/04/building-a-real-linux-daemon-with-delphi-part-2
http://blog.paolorossi.net/2017/09/04/building-a-real-linux-daemon-with-delphi-part-2
http://blog.paolorossi.net/2017/09/04/building-a-real-linux-daemon-with-delphi-part-2

13
Web Modules for IIS

and Apache
Some people are surprised when they find out Delphi has support for building web
servers. They are even more surprised to find out that support has been there for over
20 years! Delphi and its surrounding ecosystem of tools, open source frameworks, and
third-party libraries can be used to build backend web servers based on SOAP or REST
protocols, frontend JavaScript clients, or complete full stack web solutions.

In this chapter, we'll take a brief look at the options for building web server applications
that come with Delphi, walk through the wizard interfaces that create them, and then
show you how to get them up and running under both Microsoft's IIS on Windows and
Apache on Windows and Linux.

In this chapter, we will cover the following main topics:

• Surveying website-building options in Delphi

• Getting comfortable with the underlying framework

• Building an ISAPI web module for IIS on Windows

• Getting started with the Apache HTTP server

• Writing cross-platform Apache web modules

Let's get our feet wet in the World Wide Web!

376 Web Modules for IIS and Apache

Technical requirements
Like the previous chapter, we'll focus on the two major platforms in the server arena:
Windows and Linux. The former can be done with Delphi Professional and can be
tested on any version of Windows. Apache runs on both Windows and Linux (and
other operating systems), so we'll cover both of those, with the latter requiring Delphi
Enterprise or higher. The complete code for this chapter can be found online on GitHub:
https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter13.

Surveying website-building options in Delphi
There are many ways to build content-rich, dynamic websites in Delphi. Some of these are
server-side only, producing SOAP or REST APIs to be consumed by client applications
(WebBroker, DataSnap, and RAD Server, to name a few). Other tools build end-to-end
solutions from the ground up, encompassing databases, grids, a rich set of user interface
components, and themed web views (IntraWeb and UniGUI). Still, others are custom IDEs
that use a Pascal-like language to generate HTML/JavaScript code that works only in the
browser and connects to web servers for their data (Elevate Web Builder, TMS Software
Web Core, and Smart Mobile Studio). There are also several open source frameworks with
a wide following (DelphiMVCFramework, mORMot, and Mars Curiosity).

To see an excellent overview of these options, visit the first link in the Further reading
section at the end of this chapter, called Ultimate Web Frameworks for Ultra-Fast Web
Application Development Using Delphi/C++ Builder. It's an Embarcadero blog containing
links and a YouTube video and is a great starting point for exploration.

This book focuses on cross-platform development with Delphi, so we won't be looking
at third-party products that concentrate on the frontend. Instead, we'll look at the
foundation of several web technologies Delphi has supported for many years and how to
get them working in three different environments.

Understanding the Web Server Application wizard
In the previous chapter, we used one of the Indy components to provide generic TCP/
IP communication between a client and a server. When implementing a server from
scratch, we have a wide variety of internet protocols to choose from, and we could have
selected a different one, such as FTP or Telnet, just as easily. Web servers use Hypertext
Transfer Protocol (HTTP), and the Indy component that supports this protocol is
TIdHTTPServer. But instead of creating our own web server, we can write a module
that works inside an existing one. Delphi has a built-in wizard to automate the creation of
both standalone web servers and modules that integrate with IIS or Apache.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter13
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter13

Getting comfortable with the underlying framework 377

When you select File | New | Other, jump down to the Web section, and select Web
Server Application. The wizard starts. All types of web servers support Windows and
if you have Delphi Enterprise, you can also select Linux as a target platform for the new
application. Leave Linux unselected for now – we'll come back and add another server
later for that platform.

Five options are presented by the New Web Server Application wizard
(if Linux is not checked):

• Apache dynamic link module: This creates a DLL that works inside the Apache
web server on Windows.

• Standalone console application: This creates a standalone, console-based web
server application that uses the IdHTTPServer component, so it does not require
IIS or Apache.

• Standalone GUI application: This creates a standalone, VCL, or Firemonkey web
server application that uses the IdHTTPServer component, so it does not require
IIS or Apache. This option is only available on Windows.

• ISAPI dynamic library: This uses the Internet Server API to provide extensions
and filters as Windows DLLs that get registered in Microsoft's IIS web server;
modules have been added to other web servers, such as Apache, to support ISAPI
DLLs, but only on Windows.

• CGI standalone executable: This creates a standalone, console-based application
where web requests and responses are passed through standard input and output
file handles.

All of these project types use WebBroker, a cross-platform, multithreaded, event-
driven framework for producing HTML pages. It first appeared with Delphi 3 and is the
foundation for many other web server products for Delphi. Before we build a module for
IIS or Apache, we need to review how WebBroker works in a standalone web server app.

Getting comfortable with the underlying
framework
The simplest way to set up a WebBroker module is to create a standalone web server
application using Delphi's wizard and test it there first. Here are the steps:

1. From the New Web Server Application wizard, select Stand-alone GUI
application and click Next.

2. Choose either VCL application or FireMonkey application (it doesn't matter
which) and click Next.

378 Web Modules for IIS and Apache

3. The last page of the wizard asks for an HTTP Port. If your server from Chapter 12,
Console-Based Server Apps and Services, is still running and you selected 8081 for
that one, simply put in 8082 for this one. Click Test Port to make sure it's available,
then click Finish.

This creates a simple web server app that you can launch right from Delphi, start and stop,
and, with the click of a button, open a browser that conveniently loads the page for your
web server. This provides a great way to quickly make changes and test your server.

Select the web module of your new project. Then, in the Object Inspector window, click
the ellipses button for the Actions property. You'll see that one item has already been
entered for you and that its Default property is checked. This means this web module
will handle one default web page, returning the HTML document (expressed as a constant
string) assigned to the Content property of the TWebResponse object referenced by
the Response parameter. You can customize this HTML all you want.

Note
The Response object can return any type of data, not just HTML. By setting
its ContentType, CustomHeaders, and other properties, a WebBroker
server can look and act just like any modern REST or SOAP server. Indeed,
both the DataSnap and RAD Server products, which can be found in the
Enterprise and higher editions of Delphi, are based on WebBroker.

To handle a different page, create a new action item and set the PathInfo property to
the subpage you want to handle. Then, set its Response.Content parameter property
in a similar fashion as the default handler.

For example, let's say the main page of a company website lists the company name, some
brief information, and marketing material, and includes links to various subpages –
perhaps one of them is an About page that gives more detailed information about the
company. In this case, the default handler (the first action item) would return some
HTML for the main company page, with one of the lines containing <a href="/
about">About to take the user to the About page. The second action item of this
example would handle the About page by setting the PathInfo property to /about and
returning some HTML containing the historical information in Response.Content.

Try this out in your project by changing the default action item's OnAction
event handler:

procedure TwmMyParks.wmMyParksDefaultHandlerAction(Sender:
TObject;

 Request: TWebRequest; Response: TWebResponse;

Getting comfortable with the underlying framework 379

 var Handled: Boolean);

begin

 Response.Content :=

 '<html><head><title>MyParks</title></head>' +

 '<body><p>MyParks</p>' +

 'About' +

 '</body></html>';

end;

Now, add the second web action item for the About page by setting its OnAction event
handler to this:

procedure TwmMyParks.wmMyParksAboutAction(Sender: TObject;

 Request: TWebRequest; Response: TWebResponse;

 var Handled: Boolean);

begin

 Response.Content :=

 '<html>' +

 '<head><title>MyParks - About</title></head>' +

 '<body>This is a simple test site for the MyParks app
 </body>' +

 '</html>';

end;

With the PathInfo property for the default action item set to / and the PathInfo
property for the about action item set to /about, run the app, start the server, and then
launch the browser.

You'll see MyParks on the first line with a link to About on the second. When you click
that, you'll see the simple About page we coded in its web action event:

Figure 13.1 – The MyParks "About" page in a web browser powered by WebBroker

If you had to build your entire website by hand this way, it would get tedious very quickly,
like going back to the early 1990s when website-building tools were primitive. Fortunately,
there's a lot of power that builds from here and the first of these are page producers.

380 Web Modules for IIS and Apache

Place a TPageProducer from the Internet section of the tool palette on the web
module. It has a couple of interesting properties, such as HTMLDoc, which allows you to
enter the HTML that will be returned to the component itself, such as lines in a ListBox;
and HTMLFile, which takes a filename and loads the HTML from the file at runtime.
This immediately separates building the web server from building the web pages, since
you could have someone else with HTML design skills create individual pages that you
load at runtime.

For educational purposes, simply take the HTML from the about web action item we
just wrote and put that into the HTMLDoc property. Since the HTML is now stored in the
page producer, we can eliminate the event handler and code and simply assign the page
producer to the web action item's Producer property. Run the application again, click on
the About link, and you'll see the same About page you saw earlier (assuming you took
out the quotes and operators that were used to assign the text value in the Delphi code).

This is still all just static HTML, though. We need to add some dynamic capabilities.

Templating your HTML
Page producers have one event to hook into: OnHTMLTag. This allows us to use the
HTML as a template, substituting various tags at runtime in code. A tag is embedded
in the HTML with a special XML format that gets replaced at runtime: <#TagName
Param1=Value1 Param2=Value2 ...>.

You could do something such as replace the application name, currently hardcoded in
your HTML, with a tag such as <#AppName> (leave the optional parameters out for now)
and then set a constant in the web module for the application name and replace every
instance of the MyParks string in the HTML with <#AppName>. The About page's
HTML would now look like this:

<html>

<body>

<h1>About <#AppName></h1>

<body>This is a simple test site for the <#AppName> app</body>

</body>

</html>

Getting comfortable with the underlying framework 381

To handle this tag, the OnHTMLTag event handler should look like this:

const

 APP_NAME = 'MyParks';

procedure TwmMyParks.ppAboutHTMLTag(Sender: TObject; Tag: TTag;

 const TagString: string; TagParams: TStrings;

 var ReplaceText: string);

begin

 if SameText(TagString, 'AppName') then

 ReplaceText := APP_NAME;

end;

By simply changing the APP_NAME constant, you can change the name of the application
that's displayed in the produced HTML everywhere it appears in the template. You can
refactor that to a separate function and call it from the OnHTMLTag events of other page
producers as well. This will ensure you have consistent template support throughout your
web server.

Tip
Even when splitting various parts of the web page among separate page
producers, all the page text will still be in your Delphi code if you're using the
HTMLDoc property. Delphi is great for building compiled applications and web
modules but is not the best tool for editing the layout of a modern website built
with a rich mix of HTML, CSS, and JavaScript. As we mentioned previously,
using the HTMLFile property of the page producers allows you or someone
else to use any of several powerful website-editing tools on the market today
that specialize in this job, saving files and templates for runtime loading. What's
more is that these external files can be changed after the compiled web module
is in place, allowing the look and feel of the pages to change without us having
to rebuild and redeploy the Delphi web module, which is a huge consideration.

382 Web Modules for IIS and Apache

Now, let's go a step further and show you how another page producer makes it easy to
display a list of parks from our database. Follow these steps to get started:

1. Copy over the MyParks data module from the previous chapter and add it to the
project. Then, remove it from the list of autocreated forms in the project manager as
it creates and frees itself in the initialization and finalization sections
of the unit. (If you included Linux support in those data modules, remove the used
unit, Posix.Syslog, and all calls to syslog as we won't be using that type of
logging in this chapter.)

2. Copy the logging unit that it uses and add it to the project.
3. Add the data module to the uses clause in the implementation section of the

web module.
4. Add a TFDQuery component to the data module so that it's hooked up to

TFDConnection on the data module.
5. Add SELECT * FROM Parks ORDER BY PARK_NAME to the FDQuery and

test it by clicking the Execute button in the query editor.
6. Add all the fields to the query's Field Editor.
7. In the web module, place a TDataSetTableProducer on the web module; set

the DataSet property to the new query we just added to the data module.
8. Click the ellipses button on the Columns property and add each of the fields from

the associated query.
9. Create a new web action item in the web module, set its PathInfo property to /

parklist, and assign the new TDataSetTableProducer we set up to the
Producer property.

10. Create an OnCreate event handler for the web module and add the following lines
to the standard file logging:

 Log := BuildLogWriter([TLoggerProFileAppender.Create(

 5, 1000, TPath.Combine(WebApplicationDirectory,
 'logs'))]);

 Log.Info('web module created', LOG_TAG);

11. Finally, modify the HTML for the main page by adding a link to the new
parklist page.

Getting comfortable with the underlying framework 383

You can make further modifications to the HTML table that's been produced by
looking through the various properties of TDataSetTableProducer. I set the table
background to Lime and left-justified the park names; with several imported parks, my
version looks like this:

Figure 13.2 – HTML list of parks generated by WebBroker's DataSetTableProducer

This is crude HTML, but you can see the power quickly escalating through more
sophisticated components built on top of WebBroker. We have one more aspect of these
components to show before converting this into a true web module.

The initial functionality of the MyParks data module was to look up a park based on
its coordinates. We should provide that functionality on the web page, partially to surface
already existing functionality, but also to show how query parameters can be utilized
in WebBroker.

Let's add another link to the main HTML. When you do this, consider using one of the
predefined tags; that is, Link. It doesn't save a lot of code or build the link for you, but it
is a standard way you can add links to your HTML template. Here's the body of my default
page now:

<h1><#AppName></h2>

Links:

<#Link Link="parklist" title="List of Parks">

384 Web Modules for IIS and Apache

<#Link Link="getpark" title="Get park by location">

<#Link Link="about" title="About">

Here's the OnHTMLTag event handler:

procedure TwmMyParks.ppMainPageHTMLTag(Sender: TObject; Tag:
TTag; const TagString: string; TagParams: TStrings;

 var ReplaceText: string);

begin

 ReplaceText := CheckAppName(TagString);

 if ReplaceText.IsEmpty then

 if (Tag = tgLink) and (TagParams.Count > 0) then begin

 var Link, Title: string;

 Link := TagParams.Values['Link'];

 Title := TagParams.Values['Title'];

 ReplaceText := MakeLink(Link, IfThen(Title.IsEmpty, Link,
 Title));

 end;

end;

There are several things to notice from the preceding code blocks:

• I factored out the #AppName tag handling to a function called CheckAppName
(if the tag being handled in this instance isn't #AppName, the string that's returned
is blank).

• I don't have to check the TagString property to see whether it's a Link
because, as one of the predefined tags, it sets the Tag property to one of the TTag
enumerated constants, tgLink. Otherwise, it sets Tag to tgCustom, which is the
only type we've handled until now.

• I used the parameters in the Link tag to pass in the values for the HTTP link and
title that get passed to the new MakeLink function I wrote:

function TwmMyParks.MakeLink(const LinkDest, LinkTitle:
string): string;

begin

 Result := '' + LinkTitle +
 '';

end;

Getting comfortable with the underlying framework 385

The result is a simple main page:

Figure 13.3 – Main page of the MyParks web server built by WebBroker

Now, build the page that asks for coordinates by creating a new page producer and adding
an HTML form element with a few label and input elements to get the information
from the user:

<form action="/showpark">

 <label for="long">Longitude:</label>

 <input type="text" id="long" name="long">

 <label for="lat">Latitude:</label>

 <input type="text" id="lat" name="lat">

 <input type="submit" value="Submit">

</form>

Here, the form's action sends us to yet another new page, showpark, which will
display the results from the park lookup function in the database. The HTML should
contain a line like this:

The park at <#longitude>, <#latitude> is: <#ParkName>

386 Web Modules for IIS and Apache

Its three tags will be substituted in the OnHTMLTag event handler, as you would expect,
but before that gets called, we need to make sure the values are ready to plug in. We can
do that in the web action item's OnAction event handler. In there, the parameters that
are passed in the URL are put into the HTTP request's QueryFields property, which
is an array of the two coordinate values that were entered in the form. The OnAction
event handler gets called after the page producer is processed, so we have to leave the
Producer property blank and manually assign it in the OnAction event handler,
once the park information has been retrieved. We also need to save the values that the
OnHTMLTag event handler will need in class-level private fields. Here is the event handler:

procedure TwmMyParks.
wmMyParkswaiShowParkFromCoordsAction(Sender: TObject; Request:
TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin

 if Request.QueryFields.Count = 2 then begin

 var long, lat: Double;

 if TryStrToFloat(Request.QueryFields.Values['long'], long)
 and

 TryStrToFloat(Request.QueryFields.Values['lat'], lat)
 then begin

 FLongitude := long;

 FLatitude := lat;

 var ParkInfo := dmParksDB.
 LookupParkByLocation(FLongitude, FLatitude);

 FParkName := ParkInfo.ParkName;

 end;

 end;

 Response.Content := ppShowParkFromCoords.Content;

 Handled := True;

end;

Here's the OnHTMLTag event handler that uses those fields:

procedure TwmMyParks.ppShowParkFromCoordsHTMLTag(Sender:
TObject; Tag: TTag; const TagString: string;

 TagParams: TStrings; var ReplaceText: string);

var

 plong, plat: Double;

 ParkInfo: TdmParksDB.TParkDataRec;

Getting comfortable with the underlying framework 387

begin

 ReplaceText := CheckAppName(TagString);

 if ReplaceText.IsEmpty then

 if SameText(TagString, 'longitude') then

 ReplaceText := FLongitude.ToString

 else if SameText(TagString, 'latitude') then

 ReplaceText := FLatitude.ToString

 else if SameText(TagString, 'ParkName') then

 ReplaceText := FParkName;

end;

Compile and run this code, and then enter some coordinates on the form in the browser:

Figure 13.4 – Entering the coordinates for a park on a form in the MyParks web server

After clicking Submit, the results will appear on the subsequent page:

Figure 13.5 – Results of a database lookup by the standalone MyParks web server

388 Web Modules for IIS and Apache

Notice the URL in the web browser address line. The longitude and latitude parameters
are passed in using a typical URL parameter style.

Several open source and commercial packages build on these simple concepts to provide
powerful web building packages that include JavaScript libraries and CSS for creating
beautiful, modern web solutions. Expanding on the simple tag replacement concept
of WebBroker, it's not hard to do this yourself. I inserted a couple of links to add the
Bootstrap library (documented at https://getbootstrap.com) and created some
header and footer page producers that are included by tag replacements in the main page
producers, enhancing the look and feel of the produced HTML significantly. I went so
far as to turn the links into tabs, eliminating the need for a "home" page with links to the
subpage, by using the About page as the default page. Here's how my Find a Park page
looks now:

Figure 13.6 – Updated Find a Park by Location page from WebBroker with Bootstrap

The full source, including the embedded links to the Bootstrap library, can be found
on GitHub at https://github.com/PacktPublishing/Fearless-Cross-
Platform-Development-with-Delphi/tree/master/Chapter13/01_
MyParksStandAloneGUI.

That's enough about getting a standalone web server up and running using WebBroker.
Now, it's time to turn this into an actual web module that works inside the two most
popular web servers. The first one we'll tackle is an ISAPI module for IIS on Windows.

https://getbootstrap.com
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter13/01_MyParksStandAloneGUI
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter13/01_MyParksStandAloneGUI
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter13/01_MyParksStandAloneGUI

Building an ISAPI web module for IIS on Windows 389

Building an ISAPI web module for IIS on
Windows
You don't need to have a separate computer with the server edition of Windows to use
and test Internet Information Services (IIS). If your local Windows machine doesn't
currently have it installed, all you have to do is enable it by performing these steps:

1. Click your Windows Start button and type in the word features to launch Turn
Windows features on or off (or, from the Control Panel, select Programs and
Features and click on Turn Windows features on or off).

2. Scroll down the list of features to find Internet Information Services; check its box.
3. Open the IIS feature, and then expand World Wide Web Services and Application

Development Features.
4. Check the box for ISAPI Extensions (and optionally CGI) and click OK:

Figure 13.7 – Enabling the IIS web server feature in Windows

390 Web Modules for IIS and Apache

It only takes a few moments to install the web server. To verify it is working, open a new
tab in any web browser and type localhost into the address line; you should see the
default IIS web page, which has a blue background with the word Welcome in several
different languages spread across the page.

Note
We will not cover building a CGI app in this book; include it if you want to do
your own research and testing.

With our web server working and ready-to-load web modules and host websites, switch
back to Delphi and follow these steps:

1. Create a new Web Server Application, check only Windows, select ISAPI dynamic
link library in the creation wizard, and click Finish.

2. Save the project with a good name in a new folder. I called mine MyParks.
3. From the previous project's folder, copy the web module, the MyParks data module,

and the logging unit to the new web project folder and add them to the new Delphi
project. (We copied it because we'll make some changes but often, you can share
code between multiple kinds of projects, such as Console, ISAPI, Windows Service,
and more by using platform-agnostic units and data modules.)

4. View the source of the main project and remove the line that added the creation of
the data module.

5. Compile the project.

You now have an ISAPI DLL ready to deploy to IIS – yes, it's that simple! Now, we just
have to prepare IIS for our web module.

Configuring IIS to support Delphi web modules
Bring up Internet Information Services Manager by clicking the Windows Start button
and typing IIS to find it. It can also be found in the Control Panel under Administrative
Tools. Here's what the IIS Manager interface looks like:

Building an ISAPI web module for IIS on Windows 391

Figure 13.8 – IIS Manager

Follow these steps to get IIS ready for your web module:

1. Click on your computer name listed under Connections in the left column.
2. Expand it, and then click on Application Pools.
3. You'll see that an application pool has already been created called DefaultAppPool.

Create a custom application pool for our Delphi apps by clicking on Add
Application Pool... in the right column, under Actions.

4. In the Add Application Pool dialog, enter a name, then switch the drop-down list
for .NET CLR version to No Managed Code:

Figure 13.9 – Add Application Pool dialog

392 Web Modules for IIS and Apache

5. If your ISAPI project's target platform is Windows 32-bit, you need to right-
click on the new application pool and select Advanced Settings... to switch Enable
32-Bit Applications from the default of False to True.

Note
If you need to support a mix of 32-bit and 64-bit ISAPI DLLs, you will need a
different application pool for each with this option set accordingly – although
you may choose to create multiple pools anyway to minimize the impact
restarting one would have on other parts of your site.

6. In the left column, expand and then right-click on Sites and select Add Website....
7. In the Add Website dialog, fill in the Site Name box, click the Select... button

to change Application Pool from the default to the new application pool you
just created, and select a Physical Path where the new DLL and any necessary
supporting files will be placed. The default website's path is C:\inetpub\
wwwroot; your new one could be a separate subfolder or even be located elsewhere.
Also, assign a unique Port for this website; I chose 8080 as it's easy to remember
and is popular for testing:

Figure 13.10 – Adding a website to IIS

Building an ISAPI web module for IIS on Windows 393

8. Back under Connections, click on the server name (the root-level item in the tree
view) to view all the feature icons for your web server; double-click on ISAPI and
CGI Restrictions. This is where you can configure the server to allow your web
module to execute. You have a few options regarding how to configure this; the
easiest is to click Edit Feature Settings... in the right column and check Allow
unspecified ISAPI modules (if you will never write CGI modules, you can leave
this one unchecked):

Figure 13.11 – Edit ISAPI and CGI Restrictions Settings page

9. If, instead, you want to specify every module you write explicitly, leave the
checkboxes shown in the preceding screenshot unchecked, cancel the dialog, and
click the Add... link to pull up the Add ISAPI or CGI Restriction dialog. Now, you
can enter the specific DLL or EXE that you want to run:

Figure 13.12 – Adding an explicitly named ISAPI module

394 Web Modules for IIS and Apache

10. There's one more step to tell the web server to actually execute your DLL rather
than try to download it. Click again on the new website under Connections, then
double+click on Handler Mappings. Notice that ISAPI-dll files are listed in the
Disabled section? Click on that line and select Edit Feature Permissions... under
the Actions menu in the right side-bar. Check the Execute checkbox to enalbe
ISAPI DLLs to be executed as web modules then click OK.

Figure 13.13 – Enabling execution of ISAPI DLLs

11. Copy the compiled DLL from your Delphi ISAPI project to the new website's folder
(you'll probably need administrator rights).

Many tutorials stop right there and tell you to browse to your new web module. In
our case, it's localhost:8080/MyParks.dll. This works, but typing that in
or giving that URL to someone else is a bit unwieldy. It would be much better to
just stop at localhost:8080 (or a real URL when we finally deploy). However,
web servers only serve pages they're told to or ones that have been configured to be
default pages if a specific page is not listed. IIS also has a set of default pages that
it looks for – all we have to do is add our custom module to that list and we can
shorten the URL. Continue with the next step to learn how to do this.

12. Click on the new website in IIS Manager, and then double-click on the Default
Document feature icon. You will see all the standard documents IIS was expecting
to find. Click Add... to enter the filename of your ISAPI DLL and then click OK to
add it to the list:

Building an ISAPI web module for IIS on Windows 395

Figure 13.14 – Specifying your ISAPI module as a default document for this website

Restart the server. You can do this in IIS Manager by clicking on the server in the left
column and then clicking Restart in the right column under Manage Server. Note that all
websites defined on that server will be unavailable until the server comes back up.

Now, testing the shorter version of the address in a browser (just the hostname and port)
automatically pulls up the default page in our ISAPI web module (which for me is the
About page):

Figure 13.15 – Default page in the completed ISAPI web module

396 Web Modules for IIS and Apache

Great! Now, let's test out our links by clicking on one. Oops! Why did we get
HTTP Error 404? Have you noticed that the address line of the browser shows
localhost:8080 but not the filename of the ISAPI module? The links to other pages
are subpages of the main URL that includes the filename. You can verify this by browsing
to the full URL, localhost:8080/MyParks.dll/about; now, clicking on a link
works. By adding that Default Document in Step 11, IIS "conveniently" hid that part of the
URL for us.

There's a simple fix for this without reverting to always typing in the module's filename.
We need to add one more web action and make it the new default, but instead of returning
a page, it's simply going to redirect us to the full and explicit URL (complete with the
module filename) of the real default page, just as if we had manually typed in the full URL:

1. In the Actions property of the web module, add another TWebActionItem, make
it the new default, and leave both the PathInfo and Producer properties blank:

Figure 13.16 – New default web action item

2. Create an OnAction event handler for the new default action item that redirects to
the page we want to be our default page:

procedure TwmMyParks.wmMyParkswaiDefaultAction(Sender:
TObject; Request: TWebRequest; Response: TWebResponse;
var Handled: Boolean);

begin

 Response.
SendRedirect(ExtractFileName(WebApplicationFileName) + '/
about');

end;

3. Compile the project, shut down the server (or turn off the Application Pool), copy
the DLL, and start the server back up (or restart the Application Pool).

Building an ISAPI web module for IIS on Windows 397

That's it! With our ISAPI module set as a default document in IIS and with the default
page in our web module redirecting to a fully specified file and page, our web server at
localhost:8080 now returns the full address and default page with working links.

Tip
If you work on ISAPI web modules often, you don't have to manually launch
a web browser and type in the address. Instead, select the website in IIS
Manager, then find the Browse Website heading in the right-hand column in
the Manage Website section. There will be a clickable link for each port you've
bound to the website. For ours, we only assigned one, port 8080, so there will
only be one link, which for me says Browse *:8080 (http). Clicking this brings
up the browser with the address already entered.

Before we move on, we should mention logging.

Logging from an ISAPI web module
IIS web servers automatically log incoming requests. including the browser and IP address
the request came from, the request URL (including any URL parameters), the return
code, and a date/time stamp. You can configure the format and where log files are stored
in IIS Manager by clicking on the server under Connections, and then double-clicking
on the Logging feature. There's also a link to View Log Files... in the right column under
Actions, but these logs are not controlled or generated by your ISAPI module – they're a
feature of IIS.

The best way for us to include custom logging from our web module is to log to a file,
as we've done with other server applications. The problem is that our ISAPI DLL is not
running as a standard user but as the default web user, which is a member of the IIS_
IUSRS group and which, by default, has read-only access to the folder where our web
module exists. We need permission to write to our web application folder to create log
files; however, you should never modify a built-in Windows account such as the IIS_
IUSRS group as it could open up unintentional security holes. So, what should we do?

It turns out the custom application pool we created for our ISAPI DLL also plays a
security role that we can use to grant ourselves (and only ourselves) the access we need.
Follow these steps from IIS Manager to do this:

1. Right-click on the new website we created in the previous section for our web
module and select Edit Permissions....

2. Switch to the Security tab and click the Edit... button.
3. Do not edit the permissions for the IIS_IUSRS group; instead, click the Add... button.

398 Web Modules for IIS and Apache

4. In the Enter the object names to select box, type IIS AppPool\MyParks
(where MyParks is the name of the application pool you created for this app):

Figure 13.17 – Adding custom folder permissions for our web module

5. Click the Check Names button to verify the validity of your app pool's name and
click OK.

6. Now that your app pool has been added to Permissions for MyParks (or whatever
you named your website), you can check the Allow box for the Modify line in the
Permissions list:

Building an ISAPI web module for IIS on Windows 399

Figure 13.18 – Modifying the permissions that have been granted for our app pool

7. Click OK a couple of times and restart the web server.

Our ISAPI web module now has the permissions it needs to write to files in its folder. The
default logging settings assume the folder to write to is based on the currently running
application, but we're logging from a module, so we have to change the initialization of the
logging mechanism in the web module's OnCreate event handler by changing one line:

 Log := BuildLogWriter([TLoggerProFileAppender.Create(5, 1000,

 TPath.Combine(WebApplicationDirectory,
 'logs'))]);

The WebApplicationDirectory function that's provided for us in the Web.HTTPApp
unit conveniently gives us the directory where our module is called from; appending logs
separates those files nicely for us. After updating and restarting the web server, you should
see log files appear in the logs subfolder of our web application directory.

Now, let's turn our attention to the most ubiquitous web server in the world: Apache.

400 Web Modules for IIS and Apache

Getting started with the Apache HTTP server
The Apache Software Foundation has a plethora of open source software projects. Their
HTTP server is probably the most well-known. Oftentimes, when people hear the Apache
web server being mentioned, they automatically associate it with Linux, and while that may
be the overwhelmingly largest platform on which it can be found, it also runs on Windows.

The Apache server is frequently paired with the MySQL database engine and the PHP
scripting language. In fact, this is so common that these parts are often packaged together.
When discussing these on the Linux platform, it's call Linux, Apache, MySQL, and PHP
(LAMP); on Windows, it's called WAMP. We won't be using MySQL or PHP, so when
you're looking at download options, note that these packages will contain more than what
we will work with in this book. However, if you have the time and curiosity, feel free to
install this suite of tools and explore – there are many resources to get you started.

Let's get the Apache web server installed on both Windows and Linux, starting
with Windows.

Installing and starting Apache on Windows
To install the Apache web server for Windows, go to the Downloading Apache for
Windows link in the Further reading section at the end of this chapter and select one of the
options listed. I found that the Apache Lounge (https://www.apachelounge.com/
download) provides straightforward instructions with a download link. You'll likely
need to install the Visual Studio C++ Redistributable library first – this process is quick
and simple.

If you downloaded the Apache server by itself as a .zip file, there is no install procedure
– just unzip the file to a folder and start the server! But I'm getting ahead of myself: read
the included ReadMe.txt file, where you'll quickly see that starting and stopping the
web server is really simple – just run httpd.exe from Apache's bin folder. Running it
with the -k install parameters installs it as a service; if it's installed as a service, you
can start it with the following command line:

net start apache2.4

You can also find Apache 2.4 in the Windows services and click Start to start it with a GUI.

https://www.apachelounge.com/download
https://www.apachelounge.com/download

Getting started with the Apache HTTP server 401

Note
Both IIS and Apache web servers can be installed and running on the same
machine at the same time, but they need to be configured for different ports.
The default port for both servers is 80. When we created a new website in IIS,
we assigned it port 8080 but left the default site listening on port 80. If your IIS
is still running from the previous section, make sure to either disable its default
website or configure it for a different port.

Once it's started, go to a web browser and browse to http://localhost. If all is well,
you'll see a big It works! displayed on the screen.

Unlike IIS, there is no GUI to configure the settings; instead, a text file in the conf
folder called httpd.conf is used to configure the web server. Fortunately, it has a lot
of comments; unfortunately, it can be rather daunting if you're not familiar with it. We'll
need to modify a few of these settings, turning the server off and back on when we do.

For example, let's change the default port that Apache listens on. Pull httpd.conf into
a text editor and find the line that shows Listen 80. Change this to 8081 so that it's
different than our IIS server, and then save the file.

Note
Just like IIS, we could create a new website and be listening to two different
ports. We won't cover how to do that in Apache so instead, just change the
default port.

To activate the new port setting, you must restart the server:

net stop apache2.4

net start apache2.4

Now, go back to your browser and browse to localhost:8081 to see the default page
again. Once we start writing web modules, you'll need to be familiar with editing the
configuration file and restarting Apache.

Before we start writing code, let's get the Apache web server up and running on Linux –
there are many similarities but also important differences.

402 Web Modules for IIS and Apache

Installing and starting Apache on Linux
Nearly every Linux system has a package manager, and we'll use that to get the Apache
HTTP server installed under Linux.

Note
We'll continue working with the Ubuntu Linux subsystem on Windows that
we set up in Chapter 12, Console-Based Server Apps and Services. If you have a
different scenario, adjust the following instructions for your Linux distribution.

Using your system's package manager, getting Apache installed is as simple as typing
two lines:

sudo apt-get update

sudo apt-get install apache2

The sudo command raises the permission level of the standard Linux user to a root
level for the given command to install software or perform other aspects of system
maintenance. This will require you to enter your user password.

After it downloads, unpacks, sets up, and enables several files and modules, it's ready to
be started. The default port for all web servers is 80, so if you have either IIS or Apache for
Windows still running on the default port, you should shut them down before running
this command:

sudo service apache2 start

(Again, if you're using a different Linux distribution, starting Apache may work differently.)

As before, once it's started, go to a web browser and browse to http://localhost.
The default web page for Apache on Ubuntu Linux is a full page of information with the
Ubuntu logo and an overview of the configuration:

Getting started with the Apache HTTP server 403

Figure 13.19 – Apache2 default web page on Ubuntu Linux

Similar to the Windows version, Apache on Linux can be configured by modifying a
configuration file. On Linux, this file is apach2.conf and can be found in /etc/
apache2. Open the file in a text editor and change Listen 80 to Listen 8082.
Then, execute these two commands to restart Apache:

sudo service apache2 stop

sudo service apache2 start

All three servers can now run simultaneously as we have configured them to listen on
three different ports:

• Port 8080: IIS for Windows

• Port 8081: Apache for Windows

• Port 8082: Apache for Linux

This is really handy for testing and learning about the different peculiarities of each
web server.

Now that we have the Apache web server installed on both Windows and Linux, let's start
the web project.

404 Web Modules for IIS and Apache

Writing cross-platform Apache web modules
The first few steps in creating an Apache web module are very similar to creating an IIS
module; just step through the New Web Server Application wizard:

1. Create a new Web Server Application project.
2. If you have Delphi Enterprise, check Linux in addition to Windows for the platform

and click Next.
3. Select Apache dynamic link module for WebBroker Project Type and click Next.
4. You can leave everything as their defaults on the Apache Module Options page,

both Apache version and the name of our new Apache module.

Figure 13.20 – Final step of creating an Apache web module project

After clicking Finish, the Apache web module will be created for you. If you're using Delphi
Enterprise or higher, you will have both the Windows and Linux platforms enabled.

Writing cross-platform Apache web modules 405

Note
Apache on Windows cannot support both 32-bit and 64-bit apps like IIS can
– there's no configuration option to tell it what type of module to use; it is
entirely dependent on which version of Apache you installed. If you installed
the 32-bit version of Apache, you can only write 32-bit web modules for it; if
you installed the 64-bit version, you can only write 64-bit web modules. You
need to set the Windows Target Platform of your project accordingly; for
Linux, there is only 64-bit.

We need to make a few changes to the project by performing a few more steps:

1. Save the project with a good name in a new folder. I called my project MyParks.
Notice that the name is prefixed with mod_ so that the fully deployed module name
will be mod_MyParks.dll. If you switch the target platform to Linux, the name
will change to libmod_MyParks.so. These names will be used when you deploy
the modules.

2. From the previous project's folder, copy the web module, the MyParks data
module, and the logging unit to the new web project folder and add them to the
new Delphi project.

3. View the source of the main project and remove the line that added the creation of
the data module.

4. Check the uses clause of the main project file. On some versions of Delphi, one of
the system units needed for compiling on Windows is missing; that is, System.
Win.ComObj. If it's not listed, add it.

5. Did you notice the GModuleData global variable just before the main project's
begin statement? The name that gets exported should be modified to something
unique that you'll use to reference the module within the Apache configuration. It
should be all in lowercase with no spaces; I named mine myparks_module.

6. The line that calls InitApplication needs to be modified as well. That
procedure has an optional parameter that I found was necessary to get things
working right. That parameter names the module handler that's used in the Apache
configuration. Here's what I added:

 Web.ApacheApp.InitApplication(@GModuleData, 'myparks_
handler');

406 Web Modules for IIS and Apache

7. As one last change (completely optional), I added a compiler directive to modify the
APP_NAME constant, depending on the platform, to confirm which one had been
compiled. This is done in the web module, just after the implementation section:

 {$IFDEF MSWINDOWS}

 APP_NAME = 'My Parks - Apache Windows';

 {$ELSE}

 APP_NAME = 'My Parks - Apache Linux';

 {$ENDIF}

You should now be able to compile the web module for both Windows and Linux. Let's
discuss how to deploy each of these.

Deploying an Apache web module on Windows
Deploying a module for the Apache web server involves just a few steps. At a high level,
these are as follows:

1. Copy the compiled module to the modules folder of the Apache installation.
2. Add the LoadModule and SetHandler directives to Apache's configuration.
3. Restart the server.

Let's go over these briefly.

The directory structure for the Apache 2 web server on Windows is pretty simple. I
extracted the files to C:\Apache24. The htdocs subfolder contains the default web
page; the conf folder, as mentioned previously, contains the configuration file. The
modules folder is where we'll put our compiled module – it can be anywhere that
the Apache server can find it as the location specifies the folder and filename, but by
convention, this is where it should go. Copy our DLL to this folder.

With our new module in place, we need to tell Apache two things: where it is and how
to handle it. Open the config file in a text editor – we've already looked in here once to
change the default listening port. A little way further down from there are several lines
starting with LoadModule, some of them commented out (indicated by a # at the
beginning of the line). The ones that are not commented out are modules that are loaded
by Apache when it starts. We need to add one for our new module – it doesn't matter
where, but it's a good idea to keep it close to the other modules listed for consistency. Each
line specifies the name of the module (the GModuleData name that was exported in the
project) and the filename relative to the root Apache folder. Therefore, this new line will
look like this:

LoadModule myparks_module modules/mod_MyParks.dll

Writing cross-platform Apache web modules 407

Next, we need to tell Apache that if a specific path is on the URL, it should handle that path
with this module. This set of lines starts with a Location directive, specifies the path, then
lists the handler name we gave it in the call to InitApplication in our project:

<Location /myparks>

 SetHandler myparks_handler

</Location>

With these two additional pieces of information, Apache will be able to serve pages from
our custom Apache web module.

Logging in Apache for Windows is done in the logs subfolder of the main Apache folder.
This is the simplest location for our logging library so that we can revert the code in the
web module back to the way the standalone server initialized it:

 Log := BuildLogWriter([TLoggerProFileAppender.Create]);

Now, it's time to restart the Apache service in Windows:

net stop apache2.4

net start apache2.4

And with that, you can browse to localhost:8081/myparks and see the default page
that was generated by our custom web module:

Figure 13.21 – Apache for Windows web module

Test the links to make sure everything works. Now, let's move on and look at the
Linux version.

408 Web Modules for IIS and Apache

Deploying an Apache web module on Linux
Apache for Linux was installed with a package manager that set up the various files and
directories in a much more elaborate manner, consistent with other Linux-based apps.
This provides some power and flexibility but also requires some understanding of the
Linux file structure.

Additionally, since many of these files are in protected areas of the Linux filesystem, you'll
need to use the sudo command from the Linux command line to write to those folders.
This means that most of the file copy procedures from your Windows development
machine to the Linux subsystem will be a two-step process; that is, copying the files from
Windows to a temporary folder on the Linux system, and then dropping to the Linux
command line and running the sudo command from there to move them to their final
destination. The following steps assume you have this understanding:

1. Copy your compiled module, libmod_MyParks.so, to Linux, and then move it
to the Apache modules folder:

sudo cp libmod_MyParks.so /usr/lib/apache2/modules

2. Under your Public Documents folder on Windows, drill down to the
Embarcadero\Interbase\redist\InterBase2020 folder and copy the
redistributable InterBase support libraries from either the linux64 or linux64_
togo folders, depending on the license of InterBase in use, to Linux. Then, run the
following commands from the Linux command line:

sudo cp ib_util.so /usr/lib/apache2/modules/

sudo cp libgds.so /usr/lib/apache2/modules/

sudo cp interbase.msg /usr/lib/apache2/modules/

3. Create a myparks.load file in the /etc/apache2/mods-available folder
with the LoadModule command:

LoadModule myparks_module /usr/lib/apache2/modules/
libmod_MyParks.so

4. Create a myparks.conf file in the /etc/apache2/mods-available folder
with a Location directive:

<Location /myparks>

 SetHandler myparks_handler

</Location>

Writing cross-platform Apache web modules 409

5. Create links to the two files we just created in the /etc/apache2/mods-
enabled folder (execute these commands from the /etc/apache2/mods-
enabled folder):

sudo ln -s ../mods-available/myparks.load

sudo ln -s ../mods-available/myparks.conf

6. Apache for Linux stores log files in the /var/log/apache2 folder, but granting
access to custom modules there is strongly discouraged. To continue in the same
manner we've taken with other servers, we'll create a logs folder as a subfolder
where the module resides, in /usr/lib/apache2/modules, then grant access
to the www-data Apache web user so that they can write to it:

sudo mkdir /usr/lib/apache2/modules/logs

sudo chown www-data /usr/lib/apache2/modules/logs

sudo chgrp www-data /usr/lib/apache2/modules/logs

7. The logging initialization in the Apache web module will need to differentiate
between the Windows platform and Linux, so change those lines in the OnCreate
event handler to this:

{$IFDEF MSWINDOWS}

 Log := BuildLogWriter([TLoggerProFileAppender.Create]);

{$ELSE}

 Log := BuildLogWriter([TLoggerProFileAppender.Create(5,
 1000,

 TPath.Combine(WebApplicationDirectory,
 'logs'))]);

{$ENDIF}

The big difference between Apache for Windows and Apache for Linux is that modules,
configuration settings, and log files go in completely separate folder trees in Linux.
Furthermore, all the load and handler commands are in separate files instead of lines that
are added to one large configuration file, which occurs in Windows. This means that to
disable a module, we must move the .load and .conf link files from /etc/apache2/
mods-enabled to /etc/apache2/mods-disabled. As the main configuration file,
/etc/apache2/apache2 includes all the files in the mods-enabled folder.

Once you've finished these steps, restart Apache for Linux:

sudo service apache2 stop

sudo service apache2 start

410 Web Modules for IIS and Apache

Now, browse to localhost:8082/myparks to view our About page on Linux:

Figure 13.22 – Apache for Linux web module

Going through these steps with all three web servers has given you experience that you
can use to direct future development projects.

Summary
The ability to leverage existing Delphi skills to build modules for major web servers is a
grand achievement. It opens the doors of opportunity to help you expand your product line,
increase visibility, and support new mediums. It also adds to the complexity of your project.

But in these pages, we have lifted the veil shrouding some of the mystery behind web server
technology and what it takes to move in that direction. You've seen the various available
options, learned about the underlying framework, and configured the two most popular web
servers on the planet to support your custom-written modules written in Delphi.

In the next chapter, our journey will take one more step toward fully embracing rapid
application development by utilizing a powerful backend server. This will allow us to
concentrate on the business logic and application architecture rather than managing
security, developing code to support REST API endpoints, or dealing with multi-tenancy.

Join me as we explore RAD Server.

Questions 411

Questions
1. How long has WebBroker been part of Delphi?
2. What is a Page Producer's single event?
3. Do WebBroker action items have to return HTML in their Response object?
4. How do you get IIS onto a Windows machine?
5. How do you support a 32-bit ISAPI module in IIS?
6. Can IIS and Apache run on the same machine simultaneously?
7. How do you change the settings of Apache for Windows?
8. How do you change the settings of Apache for Linux?
9. What is the default prefix and extension for Apache modules for Windows?

For Linux?
10. What global variable in an Apache web module project must be changed before

it's deployed?

Further reading
To learn more about the topics that were covered in this chapter, take a look at the
following references:

• Ultimate Web Frameworks For Ultra-Fast Web Application Development Using
Delphi/C++ Builder: https://blogs.embarcadero.com/ultimate-web-
frameworks-for-ultra-fast-web-application-development-
using-delphi-c-builder

• Types of Web Server Applications: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/Types_of_Web_Server_Applications

• Internet Server Application Programming Interface: https://en.wikipedia.
org/wiki/Internet_Server_Application_Programming_Interface

• Using WebBroker Index: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/Using_Web_Broker_Index

• Tutorial: DataSnap Application Using an ISAPI DLL Server: http://docwiki.
embarcadero.com/RADStudio/Sydney/en/Tutorial:_DataSnap_
Application_Using_an_ISAPI_DLL_Server

• The Apache Software Foundation: https://www.apache.org/

• Apache HTTP Server Project: http://httpd.apache.org/

https://blogs.embarcadero.com/ultimate-web-frameworks-for-ultra-fast-web-application-development-using-delphi-c-builder
https://blogs.embarcadero.com/ultimate-web-frameworks-for-ultra-fast-web-application-development-using-delphi-c-builder
https://blogs.embarcadero.com/ultimate-web-frameworks-for-ultra-fast-web-application-development-using-delphi-c-builder
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Types_of_Web_Server_Applications
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Types_of_Web_Server_Applications
https://en.wikipedia.org/wiki/Internet_Server_Application_Programming_Interface
https://en.wikipedia.org/wiki/Internet_Server_Application_Programming_Interface
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Using_Web_Broker_Index
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Using_Web_Broker_Index
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Tutorial:_DataSnap_Application_Using_an_ISAPI_DLL_Server
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Tutorial:_DataSnap_Application_Using_an_ISAPI_DLL_Server
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Tutorial:_DataSnap_Application_Using_an_ISAPI_DLL_Server
https://www.apache.org/
http://httpd.apache.org/

412 Web Modules for IIS and Apache

• Downloading Apache for Windows: https://httpd.apache.org/docs/
current/platform/windows.html#down

• Installing Apache2 with WSL on Windows 10: https://tubemint.com/
install-apache2-with-wsl-on-windows-10/

• Embarcadero Developer Skill Sprint: Deploy to Apache: https://youtu.be/
p6SX9XWPeDs

• How to Configure the Apache Web Server on an Ubuntu or Debian VPS:
https://www.digitalocean.com/community/tutorials/how-to-
configure-the-apache-web-server-on-an-ubuntu-or-debian-vps

https://httpd.apache.org/docs/current/platform/windows.html#down
https://httpd.apache.org/docs/current/platform/windows.html#down
https://tubemint.com/install-apache2-with-wsl-on-windows-10/
https://tubemint.com/install-apache2-with-wsl-on-windows-10/
https://youtu.be/p6SX9XWPeDs
https://youtu.be/p6SX9XWPeDs
https://www.digitalocean.com/community/tutorials/how-to-configure-the-apache-web-server-on-an-ubuntu-or-debian-vps
https://www.digitalocean.com/community/tutorials/how-to-configure-the-apache-web-server-on-an-ubuntu-or-debian-vps

14
Using the RAD

Server
This book has been all about developing applications for various platforms. For the most
part, the term platform means the combination of hardware and an operating system, such
as iOS, Android phones, macOS, or Windows PCs. But we've also extended that idea to
cover various types of applications on these platforms, such as FireMonkey or VCL apps
on Windows or web servers running under IIS or Apache.

The last platform we'll look at in this book extends that idea one more time and builds
on the server concepts presented in the last two chapters. RAD Server is the pinnacle
of Rapid Application Development (RAD) for building multi-tiered, backend servers.
It is a powerful application server platform that provides a foundation for writing
modules to extend its functionality with Delphi packages, produces a REST interface
for communicating JSON or XML data, handles multiple connections with ease either
as a standalone server or running under IIS or Apache, includes robust user and group
security, and allows us to concentrate on the business logic required in our application
without spending time worrying about the infrastructure. RAD Server provides
services any cross-platform client app can consume, opening doors of opportunity for
development diversification and speeding time to market.

414 Using the RAD Server

This chapter will teach you some of the benefits of this platform, how to build Delphi
packages that work within RAD Server, and modifications to our MyParks application that
will utilize the published data. We will go through these topics in the following sections:

• Establishing a use case for RAD Server

• Getting familiar with what's included

• Writing modules to extend your server

• Modifying MyParks for use with RAD Server

It's time to harness the full power of RAD development.

Technical requirements
The requirements for this chapter include Delphi Enterprise or higher and InterBase
2020 running on your main Windows development machine. While RAD Server can be
installed on either Windows or Linux, only Windows will be discussed in this chapter,
with references to the Further reading section for information on deploying to Linux.

We will also make modifications to our cross-platform app, MyParks, and screenshots
from both iOS and Android will be included—it is up to you which of those platforms you
choose to use with RAD Server during your study of this topic.

This chapter makes heavy use of REST server concepts, specifically the four most popular
HTTP request methods—GET, POST, PUT, and DELETE. If you're not familiar with
these terms, they refer to the type of query made to a web server. When you browse a
website, you're making a GET request to the server for a specific page. When you fill out
a web form and submit it, the browser can make a PUT request to updated data, POST
to insert new data, or DELETE to ask the server to delete data (there are other request
methods defined in the HTTP specification, but these are the most common). This is what
defines a typical REST server and replaces the older style of web-based data management,
where all data was sent to the web server in GET requests using parameters on the URL
separated by ampersands (&). GET requests are limited by the length of the URL, but the
other methods use data packets that are unlimited in size. For an excellent discussion on
this important topic, read Martin Fowler's classic article, Richardson Maturity Model, at
https://martinfowler.com/articles/richardsonMaturityModel.html.

The code for the project we'll build in this chapter can be found on GitHub:

https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter14

https://martinfowler.com/articles/richardsonMaturityModel.html
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter14
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter14

Establishing a use case for RAD Server 415

Establishing a use case for RAD Server
We've been building increasingly complex but more useful servers in this last section
of the book, giving you first a working knowledge of the underlying technology with
the low-level TCP communication protocols encapsulated in the Indy components,
then building on that to provide web servers utilizing event-driven programming with
WebBroker. Even with these building blocks, there's still a lot of scaffolding code that is
needed to surround the specific functionality you're building in order to bring to life
a full-featured, multi-client application.

Another layer in this client/server development tool stack is the DataSnap technology.
Also requiring at least Delphi Enterprise, DataSnap builds on WebBroker and internet
communication components adding remote invokable methods, secure JSON data
transfers, encryption of data, and server change notification. However, you still need
to build out quite a bit of functionality just to support your server, user authentication
structure, and API endpoints.

With RAD Server, you can skip a large section of time-consuming database design
and programming that would be necessary to build these pieces. Consider the
following diagram:

Figure 14.1 – RAD Server overview

This is an application framework in a box—all you do is provide the custom resources
unique to your business; RAD Server configures and manages all the rest of the parts.
We'll touch on just a couple of these parts, and one of the big ones is user management.

416 Using the RAD Server

Considering an application's multi-user needs
Suppose the MyParks app we've been building will be made available to a wide variety of
people and sharing park information, notes, and pictures will be a selling point of the app.
Some people will only want to use it locally, but others may opt to subscribe and track
their park visits across devices, download pictures from a friend's park visits, and rate
their favorite parks. To provide various levels of functionality, you'll want a user hierarchy
with various roles including paid and non-paid accounts, staff accounts for moderating
comments and uploads, and various API authentication levels for accessing content from
other sources. Building all that functionality into the backend, in addition to the basic
user interface for adding, saving, and uploading park data, can be overwhelming.

User management and authentication is a common feature in these types of apps. It can
also be a very large and complicated set of data structures and business rules to build and
manage. RAD Server provides the technical details you need to get started:

• Database tables built to handle multiple groups, users, registered devices,
and installations

• A FireMonkey application with a source to manage all these entities

• A web-based view of these resources and usage statistics

When you think about it, this is a huge piece of what would need to be designed and built:
database tables, indexes, relationships, and queries. Not only is this set up for you, but
there's also a full-featured management console for you with the source that you
can extend:

Figure 14.2 – RAD Server Management Console

Establishing a use case for RAD Server 417

As you add users and devices, and as people start using the application, you'll want to
see how fast it's growing and how many devices are connected. You might want to be
able to see this from several different devices or let support staff keep tabs on it as well.
This would be best as a web application to enable you to get to it from anywhere without
having to install a piece of software. This is provided for you as well with the web-based
view of your application's resources:

Figure 14.3 – RAD Server Console web view

RAD Server's support for applications and users doesn't end there. As people connect with
various devices, they can register for additional services.

Enabling push notifications for registered devices
Another feature provided out of the box by RAD Server gives the ability to send
notifications to devices that have been registered and have been granted permission to
receive those notifications. Suppose you and your friend both have the MyParks app and
you both want to be notified when the other rates a park or adds a picture. By creating
an account in RAD Server, registering their device, then accepting push notifications,
they can receive configured messages from the server. The installed devices, types of
notifications, and other related resources can all be managed from the RAD Server
Management Console without the need for extra coding—you can concentrate on the data
your app deals with and set up the types of messages that should go out while RAD Server
does the heavy lifting for you.

418 Using the RAD Server

Not only does this save you a massive amount of time getting these vital aspects of your
application ready for multiple users, but using the source to the management program
shows you how to use the various user management API endpoints and allows you to
extend it for your custom needs.

We've only touched on a couple of the major features of using RAD Server, but it's already
obvious how much time can be saved using this extensible platform instead of rolling
out your own solution. Follow the links in the Further reading section at the end of this
chapter to watch some great videos about RAD Server and learn more about the benefits
of starting with this solid foundation.

One of the big considerations for using RAD Server is cost. While prices can change, we
should address this before we move on.

Justifying the cost
Deploying applications built with your own hand-crafted servers or using the DataSnap
technology is royalty-free. This means the only software costs for each additional
customer is the database license, if needed. There is merit in this if your user management
needs are simple, or you have some of this infrastructure in place from another related
application or service. If not, the cost of design and development to produce the out-of-
the-box functionality provided by RAD Server can quickly eclipse the cost of deploying
user licenses.

There are currently two pricing options for deploying RAD Server and they are based on
user count:

• Unlimited users for USD 5,000

• Per-seat licensing at USD 99 each

If your organization is small and has a limited number of users, the per-seat licensing
option would probably be best. If you're deploying multiple servers to various locations
and each location will only have a few users, you would still likely be better opting for
per-seat licensing, as each server requires its own license. Once you reach around 50
users on a server and see more growth coming, you can switch from per-seat licensing to
unlimited. There are also multi-site licenses available—contact your Embarcadero sales
representative to see what licensing model best fits your needs.

Getting familiar with what's included 419

Let's turn our attention now to learning more about what you get with RAD Server and
getting it up and running.

Getting familiar with what's included
RAD Server is all about saving you lots of time. It comes ready to run and ready to
deploy! For developers, it's installed with Delphi, and for deploying to customers, you can
download packages from GetIt to automate most of the steps.

Let's go over what comes pre-installed with Delphi.

Running RAD Server on a development environment
RAD Server is comprised of two parts:

• The engine, listening for requests and returning JSON data

• The console, a web server app

The engine provides application endpoints for accessing both built-in and extended
functionality through packages that are installed. The console makes requests to the
engine and presents a nice web view of your application resources and usage statistics.

There are both 32-bit and 64-bit versions of both of these applications residing in the
bin and bin64 folders of your Delphi installation, respectively. To start the RAD Server
engine, simply run EMSDevServer.exe.

Note
You will see many names and references to EMS while working with RAD
Server. EMS stems from an earlier name for this product, Enterprise
Mobility Services.

420 Using the RAD Server

If you have not started or configured RAD Server previously, you will be asked to run the
configuration wizard when it is launched. This asks several questions to get you going:

1. The first question establishes the database:

Figure 14.4 – RAD Server configuration wizard – New Database
If you installed InterBase with its default settings, you don't need to make any
changes on this screen—Server Instance should be left blank. If you have multiple
instances of InterBase on your machine, enter the instance name you gave to
InterBase 2020 when you installed it (which shows in parentheses in the title bar of
InterBase Manager, the default being gds_db).

2. The next screen asks whether you want to generate sample users and sample user
groups in the new database being created:

Getting familiar with what's included 421

Figure 14.5 – RAD Server configuration wizard – Sample Data
I find this to be useful and leave both checkboxes checked. There is only one sample
user in one sample group, but it allows you to see how data will look right away.

3. The next screen sets up the user that will access RAD Server Console:

Figure 14.6 – RAD Server configuration – Console user

422 Using the RAD Server

Establishing a separate username and password for console use will allow you to
give read-only access to a web view for displaying usage statistics without exposing
administrative credentials or needing to create a separate user and grant access.

4. The last screen of the setup wizard confirms the name and location of both the
database and configuration files that are about to be created, and lists the registry
key where the path to the configuration file and some profile settings are stored:

Figure 14.7 – RAD Server configuration – Finalize settings
Unless you have custom needs and know how to configure these settings, it is
recommended to leave them at their default values. When everything looks good,
click Finish.

Note
You will likely get a message about using an unlicensed installation that limits
EMS features. This is expected for the five-user-limited development license.

Getting familiar with what's included 423

5. Once the database is created and populated successfully, you'll see a confirmation
message reviewing where your files are and the users that were created:

Figure 14.8 – RAD Server configuration complete summary

You're now able to see the log messages generated by the development version of
RAD Server:

Figure 14.9 – Log view of the development version of RAD Server

424 Using the RAD Server

These log messages, in JSON format, list a few pieces of information about the server then
go through all the endpoints provided. Once all these are displayed, the server waits for
incoming requests.

So, what can you do with this? Looking at the buttons across the top, it's obvious the first
two start and stop the server listening for requests on the port, which cannot change
unless the server is stopped. The next two buttons open your default web browser with
URLs that make requests to the running server engine. Clicking Open Browser requests
the version:

Figure 14.10 – Web browser requesting the version of the local RAD Server

You can change the URL to make different requests. If you look through the original list of
APIs listed when the server first started (see Figure 14.8), you'll find one of the registered
resources is Users. The first method in that array is GetUsers; in your browser's address
line, replace version with that method's path value, users, to get the list of users:

Figure 14.11 – Web browser requesting users from RAD Server

There's only one user currently, but you can start to see how this works. The next method,
named GetUser, has the same base path but adds a parameter, {id}. If that parameter is
included in the URL request, the second method is called. We can test this out by copying
the ID of a user from the result of the first request and modifying the URL request details
for a single user:

Figure 14.12 – Web browser requesting details for a specific user from RAD Server

Getting familiar with what's included 425

The GetUsers method returns a JSON array, whereas the GetUser method returns
a single JSON object.

The last button on the development server app, Open Console, does the same thing as if
you had manually launched EMSDevConsole.exe—it starts the console part of RAD
Server, and opens a second tab in your browser pointing to the RAD Server console's
configured port. However, instead of a list of JSON logs, you get a nice web app with
a login:

Figure 14.13 – RAD Server console login

The username and password are what was set up in the RAD Server configuration
wizard (see Figure 14.6), with the defaults being consoleuser and consolepass,
respectively. There is only one tenant when RAD Server is first installed, so that can be
left blank.

Note
Additional tenants can be created to support completely separate applications
with their own sets of users, groups, installations, and registered devices, all
from one server and database. We will not cover multi-tenancy in this book.

426 Using the RAD Server

Once you log in, you'll see a nice web view showing users, applications, installations, and
much more. After adding a few users and making various requests, your view could look
similar to what we showed in Figure 14.3 earlier in the chapter.

At this point, you may be thinking two things:

• First, you have a greater appreciation of how much is built for you in the way of the
database backend, API endpoints, and a web view of your user space.

• Second, you may be wondering how to actually add and modify the users and
applications. Will you now have to write the user management application yourself?

Don't worry, RAD Server didn't leave you without a tool to manage the information you
see in the web-based console. To quote a famous advertising line: "But wait, there's more!"

Read on to learn about one more part of this package provided for managing your
infrastructure.

Using the RAD Server Management Console
Now that you've seen the sample data, you're probably eager to add your own. Look back
in the Delphi folder, under either the bin or bin64 folder, and launch RSConsole.
exe. This is a FireMonkey application to manage the users, groups, and other aspects
of your application suite that we've been talking about. The first thing you need to do is
create a connection profile. You can use this tool to connect and manage multiple RAD
Server installations.

Start by clicking the New Connection button (or select New Profile... from the Profile
menu). This creates a connection profile and pulls up a dialog box to edit its properties:

Figure 14.14 – RAD Server's Connection Profile editor

Getting familiar with what's included 427

Enter the host and port configured when you started EMSDevServer.exe. You may
specify a proxy server and proxy port on the Proxy tab—although this is probably not
needed when working on and connecting to the development server running on your local
computer. We will cover application keys in Chapter 15, Deploying an Application Suite.

The Authenticate tab lets you log in with a username and password, but when RAD
Server is first installed, all API endpoints are all public (not restricted to certain users or
groups); therefore, you don't have to log in to start managing groups and users. In fact, if
you did not opt to create a sample user and group, you don't even have a user with which
to log in.

That tab is also where you might enter a master secret, which, if defined, grants access to
perform any action in RAD Server, regardless of other security in place. This is disabled by
default and can only be set by modifying the configuration file. If used, remember that this
acts as a "backdoor" admin-level password and should be kept highly secured.

Once a profile is ready (you can confirm this with the Test Connection button), close
the profile editor. You can then expand the profile and browse users, groups, and other
entities defined. You can rename the profile by selecting Profile | Rename Profile... from
the menu. You can even switch to a dark theme by clicking the Toggle Style button. Here's
a screenshot of the console using the dark theme showing two profiles, with the first one
expanded and displaying some users added to the original test one:

Figure 14.15 – RAD Server Management Console's dark theme with two profiles

The interface is pretty simple and it's quickly obvious how to add, update, and delete
various entities. If you'd like to modify this application or peek at the code to see how
it makes calls to perform its various functions, the source is included in your Delphi
installation under its source\data\ems\rsconsole folder. This makes for a great
learning tool for how to interact with the RAD Server API.

428 Using the RAD Server

Speaking of learning how to interact with RAD Server, it's time to learn how to extend
this platform with your own custom modules to provide interactions beyond just
user management.

Writing modules to extend your server
Let's dive right into writing our first extension using a very simple example. All extensions
we build will be Delphi packages that contain a RAD Server resource. A RAD Server
resource is an extension of the functionality in RAD Server that groups API endpoints
registered in RAD Server.

Using the wizard to create our first resource package
The steps to building a RAD Server resource are simple:

1. Select File | New | Other... from the Delphi menu.
2. Select RAD Server Package from the RAD Server section.
3. Select Create package with resource on the first page of the Package Wizard:

Figure 14.16 – Create your first RAD Server package with a resource

4. On the next page, set the resource name to something simple such as Test and
select Unit for File type:

Writing modules to extend your server 429

Figure 14.17 – Naming the new RAD Server resource

5. From the list of Sample EndPoints, select only Get and GetItem (these differ only
in the number of records returned; Get typically returns a list of records, whereas
GetItem returns data for a single record), then click Finish:

Figure 14.18 – Selecting endpoints for the new RAD Server resource

430 Using the RAD Server

These endpoints correspond to the request methods provided by a typical REST server.

You should now have a new Delphi package with a small unit containing a class decorated
with a couple of attributes.

Before adding any code, save the project and then look at the project's options. Since this
Delphi project is a package and not an application, we can't run it directly. Instead, it
must be launched by a host application—RAD Server, in this case. Normally, RAD Server
packages must be installed into RAD Server and the server restarted before they can be
used. Doing that would get tedious during development, so the developer edition of RAD
Server has a command-line parameter, -l, to load a package temporarily for quick testing.

The Package Wizard set this up for us. Look at the Debugger section and check out the
Host application and Parameters values. Also, note that they call either the 32-bit or
64-bit version of EMSDevServer.exe, depending on the target platform chosen for
the project.

Cancel out of the Project Options window and hit F9 to compile and run the sample
RAD Server package. The RAD Development Server log window shows, and down at the
bottom of the window you'll see the test package (Test.bpl) was successfully loaded
and the Test resource registered with two endpoints, named Get and GetItem, with the
test and test/{item} paths, respectively:

Figure 14.19 – First RAD Server package loaded

That was pretty easy! You can click Open Browser and change the URL from /version
to /test to see the default behavior, which simply echoes back the word Test.

Writing modules to extend your server 431

Now, let's add just a little bit of coding to see how simple it is to provide functionality from
a RAD Server endpoint, and how to send JSON responses based on requests. Close the
app and go back to the project in Delphi.

First, the Get procedure will define a list of elements. Our test one will simply return the
letters of the alphabet:

procedure TTestResource.Get(const AContext: TEndpointContext;
const ARequest: TEndpointRequest; const AResponse:
TEndpointResponse);

var

 CharList: TJSONArray;

begin

 CharList := TJSONArray.Create;

 for var a := 1 to 26 do

 CharList.Add(string(Chr(64 + a)));

 AResponse.Body.SetValue(CharList, True);

end;

AResponse.Body must be a JSON object, in this case, an array of letters. Run it to
see them:

Figure 14.20 – RAD Server package returning an array of letters

If we add a / and something to the end of the URL, it calls the GetItem method, which
is handled in our code by the method of the same name. For this test, it will just return the
ASCII value of the letter submitted, so add this code:

procedure TTestResource.GetItem(const AContext:
TEndpointContext; const ARequest: TEndpointRequest; const
AResponse: TEndpointResponse);

var

 LItem: string;

 Ch: Char;

432 Using the RAD Server

begin

 LItem := ARequest.Params.Values['item'];

 Ch := LItem[1];

 if CharInSet(Ch, ['A'..'Z']) then

 AResponse.Body.SetValue(TJSONString.Create(

 Format('ASCII(%s) = %d', [Ch, Ord(Ch)])), True)

 else

 AResponse.Body.SetValue(

 TJSONString.Create('Enter a letter [A..Z]'), True);

end;

Run this version and in the browser, when a valid uppercase letter is added to the URL,
the output looks like this:

Figure 14.21 – RAD Server package returning the ASCII value of a letter

You can download this package from GitHub at https://github.com/
PacktPublishing/Fearless-Cross-Platform-Development-with-
Delphi/tree/master/Chapter14/01_SimpleTest.

With an understanding of how to build and test RAD Server resource packages, we can
build one to serve up park data from the database we've been working with in this book to
see how this might work in a real-world scenario.

Implementing MyParks for RAD Server
To get started with setting up a MyParks resource, launch the RAD Server Package Wizard
again and choose Data Module for File type in the wizard. Under Sample EndPoints,
select all checkboxes; leave Database EndPoints and API Documentation unchecked.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter14/01_SimpleTest
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter14/01_SimpleTest
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter14/01_SimpleTest

Writing modules to extend your server 433

Note
Database EndPoints uses a pre-defined FireDAC database configuration,
which we will not use in this book. API Documentation decorates the
RAD Server package classes with attributes that provide additional resource
endpoints to generate industry-standard API documentation for your server's
published endpoints. Follow the RAD Server API Resource and OpenAPI
Initiative and Swagger links in the Further reading section at the end of this
chapter for more information.

Once the package is created and saved, add the following components and code:

1. Add a TFDConnection component on the data module and connect it to your
MyParks database. Add the appropriate driver link component, for example,
TFDPhysIBDriverLink if you're using InterBase.

2. Add a TFDQuery component, hooked to the connection component, and add the
following SQL to get the park ID and park name from all records:

SELECT PARK_ID, PARK_NAME FROM Parks ORDER BY PARK_NAME

3. Replace the body of the Get procedure with the following to build a JSON array of
the parks:

var

 ParkList: TJSONArray;

begin

 ParkList := TJSONArray.Create;

 qryParkList.Open;

 while not qryParkList.Eof do begin

 var ParkItem := TJSONPair.Create(

 TJSONNumber.Create(qryParkListPARK_ID.AsInteger),

 TJSONString.Create(qryParkListPARK_NAME.AsString));

 ParkList.Add(TJSONObject.Create(ParkItem));

 qryParkList.Next;

 end;

 AResponse.Body.SetValue(ParkList, True);

 qryParkList.Close;

end;

434 Using the RAD Server

Once the JSON array is built, the response is sent to the client. Viewing this in a browser
might look like this (depending on the parks in your database):

Figure 14.22 – MyParks RAD Server package returning a list of parks

Now, add another query component on the data module to get all the details for one park
with this SQL:

SELECT * FROM Parks WHERE PARK_ID = :ID

Then, fill in the GetItem procedure to return the fields from one park:

var

 LItem: string;

 ParkID: Integer;

 ParkStream: TMemoryStream;

begin

 LItem := ARequest.Params.Values['item'];

 if TryStrToInt(LItem, ParkID) then begin

 qryParkByID.ParamByName('id').AsInteger := ParkID;

 qryParkByID.Open;

 if qryParkByID.RecordCount = 0 then

 AResponse.Body.SetValue(

 TJSONString.Create('Park not found for ID: ' + LItem),
True)

 else begin

 ParkStream := TMemoryStream.Create;

 qryParkByID.SaveToStream(ParkStream, sfJSON);

 AResponse.Body.SetStream(ParkStream,

 CONTENTTYPE_APPLICATION_JSON, True);

Writing modules to extend your server 435

 end;

 end else

 AResponse.Body.SetValue(TJSONString.Create('Invalid ''ID''
parmeter: ' + LItem), True);

end;

Before we look at the results, notice that in this method, I didn't manually create the JSON
return value like I did with the Get method, but instead used FireDAC's SaveToStream
method and specified sfJSON as the format. This builds the JSON result for us, which is
convenient (especially if we decide to add more fields to the table), but it adds a lot more
information for us to parse through:

Figure 14.23 – RAD Server MyParks package returning details for one park

Seeing this much information for one small record seems like overkill. There is, however,
a structure to the JSON results that must adhere to the guiding principles of REST (see
the link to What is REST? in the Further reading section at the end of this chapter). In this
particular example, a lot of it is metadata that can be used by other components and helps
define how it should be displayed. Download this short example project from GitHub
at https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter14/02_MyParks.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter14/02_MyParks
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter14/02_MyParks

436 Using the RAD Server

Now that you know how to build a server and concoct JSON data in a couple of different
ways, let me show you a new component that does all the hard work for you.

Building a REST server without code
Let's review the four most common HTTP request methods used in a REST server and
what their purpose is:

• GET: Queries data, returning either multiple records or just a single record, and
supports parameters for filtering, sorting, and paging.

• POST: Sends data for a new record to the server. The data is typically in a JSON data
packet embedded in the HTTP request.

• PUT: Sends data for updating a record to the server. The data is typically in a JSON
data packet embedded in the HTTP request with the ID of the record to update as
a parameter in the URL of the request.

• DELETE: Sends a request to the server to delete a record, with the record identifier
as a parameter on the URL of the request.

The task of implementing these endpoints in a REST server is such a prevalent task that
a new component has been added to the Delphi palette that encapsulates a lot of the work
for you. This powerful component is TEMSDataSetResource.

Let's create a new package from scratch and show how all the work we just did previously
can be done in a few steps by writing SQL with special syntax supported by FireDAC and
setting some properties of this awesome component. Follow along with me:

1. Create a new RAD Server package with a resource.
2. Name it MyParksData and select Data Module for File type.
3. Don't select any checkboxes for Sample EndPoints—just click Finish in the wizard.
4. Drop a TFDConnection component and the driver link for your database and

configure the connection parameters.
5. Add a TFDQuery to the data module, hooked to the connection component, and

enter the following SQL into the Query Editor:

SELECT * FROM PARKS

{IF &SORT} ORDER BY &SORT {FI}

6. Click Execute to verify it returns data from your database.

Writing modules to extend your server 437

7. Place a TEMSDataSetResource component on the data module and set its
DataSet property to the query component you just added.

8. Expand the AllowedActions property and check all actions.
9. Set the KeyFields property to the primary key of your parks table, for example,

PARK_ID.
10. Click the ellipses button for the ValueFields property and move all the fields to

the Included fields list.
11. Add the following five ResourceSuffix attributes just above the declaration of

TEMSDataSetResource:

type

 [ResourceName('MyParkData')]

 TMyParkDataResource1 = class(TDataModule)

 FDConnection: TFDConnection;

 FDPhysIBDriverLink: TFDPhysIBDriverLink;

 qryMyParksData: TFDQuery;

 [ResourceSuffix('list', '/')]

 [ResourceSuffix('get', '/{PARK_ID}')]

 [ResourceSuffix('post', '/{PARK_ID}')]

 [ResourceSuffix('put', '/{PARK_ID}')]

 [ResourceSuffix('delete', '/{PARK_ID}')]

 EMSDataSetResource: TEMSDataSetResource;

 published

 end;

These correspond to the four options under the AllowedActions property.

Now, simply select your target platform, compile and run, then click the Open Browser
button and navigate to the myparks path to see your list of parks, then append one of the
park IDs to see it list the details of just one of the parks.

In just 11 steps and a few minutes, you've created a complete RAD Server resource that
implements the four major operations of a typical REST server! Download this simple
RAD Server package from GitHub at https://github.com/PacktPublishing/
Fearless-Cross-Platform-Development-with-Delphi/tree/master/
Chapter14/03_MyParkData. We've only tested one type of endpoint so far, GET, but
we'll be looking at the others soon.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter14/03_MyParkData
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter14/03_MyParkData
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter14/03_MyParkData

438 Using the RAD Server

Before we move on, there are a few other common practices most REST servers support
with GET requests. If your dataset returns a large number of records, the response time for
your client may exceed a timeout period or test the patience of an end user waiting for the
hourglass to stop spinning. The concept of paging is frequently implemented, which limits
the number of records returned and separates them at the server level into pages with a
parameter on the URL to specify which page of data to access.

If the Options parameter of the TEMSDataSetResource component includes
rsEnablePaging, two properties come into play:

• PageParamName: This names the parameter that can be included on the URL to
request a specific page of data.

• PageSize: This lists the number of records to be returned on each page.

To see this in action with my small dataset, I set PageSize to 3 in the server then ran it
and requested page 1 from the browser:

Figure 14.24 – Paged park list from RAD Server

Another common feature of REST servers is sorting. When the Options parameter
of the TEMSDataSetResource component includes rsEnableSorting, the URL
can include the value of the SortingParamPrefix property prepended to one of the
field names listed in the ValueFields property to sort either ascending (using an A)
or descending (using a D) with the named field. For example, here are my parks listed by
PARK_NAME in reverse alphabetical order:

Writing modules to extend your server 439

Figure 14.25 – Sorted park list from RAD Server

This is another example of the time-saving features RAD Server offers, and how well
FireDAC works with it.

The next methods we want to implement start going beyond just visualizing data and start
sending updates back to the server. We can't do this with just the browser alone—we need
a client tool that allows us to control the request method and can send more data than just
parameters on the URL.

Testing RAD Server with the REST Debugger
Delphi comes with a tool for testing and troubleshooting REST servers, aptly named
the REST Debugger. I use this client tool so often when working with web services
that I added it to Delphi's Tools menu (using Tools | Configure Tools...). You can find
RESTDebugger.exe in Delphi's bin folder.

Note
There are other tools for building and testing REST server APIs. A couple
of the popular ones are Postman (https://www.postman.com) and
Insomnia (https://insomnia.rest). We will use the REST Debugger
for our examples in this chapter.

https://www.postman.com

440 Using the RAD Server

Start RAD Server with our MyParks module and launch the REST Debugger, then enter
the same address into the URL line that was used in the browser to list multiple parks,
and click Send Request. The results are in the Response section at the bottom of the
application's window in the Body tab:

Figure 14.26 – Using the REST Debugger to get the list of parks

Notice that, directly under the URL in the Response section, it says 200 : OK. Web
requests return status codes you can check to see whether your request was accepted (as
in this case), if the page was not there (which would return 404 : Not Found), and so on.

Writing modules to extend your server 441

You can modify the URL to append a park ID and add the sorting and paging
parameters—these requests will return the same information in the Body tab at the
bottom of the window we saw in the browser.

Instead of listing the parameters with question marks and ampersands (as you must
when editing the URL in your browser), you can switch to the Parameters tab and enter
them individually. You can also put the myparkdata resource name into the Resource
box, leaving only the base URL (http://localhost:8080) listed in the URL on the
Request tab. Here's an example of listing the first page of sorted parks:

Figure 14.27 – Using REST Debugger with parameters

442 Using the RAD Server

Sometimes, it's handy to enter the resources and parameters separately if you have a
complicated query. The REST Debugger shows the full URL that was sent as the first line
in the Response section.

The Authentication tab is used for communicating with various types of secure servers
and the Connection tab is used to configure proxy servers.

Explore other features of the REST Debugger, such as switching the bottom view to
Tabular Data or inspecting the headers of the response.

Back on the Request tab, notice that the URL box is a drop-down combo. Every time you
send a request, it saves the URL and parameters and allows you to select them again. This
saves a lot of time re-entering queries for testing.

Finally, notice that you can switch the method between GET, POST, PUT, or DELETE
(we won't use PATCH) to test the other endpoints of our RAD Server module as we
build them.

Speaking of other endpoints, it's time to learn how to implement them in our
MyParks resource.

Inserting, updating, and deleting data
We've seen GET in action several times, which, for a REST server, only reads data from the
server. It's now time to show how to add, change, or delete data in a REST server.

We'll create a new record first. In the Method dropdown of the REST Debugger, select
POST. The Custom body textbox is enabled for you to type in. This is where we enter the
embedded JSON that is used to insert a record into the database. In addition, the new ID
must be listed in the URL dropdown and match the PARK_ID value in the JSON data.
Here's a new park entry I submitted:

Writing modules to extend your server 443

Figure 14.28 – Adding a park with the REST Debugger

Once you send that request, use the URL dropdown to select a previous query that
lists all the parks (or that one specifically using the new PARK_ID value) to verify it was
successfully added.

444 Using the RAD Server

Next up is PUT—to modify an existing record. Let's say I added a park named Tanner
Springs Park, with a PARK_ID value of 192, but didn't have the coordinates. When I run
a query, it comes back with an entry: {"PARK_ID":192,"PARK_NAME":"Tanner
Springs Park","LATITUDE":0,"LONGITUDE":0}. I want to update that entry
with the correct coordinates. This is how I would do that with the REST Debugger:

Figure 14.29 – Updating a record with REST Debugger

The URL and body are the same as a POST request for a new record, but RAD Server
detects the method type and uses a different procedure to handle the request.

It's pretty simple to demonstrate DELETE. If you look back at Figure 14.30, you'll notice I
have a duplicate. In the REST Debugger, simply switch the Method dropdown to DELETE
and put the PARK_ID value on the URL dropdown:

Modifying MyParks for use with RAD Server 445

Figure 14.30 – Deleting a record with REST Debugger

Refresh the park list to see the duplicate is gone.

We didn't go through these so much to learn about the REST Debugger; the main goal was
to test each of the endpoints of our MyParks RAD Server resource. By confirming each
operation in the database after submitting the request with a working REST debugging
tool, we are now confident our RAD Server module is working well enough to switch
gears to build a client. Personally, I like to test each part of a system in isolation, rather
than try to build both the client and server simultaneously and wonder where the problem
lies when things don't work as expected.

So, now it's time to use our new server with a real application—our mobile MyParks app.

Modifying MyParks for use with RAD Server
I've copied the MyParks project, including the main form and the data module, from
Chapter 10, Cameras, the GPS, and More, and will make the modifications starting with
that finished, working version. (The modifications we made to this app in Chapter 12,
Console-Based Server Apps and Services, and Chapter 13, Web Modules for IIS and Apache,
were for specific server purposes, and we'd have to remove several parts to rework it for
use with RAD Server, so we might as well start without them.)

446 Using the RAD Server

Setting up RAD Server connection components
Before we connect to RAD Server, let's set up a new list view to hold the results.

Open the main form of the MyParks app and add the following:

1. Add a TTabControl behind TListView that holds the main list of parks on the
tabParkList tab.

2. Add two tabs on this new tab control—tabLocalParks and tabRemoteParks.
3. Move the current list view of the locally stored parks onto tabLocalParks.
4. On tabRemoteParks, add a small panel aligned to the top of the tab with a

refresh button and two checkboxes. The two checkboxes will be for sorting A-Z
and Z-A.

5. Below the panel and filling up the remaining client area of tabRemoteParks, add
a new TListView aligned to the client. This list view will contain the results of
a call to RAD Server for its parks.

When you're done, the Structure pane for your main tab control should look something
like this:

Figure 14.31 – Structure pane showing a new tab in the MyParks app for parks from the server

Modifying MyParks for use with RAD Server 447

There are a few different ways to call a REST server and get results. The REST Debugger
actually has a nifty button I like to use called Copy Components, which will set up the
connection components, which you can simply paste to your application. Since we've been
testing with the REST Debugger, select one of the GET options you've used to retrieve the
list of parks from your RAD Server, click that button, and a message pops up telling you
about the three components it's prepared for you.

Just paste them onto the form of your app and spread them out so you can see the different
components and select them individually. There are only two changes we need to make.

First, when the mobile app is running, it won't have the same address as the REST
Debugger which was using LOCALHOST because RAD Server was on the same Windows
machine. This means we need to change the BaseURL property of the TRESTClient
component to point to the actual IP Address of the machine instead of LOCALHOST. On
my machine, running ipconfig from the command line revealed my machine's IPv4
address is 192.168.1.95. and so entered http://192.168.1.95:8080 for the
BaseURL. Make the similar discovery and adjustment in your project.

Second, on the TRESTClient component, uncheck the AutoCreateParams checkbox,
as we'll be creating those in code based on which way the user wants the list sorted.

Note
This is one advantage the REST Debugger has over other REST API tools—the
REST Debugger knows about your Delphi code!

Create a TAction in your TActionList component to get the parks from RAD Server,
and write the following code to call RAD Server:

procedure TfrmMyParksMain.
actGetRADServerParksRESTClientExecute(Sender: TObject);

begin

 RESTReqRADParks.Params.Clear;

 if radParksAZ.IsChecked then

 RESTReqRADParks.Params.AddItem('sfPARK_NAME', 'A',
 TRESTRequestParameterKind.pkQUERY)

 else

 RESTReqRADParks.Params.AddItem('sfPARK_NAME', 'D',
TRESTRequestParameterKind.pkQUERY);

 RESTReqRADParks.Execute;

end;

448 Using the RAD Server

This action sets the parameter for the sorting option selected, then calls the Execute
method of the TRESTRequest component, and fills the TRESTResponse component
with the result JSON data. To see the data, we can either write some code to populate
the new list view or add a couple more components to parse the JSON for us. I like the
second idea:

1. Add a TFDMemTable component to the form and then right-click and select Fields
Editor... to create the same fields that are coming back in the JSON data (check the
REST Debugger for their exact names). If you've been following the example here,
those field names are PARK_ID, PARK_NAME, LONGITUDE, and LATITUDE (case
insensitive). Set the field types appropriately, then check the Active property.

2. Add a TRESTResponseDataSetAdapter component, set the Response
property to point to your TRestResponse component, and set the Dataset
property to the new memory table you just added.

3. Hook up the memory table's PARK_NAME field to the list view's Item.
Text property with LiveBindings. After the TBindSourceDB component
is automatically created and hooked up, also connect its asterisk to the Synch
property of the list view:

Figure 14.32 – The list view synchronized with the memory table in LiveBindings

4. Right-click the TRESTRequest component and select Execute..., and if your RAD
Server's park module is active, you should see the list view fill with the server's parks.

Let's make a couple of adjustments to the list view:

• In the Object Inspector, expand the ItemAppearance property to see
a sub-property also called ItemAppearance, and set it to ListItem.

• Expand ItemAppearanceObjects, ItemObjects, and Accessory to
uncheck the Visible property.

Modifying MyParks for use with RAD Server 449

Before you run it on your mobile device, you may have to make one adjustment. During
development, your RAD Server is likely configured without SSL. In other words,
connections are using HTTP rather than HTTPS. Both Android 8 and newer and iOS 9 and
newer expect encrypted connections by default, but allow exceptions to be specified. Delphi
adds the exception for iOS applications in a .info.plist file, which isn't generated until
you run the app. For Android, you can optionally add an exception in a template manifest
file in your Delphi project folder, namely AndroidManifest.template.xml. Delphi's
build tools generate the real manifest file that accompanies your deployed Android app
every time it is built. Open up this XML template file, locate the application section
(where you'll see several lines starting with android:), then add the following line:
android:usesCleartextTraffic="true". Follow the links in the Further reading
section at the end of this chapter for more information.

You can now run this on a mobile device that has access to your local server on your
network, click the refresh button, and see the list of parks. Also, try reversing the sort order:

Figure 14.33 – Parks returned from RAD Server showing on an Android phone

450 Using the RAD Server

You're now able to see both locally stored parks and parks stored on the server. The
next logical thing is to add those items from the server to your own device. Let's build a
checklist and do this for several at once. The list view provides a convenient way to do this:

1. In the panel above the list view, add a couple of buttons next to the refresh button—one
to toggle the park selection, and the other to download the selected parks.

2. Create a new action, actToggleRADParksEditMode, to toggle the EditMode
property of the list view. Assign this action to the first button created in the
previous step.

3. Create another new action, actDownloadRADPark, which will perform the actual
insertion of new local parks, and assign it to the second button. Set this new action's
Visible property to False because we only want to see this button when we're
selecting items.

4. Write the code for actToggleRADParksEditMode to set EditMode, and
toggle visibility of the other action, which shows the second button:

procedure TfrmMyParksMain.
actToggleRADParksEditModeExecute(Sender: TObject);

begin

 lvRADParks.EditMode := not lvRADParks.EditMode;

 actDownloadRADPark.Visible := lvRADParks.EditMode;

end;

5. When the list view's EditMode is enabled, checkboxes appear before each item in
the list view. After the user has checked all the parks from RAD Server to import,
they would click the download button to confirm and add the parks:

procedure TfrmMyParksMain.
actDownloadRADParkExecute(Sender: TObject);

begin

 TDialogServiceAsync.MessageDialog(

 'Would you like to save the selected parks to
 your device?',

 TMsgDlgType.mtConfirmation,

 [TMsgDlgBtn.mbYes, TMsgDlgBtn.mbNo],

 TMsgDlgBtn.mbYes, 0,

 procedure (const AResult: TModalResult)

 begin

 if AResult = mrYes then

Modifying MyParks for use with RAD Server 451

 AddRADParksToLocal;

 end);

end;

6. Add the procedure, AddRADParkToLocal, which goes through all the checked
items and inserts a record for each (this book's example will only save the name, but
a real-world application would save as much information as is available):

procedure TfrmMyParksMain.AddRADParksToLocal;

begin

 for var i in lvRADParks.Items.CheckedIndexes(True) do
begin

 dmParkData.tblParks.Insert;

 dmParkData.tblParksParkName.AsString := lvRADParks.
 Items[i].Text;

 dmParkData.tblParks.Post;

 end;

 actToggleRADParksEditMode.Execute;

end;

Here's how selecting parks for download looks on an iPhone:

Figure 14.34 – Selecting parks from RAD Server for local saving on an iPhone

452 Using the RAD Server

The last thing we'll show is updating a remote park with local changes.

Sending updates back to RAD Server
There are so many cool things that we could do to synchronize data between your device
and a remote server, but we don't have time or space in this book to cover them all. The
ideal way to update a remote park from a local list is to keep track of the remote server's
ID as a separate field in the local database so return updates can simply use that field to
reference the remote record.

Since our SQLite database doesn't have a field for this (and we're not going to take the
time to go and modify it), we're going to approach this very simply by allowing only
a change to the park name from the list showing in the Server tab of the mobile app. Even
this, though, will require all four fields to be returned to RAD Server in its update method
call. Instead of passing them in individually, we may add to the fields in the future, which
would necessitate a change to the parameters. To simplify the code a little and to keep
the parameter passing simple, create a record for these update fields in the form's private
declaration section:

 type

 TParkUpdateRec = record

 ParkID: Integer;

 ParkName: string;

 Longitude: Double;

 Latitude: Double;

 end;

For the user interface, instead of using the standard OnItemClick, we'll make sure the
user really wants to do this by forcing a long-click to illicit the name change. To do this,
first enable the LongTap option of the list view's Touch.InteractiveGestures
property. When the OnGesture event fires, it will keep firing until the touch gesture is
done, which causes the event handler to be executed multiple times. The trick to prevent
this is to set a Boolean variable to False, and when we're in the name-change code, set it
to True. After creating this variable, FinNameChange, in the form's private declaration
section, write the event handler code:

procedure TfrmMyParksMain.lvRADParksGesture(Sender: TObject;
const EventInfo: TGestureEventInfo; var Handled: Boolean);

begin

 if FInNameChange then

 Handled := True

Modifying MyParks for use with RAD Server 453

 else if EventInfo.GestureID = System.UITypes.igiLongTap then
begin

 Handled := True;

 FInNameChange := True;

 TDialogServiceAsync.InputQuery('Change a Park',

 ['Change the name of the park:'],

 [tblRADParksPARK_NAME.AsString],

 procedure (const AResult: TModalResult; const AValues:
 array of string)

 begin

 if AResult = mrOK then begin

 var ParkUpdateRec: TParkUpdateRec;

 ParkUpdateRec.ParkID := tblRADParksPARK_
 ID.AsInteger;

 ParkUpdateRec.ParkName := AValues[0];

 ParkUpdateRec.Longitude := tblRADParksLongitude.
 AsFloat;

 ParkUpdateRec.Latitude := tblRADParksLatitude.
 AsFloat;

 UpdateRADParkName(ParkUpdateRec);

 FInNameChange := False;

 end;

 end);

 end;

end;

454 Using the RAD Server

The prompt looks like this on an iPhone:

Figure 14.35 – Changing a park name to send to RAD Server from an iPhone

The real work of updating the RAD Server with the new name is done in the new
UpdateRADParkName procedure. As with getting the parks from RAD Server,
sending an update to RAD Server will also involve REST components. We can use
the existing TRESTClient unchanged but should copy the TRESTRequest and
TRESTResponse components—name the new ones RESTReqParkNameUpdate and
RESTRespParkNameUpdate. Set the Method property of the first one to rmPUT
and set its Response property to RESTRespParkNameUpdate, then write the
following code:

procedure TfrmMyParksMain.UpdateRADParkName(AParkRec:
TParkUpdateRec);

var

 UpdateJSON: TJSONObject;

begin

 UpdateJSON := TJSONObject.Create;

 try

Modifying MyParks for use with RAD Server 455

 UpdateJSON.AddPair('PARK_ID', TJSONNumber.Create(AParkRec.
 ParkID));

 UpdateJSON.AddPair('PARK_NAME', AParkRec.ParkName);

 UpdateJSON.AddPair('LONGITUDE', TJSONNumber.
 Create(AParkRec.Longitude));

 UpdateJSON.AddPair('LATITUDE', TJSONNumber.Create(AParkRec.
 Latitude));

 RESTReqParkNameUpdate.Body.ClearBody;

 RESTReqParkNameUpdate.Body.Add(UpdateJSON);

 RESTReqParkNameUpdate.ResourceSuffix := AParkRec.ParkID.
 ToString;

 RESTReqParkNameUpdate.Execute;

 TDialogServiceAsync.ShowMessage('Park update result: ' +
 RESTRespParkNameUpdate.StatusText);

 finally

 UpdateJSON.Free;

 end;

end;

After creating a JSON object, this procedure fills it with the values from the
TParkUpdateRec record, sets ResourceSuffix with the ParkID value to notify
RAD Server which record it is updating, and calls the Execute method of the REST
request component. Receiving a simple OK in response signifies success—refresh the
server list to confirm it works.

It's a simple extension from this to send a park from your local device to the server as
a new park by using a TRESTRequest component with Method set to rmPOST. By
adding that, you're well on your way to building two-way data synchronization. If you
go down that route, remember to keep in mind that the remote server will have different
PARK_ID values than your local list unless you carefully manage them. I would suggest
adding a field in the local database to store the remote PARK_ID value so that you can
send updates whenever you need them without first getting the remote park. If you get
really fancy, you could implement background updates to keep them constantly in sync.
Of course, you also have to keep in mind other people sending updates, user authorization
to do so, and data collision. Download this updated version of the MyParks app (called
MyParksMobile) from GitHub at https://github.com/PacktPublishing/
Fearless-Cross-Platform-Development-with-Delphi/tree/master/
Chapter14/04_MyParksMobile.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter14/04_MyParksMobile
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter14/04_MyParksMobile
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter14/04_MyParksMobile

456 Using the RAD Server

Summary
This chapter has introduced you to the RAD Server technology stack by going through
the benefits of using a pre-built infrastructure to manage users, security, and devices with
the source code to a full-featured console application. This can jump-start your business
application, saving you far more in development costs than the price of deployment
licenses. We examined the various developer tools that come with Delphi and RAD
Server, what they're used for, and showed how to use them as you build and test. Then we
modified a mobile application to communicate with published endpoints and successfully
shared data between the two systems.

The hands-on examples we walked through gave you a thorough working knowledge of
the power provided by RAD Server, and how this can help you with your own product
idea. As you refine the features and polish your user interfaces, you'll be faced with a final
set of challenges: how to make sure your application is ready for widespread use.

The last chapter in this book will share ideas for testing your application, highlight areas to
address for putting the final touches in your code, show how to deploy your RAD Server
modules to a production server, and provide some tips for getting your mobile apps
deployed successfully to a variety of devices.

Questions
1. What operating systems and web servers does RAD Server run under?
2. What database does RAD Server use?
3. What formats are used for communicating with RAD Server?
4. What is multi-tenancy?
5. What tool comes with RAD Server to manage users and groups?
6. What is the meaning of an HTTP 404 status code?
7. What is an API endpoint?
8. What are the four most common HTTP request methods?
9. What does the Copy Components button in the REST Debugger do?
10. How do you get around Android's restriction for accessing HTTP servers

with plaintext?

Further reading
• Richardson Maturity Model: https://martinfowler.com/articles/

richardsonMaturityModel.html

https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html

Further reading 457

• DataSnap Overview and Architecture: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/DataSnap_Overview_and_Architecture

• RAD Server Overview: http://docwiki.embarcadero.com/RADStudio/
Sydney/en/RAD_Server_Overview

• RAD Server Deep Dive Webinar: https://youtube.com/
playlist?list=PLwUPJvR9mZHgccq4EfTcsCngRqpTmm_wn

• RAD Studio Enterprise Webinar Part 4 - RAD Server Development Lifecycle:
https://youtu.be/_pfxfiLsXJI

• Learn How to Create a RAD Server with "David I" Intersimone in Delphi And C++:
https://blogs.embarcadero.com/learn-how-to-create-a-rad-
server-with-david-i-intersimone-in-delphi-and-c/

• Setting Up Your RAD Server Engine: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/Setting_Up_Your_RAD_Server_Engine

• RAD Server Management Console Application: http://docwiki.
embarcadero.com/RADStudio/Sydney/en/RAD_Server_Management_
Console_Application

• What is REST?: https://restfulapi.net

• API Endpoints – What Are They? Why Do They Matter?: https://smartbear.
com/learn/performance-monitoring/api-endpoints/

• Best practices for REST API design: https://stackoverflow.
blog/2020/03/02/best-practices-for-rest-api-design/

• RAD Server API Resource: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/RAD_Server_API_Resource

• OpenAPI Inititiative and Swagger: https://swagger.io/docs/
specification/about/

• HTTP Status Codes: https://www.restapitutorial.com/
httpstatuscodes.html

• Fix Android's "Cleartext HTTP Traffic not permitted": https://www.
tldevtech.com/fix-androids-cleartext-http-traffic-not-
permitted/

• App Transport Security Has Blocked My Request: https://cocoacasts.com/
app-transport-security-has-blocked-my-request

• RAD Server Multi-Tenancy Support: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/RAD_Server_Multi-Tenancy_Support

http://docwiki.embarcadero.com/RADStudio/Sydney/en/DataSnap_Overview_and_Architecture
http://docwiki.embarcadero.com/RADStudio/Sydney/en/DataSnap_Overview_and_Architecture
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RAD_Server_Overview
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RAD_Server_Overview
https://youtube.com/playlist?list=PLwUPJvR9mZHgccq4EfTcsCngRqpTmm_wn
https://youtube.com/playlist?list=PLwUPJvR9mZHgccq4EfTcsCngRqpTmm_wn
https://youtu.be/_pfxfiLsXJI
https://blogs.embarcadero.com/learn-how-to-create-a-rad-server-with-david-i-intersimone-in-delphi-and-c/
https://blogs.embarcadero.com/learn-how-to-create-a-rad-server-with-david-i-intersimone-in-delphi-and-c/
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Setting_Up_Your_RAD_Server_Engine
http://docwiki.embarcadero.com/RADStudio/Sydney/en/Setting_Up_Your_RAD_Server_Engine
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RAD_Server_Management_Console_Application
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RAD_Server_Management_Console_Application
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RAD_Server_Management_Console_Application
https://restfulapi.net
https://smartbear.com/learn/performance-monitoring/api-endpoints/
https://smartbear.com/learn/performance-monitoring/api-endpoints/
https://stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design/
https://stackoverflow.blog/2020/03/02/best-practices-for-rest-api-design/
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RAD_Server_API_Resource
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RAD_Server_API_Resource
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://www.restapitutorial.com/httpstatuscodes.html
https://www.restapitutorial.com/httpstatuscodes.html
https://www.tldevtech.com/fix-androids-cleartext-http-traffic-not-permitted/
https://www.tldevtech.com/fix-androids-cleartext-http-traffic-not-permitted/
https://www.tldevtech.com/fix-androids-cleartext-http-traffic-not-permitted/
https://cocoacasts.com/app-transport-security-has-blocked-my-request
https://cocoacasts.com/app-transport-security-has-blocked-my-request
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RAD_Server_Multi-Tenancy_Support
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RAD_Server_Multi-Tenancy_Support

15
Deploying an

Application Suite
It is one thing to write applications that you use yourself in your safe development
environment. It is quite another to send your carefully crafted programs out into the wild
where people will install it on hardware you didn't plan for, use it in ways you weren't
expecting, and encounter problems for which you did not test. This final chapter of the
book will attempt to prepare you for several of these issues, to think from the perspective
of the user without any development tools, and to take some of the guesswork out of the
final processes of developing and deploying cross-platform apps.

We will look at the following subject areas as we complete our study of cross-platform
development:

• Configuring for a wide audience

• Securing data

• Adding the graphical touch

• Establishing product identity

• Testing for deployment

• Distributing the final product

Let's get our server and mobile app ready to meet the real world!

460 Deploying an Application Suite

Technical requirements
This chapter will utilize most of the tools and platforms discussed earlier in the book—
except Linux. We'll work mostly on Windows for developing with Delphi 10.4, modify an
ISAPI web module for IIS, add security to RAD Server, and update our mobile MyParks
app to use the updated RAD Server services.

The code for the project we'll build in this chapter can be found on GitHub at
https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter15.

Configuring for a wide audience
As you've been working with your own local databases, you know right where everything
is and it's been quick and easy to just set the database connection string directly. But your
users will install your software in different folders or on older operating systems that have
different default paths. Hardcoding a connection string with a path and port is always a
setup for problems.

We have not addressed this throughout the book as we've been focusing on other concepts
but as we look toward distributing our servers and apps to other systems, we have to take
this into consideration and allow flexibility in where files and databases will be and which
ports may or may not be available.

Enter configuration settings. There are many approaches to how and where to store these.
Some apps create a small database file in a publicly accessible area of the local device.
Others store settings in the Windows registry. Since the Windows registry is not cross-
platform, we'll avoid that technique in this book.

Where you store application settings is somewhat dependent on the application type and
how much data you need to store. For our purposes, all we need is a connection string
that is set up once during installation and everything else is in the database. Here are my
recommendations for various platforms, starting with desktop applications.

Getting settings in desktop applications
One of the simplest and most common techniques for loading configurable settings in
desktop applications is to use a .ini file (a text file with sections of NAME=VALUE
pairs) in the same path as the executable with this simple statement:

 ConfigFileName := ChangeFileExt(Application.ExeName, '.ini');

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15

Configuring for a wide audience 461

Typical application installers run as an administrator so they can create folders and
place applications, libraries, and other necessary files under C:\Program Files or
C:\Program Files (x86), which is normally read-only for general users. The
installer could prompt for the database location and write the configuration file in
the application folder. This makes it simple to view the settings and if they need to be
modified, an administrator-level user would know how to change them.

If it makes more sense to allow changes to the .ini file after installation, then a good place
is under the C:\ProgramData folder with a new folder created for your application.
Here's the code to do that using the application name as the sub-folder path:

 var AppName := ExtractFileName(Application.ExeName);

 var AppDataPath := TPath.Combine(TPath.GetPublicPath,
 AppName);

 ForceDirectories(AppDataPath);

 var ConfigFilename := TPath.Combine(AppDataPath, AppName+'.
 ini'));

Using this technique, an application called MyApp.exe would use settings stored in C:\
ProgramData\MyApp\MyApp.ini on Windows.

If your app will need different settings depending on the user running the app, you'd want
to use the user's Documents folder instead by calling GetDocumentsPath instead of
GetPublicPath.

To see what is returned by these and other functions of the TPath class, you can
run a simple FireMonkey application on various platforms that lists them upon startup
in a TListView.

Figure 15.1 – Various application paths on a Mac

462 Deploying an Application Suite

Get this app on GitHub at https://github.com/PacktPublishing/
Fearless-Cross-Platform-Development-with-Delphi/tree/master/
Chapter15/01_AppPaths.

A slightly more challenging scenario is dynamically loaded modules.

Updating a web module with dynamic settings
Loading a configuration file from the same path as the application isn't reliable from
within a library because a .dll (or .dylib on Mac or .so on Linux) file is not
necessarily in the same folder as the application that loaded it. For example, a web
module's Application path is the web server, not the path of the library itself.
Fortunately, there's a simple solution.

In Chapter 13, Web Modules for IIS and Apache, we used a data module to access a local
database of park data to serve up in a web browser. The database connection string was
simply hardcoded into the TFDConnection component's properties, which makes it easy
to test in a development environment but completely unusable in nearly any other situation.

To make the data module flexible, it should read the database connection properties
from an external source but the data module won't know what type of project it's linked
with—it needs to work from both applications and libraries. The simple solution is to
provide a property for the configuration filename and let whatever loads the data module
tell it where that file is.

Let's make these changes:

1. Copy the MyParks ISAPI library project from Chapter 13 to a new folder.
2. Open up the data module unit, udmParksDB.pas, and add a public property to

hold the name of the configuration file:

 private

 FConfigFileName: string;

 public

 property ConfigFileName: string read FConfigFileName
 write FConfigFileName;

3. Add a BeforeConnect event handler to the TFDConnection component that
reads the database connection settings from the config file:

procedure TdmParksDB.FDParkCnBeforeConnect(Sender:
TObject);

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15/01_AppPaths
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15/01_AppPaths
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15/01_AppPaths

Configuring for a wide audience 463

const

 DBSection = 'Database';

var

 Cfg: TIniFile;

begin

 Cfg := TIniFile.Create(FConfigFileName);

 try

 FDParkCn.Params.AddPair('Server', Cfg.
 ReadString(DBSection, 'Server', EmptyStr));

 FDParkCn.Params.AddPair('Port', Cfg.
 ReadInteger(DBSection, 'Port', 3050).ToString);

 FDParkCn.Params.AddPair('User_Name', Cfg.
 ReadString(DBSection, 'Username', 'SYSDBA'));

 FDParkCn.Params.AddPair('Password', Cfg.
 ReadString(DBSection, 'Password', 'masterkey'));

 FDParkCn.Params.AddPair('Database', Cfg.
 ReadString(DBSection, 'DBFile', EmptyStr));

 finally

 Cfg.Free;

 end;

end;

This assumes the calling application, or web framework in this case, will pass in the name
of the configuration file before it is needed—and if not, the data module should raise an
error that is properly caught and gives a descriptive error message to help identify the
source of the problem.

The calling module in this project is the data module inheriting from TWebModule,
or uwmMyParks. We should set the name of the config file at the earliest possible
opportunity and since the data module is created in the initialization section of its
unit, we can set that property as soon as the web module is created. The OnCreate event
handler for this web module already sets up the logging, so just add this one line:

 dmParksDB.ConfigFileName :=
ChangeFileExt(WebApplicationFileName, '.ini');

464 Deploying an Application Suite

WebApplicationFileName is, conveniently, the name of the web module .DLL file.
So, with this code in place, build the DLL file, replace the one in the IIS folder that we
set up in Chapter 13, Web Modules for IIS and Apache, and restart your IIS web server.
Now that the database connection is created at runtime with parameters loaded from the
configuration file instead of hardcoded at design time, the installation is more flexible
but requires the existence of the configuration file with the right settings to point to your
database. Without it, you'll get an error on your web page when it tries to give you the list
of parks. You'll also get an error if it's not configured correctly, such as in this example
where I purposefully gave it the wrong folder name for the file:

Figure 15.2 – Error message in the browser when the WebBroker server cannot find the database

Once you correct the error and restart the web server, you'll see the nice list of parks as we
did previously. Here's an example of a good configuration file where the database is on the
same machine as the web server and listening on the default InterBase port:

[Database]

Server=127.0.0.1

Port=3050

Username=SYSDBA

Password=masterkey

DBFile=C:\Users\Public\Documents\db\MYPARKS.IB

You can download the updated MyParks ISAPI web module and the sample
configuration file from GitHub at https://github.com/PacktPublishing/
Fearless-Cross-Platform-Development-with-Delphi/tree/master/
Chapter15/02_MyParksISAPI.

While we're talking about loading settings from a library, we also need to update the RAD
Server package.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15/02_MyParksISAPI
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15/02_MyParksISAPI
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15/02_MyParksISAPI

Configuring for a wide audience 465

Updating a RAD Server package with dynamic settings
In Chapter 14, Using the RAD Server, we wrote a small RAD Server package to access
the same park data. Similar to the web module, the RAD Server package's database
connection needs to be flexible. The changes are similar but we'll use a different technique
to get the package filename.

Copy the MyParks RAD Server package project from Chapter 14 to a new folder. In the
data module, add an OnBeforeConnect event for TFDConnection. Instead of being
given the library name, we'll derive it ourselves. We can do that by using the HInstance
global variable, which stores a handle to the current application, library, or package. We
could've used this with the ISAPI DLL also but it uses low-level Windows API calls so
isn't as friendly to work with; still, it gets us the information we need. We'll write these as
separate functions for clarity:

function GetPkgName: string;

var

 PkgName: Cardinal;

 TempName: string;

begin

 PkgName := MAX_PATH;

 SetLength(TempName, PkgName);

 PkgName := GetModuleFileName(HInstance, PChar(TempName),
 PkgName);

 SetLength(TempName, PkgName);

 Result := TempName;

end;

We call the GetModuleFilename function to look up the RAD Server package file
name, which returns a character array and its length; this, in turn, is used to derive the
configuration filename:

function GetConfigFilename: string;

begin

 Result := ChangeFileExt(GetPkgName, '.ini');

end;

466 Deploying an Application Suite

Finally, the OnBeforeConnect event handler is this simple one line:

procedure TdmMyParksList.FDParkCnBeforeConnect(Sender:
TObject);

begin

 LoadDBSettings(GetConfigFilename);

end;

Once we have the complete configuration filename, we pass it to a new private procedure
that loads the settings exactly as we did in the web module (we don't need to list the code
for that as it would be redundant). Copy the .ini file we created for the web module to
the location of your compiled RAD Server package, make sure the base filename matches,
and test it out.

Tip
If you want to test to make sure you're getting the right filenames, you can
create a small GET resource that returns a JSON string containing the name.
It can be added to this data module—just make sure to register it. The sample
project for this section includes such a resource named debug that shows how
to do this.

You can download this version of the RAD Server package from GitHub at
https://github.com/PacktPublishing/Fearless-Cross-Platform-
Development-with-Delphi/tree/master/Chapter15/03_MyParkData.

Finally, let's review configuring data storage paths on mobile apps.

Reviewing mobile data storage locations
In Chapter 9, Mobile Data Storage, we showed that you should use the TPath.
GetDocumentsPath function from the System.IOUtils unit to get the default
platform-friendly path for application data. If you ran the AppPaths project (from earlier
in this chapter) on an Android or iOS device, you may have noticed that there's no
"Public" path; using GetPublicPath, which might be viable in desktop applications,
won't work on mobile devices, which expect to only be used by one person.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15/03_MyParkData
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15/03_MyParkData

Securing data 467

In addition to local device storage configuration, we also need to determine where the
remote server is to which the app will be connecting. This is seldom a configurable
item—a published resource should be accessible from a domain name so that users never
have to bother with URL addresses and ports. If there are options, such as selecting the
server closest to the user's physical location, a simple list should be available for the user
to pick from. Always keep the options short and simple if you can.

With an understanding of where to store data on various platforms and how to provide
configuration settings for different environments, let's turn our attention to security.

Securing data
If your app is completely self-contained, meaning no interaction with web services or
saving data to a remote server, you might think you don't need to worry about securing
it. If it's a simple utility measuring or reporting on some aspect of your device, that may
be true, but if there's any personal information at all, your users will want to know that
no other app can get at their data and that if their device is stolen or hacked, interpreting
whatever is stored should be very difficult at the least.

This is one drawback of using an unsecured database such as SQLite or IBLite—there's
no built-in encryption. You can encrypt data before it gets stored, which is a good start,
but the table structures are still visible and it's far more troublesome to manually encrypt
and decrypt yourself for every data operation. By using IB ToGo on mobile devices
and a database such as InterBase 2020 on a server, you'll have full table and column
encryption—and peace of mind.

Securing database information is important but the effort is wasted if your multi-tier app
communicates via plaintext between the endpoints. Securing data transmitted across the
internet minimally involves three areas of security to consider:

• Securing your server's data transmission

• Securing access to resources

• Securing your hardware

Covering these in depth is far beyond the scope of this book but the following sections
will give you a start for thinking through what's at stake.

468 Deploying an Application Suite

Securing your server's data transmission
People seldom think about how data travels between them and resources on the internet—
they just browse a website or use a mobile app and assume their data is safe. One of our
responsibilities as developers is to think about all the possible vulnerabilities in our apps
and in the flow of data going to and from our apps—and how to protect it.

Websites that provide encrypted connections use Transport Layer Security (TLS),
more commonly known as Secure Sockets Layer (SSL), to encrypt data across the wires.
Remember in the previous chapter when we modified the mobile app to connect to RAD
Server by putting in an exception on Android devices to use cleartext traffic? Modern
versions of mobile devices expect server communications to be encrypted. To do this,
you'll need to install an SSL certificate on the server and then force all traffic to use only
the secured ports.

Many tools exist on every platform to create self-signed certificates for free; there are also
many companies that create and sell various levels of certificates. The difference is whether
you need public verification that you really are who you say you are. Anyone can create
their own certificate and if only you and a few people who know and trust you use it, then
they simply install the certificate you create and everyone is happy. However, if you need
to publish a server for new customers and don't want them getting prompted to accept
a certificate from an unknown source, then you need a validating company that marks
your certificates as "trusted" so they'll be automatically installed. These companies charge
for the time it takes to validate you, which can take anywhere from a few minutes with
simple domain name verification to several days for a full company, address, and phone
validation. The costs vary accordingly.

We won't go into the details of getting and installing SSL certificates; follow a couple of
links in the Further reading section at the end of this chapter to begin your search. There
are instructions on the websites for the certificate you choose.

In addition to securing the flow of information over the wires, you need to also control
who can access the data.

Controlling access to resources
In both Chapter 12, Console-Based Server Apps and Services, and Chapter 13, Web Modules
for IIS and Apache, we wrote read-only servers and used only the GET HTTP method for
accessing them. That is, they were used for querying existing data only—no support was
made available for updating, deleting, or adding new data from the client.

Securing data 469

In Chapter 14, Using the RAD Server, we expanded this with PUT, POST, and DELETE
methods, which could be used just as well with our prior servers. Since we already have
these additional methods supported in RAD Server, let's take off right where we left it
at the end of Chapter 14, Using the RAD Server, and discuss how RAD Server makes
securing your application quite simple. If you're not using RAD Server, read along anyway
as implementing these techniques in your own code should be done to some level—and
this might give you implementation ideas.

There are multiple ways to restrict access to RAD Server's published API endpoints:

• Users and groups: You can restrict resources to specific groups and if a user is not a
member of that group, they will be denied access; you can also control access at the
user level.

• Application keys: By setting an app secret or application ID in RAD Server's
configuration file, all requests to the server must contain this parameter.

• Master key: This is an administrator-level override key that allows access to any
endpoint of any resource on the server regardless of any other user security or
application keys that may be defined. If it is blank in the configuration file (or
commented out), this feature is disabled. If this is enabled, it should be carefully
guarded—or only temporarily allowed.

Let's look at the application ID and show how to set that up:

1. First, start the server and run RSConsole to make sure you can connect and see the
list of users as usual. Optionally, use the REST Debugger to view a list of parks.

2. Now stop the server and in RSConsole, select File | Config Local Server. A dialog
pops up to confirm the filename of the configuration file; click the Configure
button. (Optionally, you can navigate to the folder shown and edit the configuration
file with your favorite text editor—there are many comments that explain the
various options.)

470 Deploying an Application Suite

3. On the Server tab, as shown in the following figure, enter some unique identifying
text in the Application ID box, such as MyParks1234, then click Save And Close
and then Close once more:

Figure 15.3 – Adding an application ID to the server in RSConsole

4. Close and restart the server so it rereads all the settings.

This immediately limits the scope of applications that use your service, providing one
layer of security.

Close and restart RSConsole to force it to establish a new session with the server. Click
on Users and notice the error message: Application id missing from request. In order
to work with this server in RSConsole now, you must edit the connection profile. Click
once on the root node of the local profile and select Profile | Edit Profile from the menu,
switch to the Keys tab, as shown in the following figure, enter the application ID you gave
in Step 3, and click Close:

Securing data 471

Figure 15.4 – Setting the application ID of a connection profile

Now you can continue working with RAD Server through the RSConsole app using the
application ID; however, you can no longer get to the RAD Server resources with a web
browser as the browser will not be sending the "header" parameter that is now required.

This is where the usefulness of the REST Debugger starts to shine. You can add a header
parameter for the application ID or other server keys in the Parameters tab. When adding
a parameter, switch Kind for the parameter to HEADER and in the Name drop-down,
scroll down the list of header key names until you get to the X-Embarcadero keys.

Figure 15.5 – Sending header keys from the REST Debugger

472 Deploying an Application Suite

We'll use X-Embarcadero-Application-Id to set the application ID that will allow us to
connect to the server; put the same application ID that you configured the server with into
the Value field and click Apply. This allows you to successfully call RAD Server from the
REST Debugger.

Figure 15.6 – Using the REST Debugger to test RAD Server with an application ID

Client testing can now only be done with applications that can send the application ID
header parameter—and only with the right application ID value.

One of those applications affected is our MyParks mobile app. Let's fix that.

Securing data 473

Adding application security for RAD Server clients
If you try running the MyParks mobile app from the previous chapter now, you'll notice
no data shows up for the list of remote parks when you click the refresh button on the new
Server tab we added. If you run it in debug mode, you'll see an error in Delphi as it tries to
connect to RAD Server but since it isn't passing the application ID, it is not allowed access
to any RAD Server resources. Here's how to add an application ID to the REST request.

Adding a header parameter is as simple in our mobile app as it is in the REST Debugger:

1. First, copy the project from the previous chapter and open up the main form.
2. Find the TRESTClient component and click the ellipses button for the Params

property in the Object Inspector.
3. Add a parameter and set its Kind property to pkHTTPHEADER.
4. Set the Name property to the same value we selected in the REST Debugger,

X-Embarcadero-Application-Id.
5. Set the Value property to the value of your application ID—we used MyParks1234

in our example.

Run the app again and click the refresh button and the list of parks should show for you as
they did before.

You can download this version of the project from GitHub at https://github.
com/PacktPublishing/Fearless-Cross-Platform-Development-with-
Delphi/tree/master/Chapter15/04_MyParksMobile.

Even though we've limited the scope of applications that can connect, all the endpoints
are still public. If you want to protect some aspects of your service, for example, providing
free read-only access but limiting who can update your data, you should also add user
or group security. RAD Server also provides resource-level security, which means you
could add one resource that only provides the list of parks to free subscribers but provides
additional resources that enable more advanced features. I would suggest studying the
comments in the configuration file and reading the documentation further for the various
types of security available with RAD Server and REST servers in general.

Protecting the data both inside and outside of your application is a big part of the overall
security strategy and relies on the servers they connect to being constantly available. You
can manage as much or as little of that piece as you want, as we'll see next.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15/04_MyParksMobile
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15/04_MyParksMobile
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15/04_MyParksMobile

474 Deploying an Application Suite

Protecting your hardware and operating system
If you're hosting the server for your multi-tiered app at home or in your office, keep in
mind the number of users that may be connecting and get a server powerful enough
to support them all. Additionally, your internet connection will need to be stable and
fast, for both upload and download. If you want to provide any sense of reliability, you
should at the very least use a big enough Uninterruptible Power Supply (UPS) so that if
your power goes out or even blinks, your server continues working. Also, make sure the
machine cannot be stolen as best you can by either putting it in a locked but breathable
cage or using cables securely fastened to the computer and attached to the wall or
something unmovable. Your users would not be happy to find out the machine on which
their data lies is now in unknown hands.

Decent server computers will take an initial outlay of cash but save money over the long
run because you own the hardware. However, you have to maintain a good environment
and make all repairs and updates yourself. If you rent remote server space from places
such as Amazon Web Services, Rackspace, or Microsoft Azure, the fees you pay help to
provide physical security and guaranteed up-time for the machines.

Because their business relies on keeping data safe and accessible for thousands of
customers, they take physical security very seriously. They have live cameras everywhere,
heavy doors and walls, locked cabinets, and an identification system that records the
entry and exit of every person to the facility. In addition to preventing unauthorized
access, they also have temperature-controlled rooms, fire retardant systems in place, and
backup generators should they lose power. Using these Infrastructure as a Service (IaaS)
providers can save you lots of time and worry about needing to secure your hardware but
still give you the freedom to install and configure the operating system of your choice.

By managing your own servers, it's your responsibility to keep the system software up
to date and provide protection against viruses, malware, and hackers. Taking it one step
further, many of these same providers can also give you virtualized space where all you do
is provide the custom middleware you support—they take care of keeping the operating
system patched and web servers secure. As you might expect, these cost even more on an
ongoing basis but are a great way to get started on a sure footing. This level is called PaaS,
or Platform as a Service.

The following diagram helps visualize these layers and shows the increasing amount of
personal involvement you will expend as you move down the pyramid, owning more
pieces of the stack. You as the developer choose whether you utilize cloud-based providers
or house your own hardware. All this is transparent to the user; their only visibility is the
SaaS, or Software as a Service, you provide them:

Adding a graphical touch 475

Figure 15.7 – Infrastructure management options powering SaaS for multi-tiered apps

These decisions are based on your budget, level of expertise, and availability but they don't
have to be permanent. Internet providers can change, domain names can be rerouted, and
servers can be moved or upgraded. Make sure your apps embed only names that can be
updated remotely to point to new locations—never hardcode IP addresses or remote file
paths in your distributed client applications.

The hard part is over; it's time to make your software look good before the final testing.

Adding a graphical touch
You're about ready to deploy your finished app but do you have a logo? Hopefully, you've
at least thought of it. Your app needs some sort of graphical representation so when
its icon is listed with dozens of other icons on a mobile device or in a menu, it can be
quickly identified. If you don't have a logo, there are software and designers that can
help. There are also many websites that offer royalty-free icons; some are free downloads,
some require a subscription. The one I use is available for free from GetIt, Icons8, which
provides many cross-platform icons; a paid option provides resolution sizes over 100
pixels and removes licensing restrictions. Whatever you use, be prepared to provide
images that mobile apps expect to have in place—more than just one shortcut icon that
you may be accustomed to providing with Windows apps.

476 Deploying an Application Suite

Note
Console applications do not support icons. For Windows-based console
apps, only the default console-mode (or "DOS prompt") icon is used when
creating shortcuts.

In addition to icons, it's common to display a splash screen until the main screen of the
app appears. Splash screens are popular for applications that take a while to start up,
giving the user a visual cue that something is happening. This is most useful for slow
devices or when there are databases to open or processes to initialize. If the user doesn't
think anything is happening, they may try to start the app a second time. While splash
screen support is added for you on mobile apps, desktop apps have no such option—you
must add your own form that displays temporarily.

Let's explore the support for icons and splash screens built into the Delphi project options.

Iconifying desktop apps
Desktop operating systems such as Windows and macOS can launch applications from
a menu by title but can also use icons; indeed, many people only know how to start an
application by picking out its icon from a sea of other graphical images on their desktop.

Setting the icon for a Windows or Mac project is pretty simple. Pull up the project options
page and go to Application | Icons. Both platforms list both icon file types but .ico
files are used only on Windows and .icns files are used only on Macs. Simply click the
Load Icon... or Load Icns... button to select the file to be associated and linked into your
compiled application.

Note
For Windows, you'll also see logo image options for Universal Windows
Platform, a special type of Windows application for building apps on Microsoft
devices such as Windows 10, Xbox One, and HoloLens.

Mobile projects have a lot more options.

Iconifying mobile apps
As you've been building various mobile apps, you've undoubtedly seen the
FireMonkey logo.

Adding a graphical touch 477

Figure 15.8 – The default logo on FireMonkey apps

The Android and iOS devices I use for testing the apps in this book are littered with many
icons all using this same logo. On mobile devices, you need to have a custom, unique
icon as that is the standard way to launch the app. But instead of providing one icon file
as we did for each of the desktop platforms, you have to provide multiple .png files on
each platform to support the variety of screen sizes. Additionally, both Android and iOS
platforms provide options to set notification icons while iOS goes even further to define
icon fields to identify your app in its settings and the Spotlight app. There are different
screen sizes for Android, iPhone, and iPad, which all require different resolutions. In total,
there are no less than 16 different image files you need to provide—just for the icons for
one mobile app!

I selected an icon from Icons8 that I feel represents a park and saved several different sizes
of .png files. Here's what the settings page on my iPhone looks like, showing the new
MyParks icon at the bottom:

Figure 15.9 – The Settings page on an iPhone showing the new MyParks icon

478 Deploying an Application Suite

The resolution of my largest image was 96 pixels so I used a paint program to resize
the image to larger versions—losing transparency in the process—and painted the
background of these larger images with a default green. The following screenshot shows a
definite need for a professional graphic artist:

Figure 15.10 – App icons on an iPhone with a new one for the MyParks app

While we're still on the same Icons section of the project options, let's cover splash
screens, starting with the iOS platform.

Adding a graphical touch 479

Setting splash screen options on iOS
iOS creates a splash screen for you based on your logo and a light or dark background
color. On the iPhone tab, scroll down to the bottom of the list of images to find several
Launch image fields.

Figure 15.11 – Splash screens on iOS are made up of launch images over a colored background

I simply selected the largest transparent icons I had for each of them. Notice there are
two different scales of images depending on your device size. The background color is set
with the bottom two options and the one that will be used is automatically selected based
on your phone's current display mode when the application starts. The iPad options have
only the 2x scale for each of the color modes; the background color is taken from the
iPhone tab's settings.

480 Deploying an Application Suite

Creating splash screens for Android
Android options require you to create .png files for each of four resolution sizes.

Figure 15.12 – Splash screen settings for Android

Four image sizes don't cover the variety of display sizes or whether the phone is in portrait
or landscape mode when the application starts, so there are two additional options to
handle these situations:

• Splash tile mode: This can be set to disabled, clamp (repeats the color at the
edge of the image to fit the screen), repeat (repeats the image to fill the screen), or
mirror (repeats the image to fill the screen, mirroring the image alternatively).

• Splash gravity: If tile mode is disabled, the options for this field determine the
position of the image if the dimensions are less than the size of the screen.

Establishing product identity 481

If you're creating the images yourself, invest in an image program that allows quick scaling
and saving of your logo to different sizes—it will save you time assigning them all here.

The MyParks mobile app we looked at earlier in this chapter has been updated with icons
and images; again, the project can be downloaded from GitHub at https://github.
com/PacktPublishing/Fearless-Cross-Platform-Development-with-
Delphi/tree/master/Chapter15/04_MyParksMobile.

Looking good is great but app stores need several pieces of application identification
as well.

Establishing product identity
It's always a good idea to set the version information of a project that will be deployed
to multiple users. The Application | Version Info section of a project's options changes
depending on the platform selected. For Windows, Mac, and iOS platforms, you can
choose whether or not to include version information in the distributed application with
a checkbox—for Android platforms, there's always at least default information provided.
Let's go over each of these as they serve somewhat different purposes on each platform.

Including Windows version information
When you use the Windows API functions GetFileVersionInfo or
VerQueryValue, all the version information you have entered on the Version Info
project options page is returned for the file. This is also the same information that is
shown when you view the properties of a file in Windows Explorer. This includes the
module version number (major, minor, release, and build) and any values listed on the
Key-Value table on the bottom half of that page. While they don't affect how the program
is run or give any information to Windows, some installers use this information to
determine whether to overwrite an installed application with a newer version or not.

Version information for Mac and iOS devices gets a little more involved.

Identifying your Apple product
Including version information for Mac and iOS projects is necessary when deploying apps
to devices not configured for Developer mode. In addition to the module version number,
the values in the Key-Value table are added to the info.plist file, providing critical
application identification to Apple.

https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15/04_MyParksMobile
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15/04_MyParksMobile
https://github.com/PacktPublishing/Fearless-Cross-Platform-Development-with-Delphi/tree/master/Chapter15/04_MyParksMobile

482 Deploying an Application Suite

The two most important of these key-value pairs are the CFBundleName and
CFBundleIdentifier keys. CFBundleName is the short name for your project and
by default is the project name; we showed how to create CFBundleIdentifier in
Chapter 4, Multiple Platforms, One Code Base.

On iOS platforms, the UIDeviceFamily field is important if you need to restrict your
app to either iPads or iPhones; by default, it's set to iPhone & iPad. The macOS
platform does not use this key.

The bottom part of the list has several optional NSxxx keys that allow you to define
descriptive reasons for requesting various types of permissions should your app need
them. We looked at some of these in Chapter 10, Cameras, the GPS, and More.

Finally, let's look at what version information fields are needed for Android.

Identifying your Android product
Similar to iOS projects, version information is required for deploying Android apps,
and values in the Key-Value table are used for this purpose. For Android projects, the
information is stored in the AndroidManifest.xml file and the primary key is
package, which must uniquely identify your application. There are keys for label,
versionCode, and versionName; some of the others deserve special mention:

• installLocation: You can set this to internalOnly, auto, or
preferExternal (default) to direct where the app should be installed.

• theme: This can be set to TitleBar (default) or No TitleBar; if the latter,
your app runs in fullscreen mode (similar to setting BorderStyle = None in
iOS apps).

• apiKey: You can specify your Google Maps API key here (refer to Chapter 10,
Cameras, the GPS, and More).

Now that you think you have everything ready on your machine, it's time to make sure it'll
work for others.

Testing for deployment 483

Testing for deployment
It's quite embarrassing to send a compiled and nicely working program to a customer only
to get a response back that it won't even start because a required library was not found or
it can't access a database file it was expecting. In your development environment, you have
everything set up to work with files, packages, and databases in expected paths, firewall
ports you opened and forgot about, and configurations primed for optimal use. But a
customer is unlikely to have any of this in place. Even when you're just giving a customer
an update, at some point that customer may need to get a new computer or upgrade their
phone and need to reinstall your software—and possibly restore a database backup.

One of the best ways I've found to test for these cases on Windows is to use
virtual machines.

Using virtual machines
With a virtual machine, you get a completely separate and customizable platform with
an operating system to run server and desktop applications. With some versions of
virtual machine software, you can take snapshots of the current state of your system,
installed applications, path settings, and so forth; then, after testing, revert to that saved
snapshot so you can run the same tests again. It's also a way to cut down on the number
of computers on your desk as you can run Windows in a virtual machine on a Mac, thus
combining uses into one piece of physical hardware; however, you must have both a fast
hard drive and lots of memory. The following figure shows Delphi running on Windows
10 in VMware Fusion on a Mac mini:

Figure 15.13 – Delphi running in a Windows 10 virtual machine on a Mac mini

484 Deploying an Application Suite

I usually keep several snapshots, one just after Windows is installed where I've got a
brand-new system with nothing else on it, then another one after a web server is installed
but not yet with my web server modules, or just after the database is installed. Another
good snapshot point is after version 1.0 of your software is installed and working but
before an upgrade.

Microsoft offers free, limited-time virtual disks you can download, which makes a great
testing facility for Windows apps and services without getting a separate license for
Windows. They do require you to have virtual machine software in place but Hyper-V is
one of the choices and free on Windows 10. Check out the Microsoft Edge Developer link
in the Further reading section at the end of this chapter.

If you don't have enough space on your computer or enough memory to run both your
main environment and a virtual machine, get an old computer and reinstall the operating
system. Do whatever you can to provide a clean testing environment that, initially, has
none of your support files to make sure that after proper installation, your software works.

Finally, there are cloud-based solutions that allow you to rent virtual machines for
temporary use, such as Microsoft Azure and MacinCloud. You'll find these links in the
Further reading section as well.

For mobile devices, it's not so simple.

Testing the wide range of mobile devices
There is such great variability in mobile devices that it can be daunting to think of testing
for every scenario. You might keep old phones or go buy a couple of used ones for
development and testing but that will only give you a false sense of victory. There will be
someone else with a strange device or that uses it in a way you didn't think will break your
app—and complain about it online!

Unless you're a very large corporation with deep pockets, it's unlikely you'll have access to
even a fraction of the variety of mobile devices that exist. You'll need to study the various
capabilities of different editions of the major brands, pick a few, and thoroughly test on the
ones you are able to.

You may need to enlist friends or give discounts to select customers for beta testing in
exchange for feedback on how well your app works. You need to be aware of screen sizes,
whether users will likely be using a physical keyboard or a pen or just finger swipes, and
what happens when they're trying to connect to your server and they're out of internet
range. Making a checklist of testing points to give to those helping you will increase the
likelihood you'll get useful results.

Distributing the final product 485

For even greater testing coverage and peace of mind, but also at greater cost, there are
companies that provide both testing software and testing services. If you're serious
about deploying the next great app and expect it to go viral, using a service like this
is imperative.

While testing is taking place, you can put into place the steps for the final distribution of
your application suite.

Distributing the final product
Here we are! The final piece of the journey to developing cross-platform applications is to
actually get them deployed to your end users for which they were designed.

If you're familiar with distributing Windows applications, you've probably used an
installation building program such as InstallAware or InstallShield to create a self-
contained program that extracts itself, asks the user a few questions (such as where to
install), creates the destination folder with your app inside, and adds a shortcut icon to
either the desktop or the Start menu—or both. My favorite install builder for these types
of apps is Inno Setup. This is a widely used free tool and I have not come across any
Windows installation task it cannot handle.

Deploying application servers is different than end user apps. Servers are often installed
by skilled IT people that set up firewalls, redirect ports, and manage user permissions—
they usually prefer to extract applications and library files to specific locations and edit
configuration files manually to explicitly control every facet of the critical machines for
which they're responsible.

We've covered a few different server types in this last section of the book, from standalone
console apps to web server modules to RAD Server packages, and have explained several
steps to take along the way for each. Sometimes you can simply package the files necessary
into a .zip file and give it to the right person with a set of instructions and they'll make
it happen. Other times, you'll be setting it up yourself. For small in-house database server
installs on Windows, using your favorite install builder will suffice.

RAD Server deserves a little more explanation.

486 Deploying an Application Suite

Installing RAD Server modules to production
Installing your custom-written packages to RAD Server is really pretty simple but
obviously requires RAD Server itself to already be installed on the production
server—which is quite a bit more involved than just running it from your development
machine. For RAD Server to be able to load your custom Delphi packages means all its
libraries must be separate package files as well (instead of being linked into the .exe).
Therefore, you need to ensure it comes with all the support libraries needed for TCP/IP
communications, encryption, database drivers, and so forth, plus automatically starts with
the server and has any database or file permissions it may need.

There are detailed instructions for installing RAD Server on both Windows and Linux
in the Further reading section at the end of this chapter but I would highly recommend
downloading the installer you need from the GetIt portal as this automates many of
the steps for you. For Windows, go to https://getitnow.embarcadero.com/
RADServerInstallerforWindows-104-1.0 and for Linux, go to https://
getitnow.embarcadero.com/RADServerInstallerforLinux-104-1.0.
If your Linux installation is the server edition of Linux and does not include a graphical
environment, pay special attention to extra command-line parameters you may need to
include that use console-based prompts rather than windowed prompts.

Note
In addition to RAD Server itself, you may also need to install a database server.
We have used InterBase with our sample RAD Server package but when
deploying to a production installation of RAD Server, your custom package
cannot use the same instance of InterBase that RAD Server is using. The RAD
Server license adds a secret system encryption password for the InterBase
database instance it uses, which prohibits that database from general use by any
other application. You can install a second instance of InterBase and configure
it to listen on a different port but you would also need to add a server license of
InterBase for that instance in order to use InterBase from your package. Your
RAD Server module could, of course, use a different database product as long
as it is accompanied by the appropriate Delphi packages.

Once RAD Server is installed, follow these three steps to deploy:

1. Copy your compiled RAD Server packages, configuration files, and any support
libraries to a directory accessible by RAD Server (such as a sub-folder of C:\
inetpub\RADServer if running as an IIS module under Windows).

2. Edit the emsserver.ini file and add the names of your packages to the
[Server.Packages] section.

3. Restart RAD Server.

https://getitnow.embarcadero.com/RADServerInstallerforWindows-104-1.0
https://getitnow.embarcadero.com/RADServerInstallerforWindows-104-1.0
https://getitnow.embarcadero.com/RADServerInstallerforLinux-104-1.0
https://getitnow.embarcadero.com/RADServerInstallerforLinux-104-1.0

Distributing the final product 487

Tip
After compiling your RAD Server project, select Project | Information for
ProjectName (where ProjectName is the name of your RAD Server project)
from the Delphi menu and it will list all the Delphi library packages that are
required to deploy with your RAD Server package. Many of these files are
already in the RAD Server folder, which makes adding your custom modules to
that folder quite simple. Any files your package depends on need to be in your
deployment folder.

Once your server is ready, test it with your favorite REST server testing tool (such as
the REST Debugger that we've used in this book). Then, the focus shifts to getting your
client apps deployed. The rest of this section highlights things you'll need to do to deliver
finished apps to your users.

Selecting deployment configuration
As we've been developing and testing mobile apps, the project configuration has been,
by default, set to Development for Android and iOS and Developer ID for the macOS
platform. By switching the configuration to Ad hoc on iOS and Normal on macOS,
it allows us to distribute our release-mode applications to a wider audience. And
switching the configuration to Application Store enables submission of our apps to the
platform's corresponding app store. The app stores must approve your app before it will be
available publicly.

Note
The following sections are high-level overviews of the steps needed to deploy
your mobile app. There are many other details that may need to be performed
when preparing and submitting apps for final deployment to the various app
stores. Additionally, the app stores (especially Apple) have constantly changing
rules through which the application must pass; this could take quite a bit of
time and possibly some negotiation with the company before being approved.
Please follow the links in the Further reading section at the end of this chapter
to read—in greater detail—all you need to know about the complete process
and how it applies to your application suite.

Here are some steps to take for each platform to prepare your apps for final delivery.

488 Deploying an Application Suite

Deploying macOS and iOS applications
In Chapter 4, Multiple Platforms, One Code Base, we walked through the steps for using
your Apple Developer account to create a signing certificate, an application identifier, and
finally a profile that is associated with your apps. We went through that exercise for iOS
apps, creating a wildcard profile that allowed us to build multiple apps under one profile,
but we need explicitly named profiles when submitting to the App Store; this also applies
to Mac apps when you're ready to deploy. Review those steps to create a profile in your
Apple account that includes deploying to the macOS platform, then apply the bundle ID
created there to the CFBundleIdentifier key on the Version Info screen of the project
options, as described earlier in this chapter in the Establishing product identity section.

For Ad hoc (iOS) or Normal (macOS) deployment, select Project | Deployment from the
Delphi menu, and click the Deploy button. This deploys the finished application to your
Mac through the Platform Assistant server to a sub-folder of the scratch-dir folder
corresponding to your Delphi profile.

Mac application distribution is complete at this point and you can launch the application
or copy it to another location. iPhone and iPad apps require one more step. The
deployment process placed a .ipa file that needs to be deployed to your iPhone or iPad.
Bring up Xcode, select Devices and Simulators from the Window menu, and select your
device. Now drag and drop the .ipa file onto the INSTALLED APPS section of the
window—and watch the app get installed onto your connected device.

Figure 15.14 – Apps installed on an iPhone via Xcode

Distributing the final product 489

Setting your Delphi project's Configuration to Application Store prepares the app to
be submitted to the Apple App Store and once compiled, cannot be run as is from your
devices—you have to switch Configuration back to either Development or Ad hoc. Once
generated, there are a few more steps for Apple store submission:

1. Browse to https://appstoreconnect.apple.com and select My Apps.
2. Click the plus sign (+) on the upper left of the screen and fill in the form, then

click Create.
3. Fill in the name, description, keywords, and other information that help identify

and classify your app; choose whether the app will be limited to certain users or
allowed full access; upload screenshots and perform other application preparatory
steps as found on the app submission pages.

4. Once everything looks good, click Submit for Review. This creates an app record
with a status of Prepare for Submission.

5. From your Mac, use the Transporter app (download it from the Apple App Store if
you don't already have it) to prepare and initiate the app transfer of your app archive
that Delphi compiled.

After an app is submitted, you can view its status in your Apple Developer account.

Deploying an Android app
When we first introduced the steps for building and testing Android apps back in
Chapter 4, Multiple Platforms, One Code Base, we didn't need to sign our apps because it
was just for our development purposes. Now that they'll be distributed to devices other
than our own, we need to code-sign them so that the devices (and their owners) will
trust our software.

There are multiple ways to sign your apps. The Android documentation shows how
to do so with Android Studio; the Embarcadero documentation shows how to do it
with Delphi's built-in tool. There's also an open source tool called KeyStore Explorer
(http://keystore-explorer.org) that some use. Whichever way you choose,
you'll need to provide some identifying information about you as the developer, your
organization, and your location. You'll provide both a keystore and an alias password and
when you're done, you'll have a .keystore file that you should keep safe.

https://appstoreconnect.apple.com
http://keystore-explorer.org

490 Deploying an Application Suite

Note
Do not use spaces in your password! If you do, when Delphi tries to use
the keystore tool, you'll get back a strange error message as it tries to use
the characters after the space as part of the command line. Also, don't use
punctuation in any of the location fields as they may cause problems as well.

You'll use this file in the next steps to sign your Android app:

1. In your Delphi project options window, expand Deployment and
select Provisioning.

2. Switch Build type to Application Store and the rest of the screen will present you
with places to enter the information about your new keystore file.

3. If you have not yet created your keystore file, you can click the New Keystore...
button to create one; otherwise, select the one you have previously prepared.

4. Select Project | Deployment from the Delphi menu and click the Deploy button
and a .aab file (Android Application Bundle) should be created in the bin folder
of your project.

5. Now, log in to your Google Play Developer Console (https://play.google.
com/apps/publish) and click Create app.

6. Fill in the information about your app and upload the .aab file.

You may have noticed that there are only two Android build configuration types,
Development and Application Store, as opposed to iOS, which also includes Ad hoc.
Apple apps that are specifically designated as "store" apps cannot be manually delivered
and installed; Android apps that are marked as "store apps" are not restricted to Google
Play submission but can be distributed in the same manner as "ad hoc" iOS apps.

With your store apps successfully submitted, you can take a vacation—you have
deserved it!

Summary
This final chapter has been a conglomeration of many topics, pulling together several
aspects of application development, marketing, testing, and deployment. We added
configuration to both server and client applications, providing flexibility for our
installations. We talked about the importance of security, not only locally but also
when communicating over the internet, and how to restrict access to key resources.
Finally, making sure our apps have the proper icons and version information and having
performed final testing, we then showed how to submit our finished products to both the
Apple and Google app stores.

Questions 491

This has not been an exhaustive study but hopefully has given you the insight and tools
to put you well on the road toward building a wide range of cross-platform applications.
With these increased capabilities, you can take on new clients, upgrade legacy
applications, break into new markets, and use your enriched skills with fresh ideas for
developing the next great app!

Thank you for reading this book and trying out the examples. I hope you enjoyed
the journey, have a renewed and greater appreciation for the Delphi programming
environment in the cross-platform arena, and learned a great deal in the process! Always
keep learning and growing—fearlessly!

Questions
1. What simple function call returns the filename of the current web module?
2. What Windows API function call returns the filename of the current package

or DLL?
3. How do you dynamically set the parameters for a FireDAC database connection?
4. When should you use GetDocumentsPath and when should you use

GetPublicPath?
5. Which embedded version of InterBase supports encryption?
6. In what ways can the REST Debugger help test REST services that a web

browser cannot?
7. What's the difference between PaaS and IaaS?
8. What type of icon file does Windows require? And Mac?
9. How are splash screens created for iOS apps?
10. How do you restrict your apps for iPad use only?
11. Where do you store your Google Maps API key in an Android project?
12. What are the purposes of the three types of iOS configurations?

492 Deploying an Application Suite

Further reading
• RAD Server Resource Overview: http://docwiki.embarcadero.

com/RADStudio/Sydney/en/RAD_Server_Resource_
Overview#Declaring_an_Endpoint_Method

• What is SSL?: https://www.ssl.com/faqs/faq-what-is-ssl/

• Let's Encrypt: https://letsencrypt.org

• Web Server SSL Certificates: https://ksoftware.net/ssl_certs.html

• RAD Server Engine Authorization: http://docwiki.embarcadero.com/
RADStudio/Sydney/en/RAD_Server_Engine_Authorization

• Installing the RAD Server or the RAD Server Console on a Production Environment
on Windows: https://docwiki.embarcadero.com/RADStudio/Sydney/
en/Installing_the_RAD_Server_or_the_RAD_Server_Console_
on_a_Production_Environment_on_Windows

• How to Deploy Your RAD Server Project on Windows with IIS: https://blogs.
embarcadero.com/how-to-deploy-your-rad-server-project-on-
windows-with-iis/

• How to Deploy the Production Version of RAD Server To Linux: https://blogs.
embarcadero.com/how-to-deploy-the-production-version-of-
rad-server-to-linux/

• Infrastructure as a Service (IaaS): https://searchcloudcomputing.
techtarget.com/definition/Infrastructure-as-a-Service-IaaS

• Application Options: https://docwiki.embarcadero.com/RADStudio/
Sydney/en/Application_Options

• What is an ICNS file?: https://fileinfo.com/extension/icns

• Icons8 and Delphi GUIs: https://blogs.embarcadero.com/icons8-and-
delphi-guis/

• Version Info: https://docwiki.embarcadero.com/RADStudio/Sydney/
en/Version_Info

• Preparing a macOS Application for Deployment: https://docwiki.
embarcadero.com/RADStudio/Sydney/en/Preparing_a_macOS_
Application_for_Deployment

• Customizing Your info.plist: https://docwiki.embarcadero.com/
RADStudio/Sydney/en/Customizing_Your_info.plist_File

http://docwiki.embarcadero.com/RADStudio/Sydney/en/RAD_Server_Resource_Overview#Declaring_an_Endpoint_Method
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RAD_Server_Resource_Overview#Declaring_an_Endpoint_Method
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RAD_Server_Resource_Overview#Declaring_an_Endpoint_Method
https://www.ssl.com/faqs/faq-what-is-ssl/
https://letsencrypt.org
https://ksoftware.net/ssl_certs.html
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RAD_Server_Engine_Authorization
http://docwiki.embarcadero.com/RADStudio/Sydney/en/RAD_Server_Engine_Authorization
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Installing_the_RAD_Server_or_the_RAD_Server_Console_on_a_Production_Environment_on_Windows
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Installing_the_RAD_Server_or_the_RAD_Server_Console_on_a_Production_Environment_on_Windows
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Installing_the_RAD_Server_or_the_RAD_Server_Console_on_a_Production_Environment_on_Windows
https://blogs.embarcadero.com/how-to-deploy-your-rad-server-project-on-windows-with-iis/
https://blogs.embarcadero.com/how-to-deploy-your-rad-server-project-on-windows-with-iis/
https://blogs.embarcadero.com/how-to-deploy-your-rad-server-project-on-windows-with-iis/
https://blogs.embarcadero.com/how-to-deploy-the-production-version-of-rad-server-to-linux/
https://blogs.embarcadero.com/how-to-deploy-the-production-version-of-rad-server-to-linux/
https://blogs.embarcadero.com/how-to-deploy-the-production-version-of-rad-server-to-linux/
https://searchcloudcomputing.techtarget.com/definition/Infrastructure-as-a-Service-IaaS
https://searchcloudcomputing.techtarget.com/definition/Infrastructure-as-a-Service-IaaS
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Application_Options
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Application_Options
https://fileinfo.com/extension/icns
https://blogs.embarcadero.com/icons8-and-delphi-guis/
https://blogs.embarcadero.com/icons8-and-delphi-guis/
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Version_Info
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Version_Info
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Preparing_a_macOS_Application_for_Deployment
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Preparing_a_macOS_Application_for_Deployment
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Preparing_a_macOS_Application_for_Deployment
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Customizing_Your_info.plist_File
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Customizing_Your_info.plist_File

Further reading 493

• About Info.plist Keys and Values: https://developer.apple.com/
library/archive/documentation/General/Reference/
InfoPlistKeyReference/

• What is Hyper-V and How Do You Use It?: https://www.cloudwards.net/
hyper-v/

• Microsoft Edge Developer: https://developer.microsoft.com/en-us/
microsoft-edge/tools/vms/

• Best virtual machine software for Mac 2021: https://www.macworld.co.uk/
feature/best-virtual-machine-software-3671133/

• Microsoft Azure: https://azure.microsoft.com/en-us/

• MacinCloud: https://www.macincloud.com

• Software Testing Help: https://www.softwaretestinghelp.com

• InnoSetup: https://jrsoftware.org/isinfo.php

• Deploying Your Multi-Device Apps: https://docwiki.embarcadero.com/
RADStudio/Sydney/en/Distributing_Your_Multi-Device_Apps

• App Store Connect Help: https://help.apple.com/app-store-connect

• Android Studio - Sign Your App: https://developer.android.com/
studio/publish/app-signing#generate-key

• How to create an Android Keystore file: https://headjack.io/tutorial/
create-android-keystore-file/

https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/
https://developer.apple.com/library/archive/documentation/General/Reference/InfoPlistKeyReference/
https://www.cloudwards.net/hyper-v/
https://www.cloudwards.net/hyper-v/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://www.macworld.co.uk/feature/best-virtual-machine-software-3671133/
https://www.macworld.co.uk/feature/best-virtual-machine-software-3671133/
https://azure.microsoft.com/en-us/
https://www.macincloud.com
https://www.softwaretestinghelp.com
https://jrsoftware.org/isinfo.php
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Distributing_Your_Multi-Device_Apps
https://docwiki.embarcadero.com/RADStudio/Sydney/en/Distributing_Your_Multi-Device_Apps
https://help.apple.com/app-store-connect
https://developer.android.com/studio/publish/app-signing#generate-key
https://developer.android.com/studio/publish/app-signing#generate-key
https://headjack.io/tutorial/create-android-keystore-file/
https://headjack.io/tutorial/create-android-keystore-file/

Assessments
This section contains answers to questions from all the chapters.

Chapter 1 – Recent IDE Enhancements
1. The Structure pane is a hierarchical list of components but also shows procedures,

variables, used units, and so on and is mostly used for quickly jumping to the
declaration in code, whereas the Class Explorer is a TreeView of classes that when
clicked shows the fields, methods, and properties in a lower pane.

2. Right-click and select Show in Explorer from the context menu.
3. In the __recovery folder of the project.
4. Right-click on the form and select Hide Non-Visual Components or simply

hit Ctrl + H.
5. When your project requires a style or library installed only via the GetIt

Package Manager.
6. Yes, with the drop-down Desktop menu from the title bar.
7. Language Server Protocol, the new way that Code Insight is handled, which allows

the editor to remain responsive while the code is being parsed and indexed, and
also allows Code Insight features while debugging.

Chapter 2 – Delphi Project Management
1. Console, Package, Dynamic Library, RAD Server Package, Web Server Module.
2. The Tabbed template has one TitleBar across the top with four tabs; the Tabbed

with Navigation template also has four tabs but each tab has a unique, embedded
TitleBar, plus the first tab has two sub-tabs with a button that activates tab
navigation animation.

3. Dynamic Link Library (DLL).
4. File | New | Customize.

496 Assessments

5. In Project | Options | Building | Build Events, set Target to the release
configuration for the selected platform, then modify the Post-build events
Commands field.

6. The History pane.
7. dccaarm.exe.

Chapter 3 – A Modern-Day Language
1. When the Halt procedure terminates an application abruptly.
2. (* and *).
3. Yes.
4. Since Delphi 2009 (late 2008).
5. A negative integer, typically -1.
6. Because the main form is not thread-safe and some other process may be updating

that property.
7. When you want to inspect an object or type at runtime.
8. Delphi 10.3 Rio.

Chapter 4 – Multiple Platforms, One Code Base
1. Blank Application.
2. Checked was changed to IsChecked; the OnClick action is now handled

by OnChange.
3. LiveBindings.
4. FmxLinux.
5. In the PAServer folder in your Delphi installation path.
6. It is a combination of an app ID, device ID, and signing certificate by Apple.
7. A device driver specific to the device type.
8. There are form-specific sizes and device type properties that define it.
9. CPU64BITS.

Chapter 5 – Libraries, Packages, and Components 497

Chapter 5 – Libraries, Packages, and
Components

1. Windows: .dll, Mac: .dylib, Linux: .so.
2. Any unit—but not in the project file itself.
3. On the Description page of Project Options.
4. Runtime packages can be compiled for any supported platform and contain

distributable code; design-time packages work only with Delphi to register
components or augment the functionality of Delphi.

5. By adding ComponentPlatformsAttribute above the component class.

Chapter 6 – All about LiveBindings
1. No.
2. Layers and element hiding.
3. TDataGeneratorAdapter.
4. Select it from the Binding Components list (by double-clicking on the

BindingsList component).
5. No, if the display is one way or if the changed value will be interpreted the same,

there's no need to "undo" the display format.
6. The unit in which it was coded and registered.

Chapter 7 – FireMonkey Styles
1. With a StyleBook component and by using the TStyleManager class.
2. No.
3. A default style customizes the style for all controls of the selected type whereas

a custom style customizes the style only for the selected control.
4. With the Structure window.
5. RCDATA.
6. By using TStyleBook.

498 Assessments

Chapter 8 – Exploring the World of 3D
1. DirectX on Windows, Metal on Mac, OpenGL on Mac, iOS, and Android.
2. Position.Z; positive to push it further away, negative to bring it closer.
3. TLayer3D.
4. Set RotationAngle.X to 180.
5. Emissive.
6. Set its Opacity property to 0.
7. By setting the MaterialSource property of all the mesh components in

MeshCollection (only in code at runtime).
8. Make the camera a child of the object.
9. Enable Custom orientation in its project options, then check Portrait.
10. Set the Enabled property to False.
11. TDummy.
12. Temporarily set the Position.Z value to a negative value to pull it forward, then

set it back to a positive value to push it back out of the way.
13. iOS.

Chapter 9 – Mobile Data Storage
1. The Developer Edition and IBLite.
2. The character string gets stored as if it were a text field.
3. Through triggers and generators.
4. Only when the table is created.
5. TPath.GetDocumentsPath.
6. Yes.
7. The upper half of the screen.

Chapter 10 – Cameras, the GPS, and More
1. Check off the appropriate permissions in Project | Options, and ask for permission

from the user at runtime.
2. Accessing the camera, writing to external storage, and reading from external storage

(which is implied if writing is granted).

Chapter 11 – Extending Delphi with Bluetooth, IoT, and Raspberry Pi 499

3. Use the image passed in from the OnDidFinishTaking event.
4. TLocationSensor.
5. Apple's MapKit framework and the Google Maps API.
6. Check Maps Service under Entitlement List, check Access network state, Access

course location, and Access fine location in User Permissions, and set the apiKey
value in Version Info.

Chapter 11 – Extending Delphi with Bluetooth,
IoT, and Raspberry Pi

1. Call the StartDiscovery method of the current TBlueToothManager
(which can be accessed with TBlueTooth.CurrentManager.Current).

2. Classic requires pairing and more energy and doesn't work on iOS.
3. Clearly defined published services for Bluetooth low-energy.
4. A BLE that sends out data on a periodic basis using the Generic Access Profile

(GAP) in advertising mode without the need for connecting.
5. No, a beacon server is TBeaconDevice, while a beacon "client" that scans for

beacon servers is TBeacon.
6. A term that refers to a set of Delphi components that adhere to specific BLE profiles

for accessing IoT devices.
7. Specialized versions of Android.

Chapter 12 – Console-Based Server Apps and
Services

1. Enterprise or higher.
2. In Windows Explorer, navigate to \\wsl$.
3. It's so much easier to step through code and debug.
4. Indy (Internet Direct).
5. The Windows event log.
6. Syslog.
7. In the Windows registry.

500 Assessments

8. 127.0.0.1.
9. Redirecting an internet request through a router to a computer that can handle

the request.

Chapter 13 – Web Modules for IIS and Apache
1. Since Delphi 3.
2. OnHTMLTag.
3. No, they can return a wide array of data types.
4. Enable the feature in Turn Windows Features on and off.
5. In the application pool's advanced settings, enable 32-bit support.
6. Yes, if they're configured to listen on different ports.
7. Modify the httpd.conf file in the conf sub-folder where Apache for Windows

is installed.
8. Modify the /etc/apache2/apache2.conf file, add, remove, or change the

.load and .conf files in the /etc/apache2/mods-enabled folder, modify
the ports.conf file, or modify other .conf files under /etc/apache2.

9. mod_XXX.dll for Windows, libmod_XXX.so for Linux.
10. GModuleData.

Chapter 14 – Using RAD Server
1. Windows or Linux; standalone or under IIS (Windows only) or Apache

(Windows or Linux).
2. InterBase.
3. JSON (default) or XML.
4. The concept of multiple applications with completely separate sets of users,

security, resources, and devices.
5. RSConsole.
6. Not found.
7. An application programming interface with a specific URL method call to RAD

Server that results in either data returned or an action taken.

Chapter 15 – Deploying an Application Suite 501

8. GET, POST, PUT, and DELETE.
9. Takes the current URL and parameters in REST Debugger and composes a set of

components for making that request that you can then paste into your application.
10. Add android:usesCleartextTraffic="true" to the manifest template.

Chapter 15 – Deploying an Application Suite
1. WebApplicationDirectory

2. GetModuleFileName

3. By setting the Params.Values[] properties
4. GetPublicPath on Windows to support any user that might use the

application, GetDocumentsPath in most other cases.
5. IB ToGo
6. By passing header parameters and also with PUT, POST, and DELETE HTTP

methods.
7. Platform as a Service (PaaS) provides more updates and management for

you than Infrastructure as a Service (IaaS), which is pretty much just the
raw hardware.

8. Windows: .ico; Mac: .icns.
9. Your image icon is displayed on a fullscreen solid-color background.
10. Set the UIDeviceFamily field in the project's Version Info to iPad.
11. In the apiKey key of Version Info.
12. Development is for testing and debugging; Ad hoc is for deploying a release-mode

project without going through the Apple Store; Application Store is for submitting
to the Apple App Store.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

504 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Delphi GUI Programming with FireMonkey
Andrea Magni
ISBN: 9781788624176

• Explore FMX’s fundamental components with a brief comparison to VCL

• Achieve visual responsiveness through alignment capabilities and layout components

• Enrich the user experience with the help of transitions and visual animations

• Get to grips with data access and visual data binding

• Build exciting and responsive UIs for desktop and mobile platforms

• Understand the importance of responsive applications using parallel programming

• Create visual continuity through your applications with TFrameStand and TFormStand

• Explore the 3D functionalities offered by FMX

https://www.packtpub.com/product/delphi-gui-programming-with-firemonkey/9781788624176

Other Books You May Enjoy 505

Delphi High Performance

Primož Gabrijelčič

ISBN: 9781788625456

• Find performance bottlenecks and easily mitigate them

• Discover different approaches to fix algorithms

• Understand parallel programming and work with various tools included
with Delphi

• Master the RTL for code optimization

• Explore memory managers and their implementation

• Leverage external libraries to write better performing programs

https://www.packtpub.com/product/delphi-high-performance/9781788625456

506 Other Books You May Enjoy

Hands-On Design Patterns with Delphi

Primož Gabrijelčič

ISBN: 9781789343243

• Gain insights into the concept of design patterns

• Study modern programming techniques with Delphi

• Keep up to date with the latest additions and program design techniques in Delphi

• Get to grips with various modern multithreading approaches

• Discover creational, structural, behavioral, and concurrent patterns

• Determine how to break a design problem down into its component parts

https://www.packtpub.com/product/hands-on-design-patterns-with-delphi/9781789343243

507

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Fearless Cross-Platform Development with Delphi, we'd love to hear
your thoughts! If you purchased the book from Amazon, please click here to go straight
to the Amazon review page for this book and share your feedback or leave a review on the
site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-800-20382-9
https://packt.link/r/1-800-20382-9

Index

Symbols
2D controls

adding, to 3D form 189
3D

in Delphi 187, 188
3D Application template 29
3D form

2D controls, adding to 189
3D models

importing 200-203

A
access

setting up, to queries 236
setting up, to tables 236

Amazon Fire Tablet 310
Android

splash screens, creating for 480, 481
used, for running apps on

Raspberry Pi 325-327
Android app

deploying 489, 490
Android Debug Bridge (adb) 326
Android device

deploying to 102, 103

Android product
identifying 482

Android services
dealing with 30

animation
adding 198

anonymous methods
adding 60, 61

Apache HTTP server
about 400
initiating, on Linux 403
installing, on Linux 402

Apache Lounge
URL 400

Apache web module
deploying, on Linux 408, 409
deploying, on Windows 406, 407

Apache web server
initiating, on Windows 400, 401
installing, on Windows 400

Apple product
identifying 481

application
styling 174
testing, on phones 206-209

510 Index

application programming
interface (API) 263

application security
adding, for RAD Server clients 473

Aspect-Oriented Programming (AOP) 62
attributes

metadata, adding to classes 62-72
axes

color, adding 193
lighting, adding 193
lines, displaying for 190
movement, adding 193

B
basic shapes

adding 189, 190
beacon

messages, finding 317-320
messages, reacting 317-320
server app, setting up 313-316
utilizing 313

BeaconFencing components 321
beacon format

AltBeacon 313
iBeacon 313

BindingsList component 153, 154
Bluetooth Low Energy (BLE)

294, 311, 312
bookmarks 14
bookmark stacks 11
Borland Package Library 30, 122
build automation

command-line tools, using for 39-44
build configurations

using 32
build events 32

C
camera

modifying 203
Classic Bluetooth

about 294
configuring 295-298
devices, communicating 306-310
devices, connecting 306-310
devices, discovering 298-302
devices, pairing 298-302
services, publishing 302-306

clients
remote server connectivity,

providing for 342-348
code

adding, into package 119-122
sharing, in libraries 110-112
used, for managing style

resources 176-182
writing, to support multiple

platforms 105-107
code editor

History tab 36, 38
Code Insight 16
color

adding, to axes 193
animating 199, 200
light source, adding to 194-196

command-line tools
using, for build automation 39-44

component
code, linking 126, 127
creating 124-126
cross-platform support, adding 130, 131
design-time properties, adding 128-130
package, turning into 124

Index 511

conditional compilation
using 105

configuration settings
about 460
obtaining, in desktop

applications 460, 461
connection profile password 90
console application

creating 23
on Linux 334, 335
on Windows 334, 335
used, for testing data module 340, 342

console client
testing, with remote server

connectivity 348-351
control type

default style, creating for 171, 172
cross-platform Apache web modules

writing 404-406
cross-platform application

running 90-93
cross-platform development

Mac, preparing for 88-90
cross-platform version, with Delphi

reference link 119
custom style

creating, for specific control 172-174

D
data

securing 467
updating, on mobile device 252

database
deploying 248, 249
managing 228

database capabilities
approaches, comparing 225

data module
testing, with console apps 340

DataSnap technology 415
data transmission, of server

securing 468
default style

creating, for control type 171, 172
Delphi

3D 187, 188
about 48, 88
syntax 48
website-building options, surveying 376

Delphi 10.1 Berlin 10, 12
Delphi 10.2 Tokyo 12
Delphi 10.3 Rio 13, 14
Delphi 10.3 Rio, small language

enhancements
about 72
records, finalization controlling 73-76
records, initialization controlling 73-76
variable declaration, simplifying 72

Delphi 10.4, code editor status bar
features 17, 18

Delphi 10.4 Sydney 15-19
Delphi 10 Seattle 9, 10
Delphi Compiled Package (DCP) file 122
Delphi Compiled Unit (DCU) file 122
Delphi Enterprise 321
Delphi IDE

about 4, 8
Class Explorer 7
LiveBindings Designer 7
Live templates 7
Message window 6
Object Inspector 6
Project Manager 6
Structure 6

512 Index

Tool Palette 6
windows and views 4, 5

Delphi language 50
Delphi program

{ braces } 50
// double slash 50
(* parenthesis-star *) 50
structure 48, 49

DelphiVersions project
reference link 328

Delphi web modules
supporting, by configuring IIS 390-397

Delphi XE8
Welcome page 18

deployment
testing for 483

deployment configurations
selecting 487

desktop applications
configuration settings,

obtaining in 460, 461
iconifying 476

Device-Independent Pixels (DIPs) 85
Disk Operating System (DOS) 4
Dynamically Loaded Library (DLL)

about 29
writing, for Windows platform 113

dynamic libraries
creating, for non-Windows

platforms 116-119
working with 29

dynamic libraries loading
versus static libraries loading 113-115

dynamic settings
RAD Server package, updating

with 465, 466
web module, updating with 462-464

E
EddyStone 313
Embarcadero documentation 312
embedded component properties

revealing 140-142
Enterprise Mobility Services (EMS) 419
escape game

2D and 3D controls, mixing 215, 217
about 209
end game, deciding 218
hidden clickable areas,

implementing 210-212
layered objects, at design time 217, 218
main screen 209
object, activating 213, 214
object, deactivating 213, 214

Extensible Markup Language (XML) 266
extruded objects

coloring 197
extruded shapes

adding 189-191

F
favorite project types

customizing 31
Featured Files 250
final product

distributing 485
FireDAC

utilizing 236-238
FireDAC database configuration 433
FireMonkey

moving to 82
FireMonkey styles

customizing, with Style Designer 170
using 164, 165

Index 513

FireUI Live Preview 11

G
Generic Access Profile (GAP) 313
Generic Attribute Profile (GATT) 311
Generics 55
GetIt Package Manager 321
Global Positioning System (GPS) 259
Google Maps Android API 281
graphical touch

adding 475

H
hardware

protecting 474
HTML

templating 380-388
Hypertext Transfer Protocol (HTTP) 376

I
IBConsole

using 228-233
IBLite

about 467
deploying 250, 251

IBToGo
about 467
deploying 250, 251

immediate alert 311
indy components 415
Infrastructure as a Service

(IaaS) providers 474
inline variables 72
Inno Setup 485

Insomnia tool
URL 439

InstallAware 485
InstallShield 485
integrated development

environment (IDE) 265
InterBase

about 225
table and query records,

obtaining 238-244
InterBase 2020 467
InterBase, editions

Desktop Edition 225
Developer Edition 225
IBLite 226
IBToGo 226
Server Edition 225

InterBase Server Manager
using 228, 229

interfaces 52
Internet Direct (Indy) 343
Internet Information Services (IIS)

about 389
configuring, to support Delphi

web modules 390-397
Internet of Things (IoT)

about 321, 322
data, obtaining 323, 324
device, discovering 323
device, managing 323

iOS
splash screen options, setting on 479

iOS applications
deploying 488, 489

iOS deployment
preparing for 94-101

iOS development
preparing for 94-101

514 Index

ISAPI web module
logging from 397, 399

ISAPI web module for IIS
building, on Windows 389, 390

J
Java Development Kit (JDK) 283

K
KeyStore Explorer

URL 489

L
Language Server Protocol (LSP) 16
layers

using, to group LiveBindings
elements 139, 140

libraries
code, sharing 110-112

lighting
adding, to axes 193

light source
adding, to colors 194-196
adding, to texture 194-196

lines
displaying, for axes 190

link loss service 311
Linux

Apache HTTP server, installing on 402
Apache HTTP server, initiating on 403
Apache web module, deploying

on 408, 409
console apps 334, 335

Linux, Apache, MySQL, and
PHP (LAMP) 400

Linux app
running 336, 337

Linux daemon
about 366
adopting 366, 367

LiveBindings
about 85
display, customizing 154, 155
edited data, parsing 156
properties 153

LiveBindings designer
using 136-138

LiveBindings elements
grouping, with layers 139, 140

LiveBindings methods
coding 156-160

LiveBindings Wizard
actions 142, 143
custom objects, prototyping at

design time 147, 148
in fields, pulling from database 143, 145
prototype data, swapping for

custom data 149-152
used, for adding controls 145, 147

logging activity
about 351-354
logging mechanism, adding 356-359
logs, sending 354-356

M
Mac

preparing, for cross-platform
development 88-90

MacinCloud 484
Microsoft Azure 484
Mida Converter 86

Index 515

mobile apps
iconifying 476-478

mobile data storage locations
reviewing 466, 467

mobile device
data, updating on 252
testing 484

multi-device application
starting 25-29

multiple cameras 203, 204
multiple StyleBooks

selecting 167, 168
MyParks app

base, establishing 263, 264
camera usage, expanding 274, 275
coordinates, saving in database 278, 279
database lookup module, adding 337-340
Delphi project, setting up to

use Google Maps 284
Google Maps API key, setting

up for Android 282, 283
image, saving to database 270-272
images, loading 272, 273
location, mapping 281
location, marking 275
location services permission,

obtaining 275-278
location, displaying in list view 279-281
map style, modifying 287, 289
neighborhood, capturing 269, 270
park points, plotting 284-286
permission, obtaining 264
permission, setting up for

Android apps 265-267
pictures, sharing 289, 290
sensitive services, using on iOS 268
setting up 258-263

MyParksMobile
reference link 455

MyParks project
modifying, with RAD Server 445

N
native development kit (NDK) 102
Navigator 15
nested types 53, 54
New Web Server Application wizard

Apache dynamic link module 377
CGI standalone executable 377
ISAPI dynamic library 377
standalone console application 377
standalone GUI application 377

O
Object Linking and Embedding (OLE) 52
objects

adding, to Pascal 50, 51
Object Windows Library (OWL) 24
operating system (OS)

about 266
protecting 474

OS X applications
deploying 488, 489

P
package

code, adding into 119-122
turning, into component 124

package filenames
working with 122, 123

packages 30
page producers 379

516 Index

paging 438
Pascal

about 48
objects, adding to 50, 51
syntax 48

Physical Web 313
Platform as a Service (PaaS) 474
Platform Assistant Server

(PAServer) 88, 118, 336
post-build events 33
Postman tool

URL 439
pre-build events 33
pre-link events 33
product identity

establishing 481
production

RAD Server modules,
installing to 486, 487

project types
exploring 22

Q
queries

access, setting up 236
query records

obtaining, from InterBase 238-244
obtaining, from SQLite 245-248

R
Radius Networks 313
RAD Server

connection components,
setting up 446-452

overview 419

running, on development
environment 419-426

updates, sending 452-455
used, for modifying MyParks

project 445
RAD Server clients

application security, adding for 473
RAD Server Management Console

using 426, 427
RAD Server modules

installing, to production 486, 487
RAD Server package

updating, with dynamic
settings 465, 466

RAD Server resource
about 428
data, deleting 442-445
data, inserting 442-445
data, updating 442-445
modules, writing to 428
MyParks, implementing 432-435
REST server, building without

code 436-439
testing, with REST Debugger 439-442
wizard, used for creating resource

package 428-432
RAD Server's published API endpoints

access, restricting 469
RAD Server, use case

about 415
application's multi-user,

need for 416, 417
cost 418
push notifications, enabling for

registered devices 417, 418
Raspberry Pi

apps, running with Android 325-327
using 324, 325

Index 517

related projects
working with 34, 35

remote server connectivity
providing, for clients 342-348
testing with, console client 348-351

resources
access, controlling to 468-472

REST Debugger 439
Runtime Library (RTL) 113
Runtime Type Information (RTTI) 62

S
satellite camera 205
Scalable Vector Graphics (SVG) 192
screen sizes

target views, exploring 104, 105
working with 104

Secure Sockets Layer (SSL) 468
Selection Expansion 12
server

client app, modifying to 369-372
exposing 367, 368

Server Socket 302
single application-wide style

setting up 174
Smart Bluetooth 311
snapshots 483, 484
Software as a Service (SaaS) 474
source modifications

managing 35
source repositories

integrating 38, 39
splash screen options

setting up, on iOS 479
splash screens

about 476
creating, for Android 480, 481

SQLite
about 226, 250, 467
differences, from mainstream

databases 227
table and query records,

obtaining 245-248
SQLite database 452
SQLite Studio

URL 233
using 233, 235

standalone web server application
creating 377

static libraries loading
about 113
versus dynamic libraries

loading 113-115
strong type checking

applying 56-59
Structured Query Language (SQL) 259
Style Designer

used, for customizing
FireMonkey styles 170

style resources
managing, with code 176-182

style sets
loading 165, 166

styles per form
customizing 174-176

sub-procedures service 311
substyle definitions

accessing 169
system encryption password 486

T
table, and query records

obtaining, from InterBase 238-244
obtaining, from SQLite 245-248

518 Index

tables
access, setting up to 236

table records
obtaining, from InterBase 238-244
obtaining, from SQLite 245-248

target platforms
exploring 22

target views
exploring 104, 105

textures
light source, adding to 194-196

ThingConnect components 323
touch-oriented interfaces 252-254
Transport Layer Security (TLS) 468
TX power service 311
type inference 72

U
Unicode

migrating to 55
Uninterruptible Power Supply (UPS) 474
universally unique identifier (UUID) 305
Universal Windows Platform 476
unknown data types

handling 52
user-defined shapes 192

V
virtual machines

using 483, 484
Visual Component Library (VCL) 82, 187

W
WAMP 400
WebBroker

about 377, 415
module, setting up 378-380

web module
updating, with dynamic

settings 462-464
Web Server Application wizard 376
website-building options

surveying, in Delphi 376
Windows

Apache web module, deploying
on 406, 407

Apache web server, installing on 400
Apache web server, initiating on 401
console apps 334, 335
ISAPI web module for IIS,

building 389, 390
Windows Event Log

Windows service, logging to 362-365
Windows FireMonkey project

working with 83-86
Windows service

creating 359-362
logging, to Windows Event Log 362-365

Windows subsystem for Linux
about 336
installing 335, 336

Windows VCL application
building 24
migrating, to use FireMonkey 86, 87

Windows version information
obtaining 481

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Section 1:
Programming
Power
	Chapter 1: Recent IDE Enhancements
	Understanding the Delphi IDE
	Delphi 10 Seattle
	Delphi 10.1 Berlin
	Delphi 10.2 Tokyo
	Delphi 10.3 Rio
	Delphi 10.4 Sydney
	Summary
	Questions
	Further reading

	Chapter 2: Delphi Project Management
	Technical requirements
	Creating a console application
	Building a Windows VCL application
	Starting a multi-device application
	Working with dynamic libraries
	Understanding packages
	Dealing with Android services
	Customizing your favorite project types

	Using build configurations effectively
	Build events

	Working with related projects
	Managing source modifications
	Looking through your code history
	Integrating source repositories

	Using the command-line tools for build automation
	Summary
	Questions
	Further reading

	Chapter 3: A Modern-Day Language
	Technical requirements
	Remembering Delphi's Pascal roots
	Reviewing the syntax

	Growing a language
	Adding objects to Pascal
	Promising functionality with interfaces
	Handling unknown data types
	Supporting nested types
	Migrating to Unicode
	Applying strong type checking generically
	Adding anonymous methods for cleaner code
	Adding metadata to your classes with attributes

	Learning about the latest enhancements
	Simplifying variable declaration
	Controlling initialization and the finalization of records

	Summary
	Questions
	Further reading

	Section 2:
Cross-Platform Power
	Chapter 4: Multiple Platforms, One Code Base
	Technical requirements
	Moving to FireMonkey from the VCL
	Starting a new Windows FireMonkey project
	Migrating an existing Windows VCL application to use FireMonkey

	Preparing other platforms
	Preparing a Mac for cross-platform development
	Running your first cross-platform application
	Preparing for iOS development and deployment
	Preparing your PC to deploy to an Android device

	Working with various screen sizes
	Exploring target views

	Writing code to support multiple platforms
	Summary
	Questions
	Further reading

	Chapter 5: Libraries, Packages, and Components
	Technical requirements
	Sharing code in libraries
	Things to keep in mind for the Windows platform
	Loading libraries dynamically versus statically
	Things to keep in mind for non-Windows platforms

	Putting code into packages
	Working with package filenames

	Turning a package into a component
	Creating our first component
	Adding in the code to a component
	Adding design-time properties to a component
	Adding cross-platform support to components

	Summary
	Questions
	Further reading

	Chapter 6: All about LiveBindings
	Technical requirements
	Using the LiveBindings designer to get started quickly
	Using layers to group LiveBindings elements
	Revealing embedded component properties

	Creating magic with the LiveBindings Wizard
	Pulling in fields from a database
	Adding more controls through the wizard
	Prototyping custom objects at design time
	Swapping out prototype data for your
own custom data

	Applying custom formatting and parsing to your bound data
	Getting to the BindingsList
	Customizing the display
	Parsing edited data

	Coding your own LiveBindings methods
	Summary
	Questions
	Further reading

	Chapter 7: FireMonkey Styles
	Technical requirements
	Understanding and using FireMonkey styles
	Loading style sets
	Selecting between multiple StyleBooks
	Accessing substyle definitions

	Customizing FireMonkey styles with the Style Designer
	Creating a default style for a control type
	Creating a custom style for a specific control

	Styling your applications with ease
	Quickly setting a single, application-wide style
	Customizing styles per form
	Managing style resources with code

	Summary
	Questions
	Further reading

	Chapter 8: Exploring the World of 3D
	Technical requirements
	Getting started with 3D in Delphi
	Adding 2D controls to a 3D form

	Adding basic and extruded shapes
	Showing lines for the axes
	Extruded shapes
	User-defined shapes

	Adding color, lighting, and movement
	Adding a light source to colors and textures
	Coloring extruded objects
	Adding animation
	Animating color

	Importing 3D models
	Changing the camera
	Multiple cameras
	Satellite camera
	Testing on phones

	Let's write a game!
	Implementing hidden clickable areas
	Activating and deactivating an object
	Mixing 2D and 3D controls for best use of each
	Working with layered objects at design time
	Deciding on the end game

	Summary
	Questions
	Further reading

	Section 3:
Mobile Power
	Chapter 9: Mobile Data Storage
	Technical requirements
	Comparing different approaches
	Learning about InterBase's editions
	Introducing SQLite

	Managing databases
	Using the InterBase Server Manager and IBConsole
	Trying out SQLite Studio

	Setting up access to tables and queries
	Utilizing FireDAC, Delphi's cross-platform Data Access Component
	Getting table and query records from InterBase
	Getting table and query records from SQLite

	Deploying your database
	Deploying IBLite and IBToGo

	Updating data on a mobile device
	Understanding touch-oriented interfaces

	Summary
	Questions
	Further reading

	Chapter 10: Cameras, the GPS,
and More
	Technical requirements
	Setting up

	Establishing a base
	Getting permission
	Setting up permissions for Android apps
	Using sensitive services on iOS

	Capturing your neighborhood
	Saving an image to the database
	Loading previously taken images
	Expanding your use of the camera

	Marking your spot
	Getting permission for location services
	Saving coordinates in the database
	Showing the location in the list view

	Mapping your way
	Setting up a Google Maps API key for Android
	Setting up your Delphi project to use Google Maps
	Plotting park points
	Changing the map style

	Sharing your pictures
	Summary
	Questions
	Further reading

	Chapter 11: Extending Delphi with Bluetooth, IoT, and Raspberry Pi
	Technical requirements
	Starting with Bluetooth Classic
	Configuring Classic Bluetooth
	Discovering and pairing devices
	Publishing Bluetooth services
	Connecting and communicating

	Learning about low-energy Bluetooth
	Utilizing beacons
	Setting up a beacon server app
	Finding and reacting to beacon messages
	Fencing your application

	Doing more with the Internet of Things
	Discovering and managing your device
	Getting data from IoT devices

	Using a Raspberry Pi
	Using Android to run your apps on a Raspberry Pi

	Summary
	Questions
	Further reading

	Section 4:
Server Power
	Chapter 12: Console-Based Server Apps and Services
	Technical requirements
	Starting with console apps on Windows and Linux
	Installing the Windows subsystem for Linux
	Running our first Linux app
	Adding a simple database lookup module
	Testing the data module with a console app

	Providing remote server connectivity for clients
	Testing with a console client

	Logging activity
	Sending logs in two directions
	Adding a custom logging mechanism

	Creating a Windows service
	Logging to the Windows Event Log

	Adopting a Linux daemon
	Exposing your server to the world
	Modifying our client app to use the new server

	Summary
	Questions
	Further reading

	Chapter 13: Web Modules for IIS and Apache
	Technical requirements
	Surveying website-building options in Delphi
	Understanding the Web Server Application wizard

	Getting comfortable with the underlying framework
	Templating your HTML

	Building an ISAPI web module for IIS on Windows
	Logging from an ISAPI web module

	Getting started with the Apache HTTP server
	Installing and starting Apache on Windows
	Installing and starting Apache on Linux

	Writing cross-platform Apache web modules
	Deploying an Apache web module on Windows
	Deploying an Apache web module on Linux

	Summary
	Questions
	Further reading

	Chapter 14: Using RAD Server
	Technical requirements
	Establishing a use case for RAD Server
	Considering an application's multi-user needs
	Enabling push notifications for registered devices
	Justifying the cost

	Getting familiar with what's included
	Running RAD Server on a development environment
	Using the RAD Server Management Console

	Writing modules to extend your server
	Using the wizard to create our first resource package
	Implementing MyParks for RAD Server
	Building a REST server without code
	Testing RAD Server with the REST Debugger
	Inserting, updating, and deleting data

	Modifying MyParks for use with RAD Server
	Setting up RAD Server connection components
	Sending updates back to RAD Server

	Summary
	Questions
	Further reading

	Chapter 15: Deploying an Application Suite
	Technical requirements
	Configuring for a wide audience
	Getting settings in desktop applications
	Updating a web module with dynamic settings
	Updating a RAD Server package with dynamic settings
	Reviewing mobile data storage locations

	Securing data
	Securing your server's data transmission
	Controlling access to resources
	Adding application security for RAD Server clients
	Protecting your hardware and operating system

	Adding a graphical touch
	Iconifying desktop apps
	Iconifying mobile apps
	Setting splash screen options on iOS
	Creating splash screens for Android

	Establishing product identity
	Including Windows version information
	Identifying your Apple product
	Identifying your Android product

	Testing for deployment
	Using virtual machines
	Testing the wide range of mobile devices

	Distributing the final product
	Installing RAD Server modules to production
	Selecting deployment configuration
	Deploying macOS and iOS applications
	Deploying an Android app

	Summary
	Questions
	Further reading

	Assessments
	Chapter 1 – Recent IDE Enhancements
	Chapter 2 – Delphi Project Management
	Chapter 3 – A Modern-Day Language
	Chapter 4 – Multiple Platforms, One Code Base
	Chapter 5 – Libraries, Packages, and Components
	Chapter 6 – All about LiveBindings
	Chapter 7 – FireMonkey Styles
	Chapter 8 – Exploring the World of 3D
	Chapter 9 – Mobile Data Storage
	Chapter 10 – Cameras, the GPS, and More
	Chapter 11 – Extending Delphi with Bluetooth, IoT, and Raspberry Pi
	Chapter 12 – Console-Based Server Apps and Services
	Chapter 13 – Web Modules for IIS and Apache
	Chapter 14 – Using RAD Server
	Chapter 15 – Deploying an Application Suite

	Other Books You May Enjoy
	Index

