Creating Pascal bindings for C
v1.0

W Hunter

August 2016

Contents
1 Purpose of document
2 Prerequisites

3 Development environments

3.1 Windows 7/8.1/10 . . . oot e e e
3.2 Linux (Ubuntu)o e
3.3 Compiler Versions vt i e e e e
34 Conventions o v it i e e e e e e e

4 Linking to Object files

4.1 Thesumoftwonumbers.
4.1.1 Csourcefiles e
4.1.2 Pascalsourcefiles
4.2 Printingtoscreen e e e
421 Csourcefiles
4.2.2 Pascalsourcefiles
4.3 Simplearray functions e e
43.1 Csourcefiles e
43.2 Pascalsourcefiles

5 Linking to Static and Shared Object C libraries

10
10
12
14
14

17

19

C source files for calculating Fibonacci numbers 19

Creating a Static C library (akaanarchive) 20
5.2.1 Using the Static Library from Pascal 20
Creating a Shared C library (aka a Shared Objectfile) 23
5.3.1 Using the Shared Library fromPascal 23

1 Purpose of document

The purpose of this document is to show how to use Clibraries from Object Pascal, more specifically
using Free Pascal (FPC). It is inspired by [1], but showing a more up to date approach as per the
Free Pascal Programmer’s Guide http://www.freepascal.org/docs-html/prog/progse28.html,
and with help from ‘Thaddy’ on the FPC forum.

[suggest you read everything in this document (that means the whole document), including the
source files, because I've also put explanations and hints in them.

In all the examples that follow I'll first show the C code and how to compile it, and then the same
for the Pascal code. Each example has three C source code files: a Header, a Module and finally the
C program itself.!

If you're not familiar with C you might wonder why one would go through all the trouble of creating
three separate files, especially for something as trivial as adding two numbers?

One reason is to keep the function definition separate from the actual C program, this way you can
have many different C programs that can use the same functions (and possibly other things). If
a function is defined in a C program and you wanted to use it in another program, you’d have to
rewrite (or copy) that piece of code every time. But you probably know this.

Another reason, and relevant in the context of this document, is that C libraries generally take this
form, namely, they consist of a Header file and the Module; the examples in this document tries to
mimic that.

The approach is one of the following methods:

1. Compile the C module into an object file (*.o file) and link to the object file, or
2. Create a library (static) from the object files and then link to the library or

3. Create a library (shared) from the object files and then link to the library.

I'll show how to do all three methods.

2 Prerequisites

You need to have a fairly good knowledge of the C language, and of course of Object Pascal too.
Where I refer to Pascal in this document, it also means Object Pascal, although in the context of this
document it makes little or no difference.

If you spot an error or a typo or an improvement (I'm a hobbyist programmer), please let me know.
You can mail me at whunter.za+pbc@NOSPAMgmail.com (delete the NOSPAM bit).

1If you want to read up about C programming, have a look at the Deitel books on C programming, I've also found C for
Linux Programming (by Castro Lopo, Aitken and Jones) to be a good book, especially if you're going to be using gcc.

3 Development environments

3.1 Windows 7/8.1/10
You'll need the following two compilers:

e FPC (Free Pascal Compiler) - http://www.freepascal.org/
¢ GCC (MinGW GNU C Compiler) - http://www.mingw.org/

Setting up MinGW (Minimalist GNU for Windows) on Windows can be painful (to say the least). If
on 64-bit, I suggest you download mingw-w64-install.exe instead of mingw-get-setup.exe, the
latter didn’t work for me on Windows 10.

3.2 Linux (Ubuntu)

All the code in this document was compiled and ran successfully in Ubuntu 14.04 LTS 64-bit, using
FPC and GCC. The approach on Linux is a little different for Shared Objects (Dynamic Libraries)
compared to Windows, in particular, you may have to do the following or a variant thereof:

The Cmodules must be compiled as “position-independent code” using gcc’s ‘fPIC’ flag, for example:
gcc -c¢ -fPIC -0 sum.o sum.c

gcc -c -fPIC -0 hello.o hello.c

Create a Shared Object
gcc -shared -fPIC sum.o hello.o -o liball.so

Set permissions (if required)
chmod 755 liball.so

Copy lib to a standard location
sudo cp liball.so /usr/local/lib/

Copy headers to a standard location
sudo cp sum.h /usr/local/include/ sudo cp hello.h /usr/local/include/

We need to copy the header files to the same location as the library so that function prototypes are
available to someone who wants to link to the library, unless the prototypes are known otherwise.

Ask loader to update cache
sudo ldconfig

3.3 Compiler versions
The code examples in this document was last tested and worked on Windows 10 64-bit, using

e Free Pascal Compiler version 3.0.0 [2015/11/16] for 1386

e gcc (x86_64-win32-seh, Built by MinGW-W64 project) 6.1.0

3.4 Conventions

Both Pascal programs and units uses the ‘pas’ file extension. If using the Lazarus IDE to compile
your files, you may want to use ‘lpr’ for your Pascal source files (but apparently not for units).

Static Libraries uses the ‘@’ file extension (referring to the fact that they’re merely archives).
Shared Objects (*.so0) and Dynamic Libraries (*.dll) refer to the same thing, although I read some-
where that it's not a bad idea to keep the ‘so’ extension on Windows machines too if using gcc. That

way users know that the library was probably compiled using MinGW tools.

You should know that Pascal code is not case sensitive, but C is, so keep this in mind when linking
to external code, since your function prototypes have to be identical.

4 Linking to Object files

4.1 The sum of two numbers

A trivial example showing how to calculate the sum of two integer numbers and print the result to
standard output.

4.1.1 C source files
Header file 'sum.h’

This really just contains the function prototype, the restis a C “include guard” (see for example
http://en.wikipedia.org/wiki/Include_guard))

/*
* Filename: sum.h
*

*/

#ifndef SUM_H
#define SUM_H

// Function prototype(s)
int sum(int x, int y);

#endif

Module 'sum.c’

This is where the actual function’s workings are defined, the function needs to correspond to the
prototype in the Header file.

/*

* Filename: sum.c
*

*/
#include "sum.h"

int sum(int x, int y)

{
}

return x + y;

http://en.wikipedia.org/wiki/Include_guard)

Program ‘mainl.c’

Note thatin the program we only include the Header file, and then simply call the function. We don’t
actually need to know how the function is implemented, we just need to know what the function
definition looks like (by inspecting the Header file) so that we can use it.
/*
* Filename: mainl.c
*

*/

#include <stdio.h>
#include "sum.h"

int main(void)

{
int a = 17;
int b = 19;
printf("From C: The sum of %d and %d is %d\n", a, b, sum(a,b));
return 0;
}

Compiling the C code

First create an object-code file from the C module; in a terminal (for example, ConsoleZ onWindows)

type:

gcc -C sum.cC

This should produce an object-code file sum.o. Now create a program called main1.exe by compil-
ing and linking the object-code file and creating an executable:

gcc sum.o mainl.c -o mainl.exe
This should produce a file main1.exe (the 'exe’ extension is only required on Windows machines).
If you run the program (by typing its name in the terminal), you should get:

From C: The sum of 17 and 19 is 36

That just proves that the C code compiled and works as expected, which is obviously important.

4.1.2 Pascal source files

Two files are required, namely a Pascal unit and the Pascal program.

Unit ‘unitl.pas’

We link to the C object file via the following Pascal unit.

unit unitil;
{$1link sum.o} // link to C object-code, same as {$L sum.o}

interface
// leave this empty

uses ctypes; // need to specify this else FPC won't compile

function sum(x, y : cint32) : cint32; cdecl; external;
// function args and types to match the ones as defined in sum.h

implementation
// leave this empty

end.

Program ‘progl.pas’
program progl;
{$mode objfpc}{$H+}

uses
unitil;

var
a, b: integer;

begin
a :=12; // 17 in C program
b :=51; // 19 in C program
writeln('From Pascal: The sum of ', a,
end.

and ', b, ' is ', sum(a, b));

NOTE:- Nowhere in the above Pascal code did we define how to add two integers (since that would
be pointless as it’s already defined in the C code).

Compiling the Pascal code

We can now call the “C generated” sum.o object file from Pascal code. As you can see from the
Pascal code above, the sum function isn’t defined anywhere except in the C source code. And that’s
the whole idea, the intention is to use the “C generated” object-file from Pascal and not having to
define (write the code for) the function again because it’s already been done in C.

Compile the Pascal program (output the file as progl.exe, fpc will compile and link the files):

fpc progl.pas -oprogl.exe

If you're on a 64-bit machine, you may have to type this instead (this is true for the rest of the
examples too):

fpc -Px86_64 progl.pas -oprogl.exe

This should produce a file prog1.exe. If you run the program (by typing its name in the terminal),
you will get

From Pascal: The sum of 12 and 51 is 63.

NOTE:- Since we’ve passed different values (12 and 51) to the sum function in the Pascal code, we
obviously expect a different answer.

4.2 Printing to screen

A slightly more complicated example showing how to print to standard output.

For this example to work [had to link to 1ibmsvcrt.a in my MinGW directory (just search for it). |
just copied the library file to the same directory as my source files.

4.2.1 C source files

Header file 'hello.h’

/*
* Filename: hello.h
*

*/

#ifndef HELLO_H
t#tdefine HELLO_H

void printhello(void);
void printhelloperson(char *);

#tendif

Module ‘hello.c’

/*
* Filename: hello.c
*

*/

#include <stdio.h>
#include "hello.h"

void printhello(void)

{
printf("Hello, World!");
printf("\n");
}
void printhelloperson(char *name)
{
printf("Hello ");
printf("%s\n", name);
}

10

Program ‘main2.c’

/*
* Filename: main2.c
*

*/

#include <stdio.h>
#include "hello.h"

int main(void)

{
char *name = "John Smith"; // same as: char name[] = "John Smith";
printf("From C:\n");
printhello();
printhelloperson(name);
return 0;

}

Compiling the C code

As before, first create an object-code file from the C module; in a terminal type:

gcc -c hello.c

This should produce an object-code file hello.o. Now create a program called main2.exe by com-
piling and linking the object-code file and creating an executable:

gcc main2.c hello.o -o main2.exe

This should produce a file main2.exe. If you run the program (by typing its name in a terminal),
you will get:

From C:
Hello, World!
Hello John Smith

11

4.2.2 Pascal source files

Unit ‘unit2.pas’

We link to the C object file via the following Pascal unit.

unit unit2;
{$1link hello.o} // Link to C object-code
{$ifdef WINDOWS}

{$1linklib libmsvcrt}
{$else} // Linux

{$1inklib 1libc} // or try {$linklib c}
{$endif}

{Note the difference in use of $link and $linklib above,
the first is for object files, the latter for libraries.}

interface
// leave this empty

uses ctypes;
procedure printhello; cdecl; external;
procedure printhelloperson(name : pchar); cdecl; external;

// function prototypes to match that of hello.h exactly, even the case!

implementation
// leave this empty

end.

Program ‘prog2.pas’
program prog2;
{$mode objfpc}{$H+}

uses
unit2;

var
name: pchar; // “char will also work

begin
name := 'Joe Public';
writeln('From Pascal, calling C functions:');
PrintHello;
PrintHelloPerson(name);
end.

12

Compiling the Pascal code

Compile the Pascal program (output the file as prog2.exe):
fpc -Px86_64 prog2.pas -oprog2.exe

This should produce a file prog2. exe. If you run the program (by typing its name in the terminal),
you will get

From Pascal, calling C functions:
Hello, World!
Hello Joe Public

13

4.3 Simple array functions

An example showing how to work with 1-d arrays (vectors)using functions that operate on arrays.

4.3.1 C source files

Header file 'arrfun.h’

/*
* Filename: arrfun.h
*

*/

#ifndef ARRFUN_H
t#tdefine ARRFUN_H

// Function prototype(s)

void multelem(double u[], double v[], double w[], int len_w);
// Multiply arguments element-wise; vectors must be same Llength

double sumelem(double v[], int len_v);
// Sum of elements

#endif

Module ‘arrfun.c’

/*
* Filename: arrfun.c
*

*/

void multelem(double u[], double v[], double w[], int len_w)
// Multiply arguments element-wise; vectors must be same Length

{

int i;

for (i = 0; i < len_w; i++)

{
}

wli] = u[i] * v[i];
}

double sumelem(double v[], int len_v)
// Sum of elements

{
double ans = v[@];

int i;
for (i = 1; i < len_v; i++)
{

ans = ans + Vv[i];

}

return ans;

14

Program ‘main3.c’

/*

* Filename: main3.c

*

*/

#include <stdio.h>
#include <stdlib.h>
#include "arrfun.h"

int main(void)

{

int i;

// two vectors

double a[] = {1,2,3,4,5};
double b[] = {6,2,4,7,5};
double c[] {0,0,0,0,0};

// determine Llength of vectors
int veclen = sizeof(a) / sizeof(double);

// multiply vectors element-wise
multelem(a, b, c, veclen);

// print result 1
printf("From C: The multiplied elements are:\n");
for (i = @; i < veclen; i++)

{
}

printf("Item %d: %f\n", i, c[i]);

// print result 2
printf("From C: The sum of the elements is:\n");
printf("Sum: %f\n", sumelem(c, veclen));

return 0;

15

Compiling the C code

As before, first create an object-code file from the C module; in a terminal type:

gcc -c arrfun.c

This should produce an object-code file arrfun.o. Now create a program called main3.exe by com-
piling and linking the object-code file and creating an executable:

gcc main3.c arrfun.o -o main3.exe

This should produce a file main3.exe. If you run the program (by typing its name in a terminal),
you will get:

From C: The multiplied elements are:
Item ©: 6.000000

Item 1: 4.000000

Item 2: 12.000000

Item 3: 28.000000

Item 4: 25.000000

From C: The sum of the elements is:
Sum: 75.000000

16

4.3.2 Pascal source files
Unit ‘unit3.pas’

We link to the C object file via the following Pascal unit.

unit unit3;
{$1link arrfun.o}

interface
// leave this empty

uses ctypes;

procedure multelem(u, v, w:pcdouble; len_w:cint32); cdecl; external;
// multiply arguments element-wise; vectors must be same Length

function sumelem(v:pcdouble; len_v:cint32): cdouble; cdecl; external;
// sum of elements

implementation
// Lleave this empty

end.

Program ‘prog3.pas’

program prog3;
{$mode objfpc}{$H+}

uses
unit3;

var
a: array[@..4] of double (1, 0.5, 1/3, 0.25, 0.2);
b: array[0..4] of double (5, 3.2, 8.5, 4.05, 1.4);
c: array[@..4] of double = (0, 0, 0, 0, 0);
veclen: integer = length(a);
i: integer;
ans : double;

begin
writeln('From Pascal: The multiplied elements are:');
multelem(a, b, c, veclen);
for i := @ to veclen - 1 do

writeln('Item ', i:1, ': ', c[i]:1:2);

writeln('"');
writeln('From Pascal: The sum of the elements is:');

ans := sumelem(b, veclen);
writeln('Sum :', ans:5:1);
end.

17

Compiling the Pascal code

Compile the Pascal program (output the file as prog3.exe):
fpc -Px86_64 prog3.pas -oprog3.exe

This should produce a file prog3. exe. If you run the program (by typing its name in the terminal),
you will get

From Pascal: The multiplied elements are:
Item ©: 5.00

Item 1: 1.60
Item 2: 2.83
Item 3: 1.01
Item 4: 0.28

From Pascal: The sum of the elements is:
Sum : 22.2

18

5 Linking to Static and Shared Object C libraries

The code in this section calculates Fibonacci numbers using recursion, it also mixes in some array
functions used in the previous section.

5.1 C source files for calculating Fibonacci numbers

Header file ‘fibonacci.h’

/*
* Filename: fibonacci.h
*

*/

#ifndef FIBONACCI_H
t#tdefine FIBONACCI_H

/* Function prototypes */
int fib(int a);
void fibseries(int series[], int len);

#tendif

Module ‘fibonacci.c’

/*
* Filename: fibonacci.c
*

*/

int fib(int val)
// Recursive function to compute Fibonacci number, counting from ©

{

if (val < @) // 'Wrong' input will return -1
1

return - 1;

else if (val == @)
return O;

else if ((val == 1)||(val == 2))
return 1;

else

return fib(val - 2) + fib(val - 1);
}

void fibseries(int series[], int len)
// Compute nth Fibonacci number for series of values

{
int i;
for (i = @; i < len; i++)
{
series[i] = fib(series[i]);
}
¥

19

Start by creating object-code files, as before:
gcc -c fibonacci.c

You should end up with a ‘fibonacci.o’ object file.

5.2 Creating a Static C library (aka an archive)

In a terminal, type:
ar cr libfibonacci.a fibonacci.o

You should end up with a static library named 1ibfibonacci.a. A static library is little more than
an archive of object-code file(s).

5.2.1 Using the Static Library from Pascal

You can now call the functions in the 'libfibonacci.a’ library as follows:

Unit "ulibfibStat.pas’

We link to the C object file via the following Pascal unit.
unit ulibfibStat;

{$1inklib 'libfibonacci.a'} // Llink to our static Llibrary Libfibonacci.a

interface
// leave this empty

// The function prototypes 1in fibonacci.h (the C header file) are:
// int fib(int a);

// void fibseries(int series[], int len);

// The equivalent Pascal functions are:

function fib(a:longint):longint; cdecl; external;

procedure fibseries(series:plongint; len:longint); cdecl; external;

implementation
// leave this empty

end.

20

Program ‘fibStat.pas’

program fibStat;
{$mode objfpc}{$H+}

uses
ulibfibStat;

var
i: integer;
vec: array[0..3] of integer = (3, 5, 7, 17);
copyvec: array[@..3] of integer = (3, 5, 7, 17);
len: integer = length(vec);

begin
WriteLn('From Pascal, referencing the C Static Library:');

for i := 0 to 17 do
WriteLn('Fib(', i, ') = ', fib(i));

fibseries(vec, len);
WriteLn();
WriteLn('Calculate Fibonacci numbers for the following vector of values:');
Write('[");
for i := @ to (len - 1) do
Write(copyvec[i], ' ');
WriteLn(']");

for i := @ to (len - 1) do

WriteLn('Fib(vec[', i, ']) = ', vec[i]);
end.

21

Compiling the Pascal code

Compile the Pascal program (output the file as fibStat.exe):
fpc -Px86_64 fibStat.pas -ofibStat.exe

This should produce a file fibStat.exe. If you run the program, you will get

From Pascal, referencing the C Static Library:

Fib(@) = @
Fib(1) = 1
Fib(2) = 1
Fib(3) = 2
Fib(4) = 3
Fib(5) = 5
Fib(6) = 8
Fib(7) = 13
Fib(8) = 21
Fib(9) = 34

Fib(1@0) = 55

Fib(11) = 89

Fib(12) = 144
Fib(13) = 233
Fib(14) = 377
Fib(15) = 610
Fib(16) = 987
Fib(17) = 1597

Calculate Fibonacci numbers for the following vector of values:
[35717]

Fib(vec[0@]) = 2
Fib(vec[1]) = 5
Fib(vec[2]) = 13
Fib(vec[3]) = 1597

You can test that it’s static by simply renaming (or deleting) the ‘libfibonacci.a’ file and running the
program again. If it runs as before, it’s proof.

22

5.3 Creating a Shared C library (aka a Shared Object file)

In a terminal, type:
gcc -shared fibonacci.o -o libfibonacci.so

You should end up with a Shared Object (dynamic lib) named libfibonacci.so that you can link
to, just as before. For large programs you may notice that the final executable is smaller, because
you’ve linked dynamically to the library, not statically, which means the library’s code isn’tincluded
in the executable. For small programs you won’t notice this.

5.3.1 Using the Shared Library from Pascal

You can now call the functions in the 'libfibonacci.so’ library as follows:

Unit ulibfibDyn.pas’

We link to the C object file via the following Pascal unit.

unit ulibfibDyn;

interface
// leave this empty

// The function prototypes in fibonacci.h are:
// int fib(int a);
// void fibseries(int series[], int len);

// The equivalent Pascal functions are (and Link to external shared object):
function fib(a:longint):longint; cdecl; external 'libfibonacci.so';
procedure fibseries(series:plongint; len:longint); cdecl; external 'libfibonacci.

so';

implementation
// leave this empty

end.

23

Program ‘fibDyn.pas’

program fibDyn;
{$mode objfpc}{$H+}

uses
ulibfibDyn;

var
i: integer;
vec: array[0..3] of integer = (18, 15, 17, 23);
copyvec: array[@..3] of integer = (18, 15, 17, 23);
len: integer = length(vec);

begin
WriteLn('From Pascal, referencing the Shared Object (Dynamic Library):');

for i := 8 to 23 do
WriteLn('Fib(', i, ') = ', fib(i));

fibseries(vec, len);
WriteLn();
WriteLn('Calculate Fibonacci numbers for the following vector of values:');
Write('[");
for i := @ to (len - 1) do
Write(copyvec[i], ' ');
WriteLn(']");

for i := @ to (len - 1) do

WriteLn('Fib(vec[', i, ']) = ', vec[i]);
end.

24

Compiling the Pascal code

Compile the Pascal program (output the file as fibDyn.exe):
fpc -Px86_64 fibDyn.pas -ofibDyn.exe

This should produce a file fibDyn.exe. If you run the program, you should get

From Pascal, referencing the Shared Object (Dynamic Library):

Fib(8) = 21
Fib(9) = 34
Fib(10) = 55
Fib(11) = 89
Fib(12) = 144
Fib(13) = 233
Fib(14) = 377
Fib(15) = 610
Fib(16) = 987
Fib(17) = 1597
Fib(18) = 2584
Fib(19) = 4181
Fib(20) = 6765
Fib(21) = 10946
Fib(22) = 17711
Fib(23) = 28657

Calculate Fibonacci numbers for the following vector of values:
[18 15 17 23]

Fib(vec[@]) = 2584
Fib(vec[1]) = 610

Fib(vec[2]) = 1597
Fib(vec[3]) = 28657

You can test that it has linked dynamicly by simply renaming (or deleting) the ‘libfibonacci.so’ file
and running the program again. If it doesn’t run as before, it's proof, on Windows you should get a
dialogue as shown below:

fibDyn.exe - System Error et

I.-"'_"‘-.I The prograrm can't start because libfibonacci.so is missing from your
‘S computer. Try reinstalling the program te fix this problem.

Figure 1: Windows error dialogue for missing library

References

[1] Marcou, Engler and Varnek. How to use C code in Free Pascal projects. University of Strasbourg,
23 July 20009.

25

	Purpose of document
	Prerequisites
	Development environments
	Windows 7/8.1/10
	Linux (Ubuntu)
	Compiler versions
	Conventions

	Linking to Object files
	The sum of two numbers
	C source files
	Pascal source files

	Printing to screen
	C source files
	Pascal source files

	Simple array functions
	C source files
	Pascal source files

	Linking to Static and Shared Object C libraries
	C source files for calculating Fibonacci numbers
	Creating a Static C library (aka an archive)
	Using the Static Library from Pascal

	Creating a Shared C library (aka a Shared Object file)
	Using the Shared Library from Pascal

