

2 -

Marco Cantù

Object Pascal Handbook

October 2014 Draft

A first draft of the “Complete Guide to the Object Pascal programming language”,
based on the compilers produced by Embarcadero Technologies

Piacenza (Italy), October 2014

Marco Cantù, Object Pascal Handbook

 - 3

Author: Marco Cantù

Publisher: Marco Cantù

Editor: Peter W A Wood

Cover Designer: Fabrizio Schiavi (www.fsd.it)

Copyright 1995-2014 Marco Cantù, Piacenza, Italy. World rights reserved.

The author created example code in this publication expressly for the free use by its readers. Source code for
this book is copyrighted freeware, distributed via the web site http://code.marcocantu.com. The copy-
right prevents you from republishing the code in print or electronic media without permission. Readers are
granted limited permission to use this code in their applications, as long at the code itself is not distributed,
sold, or commercially exploited as a stand-alone product.

Aside from this specific exception concerning source code, no part of this publication may be stored in a
retrieval system, transmitted, or reproduced in any way, in the original or in a translated language, including
but not limited to photocopy, photograph, magnetic, or other record, without the prior agreement and written
permission of the publisher.

Delphi and Appmethod are trademarks of Embarcadero Technologies. Other trademarks are of the respective
owners, as referenced in the text. The author and publisher have made their best efforts to prepare this book,
and the content is based upon the final release of the software. The author and publisher make no representa-
tion or warranties of any kind with regard to the completeness or accuracy of the contents herein and accepts
no liability of any kind including but not limited to performance, merchantability, fitness for any particular
purpose, or any losses or damages of any kind caused or alleged to be caused directly or indirectly from this
book.

The Object Pascal Handbook, October 2014 Draft.

ISBN-10: *

ISBN-13: *

Electronic edition licensed to Embarcadero Technologies Inc. Any other download or sale outlet is
likely to be illegal. Do not distribute the PDF version of this book without permission. Print edition
to become available as the book is completed in early 2015.

More information on http://www.marcocantu.com/objectpascal

Marco Cantù, Object Pascal Handbook

4 - begin

begin

Power and simplicity, expressiveness and readability, great for learning and for pro-
fessional development alike, these are some of the traits of today's Object Pascal, a
language with a long history, a lively present, and a brilliant future ahead.

Object Pascal is a multi-facet language. It combines the power of object-oriented
programming, advanced support for generic programming and dynamic constructs
like attributes, but without removing support for more traditional style of proce-
dural programming. A tool for all trades, with compilers and development tools
embracing the mobile era. A language ready for the future, but with solid roots in the
past.

What is the Object Pascal language for? From writing desktop apps to client-server
applications, from massive web server modules to middleware, from office automa-
tion to apps for the latest phones and tablets, from industrial automated systems to
Internet virtual phone networks... this is not what the language could be used for,
but what it is currently used for today, in the real world.

The core of the Object Pascal language as we use today comes from its definition in
1995, a terrific year for programming languages, given that this was the year Java
and JavaScript were also invented. While the root of the language dates back to its
Pascal ancestor, its evolution didn't stop in 1995, with core enhancements continu-
ing as of today, with the desktop and mobile compilers build by Embarcadero
Technologies and found in Appmethod, Delphi, and RAD Studio.

Marco Cantù, Object Pascal Handbook

begin - 5

A Book on Todays' Language

Given the changing role of the language, its extension over the years, and the fact it
is now attracting new developers, I felt it important to write a book that offers com-
plete coverage of the Object Pascal language as it is today. The goal is to offer a
language manual for new developers, for developers coming from other similar lan-
guages, but also for old timers of different Pascal dialects that want to learn more
about recent language changes.

Newcomers certainly need some of the foundations, but given changes have been
pervasive even old-timers will find something new in the initial chapters.

Beside a short Appendix covering the short history of the Object Pascal language,
this book was written to cover the language as it is today. A large part of the core fea-
tures of the language hasn't changed significantly since the early versions of the
Delphi, the first implementation of modern Object Pascal in 1995.

As I'll hint throughout the book, the language has been far from stagnant during all
of these years, it has been evolving at quite a fast pace. In other books I wrote in the
past, I followed a more chronological approach, covering classic Pascal first, and fol-
lowing extensions more or less as they appeared over time. In this book, however,
the idea is to use a more logical approach, progressing through the topics and cover-
ing how the language works today, and how to best use it, rather than how it evolved
over time. As an example, native data types dating back to the original Pascal lan-
guage have method-like capabilities (thanks to intrinsic type helpers) introduced
recently. So in Chapter 2 I'll introduce how to use this feature, although it won't be
until much later than you'll figure out how to make such custom type extensions.

In other words, this book covers the Object Pascal language how it is today, teaching
it from the ground up, with only a very limited historical perspective. Even if you
have used the language in the past, you might want to skim thought the entire text
looking for newer features, and not focus only on the final chapters.

Learn by Doing

The idea of the book is to explain core concepts and immediately present short
demos that readers are encouraged to try to execute, experiment with, and extend to
understand the concepts and assimilate them better. The book is not a reference
manual, explaining what the language should do in theory and listing all possible
corner cases. While trying to be precise, the focus is more on teaching the language
offering a practical step-by-step guide. Examples are generally very simple, because
the goal is to have them focused on one feature at a time.

Marco Cantù, Object Pascal Handbook

6 - begin

The entire source code is available in a subversion repository, rather than a down-
load file, so that you can easily update your code in case I publish any changes or
additional demos. You can use any subversion client (my personal preference on
Windows is for TortoiseSVN) and point it to the following HTTP URL to get all of
the demos of the book (alternatively you can also check out individual chapters):

http://code.marcocantu.com/svn/marcocantu_objectpascalhandbook/

The repository source code can also be browsed online by selecting the “Browse” link
in the code repository wiki page at:

http://code.marcocantu.com/trac/marcocantu_objectpascalhandbook

To compile and test it the demo code, you'll need one of the available versions of the
Object Pascal compiler, and possibly a recent one to compile them all. There are trial
versions available that you can use, generally allowing you a 30-days free use of the
compiler. Appendix C explains how to get started with the available IDEs.

A Companion Web Site

The book has a companion web site with further information, links, updates and
more. There are both a static, traditional site with information at:

http://www.marcocantu.com/objectpascalhandbook

and online pages on Google+ (using a bit.ly link) and Facebook at

http://bit.ly/objectpascalgplus
https://www.facebook.com/objectpascalhandbook

Acknowledgments

As any book, this volumes owes a lot to many people, too many to list one by one.
The person who shared most of the work on the book was my editor, Peter Wood,
who kept bearing with my ever changing schedule and was able to smoothen my
technical English very significantly as usual, helping to make this book (like my pre-
vious handbooks) what it is.

Given my current work position as product manager at Embarcadero Technologies, I
owe a lot to all my my coworkers and the members of the R&D team, as during my
time at the company my understanding of the product and its technology has further
increased thanks to the insight I got in countless conversations, meetings, and email
threads.

Marco Cantù, Object Pascal Handbook

begin - 7

Other people outside Embarcadero continued being important for this, from the cur-
rent group at Wintech Italia, to the countless customers, Embarcadero sales and
technical partners, Delphi community members, MVPs and even developers using
other languages and tools I keep meeting so often.

And finally big thank you goes to my family for bearing with my travel schedule,
nights of meetings, plus some extra book writing on weekends. Thanks Lella,
Benedetta, and Jacopo.

About Myself, the Author

My name is Marco and I've spent most part of the past 20 years writing, teaching,
and consulting on software development with the Object Pascal language. I wrote
the Mastering Delphi best-selling series and later self-published several Handbooks
on the development tool (about the different versions from Delphi 2007 to Delphi
XE). I have spoken at a large number of programming conferences in most conti-
nents, and taught to hundreds of developers.

Having worked as an independent consultant and trainer for many years, in 2013
my career took a sudden change: I accepted a position as Delphi and now RAD Stu-
dio product manager at Embarcadero Technologies, the company that builds and
sells these great development tools, along with the new Appmethod product.

To avoid annoying you any further, I'll only add that I currently live in Italy, com-
mute to California, have a lovely wife and two wonderful kids, and enjoy getting back
to programming as much as I can.

I hope you enjoy reading the book, as much as I enjoyed writing it (my 19th work in
print). For any further information, use any of the following contact details:

http://www.marcocantu.com
http://blog.marcocantu.com
http://twitter.com/marcocantu
https://www.google.com/+MarcoCantu
http://www.facebook.com/marcocantu

Marco Cantù, Object Pascal Handbook

8 - Table of Contents

table of contents

begin...4
A Book on Todays' Language...5
Learn by Doing.. 5
A Companion Web Site...6
Acknowledgments... 6
About Myself, the Author..7

Table of Contents..8

Part I: Foundations...14
Summary of Part I... 14

01: Coding in Pascal...16
Let's Start with Code... 16

A First Console Application... 17
A First Visual Application..18

Syntax and Coding Style...22
Comments.. 23
Symbolic Identifiers..24
White Space... 26
Indentation.. 27
Syntax Highlighting..28

Language Keywords.. 29
The Structure of a Program..33

Unit and Program Names...34
Units and Scope... 37

Marco Cantù, Object Pascal Handbook

Table of Contents - 9

The Program File...38
Compiler Directives.. 39

Conditional Defines... 40
Compiler Versions... 40
Include Files.. 42

02: Variables and Data Types..43
Variables and Assignments..44

Literal Values... 45
Assignment Statements...46
Assignments and Conversion..47
Initializing Global Variable...47
Constants... 48
Resource String Constants..49
Lifetime and Visibility of Variables...50

Data Types... 51
Ordinal and Numeric Types...51
Boolean.. 56
Characters.. 56
Floating Point Types..59

Simple User-Defined Data Types...61
Named vs. Unnamed Types...61
Subrange Types...62
Enumerated Types.. 63
Set Types.. 65

Expressions and Operators..66
Using Operators..66
Operators and Precedence..68

Date and Time.. 70
Typecasting and Type Conversions..72

03: Language Statements..75
Simple and Compound Statements..76
The If Statement... 77
Case Statements.. 79
The For Loop.. 80

The for-in Loop...83
While and Repeat Statements..84

Examples of Loops..85
Breaking the Flow with Break and Continue..87

04: Procedures and Functions..90
Procedures and Functions..90

Forward Declarations..93
A Recursive Function..94
What Is a Method?..95

Parameters and Return Values..96

Marco Cantù, Object Pascal Handbook

10 - Table of Contents

Exit with a Result...97
Reference Parameters...98
Constant Parameters... 100
Function Overloading.. 100
Overloading and Ambiguous Calls..102
Default Parameters.. 104

Inlining.. 105
Advanced Features of Functions..108

Object Pascal Calling Conventions..108
Procedural Types... 109
External Functions Declarations...112
Delayed Loading of DLL Functions...112

05: Arrays and Records..115
Array Data Types... 115

Static Arrays... 116
Array Size and Boundaries... 117
Multi-Dimensional Static Arrays...118
Dynamic Arrays.. 119
Open Array Parameters... 122

Record Data Types.. 126
Using Arrays of Records.. 128
Variant Records... 129
Fields Alignments.. 129
What About the With Statement?..131

Records with Methods.. 133
Self: The Magic Behind Records..135
Records and Constructors...136
Operators Gain New Ground...137

Variants.. 141
Variants Have No Type.. 142
Variants in Depth... 143
Variants Are Slow!... 144

What About Pointers?... 145
File Types, Anyone?.. 148

06: All About Strings...150
Unicode: An Alphabet for the Entire World...151

Characters from the Past: from ASCII to ISO Encodings..151
Unicode Code Points and Graphemes...152
From Code Points to Bytes (UTF)...153
The Byte Order Mark... 155
Looking at Unicode.. 156

The Char Type Revisited... 159
Unicode Operations With The Character Unit..159
Unicode Character Literals..161

The String Data Type.. 163

Marco Cantù, Object Pascal Handbook

Table of Contents - 11

Passing Strings as Parameters...166
The Use of [] and String Characters Counting Modes..167
Concatenating Strings... 169
The String Helper Operations...170
More String RTL.. 173
Formatting Strings... 174
The Internal Structure of Strings...177
Looking at Strings in Memory...179

Strings and Encodings.. 180
Other Types for Strings... 183

The UCS4String type... 183
Older, Desktop Only String Types...184

Part II: OOP in Object Pascal...185
Summary of Part II... 186

07: Objects...187
Introducing Classes and Objects..188

The Definition of a Class...188
Classes in Other OOP Languages..190
The Class Methods... 191
Creating an Object.. 191

The Object Reference Model...192
Disposing Objects and ARC...193
What's Nil?... 194
Records vs. Classes in Memory...195

Private, Protected, and Public.. 196
An Example of Private Data... 197
When Private Is Really Private..199
Encapsulation and Forms...200

The Self Keyword.. 202
Creating Components Dynamically..203

Constructors... 205
Managing Local Class Data with Constructors and Destructors..207
Overloaded Methods and Constructors..208
The Complete TDate Class..210

Nested Types and Nested Constants..213

08: Inheritance...216
Inheriting from Existing Types...216
A Common Base Class..219
Protected Fields and Encapsulation..220

Using the “Protected Hack”...221
From Inheritance to Polymorphism..222

Inheritance and Type Compatibility...223
Late Binding and Polymorphism..225
Overriding, Redefining, and Reintroducing Methods..227

Marco Cantù, Object Pascal Handbook

12 - Table of Contents

Inheritance and Constructors...229
Virtual versus Dynamic Methods...230

Abstracting Methods and Classes...231
Abstract Methods... 231
Sealed Classes and Final Methods..233

Safe Type Cast Operators...234
Visual Form Inheritance...236

Inheriting From a Base Form..237

09: Handling Exceptions...241
Try-Except Blocks... 242

The Exceptions Hierarchy...244
Raising Exceptions..246
Exceptions and the Stack..247

The Finally Block.. 248
Exceptions in the Real World...250
Global Exceptions Handling...251
Exceptions and Constructors...252
Advanced Exceptions.. 254

Nested Exceptions and the InnerException Mechanism...254
Intercepting an Exception...257

Part III: Advanced Features..260
Chapters of Part III... 261

14: Generics..262
Generic Key-Value Pairs...263

Type Rules on Generics...266
Generics in Object Pascal...267

Generic Types Compatibility Rules..268
Generic Methods for Standard Classes...269
Generic Type Instantiation...270
Generic Type Functions...272
Class Constructors for Generic Classes...275

Generic Constraints.. 277
Class Constraints... 277
Specific Class Constraints...279
Interface Constraints...279
Interface References vs. Generic Interface Constraints...282
Default Constructor Constraint..282
Generic Constraints Summary and Combining Them...284

Predefined Generic Containers..285
Using TList<T>... 286
Sorting a TList<T>..287
Sorting with an Anonymous Method..288
Object Containers.. 290
Using a Generic Dictionary..291

Marco Cantù, Object Pascal Handbook

Table of Contents - 13

Dictionaries vs. String Lists..294
Generic Interfaces.. 296

Predefined Generic Interfaces..298
Smart Pointers in Object Pascal...299

A Smart Pointer Generic Record...299
Interfaces to the Rescue..300
Using the Smart Pointer..301
Adding Implicit Conversion..302
Auto-Creation.. 303
The Complete Smart Pointer Code...304

Covariant Return Types with Generics..304
Of Animals, Dogs, and Cats...305
A Method with a Generic Result...306
Returning a Derived Object of a Different Class...307

15: Anonymous Methods...308
Syntax and Semantics of Anonymous Methods..309

An Anonymous Method Variable..310
An Anonymous Method Parameter...310

Using Local Variables.. 311
Extending the Lifetime of Local Variables..312

Anonymous Methods Behind the Scenes...314
The (Potentially) Missing Parenthesis..314
Anonymous Methods Implementation...315
Ready To Use Reference Types...316

Anonymous Methods in the Real World...317
Anonymous Event Handlers..318
Timing Anonymous Methods...320
Thread Synchronization..321
AJAX in Object Pascal...323

end... 328
Appendix Summary.. 328

A: The Evolution of Object Pascal..329
Wirth’s Pascal... 330
Turbo Pascal... 330
The early days of Delphi’s Object Pascal..331
Object Pascal From CodeGear to Embarcadero...332
Going Mobile.. 333

Marco Cantù, Object Pascal Handbook

14 - Part I: Foundations

part i: foundations

Object Pascal is an extremely powerful language based upon core foundations such
as a good program structure and extensible data types.

In this first part, you'll lean about the language syntax, the structure of programs,
the use of variables and data types, the fundamental language statements (like con-
ditions and loops), the use of procedures and functions, and core type constructors
such as arrays, records, and strings.

These are the foundations of the more advanced features, from classes to generic
types, that we'll explore in later parts of the book. Learning a language is like build-
ing a house, and you need to start on solid ground and good foundations, or
everything else up and above would be shining... but shaky.

Summary of Part I

Chapter 1: Coding in Pascal

Chapter 2: Variables and Data Types

Chapter 3: Language Statements

Chapter 4: Procedures and Functions

Marco Cantù, Object Pascal Handbook

Part I: Foundations - 15

Chapter 5: Arrays and Records

Chapter 6: All About Strings

Marco Cantù, Object Pascal Handbook

16 - 01: Coding in Pascal

01: coding in

pascal

This chapter starts with some of the building blocks of an Object Pascal application,
covering standard ways of writing code and related comments, introducing key-
words, and the structure of a program. I'll start writing some simple applications,
trying to explain what they do and thus introducing some other key concepts cov-
ered in more details in the coming chapters.

Let's Start with Code

This chapter covers the foundation of the language, but it will take me a few chapters
to guide you through the details of a complete working application. So for now let's
have a look at two first programs (different in their structure), without really getting
into too many details. Here I just want to show you the structure of programs that
I'll use to build demos explaining specific language constructs before I'll be able to

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 17

cover all of the various elements. Given that I want you to be able to start putting in
practice the information in the book as soon as possible, looking at demo examples
from the beginning would be a good idea.

note If are new to programming in Object Pascal and need a step-by-step guide to get started with
using the book examples and writing your own, you can refer to Appendix C.

Object Pascal has been designed to work hand-in-glove with its Integrated Develop-
ment Environment. It is through this powerful combination that Object Pascal can
match the ease of development speed of programmer-friendly languages and at the
same time match the running speed of machine-friendly languages.

The IDE lets you design user interfaces, help you write code, run your programs and
much, much more. I'll be using the IDE throughout this book as I introduce Object
Pascal to you.

A First Console Application

As a starting point, I'm going to show you the code of a simple Hello, World console
application showing some of the structural elements of a Pascal program. A console
application is a program with no graphical user interface, displaying text and accept-
ing keyboard input and generally executed from an operating system console or
command prompt. Console apps generally make little sense on mobile platforms,
and are seldom used on PCs these days.

I won't explain what the elements on the code below mean just yet, as that is the
purpose of the first few chapters of the book. Here is the code, from the
HelloConsole project:

program HelloConsole;

{$APPTYPE CONSOLE}

var
 strMessage: string;

begin
 strMessage := 'Hello, World';
 writeln (strMessage);
 // wait until the Enter key is pressed
 readln;
end.

Marco Cantù, Object Pascal Handbook

18 - 01: Coding in Pascal

note As explained in the introduction, the complete source code of all of the demos covered in the book
is available in a subversion repository. Refer to the book introduction for more details on how to
get those demos. In the text I refer to the project name (in this case HelloConsole), which is also
the name of the folder containing the various files of the demo. The project folders are grouped by
chapter, so you'll find this first demo under 01/HelloConsole.

You can see the program name in the first line after a specific declaration, a compiler
directive (prefixed by the $ symbol and enclosed in curly braces), a variable declara-
tion (a string with a given name), and three lines of code plus a comment within the
main begin-end block. Those three lines of code copy a value into the string, call a
system function to write that line of text to the console, and call another system
function to read a line of user input (or in this case to wait until the user pressed the
Enter key). As we'll see, you can define your own functions, but Object Pascal comes
with hundreds of pre-defined ones.

Again, we'll learn about all of these elements soon, as this initial section serves only
to give you an idea of what a small but complete Pascal program looks like. Of course
you can open and run this application, which will produce output like the following
(the actual Windows version is displayed in Figure 1.1).

Hello, World

Figure 1.1:
The output of the
HelloConsole example,
running on Windows

A First Visual Application

A modern application, though, rarely looks like this old fashioned console program,
but is generally made of visual elements (referred to as controls) displayed in win-
dows (referred to as forms). In most cases in this book I'll build visual demos (even
if in most cases they'll boil down to displaying simple text) using the FM platform
library.

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 19

note In case of Delphi, the visual controls come in two flavors: the VCL (Visual Component Library for
Windows) and the FM platform (a multi-device library for all supported platforms, desktop and
mobile). On the other hand Appmethod includes only the FM platform for multi-device develop -
ment. In any case, it should be rather simple to adapt the demos to the Windows-specific VCL
library.

To understand the exact structure of a visual application, you'll have to read a good
part of this book, as a form is an object of a given class and has methods, event han-
dlers, and properties... all features that will take a while to go through. But to be able
to create these applications, you don't need to be an expert, as all you have to do is
use a menu command to create a new desktop or mobile application. What I'll do in
the initial part of the book is to base the demos on the FM platform (supported by
both IDEs) and simply use the context of forms and button click operations. To get
started, you can create a form of any type (desktop or mobile, I'd generally pick a
mobile “blank” application, as it will also run on Windows), and place a button con-
trol on it, after a multi line text control (or Memo) to display the output. Figure 1.2
shows how your form will look for a mobile application in the IDE, given the default
settings. You can refer to Appendix C for step by step instructions on how to build
this demo.

What you have to do to create a similar application is to add a button to an empty
mobile form. Now to add the actual code, which is the only thing we are interested in
for now, double click on the button, you'll be presented with the following code
skeleton (or something very similar):

procedure TForm1.Button1Click (Sender: Tobject)
begin

end;

Even if you don't know what a method of a class is (which is what Button1Click is),
you can type something in that code fragment (that means within the begin and end
keywords) and that code will execute when you press the button.

Our first “visual” program has code matching that of the first console application,
only in a different context and calling a different library function, namely
ShowMessage. This is the code you can find in the HelloVisual demo and you can try
rebuilding it from scratch quite easily:

procedure TForm1.Button1Click (Sender: Tobject)
var
 strMessage: string;
begin
 strMessage := 'Hello, World';
 ShowMessage (strMessage);
end;

Marco Cantù, Object Pascal Handbook

20 - 01: Coding in Pascal

Figure 1.2:
A simple mobile
application with a
single button, used by
the HelloVisual demo

Notice how you need to place the declaration of the strMessage variable before the
begin statement and the actual code after it. Again, don't worry if things are not
clear, everything will get explained in due time and in great detail.

note You can find the source code of this demo in a folder under the 01 container for the chapter. In
this case, however, there is a project file name like the demo but also a secondary unit file with the
word “Form” added after the project name. That's the standard I'm going to follow in the book.
The structure of a project is covered at the end of this chapter.

In Figure 1.3 you can see the output of this simple program, running on Windows
(but you can run this demo on Android and iOS as well).

Now that we have a way to write and test a demo program, let's get back to square
one, by covering all of the details of the first few building blocks of an application, as
I promised at the beginning of this chapter. The first thing you need to know is how

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 21

to read a program, how the various elements are written, and what is the structure
of the application we just build (which has both a PAS file and DPR file).

Figure 1.3:
A simple mobile
application with a
single button, used by
the HelloVisual demo

Syntax and Coding Style

Before we move on to the subject of writing actual Object Pascal language state-
ments, it is important to highlight some elements of Object Pascal coding style. The
question I'm addressing here is this: Besides the syntax rules (which we still haven't
looked into), how should you write code? There isn't a single answer to this ques-
tion, since personal taste can dictate different styles. However, there are some
principles you need to know regarding comments, uppercase, spaces, and what
many years ago was called pretty-printing (pretty for us human beings, not the
computer), a term now considered obsolete.

Marco Cantù, Object Pascal Handbook

22 - 01: Coding in Pascal

In general, the goal of any coding style is clarity. The style and formatting decisions
you make are a form of shorthand, indicating the purpose of a given piece of code.
An essential tool for clarity is consistency—whatever style you choose, be sure to fol-
low it throughout a project and across projects.

note The IDE (Integrated Development Environment) has support for automatic code formatting (at
the unit or project level): You can ask the editor to re-format your code with the Ctrl+D keys, fol -
lowing a set of rules you can change by tweaking about 40 different formatting elements (found
among the IDE Options), and even share these settings with other developers on your team to
make formatting consistent.

Comments

Although code is often self-explanatory, it is relevant to add a significant amount of
comments in the source code of a program, to further explain to others (and to the
yourself when you look at your code a long time in the future) why the code was
written in a given way and what were the assumptions.

In traditional Wirth Pascal comments were enclosed in either braces or parentheses
followed by a star. Modern versions of the language also accept the C++ style com-
ments, double slash, which span to the end of the line and require no symbol to
indicate the end the comment:

{ this is a comment }
(* this is another comment *)
// this is a comment up to the end of the line

The first form is shorter and more commonly used. The second form was often pre-
ferred in Europe because many European keyboards lacked the brace symbol. The
third form of comment has been borrowed from C/C++, which also use the /*
comment */ syntax for multiline comments, along with C#, Objective-C, Java, and
JavaScript.

Comments up to the end of the line are very helpful for short comments and for
commenting out a single line of code. They are by far the most common form of
comments in the Object Pascal language.

note In the IDE editor, you can comment or uncomment the current line (or a group of selected lines)
with a direct keystroke. This is Ctrl+/ on the US keyboard and a different combination (with the
physical / key) on other keyboards: The actual key is listed in the popup menu of the editor.

Having three different forms of comments can be helpful for marking nested com-
ments. If you want to comment out several lines of source code to disable them, and

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 23

these lines contain some real comments, you cannot use the same comment identi-
fier:

{
 code...
 {comment, creating problems}
 code...
}

The code above results in a compiler error, as the first closed brace indicates the end
of the entire commented section. With a second comment identifier, you can write
the following code, which is correct:

{
 code...
 // this comment is OK
 code...
}

An alternative is to comment out a group of lines as explained above, given it will
add a second // comment to the commented line, you can easily remove by uncom-
menting the same block (preserving the original comment).

note If the open brace or parenthesis-star is followed by the dollar sign($), it is not a comment any
more, but becomes a compiler directive, as we have seen in the first demo in the line {$APPTYPE
CONSOLE}. Compiler directives instruct the compiler to do something special, and are briefly
explained towards the end of this chapter.

Actually, compiler directives are still comments. For example, {$X+ This is a comment} is legal.
It's both a valid directive and a comment, although most sane programmers will probably tend to
separate directives and comments.

Symbolic Identifiers

A program is made of many different symbols you can introduce to name the various
elements (data types, variables, functions, objects, classes, and so on). Although you
can use almost any identifier you want, there are a few rules you have to follow:

• Identifiers cannot include spaces (as spaces do separate identifiers from
other language elements)

• Identifiers can use letters and numbers, including the letters in the entire
Unicode alphabet; so you can name symbols in your own language if you
want

• Out of the traditional ASCII symbols, identifiers can use only the underscore
symbol (_); all other ASCII symbols beside letters and numbers are not
allowed. Illegal symbols in identifiers include match symbols (+, -, *, /, =),

Marco Cantù, Object Pascal Handbook

24 - 01: Coding in Pascal

all parenthesis and braces, punctuation, special characters (including @, #,
$, %, ^, &, \, |). What you can use, though, are Unicode symbols, like ☼ or
∞.

• Identifiers must start with a letter or the underscore, starting with a number
is not allowed (in other words, you can use numbers, but not as the first
symbol). Here with numbers we refer to the ASCII numbers, 0 to 9, while
other Unicode representations of numbers are allowed.

The following are examples of classic identifiers, listed in the IdentifiersTest
demo:

MyValue
Value1
My_Value
_Value
Val123
_123

These are example of legal Unicode identifiers (where the last is a bit extreme):

Cantù (Latin accented letter)

结 (Cash Balance in Simplified Chinese)
画像 (picture in Japanese)
☼ (Sun Unicode symbol)

These are a few examples of invalid identifiers:

123
1Value
My Value
My-Value
My%Value

tip In case you want to check for a valid identifier at runtime (something rarely needed, unless you
are writing a tool to help other developers), there is a function in the runtime library that you can
use, called IsValidIdent.

Use of Uppercase

Unlike many other languages, including all those based on the C syntax (like C++,
Java, C#, and JavaScript), the Object Pascal compiler ignores the case, or capitaliza-
tion, of the identifiers. Therefore, the identifiers Myname, MyName, myname, myName,
and MYNAME are all exactly the same. In my opinion, case-insensitivity is definitely a
positive feature, as syntax errors and other subtle mistakes can be caused by incor-
rect capitalization in case-sensitive languages.

If you consider the fact that you can use Unicode for identifiers, however, things get
a bit more complicated, as the uppercase version of a letter is treated like the same

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 25

element, while an accented version of the same letter is treated like a separate sym-
bol. In other words:

 cantu: Integer;
 Cantu: Integer; // error: duplicate identifier
 cantù: Integer; // correct: different identifier

note There is only one exception to the case-insensitivity rule of the language: the Register procedure
of a components' package must start with the uppercase R, because of a C++ compatibility issue.
Of course, when you refer to identifiers exported by other languages (like a native operating sys -
tem function) you might have to use the proper capitalization.

There are a couple of subtle drawbacks, however. First, you must be aware that these
identifiers really are the same, so you must avoid using them as different elements.
Second, you should try to be consistent in the use of uppercase letters, to improve
the readability of the code.

A consistent use of case isn't enforced by the compiler, but it is a good habit to get
into. A common approach is to capitalize only the first letter of each identifier. When
an identifier is made up of several consecutive words (you cannot insert a space in
an identifier), every first letter of a word should be capitalized:

MyLongIdentifier
MyVeryLongAndAlmostStupidIdentifier

This is often called “Pascal-casing”, to contrast it with the so-called “Camel-casing”
of Java and other languages based on the C syntax, which capitalizes internal words
with an initial lowercase letter, as in

myLongIdentifier

Actually, it is more and more common to see Object Pascal code in which local vari-
ables use camel-casing (lowercase initial), while class elements, parameters and
other more global elements use the Pascal-casing. In any case, in the book source
code snippets I've tried to use Pascal-casing consistently for all symbols.

White Space

Other elements completely ignored by the compiler are the spaces, new lines, and
tabs you add to the source code. All these elements are collectively known as white
space. White space is used only to improve code readability; it does not affect the
compilation in any way.

Unlike traditional BASIC, Object Pascal allows you to write a statement over several
lines of code, splitting a long instruction over two or more lines. The drawback of
allowing statements over more than one line is that you have to remember to add a

Marco Cantù, Object Pascal Handbook

26 - 01: Coding in Pascal

semicolon to indicate the end of a statement, or more precisely, to separate one
statement from the next. The only restriction in splitting programming statements
on different lines is that a string literal may not span several lines.

Although odd, the following blocks all represent the same statement:

a := b + 10;

a :=
 b
 +
 10;

a
:=
// this is a mid-statement comment
b + 10;

Again, there are no fixed rules on the use of spaces and multiple-line statements,
just some rules of thumb:

 The editor has a vertical line you can place after 80 or so characters. If you use
this line and try to avoid surpassing this limit, your source code will look better
and you won't have to scroll horizontally to read it on a computer with a smaller
screen. The original idea behind the 80 characters was to make the code look
nicer when printed, something not so common these days (but still valuable).

 When a function or procedure has several complex parameters, it is common
practice to place the parameters on different lines, a habit that mostly comes
from the C language.

 You can leave a line completely white (blank) before a comment or to divide a
long piece of code in smaller portions. Even this simple idea can improve the
readability of the code.

 Use spaces to separate the parameters of a function call, and maybe even a space
before the initial open parenthesis. Also I like keeping operands of an expression
separated, although this is a matter of preference..

Indentation

The last suggestion on the use of white spaces relates to the typical Pascal lan-
guage-formatting style, originally known as pretty-printing but now generally
referred as indentation.

This rule is simple: Each time you need to write a compound statement, indent it
two spaces (not a tab, like a C programmer would generally do) to the right of the

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 27

current statement. A compound statement inside another compound statement is
indented four spaces, and so on:

if ... then
 statement;

if ... then
begin
 statement1;
 statement2;
end;

if ... then
begin
 if ... then
 statement1;
 statement2;
end;

Again, programmers have different interpretations of this general rule. Some pro-
grammers indent the begin and end statements to the level of the inner code, other
programmers put the begin at the end of the line of previous statement (in a C-like
fashion). This is mostly a matter of personal taste.

A similar indentation format is often used for lists of variables or data types:

type
 Letters = ('A', 'B', 'C');
 AnotherType = ...

var
 Name: string;
 I: Integer;

In the past it was also common to use an indentation of the type when declaring
custom types and variables, but this is now less frequent. In such a case, the code
above will look like:

type
 Letters = ('A', 'B', 'C');
 AnotherType = ...

var
 Name : string;
 I : Integer;

Indentation is also used commonly for statements that continue from the previous
line or for the parameters of a function (if you don't put each parameter on a sepa-
rate line):

MessageDlg ('This is a message',
 mtInformation, [mbOk], 0);

Marco Cantù, Object Pascal Handbook

28 - 01: Coding in Pascal

Syntax Highlighting

To make it easier to read and write Object Pascal code, the IDE editor has a feature
called syntax highlighting. Depending on the meaning in the language of the words
you type, they are displayed using different colors and font styles. By default, key-
words are in bold, strings and comments are in color (and often in italic), and so on.

Reserved words, comments, and strings are probably the three elements that benefit
most from this feature. You can see at a glance a misspelt keyword, a string not
properly terminated, and the length of a multiple-line comment.

You can easily customize the syntax highlight settings using the Editor Colors page
of the Options dialog box. If you are the only person using your computer to look to
Object Pascal source code, choose the colors you like. If you work closely with other
programmers, you should all agree on a standard color scheme. I often found that
working on a computer with a different syntax coloring than the one I normally use
was really confusing.

Error Insight and Code Insights

The IDE editor has many more features to help you write correct code. The most
obvious is Error Insight, that places a red squiggle under source code elements it
doesn't understand, in the same fashion that a word processor marks spelling mis-
takes.

note At times you need to compile your program a first time to avoid having Error Insight indications
for perfectly legitimate code. Also saving a file such as a form might force the inclusion of the
proper units required for the current components, solving incorrect Error Insight indications.

Other features, like Code Completion, help you write code by providing a list of legit-
imate symbols in the place where you are writing. When a function or method has
parameters, you'll see those listed as you type. And you can also hover over a symbol
to see its definition. However, these are editor specific features that I don't want to
delve into in detail, as I want to remain focused on the language and not discuss the
IDE editor in detail (even if it is by far the most common tools used for writing
Object Pascal code).

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 29

Language Keywords

Keywords are all the identifiers reserved by the language. These are symbols that
have a predefined meaning and role and you cannot use them in a different context.
Formally there is a distinction between reserved words and directives: Reserved
words cannot be used as identifiers, while directives have a special meaning but
could be used also in a different context (although you are recommended not to do
so). In practice, you should not use any keyword as an identifier.

If you write some code like the following (where property is indeed a keyword):

var
 property: string

you'll see an error message like:

E2029 Identifier expected but 'PROPERTY' found

In general when you misuse a keyword, you'll get different error messages depend-
ing on the situation, as the compiler recognizes the keyword, but gets confused by its
position in the code or by the following elements.

Here I don't want to show you a complete list of keywords, as some of them are
rather obscure and rarely used, but only list a few, grouping them by their role. It
will take me several chapters to explore all of these keywords and others I'm skip-
ping in this list.

note Notice that some keywords can be used in different contexts, and here I'm generally referring only
to the most common context (although a couple of keywords are listed twice). One of the reasons
is that over the years the compiler team wanted to avoid introducing new keywords, as this might
break existing applications, so they recycled some of the existing ones.

So let's start our exploration of keywords with some you've already seen in the initial
demo source code and that are used to define the structure of an application
project:

program Indicates the name of an application project

library Indicates the name of a library project

package Indicates the name of a package library project

unit Indicates the name of a unit, a source code file

uses Refers to other units the code relies upon

interface The part of a unit with declarations

implementation The part of a unit with the actual code

initialization Code executed when a program starts

Marco Cantù, Object Pascal Handbook

30 - 01: Coding in Pascal

finalization Code executed on program termination

begin The start of a block of code

end The end of a block of code

Another set of keywords relates to the declaration of different basic data types and
variables of such data types:

type Introduces a block of type declarations

var Introduces a block of variable declarations

const Introduces a block of constant declarations

set Defines a power set data type

string Defines a string variable or custom string type

array Defines an array type

record Defines a record type

integer Defines an integer variable

real Defines a floating point variable

file Defines a file

record Defines record type

note There are many other data types defined in Object Pascal that I will cover later.

A third group includes keywords is used for the basic language statements, such
a condition and loops, including also functions and procedures:

if Introduces a conditional statement

then Separates the condition from the code to execute

else Indicates possible alternative code

case Introduces a conditional statement with multiple options

of Separates the condition from the options

for Introduces a fixes repetitive cycle

to Indicates the final upper value of the for cycle

downto Indicates the final lower value of the for cycle

in Indicates the collection to iterate over in a cycle

while Introduces a conditional repetitive cycle

do Separates the cycle condition from the code

repeat Introduces a repetitive cycle with a final condition

until Indicates the final condition of the cycle

with Indicates a data structure to work with

function A sub-routine or group of statements returning a result

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 31

procedure A sub-routine or group of statements which doesn't
return a result

inline Requests the compiler to optimize a function or proce-
dure

overload Allows the reuse of the name of a function or procedure

Many other keywords relate with classes and objects:

class Indicates a class type

object Used to indicate an older class type (now deprecated)

abstract A class that is not fully defined

sealed A class from which other classes cannot inherit

interface Indicates an interface type (listed also in the first group)

constructor An object or class initialization method

destructor An object or class cleanup method

virtual A virtual method

override The modified version of a virtual method

inherited Refers to a method of the base class

private Portion of a class not accessible from the outside

protected Portion of a class with limited access from the outside

public Portion of a class fully accessible from the outside

published Portion of a class made specifically available to users

strict A stronger limitation for private and protected sections

property A symbol mapped to a value or method

read The mapper for getting the value of a property

write The mapper for setting the value of a property

nil The value of a zero object (used also for other entities)

A smaller group of keywords is used for exceptions handling (see Chapter 11):

try The start of an exception handling block

finally Introduces code to be executed regardless of an exception

except Introduces code to be executed in case of an exception

raise Used to trigger an exception

Another group of keywords is used for operators and is covered in the section
“Expressions and Operators” later in this chapter, (beside some advanced operators
covered only in later chapters):

as and div
is in mod
not or shl
shr xor

Marco Cantù, Object Pascal Handbook

32 - 01: Coding in Pascal

Finally, here is partial list of other rarely used keywords, including some old
ones you should really avoid using. Look them up in the help or in the index of this
book, if you are interested in more information about these:

default dynamic export
exports external file
forward goto index
label message name
nodefault on out
packed reintroduce requires

Notice that the list of Object Pascal language keywords has seen very few additions
over recent years, as any additional keyword implies potentially introducing compi-
lation errors into some existing programs preventing that had happened to use one
of the new keyword as a symbol. Most of the recent additions to the language
required no new keyword, like generics and anonymous methods.

The Structure of a Program

You hardly ever write all of the code in a single file, although this was the case with
the first simple console application I showed earlier in this chapter. As soon as you
create a visual application, you get at least one secondary source code file beside the
project file. This secondary file is called unit and it's indicated by the PAS extension
(for Pascal source unit), while the main project file uses the DPR extension (for Del-
phi Project file). Both files contain Object Pascal source code.

Object Pascal make extensive use of units, or program modules. Units, in fact, can be
used to provide modularity and encapsulation even without using objects. An Object
Pascal application is generally made up of several units, including units hosting
forms and data modules. In fact, when you add a new form to a project, the IDE
actually adds a new unit, which defines the code of the new form.

Units do not need to define forms; they can simply define and make available a col-
lection of routines, or one of more data types (including classes). If you add a new
blank unit to a project, it will only contain the keywords used to delimit the sections
a unit is divided into:

unit Unit1;

interface

implementation

end.

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 33

The structure of a unit is rather simple, as shown above:

· First, a unit has a unique name corresponding to its filename (that is, the sample
unit above must be stored in the file Unit1.pas).

· Second, the unit has an interface section declaring what is visible to other units.

· Third, the unit has an implementation section with implementation details, the
actual code, and possibly other local declarations, not visible outside of the unit.

Unit and Program Names

As I mentioned a unit name must correspond to the name of the file of that unit. The
same is true for a program. To rename a unit, you perform a Save As operation in
the IDE, and the two will be kept in synch. Of course, you can also change the file
name at the file system level, but if you don't also change the declaration at the
beginning of the unit, you'll see an error when the unit is compiled (or even when it
is loaded in the IDE). This is a sample error message you'll get if you change the dec-
laration of a unit without updating also the file name:

[DCC Error] E1038 Unit identifier 'Unit3' does not match file name

The implication of this rule is that a unit or program name must be a valid Pascal
identifier, but also a valid file name in the file system. For example, it cannot contain
a space, not special characters beside the underscore (_), as covered earlier in this
chapter in the section on identifiers. Given units and programs must be named using
an Object Pascal identifier, they automatically result in valid file names, so you
should not worry about that. The exception, of course, would be using Unicode sym-
bols that are not valid file names at the file system level.

Dotted Unit Names

There is an extension to the basic rules for unit identifiers: a unit name can use a
dotted notation. So all of the following are all valid unit names:

unit1
myproject.unit1
mycompany.myproject.unit1

The reason for this extension is that unit names must be unique, and with more and
more units being provided by Embarcadero and by third party vendors, this became
more and more complex. All of the RTL units and the various other units that ship
as part of the product libraries now follow the dotted unit name rule, with specific
prefixes denoting the area, such as:

· System for core RTL

Marco Cantù, Object Pascal Handbook

34 - 01: Coding in Pascal

· Data for database access and the like

· FMX for the FM platform (the multi-device components)

· VCL for the Visual Component Library for Windows

note You'd generally refer to a dotted unit names, including the library units, with the complete name.
It is also possible to use only the last portion of the name in a reference (allowing backward com -
patibility with older code) by setting up a corresponding rule in the project options. This setting is
called “Unit scope names” and it is a semicolon separated list. Notice, however, that using this fea -
ture tends to slow down the compilation compared to using fully qualified unit names.

More on the Structure of a Unit

Beside the interface and implementation sections, a unit can have an optional
initialization section with some startup code, to be executed when the program is
first loaded into memory. If there is an initialization section you can add also
have a finalization section, to be executed on program termination.

note You can also add initialization code in a class constructor, a recent language feature covered in
Chapter 12. Using class constructors helps the linker remove unneeded code, which is why it is
recommended to use class constructors and destructors, rather than the old initialization and
finalization sections. As a historical note, the compiler still supports using the begin keyword in
place of the initialization keyword. A similar use of begin is still standard in the project
source code.

In other word, the general structure of a unit, with all its possible sections and some
sample elements, is like the following:

unit unitName;

interface

// other units we refer to in the interface section
uses
 unitA, unitB, unitC;

// exported type definitions
type
 newType = TypeDefinition;

// exported constants
const
 Zero = 0;

// global variables
var
 Total: Integer;

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 35

// list of exported functions and procedures
procedure MyProc;

implementation

// other units we refer to in the implementation
uses
 unitD, unitE;

// hidden global variable
var
 PartialTotal: Integer;

// all the exported functions must be coded
procedure MyProc;
begin
 // ... code of procedure MyProc
end;

initialization
 // optional initialization code

finalization
 // optional clean-up code

end.

The purpose of the interface part of a unit is to make details of what the unit con-
tains and can do to programs and other units that will make use of the unit. Whereas
the implementation part contains the nuts and bolts of the unit which are hidden
from outside viewers. This is how Object Pascal can provide this so called encapsula-
tion even without using classes and objects.

As you can see, the interface of a unit can declare a number of different elements,
including procedures, functions, global variables, and data types. Data types are
generally used the most. The IDE automatically places a new class data type in a unit
each time you create a visual form. However, containing form definitions is certainly
not the only use for units in Object Pascal. You can have code only units, with func-
tions and procedures (in a traditional way) and with classes that do not refer to
forms or other visual elements.

The Uses Clause

The uses clause at the beginning of the interface section indicates which other units
we need to access in the interface portion of the unit. This includes the units that
define the data types we refer to in the definition of data types of this unit, such as
the components used within a form we are defining.

Marco Cantù, Object Pascal Handbook

36 - 01: Coding in Pascal

The second uses clause, at the beginning of the implementation section, indicates
additional units we need to access only in the implementation code. When you need
to refer to other units from the code of the routines and methods, you should add
elements in this second uses clause instead of the first one. All the units you refer to
must be present in the project directory or in a directory of the search path.

tip You can set the Search Path for a project in the Project Options. The system also considers units in
the Library path, which is a global setting of the IDE.

C++ programmers should be aware that the uses statement does not correspond to
an include directive. The effect of a uses statement is to import just the pre-compiled
interface portion of the units listed. The implementation portion of the unit is con-
sidered only when that unit is compiled. The units you refer to can be both in source
code format (PAS) or compiled format (DCU).

Although seldom used, Object Pascal had also an $INCLUDE compiler directive that
works similarly to C/C++ includes. These special include files are used by some
libraries for sharing compiler directives or other settings among multiple units, and
generally have the INC file extension. This directive is covered shortly at the end of
this chapter.

note Notice that compiled units in Object Pascal are compatible only if they are build with the same
version of the compiler and system libraries. A unit compiled in an older version of the product is
generally not compatible with a later version of the compiler.

Units and Scope

In Object Pascal units are the key to encapsulation and visibility and, in that sense,
they are probably even more important than the private and public keywords of a
class. The scope of an identifier (such as a variable, procedure, function, or a data
type) is the portion of the code in which the identifier is accessible or visible. The
basic rule is that an identifier is meaningful only within its scope—that is, only
within the unit, function, or procedure in which it is declared. You cannot use an
identifier outside its scope.

note Unlike C or C++, Object Pascal doesn't have the concept of a generic code block that can include a
declaration. While you can use begin and end to create a compound statement, this isn't like a
C/C++ block with curly braces that has its own scope for internally declared variables.

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 37

In general, an identifier is visible only after it is defined. There are techniques in the
language that allow declaring an identifier before its complete definition, but the
general rule still applies if we consider both definitions and declarations.

Given that it makes little sense to write an entire program in a single file, though,
how does the rule above change when you use multiple units? In short, by referring
to another unit with a uses statement, the identifiers in the interface section of that
unit becomes visible to the new unit.

Reversing the perspective, if you declare an identifier (type, function, class, variable,
and so on) in the interface portion of a unit, it becomes visible to any other module
referring to that unit. If you declare an identifier in the implementation portion of a
unit, instead, it can only be used in that unit (and it is generally referred to as a local
identifier).

Using Units Like Namespaces

We have seen that the uses statement is the standard technique to access identifiers
declared in the scope of another unit. At that point you can access the definitions of
the unit. But it might happen that two units you refer to declare the same identifier;
that is, you might have two classes or two routines with the same name.

In this case you can simply use the unit name to prefix the name of the type or rou-
tine defined in the unit. For example, you can refer to the ComputeTotal procedure
defined in the given Calc unit as Calc.ComputeTotal. This isn't required often, as
you are strongly advised against using the same identifier for two different elements
of the same program, if you can avoid it.

However, if you look into the system or third party libraries, you’ll find functions
and classes that have the same name. A good example are the visual controls of dif-
ferent user interface frameworks. When you see a reference to TForm or TControl, it
could mean different classes depending on the actual units you refer to.

If the same identifier is exposes by two units in your uses statement, the one in the
last unit being used overrides the symbol, and will be the one that the compiler uses.
In other words, the symbols defined in the last unit in the list wins. If you simply
cannot avoid such a scenario, it is recommended to prefix the symbol with the unit
name, to avoid having you code depend on the order in which the units are listed.

The Program File

As we have seen, a Delphi application consists of two kinds of source code files: one
or more units and one, and only one, program file. The units can be considered sec-

Marco Cantù, Object Pascal Handbook

38 - 01: Coding in Pascal

ondary files, which are referenced by the main part of the application, the program.
In theory, this is true. In practice, the program file is usually an automatically gener-
ated file with a limited role. It simply needs to start up the program, generally
creating and running the main form, in case of a visual application. The code of the
program file can be edited manually, but it is also modified automatically by using
some of the Project Options of the IDE (like those related to the application object
and the forms).

The structure of the program file is usually much simpler than the structure of the
units. Here is the source code of a sample program file (with some optional standard
units omitted) that is automatically created by the IDE for you:

program Project1;

uses
 FMX.Forms,
 Unit1 in ‘Unit1.PAS’ {Form1};

begin
 Application.Initialize;
 Application.CreateForm (TForm1, Form1);
 Application.Run;
end.

As you can see, there is simply a uses section and the main code of the application,
enclosed by the begin and end keywords. The program’s uses statement is particu-
larly important, because it is used to manage the compilation and linking of the
application.

note The list of units in the program file corresponds to the list of the units that are part of the project
in the IDE Project Manager. When you add a unit to a project in the IDE, the unit is automatically
added to the list in the program file source. The opposite happens if you remove it from the
project. In any case, if you edit the source code of the program file, the list of units in the Project
Manager is updated accordingly.

Compiler Directives

Another special element of the program structure (other than its actual code) are
compiler directives, as mentioned earlier. These are special instructions for the com-
piler, written with the format:

{$X+}

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 39

Some compiler directives have a single character, as above, with a plus or minus
symbol indicating if the directive is activated or unactivated. Most of the directives
also have a longer and readable version, and use ON and OFF to mark if they are
active. Some directives have only the longer, descriptive format.

Compiler directives don't generate compiled code directly, but affect how the com-
piler generates code after the directive is encountered. In many cases, using a
compiler directive is an alternative to changing one of the compiler settings in the
IDE Project Options, although there are scenarios in which you want to apply a spe-
cific compiler setting only to a unit or to a fragment of code.

I'll cover specific compiler directives when relevant in the discussion of a language
feature they can affect. In this section I only want to mention a couple of directives
that relate to the program code flow: conditional defines and includes.

Conditional Defines

Conditional defines like $IFDEF let you indicate to the compiler to include a portion
of source code or ignore it. They can be based on defined symbols or on constant val-
ues. The defined symbols can be predefined by the system (like the platform
symbols), can be defined in a specific project option, or a can be introduced with
another compiler directive, $DEFINE:

{$DEFINE TEST}
...
{$IFDEF TEST}
 // this is going to be compiled
{$ENDIF}

{$IFNDEF TEST}
 // this is not going to be compiled
{$ENDIF}

You can also have two alternatives, using an $ELSE directive to separate them. A
more flexible alternative is the use of the $IF directive, closed by the $IFEND direc-
tive and based on expressions like comparison functions (which can refer to any
constant value in the code). So you can just define a constant and use an expression
against it. An example is shown below related to compiler versions, one of the com-
monly used system defines.

Marco Cantù, Object Pascal Handbook

40 - 01: Coding in Pascal

Compiler Versions

Each version of the Delphi compiler has a specific define you can use to check if you
are compiling against a specific version of the product. This might be required if you
are using a feature introduced later but want to make sure the code still compiles for
older versions.

If you need to have specific code for some of the recent versions of Delphi, you can
base your $IFDEF statements on the following defines:

Delphi 2007 VER180

Delphi XE VER220

Delphi XE2 VER230

Delphi XE4 VER250

Delphi XE5 VER260

Appmethod
Spring 2014

VER260

Delphi XE6 VER270

Appmethod June
2014

VER270

Delphi XE7 VER280

Appmethod Sep-
tember 2014

VER280

The decimal digits of these version numbers indicate the actual compiler version (for
example 26 in Delphi XE5). The numeric sequence is not specific to Appmethod or
Delphi, but dates back to the first Pascal compiler published by Borland.

You can also use the internal versioning constant in $IF statements, with the advan-
tage of being able to use a comparison operator (>=) rather than a match for a
specific version. The versioning constant is called CompilerVersion and in Delphi
XE5 it's assigned to the floating-point value 26.0. So for example:

{$IF CompilerVersion >= 26)}
 // code to compile in Delphi XE5 or later
{$IFEND}

Marco Cantù, Object Pascal Handbook

01: Coding in Pascal - 41

Similarly, you can use system defines for different platforms you can compile for, in
case you need some code to be platform-specific (generally an exception in Object
Pascal, not common practice):

Windows (both 32 and 64 bit) MSWINDOWS

Mac OS X MACOS

iOS IOS

Android ANDROID

Below is a code snippet with the tests based on the platforms define above, part of
the HelloPlatform project:

 {$IFDEF IOS}
 ShowMessage ('Running on iOS');
 {$ENDIF}

 {$IFDEF ANDROID}
 ShowMessage ('Running on Android');
 {$ENDIF}

Include Files

The other directive I want to cover here is the $INCLUDE directive, already mentioned
when discussing the uses statement. This directive lets you refer to and include a
fragment of source code in a given position of a source code file. At times this is used
to be able to include the same fragment in different units, in cases where the code
fragment defines compiler directives and other elements used directly by the com-
piler. When you use a unit, it is compiled only one. When you include a file, that
code is compiled within each of the units it is added to (which is why you should
generally avoid having any new identifier declared in an include file).

In other words, you should generally not add any language elements and definitions
in include files (unlike the C language), as this is what units are for. So how do you
use an include file? A good example is a set of compiler directives you want to enable
in most of your units, or some extra special defines.

Large libraries often use include files for that purpose, an example would be the
FireDAC library, a database library which is now part of the system libraries.
Another example, showcased by the system RTL units, is the use of individual
includes for each platform, with an IFDEF used for conditionally including only one
of them.

Marco Cantù, Object Pascal Handbook

42 - 02: Variables and Data Types

02: variables and

data types

Object Pascal is what is known as a strongly-typed language. Variables in Object
Pascal are declared to be of a data type (or user defined data type). The type of a
variable determines the values a variable can hold, and the operations that can be
performed on it. This allows the compiler both to identify errors in your code and
generate faster programs for you.

This is why the concept of type is stronger in Pascal than in languages like C or C++.
Later languages based on the same syntax but that break compatibility with C, like
C# and Java, divert from C and embrace Pascal's strong notion of data type. In C, for
example, arithmetic data types are almost interchangeable. By contract the original
versions of BASIC, had no similar concept, and in many of today's scripting lan-
guages (JavaScript being an obvious example) the notion of data type is very
different.

note In fact, there are some tricks to bypass type safety, like using variant record types. The use of
these tricks is strongly discouraged and are little used today.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 43

As I mentioned, all of the dynamic languages, from JavaScript onwards, don't have
the same notion of data type, or (at least) have a very loose idea of types. In some of
these languages the type is inferred by the value you assign to a variable, and the
variable type can change over time. What is important to point out is that data types
are a key element for enforcing correctness of a large application at compile-time,
rather than relying on run-time checks. Data types require more order and struc-
ture, and some planning of the code you are going to write... which clearly has
advantages and disadvantages.

note Needless to say I prefer strongly typed languages, but in any case my goal in this book is to explain
how the language works, more than to advocate why I think it is such a great programming lan -
guage. Though I'm sure you'll get that impression while you read the book.

Variables and Assignments

Like other strongly-typed languages, Object Pascal requires all variables to be
declared before they are used. Every time you declare a variable, you must specify a
data type. Here are some variable declarations:

var
 Value: Integer;
 IsCorrect: Boolean;
 A, B: Char;

The var keyword can be used in several places in a program, such as at the begin-
ning of a function or procedure, to declare variables local to that portion of the code,
or inside a unit to declare global variables.

note Differently from C and other curly-brace languages, in Object Pascal you cannot mix variable dec -
larations with programming statements, but you need to group them in specific sections (like at
the beginning of a method). Since this is not always handy, the IDE code editor let's you actually
type the var keyword followed by the actual declaration within your method or function code, but
it will immediately move it up to the correct position. This is one of the predefined Live Tem -
plates, a very nice coding helper in the IDE that you can customize and extend.

After the var keyword comes a list of variable names, followed by a colon and the
name of the data type. You can write more than one variable name on a single line,
as A and B in the last statement of the previous code snippet (a coding style that is
less common today, compared to splitting the declaration on two separate lines).

Marco Cantù, Object Pascal Handbook

44 - 02: Variables and Data Types

Once you have defined a variable of a given type, you can only perform the opera-
tions supported by its data type on it. For example, you can use the Boolean value in
a test and the integer value in a numerical expression. You cannot mix Booleans and
Integers, for example, or any incompatible data type (even if the internal representa-
tion might is physically compatible, as it is the case for Booleans and Integers).

The simplest assignment is that of an actual value, let's say you want the Value vari-
able to hold the value 10. But how do you express literal values? While this concept
might be obvious, it is worth looking into it with some detail.

Literal Values

A literal value is a value you type directly in the program source code. If you need a
number with the value of twenty, you can simply write:

20

There is also an alternative representation of the same numeric value, based on the
hexadecimal value, like:

$14

These will be literal values for an integer number (or one of the various integer num-
ber types that are available). If you want the same numeric value, but for a floating
point literal value, you generally add an empty decimal after it:

2.0

Literal values are not limited to numbers. You can also have characters and strings.
Both use single quotes (were many other programming languages will use double
quotes for both, or single quotes for characters and double quotes for strings):

// literal characters
'K'
#55

// literal string
'Marco'

As you can see above, you can also indicate characters by their corresponding
numeric value (originally the ASCII number, now the Unicode code point value),
prefixing the number with the # symbol, as in (#32, for a space). This is useful
mostly for control character without a textual representation in the source code, like
a backspace or a tab.

In case you need to have a quote within a string, you'll have to double it. So if I want
to have my first and last name (spelled with a final quote rather than an accent) I
can write:

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 45

'Marco Cantu'''

The two quotes stand for a quote within the string, while the third consecutive quote
marks the end of the string. Also note that a string literal must be written on a single
line, but you can concatenate multiple string literals using the + sign. If you want to
have the new line or line break within the string, don't write it on two lines, but con-
catenate the two elements with the sLineBreak system constant (which is platform
specific), as in:

'Marco' + sLineBreak + 'Cantu'''

Assignment Statements

Assignments in Object Pascal use the colon-equal operator (:=), an odd notation for
programmers who are used to other languages. The = operator, which is used for
assignments in many other languages, in Object Pascal is used to test for equality.

note The := operators comes from a Pascal predecessor, Algol, a language few of todays developers
have heard of (let even used). Most of today's languages avoid the := notation and favor the =
assignment notation.

By using different symbols for an assignment and an equality test, the Pascal com-
piler (like the C compiler) can translate source code faster, because it doesn't need to
examine the context in which the operator is used to determine its meaning. The use
of different operators also makes the code easier for people to read. Truly Pascal
picked two different operators than C (and syntactic derivatives like Java, C#,
JavaScript), which uses = for assignment and == for equality test.

note For the sake of completeness I should mention JavaScript has also a === operator, but that's
something that even most JavaScript programmers get confused about.

The two elements of an assignment are often called lvalue and rvalue, for left value
(the variable or memory location you are assigning to) and right value, the value of
the expressions being assigned. While the rvalue can be an expression, the lvalue
must refer (directly or indirectly) to a memory location you can modify. There are
some data types that have specific assignment behaviors which I'll cover in due time.

The other rule is that the type of the lvalue and of the rvalue must match, or there
must be an automatic conversion between the two, as explained in the next section.

Marco Cantù, Object Pascal Handbook

46 - 02: Variables and Data Types

Assignments and Conversion

Using simple assignments, we can write the following code (that you can find among
many other snippets in this section in the VariablesTest project):

Value := 10;
Value := Value + 10;
IsCorrect := True;

Given the previous variable declarations, these two assignments are correct. The
next statement, instead, is not correct, as the two variables have different data types:

Value := IsCorrect; // error

If you try to compile this code, the compiler issues an error with a description like
this:

[dcc32 Error]: E2010 Incompatible types: 'Integer' and 'Boolean'

The compiler informs you that there is something wrong in your code, namely two
incompatible data types. Of course, it is often possible to convert the value of a vari-
able from one type to another type. In some cases, the conversion is automatic, for
example if you assign an integer value to a floating point variable (but not the oppo-
site, of course). Usually you need to call a specific system function that changes the
internal representation of the data.

Initializing Global Variable

For global variables, you can assign an initial value as you declare the variable, using
the constant assignment notation covered below (=) instead of the assignment oper-
ator (:=). For example, you can write:

var
 Value: Integer = 10;
 Correct: Boolean = True;

This initialization technique works only for global variables, which are initialized to
their default values anyway (like 0 for a number).

Variables declared at the beginning of a procedure or function, instead, are not ini-
tialized to a default value and don't have an assignment syntax. For those variables,
it is often worth adding explicit initialization code at the beginning of the code:

var
 Value: Integer;
begin
 Value := 0; // initialize

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 47

Again, if don't initialize a local variable but use it as it is, the variable will have a
totally random value (depending on the bytes that were present at that memory
location). In several scenarios, the compiler will warn you of the potential error.

In other words, if you write:

var
 Value: Integer;
begin
 ShowMessage (Value.ToString); // X is indefined

The output will be a totally random value, whatever bytes happened to be at the
memory location of the Value variable considered as an Integer.

Constants

Object Pascal also allows the declaration of constants. This let's you to give meaning-
ful names to values that do not change during program execution (and possibly
reducing the size by not duplicating constant values in your compiled code).

To declare a constant you don't need to specify a data type, but only assign an initial
value. The compiler will look at the value and automatically infer the proper data
type. Here are some sample declarations (also from the VariablesTest example):

const
 Thousand = 1000;
 Pi = 3.14;
 AuthorName = 'Marco Cantu';

The compiler determines the constant data type based on its value. In the example
above, the Thousand constant is assumed to be of type SmallInt, the smallest inte-
gral type that can hold it. If you want to tell the compiler to use a specific type you
can simply add the type name to the declaration, as in:

const
 Thousand: Integer = 1000;

When you declare a constant, the compiler can choose whether to assign a memory
location to the constant and save its value there, or to duplicate the actual value each
time the constant is used. This second approach makes sense particularly for simple
constants.

Once you have declared a constant you can use it almost like any other variable, but
you cannot assign a new value to it. If you try, you'll get a compiler error.

Marco Cantù, Object Pascal Handbook

48 - 02: Variables and Data Types

note Oddly enough, Object Pascal does allow you to change the value of a typed constant at run-time,
as if it was a variable but only if you enable the $J compiler directive, or use the corresponding
Assignable typed constants compiler option. This optional behavior is included for backward
compatibility of code which was written with an old compiler. This is clearly not a suggested cod -
ing style, and I've covered it in this note most as a historical anecdote about such programming
techniques.

Resource String Constants

Although this is a slightly more advanced topic, when you define a string constant,
instead of writing a standard constant declaration you can use a specific directive,
resourcestring, that indicates to the compiler and linker to treat the string like a
Windows resource (or an equivalent data structure on non-Windows platforms
Object Pascal supports):

const
 sAuthorName = 'Marco';

resourcestring
 strAuthorName = 'Marco';

begin
 ShowMessage (strAuthorname);

In both cases you are defining a constant; that is, a value you don't change during
program execution. The difference is only in the internal implementation. A string
constant defined with the resourcestring directive is stored in the resources of the
program, in a string table.

In short, the advantages of using resources are more efficient memory handling per-
formed by Windows, a corresponding implementation for other platforms, and a
better way of localizing a program (translating the strings to a different language)
without having to modify its source code. As a rule of thumb, you should use
resourcestring for any text that is shown to users and might need translating, and
internal constants for every other internal program string, like a fixed configuration
file name.

tip The IDE editor has an automatic refactoring you can use to replace a string constant in your code
with a corresponding resourcestring declaration. Place the edit cursor within a string literal and
press Ctrl+Shift+L to activate this refactoring.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 49

Lifetime and Visibility of Variables

Depending on how you define a variable, it will use different memory locations and
remain available for a different amount of time (something generally called the vari-
able lifetime) and will be available in different portions of your code (a feature
referred to by the term visibility).

Now, we cannot have a complete description of all of the options so early in the
book, but we can certainly consider the most relevant cases:

● Global variables: If you declare a variable (or any other identifier) in the
interface portion of the unit, its scope extends to any other unit that uses the
one declaring it. The memory for this variable is allocated as soon as the pro-
gram starts and exists until it terminates. You can assign a default value to it
or use the initialization section of the unit in case the initial value is com-
puted in a more complex way.

● Global hidden variables: If you declare a variable in the implementation
portion of a unit, you cannot use it outside that unit, but you can use it in
any block of code and procedure defined within the unit, from the position of
the declaration onwards. Such a variable uses global memory and has the
same lifetime as the first group; the only difference is in its visibility. The ini-
tialization is the same as that of global variable.

● Local variables: If you declare a variable within the block defining a func-
tion, procedure, or method, you cannot use this variable outside that block
of code. The scope of the identifier spans the whole function or method,
including nested routines (unless an identifier with the same name in the
nested routine hides the outer definition). The memory for this variable is
allocated on the stack when the program executes the routine defining it. As
soon as the routine terminates, the memory on the stack is automatically
released.

Any declarations in the interface portion of a unit are accessible from any part of the
program that includes the unit in its uses clause. Variables of form classes are
declared in the same way, so that you can refer to a form (and its public fields, meth-
ods, properties, and components) from the code of any other form. Of course, it’s
poor programming practice to declare everything as global. Besides the obvious
memory consumption problems, using global variables makes a program harder to
maintain and update. In short, you should use the smallest possible number of
global variables.

Marco Cantù, Object Pascal Handbook

50 - 02: Variables and Data Types

Data Types

In Pascal there are several predefined data types, which can be divided into three
groups: ordinal types, real types, and strings. We'll discuss ordinal and real types in
the following sections, while strings will be specifically covered in Chapter 6.

Delphi also includes a non-typed data type, called variant, and other “flexible”
types, such as TValue (part of the enhanced RTTI support). Some of these more
advanced data types will be discussed later in Chapter 5.

Ordinal and Numeric Types

Ordinal types are based on the concept of order or sequence. Not only can you com-
pare two values to see which is higher, but you can also ask for the next or previous
values of any value and compute the lowest and highest possible values the data type
can represent.

The three most important predefined ordinal types are Integer, Boolean, and Char
(character). However, there are other related types that have the same meaning but
a different internal representation and support a different range of values. The fol-
lowing table lists the ordinal data types used for representing numbers:

Size Signed Unsigned

8 bits ShortInt: -128 to 127 Byte: 0 to 255

16 bits
SmallInt: -32768 to 32767
(-32K to 32K)

Word: 0 to 65,535
(0 to 64K)

32 bits
Integer: -2,147,483,648 to
2,147,483,647 (-2GB to +2GB)

Cardinal: 0 to 4,294,967,295
(0 to 4 GB)

64 bits
Int64:
-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

UInt64: 0 to
18,446,744,073,709,551,615
(if you can read it!)

As you can see, these types correspond to different representations of numbers,
depending on the number of bits used to express the value, and the presence or
absence of a sign bit. Signed values can be positive or negative, but have a smaller
range of values (half of the corresponding unsigned value), because one less bit is
available for storing the value itself.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 51

The Int64 type represents integer numbers with up to 18 digits. This type is fully
supported by some of the ordinal type routines (such as High and Low), numeric rou-
tines (such as Inc and Dec), and string-conversion routines (such as IntToStr) of
the run time library.

Aliased Integral Types

If you have a hard time remembering the difference between a ShortInt and a
SmalInt (including which one is effectively smaller), rather than the actual type you
can use one of the predefined aliases declared in the System unit:

type
 Int8 = ShortInt;
 Int16 = SmallInt;
 Int32 = Integer;
 UInt8 = Byte;
 UInt16 = Word;
 UInt32 = Cardinal;

Again, these types don't add anything new, but are probably easier to use, as it is
simple to remember the actual implementation of an Int16 rather than that of a
SmallInt. These type aliases are also easier to use for developers coming from C and
other languages that use similar type names.

Integer Type, 64bit, and NativeInt

In 64-bit versions of Object Pascal you may be surprised to learn that the Integer
type is still 32 bit. It is so because this is the most efficient type for numeric process-
ing.

The Pointer type (more about pointers later on) and other related reference types
that are 64 bit. If you need a numeric type that adapts to the pointer size and the
native CPU platform, you can use the two special NativeInt and NativeUInt aliased
types. These are 32 bit on 32-bit platform and 64 bit on 64-bit platforms.

Integer Types Helpers

While the Integer types are treated separately from objects in the Object Pascal lan-
guage, it is possible to operate on variables (and constant values) of these types with
operations that you apply using “dot notation”. This is the notation generally used to
apply methods to objects.

Marco Cantù, Object Pascal Handbook

52 - 02: Variables and Data Types

note Technically these operations on native data types are defined using “intrinsic record helpers”.
Class and record helpers are covered in Chapter 12. In short, you can customize the operations
applicable to core data types. Expert developers can notice that type operations are defined as
class static methods in the matching intrinsic record helper.

You can see a couple of examples in the following code extracted from the
IntegersTest demo:

var
 N: Integer;
begin
 N := 10;
 Show (N.ToString);

 // display a constant
 Show (33.ToString);

 // type operation, show the bytes required to store the type
 Show (Integer.Size.ToString);

note The Show function used in this code snippet is a simple procedure used to display some string out -
put in a memo control, to avoid having to close multiple ShowMessage dialogs. A side advantage
is this approach makes easier to copy the output and paste in the text (as I've done below). You'll
see this approach used through most of the demos of this book.

The output of the program is the following

10
33
4

Given these operations are very important (more than others that are part of the run
time library) it is worth listing them here:

ToString Convert to the number to a string, using a decimal format
ToBoolean Conversion to Boolean type
ToHexString Convert to a string, using a hexadecimal format
ToSingle Conversion to single floating point data type
ToDouble Conversion to double floating point data type
ToExtended Conversion to extended floating point data type

The first and third operations convert to the number to a string, using a decimal or
hexadecimal operation. The second is a conversion to Boolean, while the last three
are conversions to floating point types described later.

There are other operations you can apply to the Integer type (and most other
numerical types), such as:

Size The number of bytes required to store a variable of this type

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 53

Parse Convert a string to the numeric value it represents
TryParse Try to convert the string a a number

Standard Ordinal Types Routines

Beside the operations defined by Integer type helpers and listed above, there are
several standard and “classic” functions you can apply to any ordinal type (not just
the numeric ones). A classic example is asking for information about the type itself,
using the functions SizeOf, High, and Low. The result of the SizeOf system function
(that you can apply to any data type of the language) is an integer indicating the
number of bytes required to represent values of the given type (just like the Size
helper function shown above)

The system routines that work on ordinal types are shown in the following table:

Dec Decrements the variable passed as parameter, by one or by the value
of the optional second parameter

Inc Increments the variable passed as parameter, by one or by the speci-
fied value

Odd Returns True if the argument is an odd number. For testing for even
numbers, you should use a not expression (not Odd)

Pred Returns the value before the argument in the order determined by
the data type, the predecessor

Succ Returns the value after the argument, the successor
Ord Returns a number indicating the order of the argument within the

set of values of the data type (used for non-numerical ordinal types)
Low Returns the lowest value in the range of the ordinal type passed as

parameter
High Returns the highest value in the range of the ordinal data type

note C and C++ programmers should notice that the two versions of the Inc procedure, with one or
two parameters, correspond to the ++ and += operators (the same holds for the Dec procedure
which corresponds to the -- and -= operators). The Object Pascal compiler optimizes these incre -
ment and decrement operations, similarly to the way C and C++ compilers do.

Notice that some of these routines are automatically evaluated by the compiler and
replaced with their value. For example, if you call High(X) where X is defined as an
Integer, the compiler replaces the expression with the highest possible value of the
Integer data type.

In the IntegersTest I've added an event with a few of these ordinal type functions:

var
 n: UInt16;
begin

Marco Cantù, Object Pascal Handbook

54 - 02: Variables and Data Types

 n := Low (UInt16);
 Inc (n);
 Show (IntToStr (n));
 Inc (n, 10);
 Show (IntToStr (n));
 if Odd (n) then
 Show (IntToStr (n) + ' is odd');

This is the output you should see:

1
11
11 is odd

You can change the data type form Uint16 to Integer or other ordinal types to see
how the output changes.

Out-Of-Range Operations

A variable like n above has only a limited range of valid values. If the value you
assign to it is negative or too big, this results in an error. There are actually three dif-
ferent types of errors you can encounter with out-of-range operations.

The first type of error is a compiler error, which happens if you assign a constant
value (or a constant expression) that is out of range. For example, if you add to the
code above:

 n := 100 + High (n);

the compiler will issue the error:

[dcc32 Error] E1012 Constant expression violates subrange bounds

The second scenario takes place when the compiler cannot anticipate the error con-
dition, because it depends on the program flow. Suppose we write (in the same piece
of code):

 Inc (n, High (n));
 Show (IntToStr (n));

The compiler won't trigger an error because there is a function call, and the compiler
doesn't know its effect in advance (and the error would also depend on the initial
value of n). In this case there are two possibilities. By default, if you compile and run
this application, you'll end up with a completely illogical value in the variable (in this
case the operation will result in subtracting 1!). This is the worst possible scenario,
as you get no error, but your program is not correct.

What you can do (and it is highly suggested to do) is to turn on a compiler option
called “Overflow checking”, which will guard against a similar overflow operation
and raise an error, in this specific case “Integer overflow”. I've enabled this check in
the IntegersTest demo, so you'll see an error message when you run it.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 55

Boolean

Logical True and False values are represented using the Boolean type. This is also
the type of the condition in conditional statements, as we'll see in the next chapter.
The Boolean type can only have one of the two possible values True and False.

note For compatibility with Microsoft's COM and OLE automation, the data types ByteBool,
WordBool, and LongBool represent the value True with -1, while the value False is still 0. Again,
you should generally ignore these types and avoid all low-level Boolean manipulation and
numeric mapping unless absolutely necessary.

Unlike in the C language and some of its derived languages, Boolean is an enumer-
ated type in Object Pascal, there is no direct conversion to the value representing the
Boolean, and you should not abuse direct type casts by trying to convert a Boolean to
a numeric value. It is true, however, that Boolean type helpers include the functions
ToInteger and ToString. I cover enumerated types later in this chapter.

Notice that using ToString returns the string with the numeric value of the Boolean
variable. As an alternative you can use the BoolToStr global function, setting the
second parameter to True, to indicate the use of Boolean strings ('True' and 'False')
for the output. (See the section “Char Type Operations” below for an example.)

Characters

Character variable are defined using the Char type. Unlike older versions, the lan-
guage today uses the Char type to represent double-byte Unicode characters.

note The Windows and Mac version of the compiler still offer the distinction between AnsiChar for one
byte ANSI characters and WideChar for Unicode ones, with the Char type defined as an alias of the
latter. The recommendation is to focus on WideChar, and use the Byte data type for single byte
elements.

For an introduction to characters in Unicode, including the definition of a code point
and that of surrogate pairs (among other advanced topics) you can read Chapter 6.
In this section I'll just focus on the core concepts of the Char type.

As I mentioned earlier while covering literal values, constant characters can be rep-
resented with their symbolic notation, as in 'k', or with a numeric notation, as in
#78. The latter can also be expressed using the Chr system function, as in Chr (78).
The opposite conversion can be done with the Ord function. It is generally better to
use the symbolic notation when indicating letters, digits, or symbols.

Marco Cantù, Object Pascal Handbook

56 - 02: Variables and Data Types

When referring to special characters, like the control characters below #32, you'll
generally use the numeric notation. The following list includes some of the most
commonly used special characters:

#8 backspace
#9 tab
#10 newline
#13 carriage return
#27 escape

Char Type Operations

As other ordinal types, the Char type has several predefined operation you can apply
to variables of this type using the dot notation. These operations are defined with an
intrinsic record helper, again.

However, the usage scenario is quite different. First, to use this feature you need to
enable it by referring to the Character unit in a uses statement. Second, rather than
a few conversion functions, the helper for the Char type includes a couple of dozen
Unicode-specific operations, including tests like IsLetter, IsNumber, and
IsPunctuation, and conversions like ToUpper and ToLower. Here is an example
taken from the CharsTest demo:

uses
 Character;
...
var
 ch: Char;
begin
 ch := 'a';
 Show (BoolToStr(ch.IsLetter, True));
 Show (ch.ToUpper);

The output of this code is:

True
A

note The ToUpper operation of the Char type helper is fully Unicode enabled. This means that if you
pass an accented letter like ù the result will be Ù. Some of the traditional RTL functions are not so
smart and work only for plain ASCII characters.

Char as an Ordinal Type

The Char data type is quite large, but it is still an ordinal type, so you can use Inc
and Dec functions on it (to get to the next or previous character or move ahead by a
given number of elements, as we have seen in the section “Standard Ordinal Types

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 57

Routines”) and write for loops with a Char counter (more on for loops in the next
chapter).

Here is a simple fragment used to display a few characters, obtained by increasing
the value from a starting point:

var
 ch: Char;
 str1: string;
begin
 ch := 'a';
 Show (ch);
 Inc (ch, 100);
 Show (ch);

 str1 := '';
 for ch := #32 to #1024 do
 str1 := str1 + ch;
 Show (str1)

The for loop of the CharsTest application adds a lot of text to the string, making the
output is quite long. It starts with the following lines of text:

a
Å
 !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abc
defghijklmnopqrstuvwxyz{|}~
// few more lines omitted...

Converting with Chr

We have seen that there is an Ord function that returns the numeric value (or Uni-
code code point) of a character. There is also an opposite function you can to get the
character corresponding to a code point, that is the Chr special function.

32-bit Characters

Although the default Char type is now mapped to WideChar, it is worth noticing that
Delphi also defines a 4-byte character type, UCS4Char, defined in the System unit as:

type
 UCS4Char = type LongWord;

This type definition and the corresponding one for UCS4String (defined as an array
of UCS4Char) are little used, but they are part of the language runtime and used in
some of the functions of the Character unit.

Marco Cantù, Object Pascal Handbook

58 - 02: Variables and Data Types

Floating Point Types

While integer numbers of various kinds can be represented with an ordinal set of
values, floating point numbers are not ordinal (they have the concept of order, but
not the concept of a sequence of elements) and represented by some approximate
value, with some error in their representation.

Floating-point numbers comes in various formats, depending on the number of
bytes used to represent them and the quality of the approximation. Here is a list of
floating-point data types in Object Pascal:

Single The smallest storage size is given by Single numbers, which are
implemented with a 4-byte value. The name indicates a single preci-
sion floating point value and the same type is indicated with the
name float in other languages.

Double These are floating-point numbers implemented with 8 bytes. The
name indicates a double precision floating point value and is shared
by many languages. The Double precision is the most commonly
used floating point data type and is also an alias of an older Pascal
type called Real.

Extended These are numbers implemented with 10 bytes, but this type is not
available on all platforms (on some, like Win64, it reverts back to
Double). Other languages call this data type long double.

These are all floating-point data types with different precision, which correspond to
the IEEE standard floating-point representations, and are directly supported by the
CPU (or, to be precise, by the FPU, the floating point unit), for maximum speed.

There are also two peculiar non-ordinal numeric data types you can used to repre-
sent numbers with a precise, not an approximate representation:

Comp Describes very big integers using 8 bytes (which can hold numbers
with 18 decimal digits). The idea is to represent large numbers with
no loss of precision, unlike the corresponding floating point values.

Currency Indicates a fixed-point decimal value with four decimal digits, and
the same 64-bit representation as the Comp type. As the name
implies, the Currency data type has been added to handle very pre-
cise monetary values, with four decimal places (again with no loss of
precision in calculations).

All of these non-ordinal data types don't have the concepts of the High, Low, or Ord
function. Real types represent (in theory) an infinite set of numbers; ordinal types
represent a fixed set of values.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 59

Why Floating Point Values are Different

Let me explain further. When you have the integer 23 you can determine which is
the following value. Integers are finite (they have a determined range and they have
an order). Floating point numbers are infinite even within a small range, and have
no order: in fact, how many values are there between 23 and 24? And which number
follows 23.46? Is it 23.47, 23.461, or 23.4601? That's really impossible to know!

For this reason, whilst it makes sense to ask for the ordinal position of the character
'w' in the range of the Char data type, it makes no sense at all to ask the same ques-
tion about 7143.1562 in the range of a floating-point data type. Although you can
indeed know whether one real number has a higher value than another, it makes no
sense to ask how many real numbers exist before a given number (this is the mean-
ing of the Ord function).

Another key concept behind floating point values is that their implementation can-
not represent all numbers precisely. It is often the case that the result of a
calculation you'd expect to be a specific number (at times an integer one), could in
fact be an approximate value of it. Consider this code, taken from the FloatTest
example:

var
 s1: Single;
begin
 s1 := 0.5 * 0.2;
 Show (s1.ToString);

You would expect the result to be 0.1, while in fact you'd get something like
0.100000001490116. This is close to the expected value, but not exactly it. Needless
to say, if you round the result, you'll get the expected value. If you use a Double vari-
able, instead, the output will be 0.1, as the FloatTest example also shows.

note Now I don't have time for an in-depth discussion of floating point math on computers, so I'm cut -
ting this discussion rather short, but if you are interested in this topic from the Object Pascal
language perspective, I can recommend you an excellent article from Rudy Velthuis at
http://rvelthuis.de/articles/articles-floats.html.

Floating Helpers and the Math Unit

As you can see from the code snippet above, the floating point data types also have
class helpers allowing you to apply operations directly to the variables, as if they
were objects. In fact, the list of operations for floating point numbers is actually
quite long.

Marco Cantù, Object Pascal Handbook

60 - 02: Variables and Data Types

This is the list of operations on instances for the Single type (with most operations
quite obvious from their names, so I've omitted a description):

Exponent Fraction Mantissa
Sign Exp Frac
SpecialType BuildUp ToString
IsNan IsInfinity IsNegativeInfinity
IsPositiveInfinity Bytes Words

The run time library has also a Math unit that defines advanced mathematical rou-
tines, covering trigonometric functions (such as the ArcCosh function), finance (such
as the InterestPayment function), and statistics (such as the MeanAndStdDev proce-
dure). There are a number of these routines, some of which sound quite strange to
me, such as the MomentSkewKurtosis function (I'll let you find out what this is).

The Math unit is very rich in capabilities, but you'll also find many external collec-
tions of mathematical functions for Object Pascal.

Simple User-Defined Data Types

Along with the notion of type, one of the great ideas introduced by Wirth in the Pas-
cal language was the ability to define new data types in a program. You can define
your own data types by means of type definitions, such as subrange types, array
types, record types, enumerated types, pointer types, and set types. The most impor-
tant user-defined data type is the class, which is part of the object-oriented
capabilities of the language, covered in the second part of this book.

If you think that type constructors are common in many programming languages,
you are right, but Pascal was the first language to introduce the idea in a formal and
very precise way. Object Pascal still has some rather unique capabilities, like the def-
inition of subrange, enumerations, and sets, covered in the following sections. More
complex data type constructors (like arrays and records) are covered in Chapter 5.

Named vs. Unnamed Types

User-defined data types can be given a name for later use or applied to a variable
directly. The convention in Object Pascal is to use a letter T prefix to denote any data
type, including classes but not limited to them. I strongly suggest you to stick to this
rule, even if might not feel natural at first if you are coming from a Java or C# back-
ground.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 61

When you give a name to a type, you must do so in a “type” section of your program
(you can add as many types as you want in each unit). Below is a simple example of a
few type declarations:

type
 // subrange definition
 TUppercase = 'A'..'Z';

 // enumerated type definition
 TMyColor = (Red, Yellow, Green, Cyan, Blue, Violet);

 // set definition
 TColorPalette = set of TMyColor;

With these types, you can now define some variables:

var
 UpSet: TUpperLetters;
 Color1: TMyColor;

In the scenario above I'm using a named type. As an alternative, the type definition
can be used directly to define a variable without an explicit type name, as in the fol-
lowing code:

var
 Palette: set of TMyColor;

In general, you should avoid using unnamed types as in the code above, because you
cannot pass them as parameters to routines or declare other variables of the same
type. Given the language ultimately resorts to type name equivalence rather than
structural type equivalence, having a single definition for each type is indeed impor-
tant. Also remember that type definitions in the interface portion of a unit can be
seen in the code of any other units by means of a uses statement.

What do the type definitions above mean? I’ll provide some descriptions for those
who are not familiar with traditional Pascal type constructs. I’ll also try to underline
the differences from the same constructs in other programming languages, so you
might be interested in reading the following sections in any case.

Subrange Types

A subrange type defines a range of values within the range of another type (hence
the name subrange). For example, you can define a subrange of the Integer type,
from 1 to 10 or from 100 to 1000, or you can define a subrange of the Char type with
English uppercase characters only, as in:

type
 TTen = 1..10;
 TOverHundred = 100..1000;

Marco Cantù, Object Pascal Handbook

62 - 02: Variables and Data Types

 TUppercase = 'A'..'Z';

In the definition of a subrange, you don’t need to specify the name of the base type.
You just need to supply two constants of that type. The original type must be an
ordinal type, and the resulting type will be another ordinal type. When you have
defined a variable as a subrange, you can then assign it any value within that range.
This code is valid:

var
 UppLetter: TUpperCase;

begin
 UppLetter := 'F';

But this is not:

var
 UppLetter: TUpperCase;

begin
 UppLetter := 'e'; // compile-time error

Writing the code above results in a compile-time error, "Constant expression vio-
lates subrange bounds." If you write the following code instead:

var
 UppLetter: TUppercase;
 Letter: Char;

begin
 Letter :='e';
 UppLetter := Letter;

the compiler will accept it. At run-time, if you have enabled the Range Checking
compiler option (in the Compiler page of the Project Options dialog box), you’ll get a
Range check error message, as expected. This is similar to the integer type overflow
errors which I described earlier.

I suggest that you turn on this compiler option while you are developing a program,
so it'll be more robust and easier to debug, as in case of errors you'll get an explicit
message and not an undetermined behavior. You can eventually disable this option
for the final build of the program, so that it will run a little faster. However, the
increase in speed is almost negligible so I suggest to leave all of these run-time
checks turned on, even in a shipping program.

Enumerated Types

Enumerated types (usually referred to as “enums”) constitute another user-defined
ordinal type. Instead of indicating a range of an existing type, in an enumeration you

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 63

list all of the possible values for the type. In other words, an enumeration is a list of
(constant) values. Here are some examples:

type
 TColors = (Red, Yellow, Green, Cyan, Blue, Violet);
 TSuit = (Club, Diamond, Heart, Spade);

Each value in the list has an associated ordinality, starting with zero. When you
apply the Ord function to a value of an enumerated type, you get this “zero-based”
value. For example, Ord (Diamond) returns 1.

Enumerated types can have different internal representations. By default, Delphi
uses an 8-bit representation, unless there are more than 256 different values, in
which case it uses the 16-bit representation. There is also a 32-bit representation,
which at times is useful for compatibility with C or C++ libraries.

note You can change the default representation of enumerated types, asking for a larger one, by using
the $Z compiler directive.

Scoped Enumerators

The specific constant values of an enumerated type can be considered to all effects as
global constants, and there have been cases of names conflicts among different enu-
merated values. This is why the language supports scoped enumerations, a feature
you can activate using a specific compiler directive, $SCOPEDENUMS, and which
requires you to refer to the enumerated value using the type name as a prefix:

// classic enumerated value
s1 := Club;

// "scoped" enumerated value
s1 := TSuit.Club;

note This is exactly how C# invariably works, but in that language enumerations have a slightly differ -
ent behavior, can have holes in the sequence and have specific values assigned to the various
constants.

When this feature was introduced, the default remained the traditional behavior, to
avoid breaking existing code. Scoped enumerators, in fact, changes the behavior of
enumerations making it compulsory to refer to them with a type prefix.

Having an absolute name to refer to enumerated values removes the risk of a con-
flict, could let you avoid using the initial prefix of the enumerated values as a way to
differentiate with other enumerations, and makes the code more readable, even if
much longer to write.

As an example, the IOUtils unit defines this type:

Marco Cantù, Object Pascal Handbook

64 - 02: Variables and Data Types

{$SCOPEDENUMS ON}
type
 TSearchOption = (soTopDirectoryOnly, soAllDirectories);

This means you cannot refer to the second value as soAllDirectories, but you have
to refer to the it with its complete name:

TSearchOption.soAllDirectories

The FM Platform library uses quite a number of scoped enumerators, as well,
requiring the type as a prefix to the actual values.

note Enumerated values in Object Pascal libraries often use two or three initials of the type at the
beginning of the value, like “so” for Search Options in the example above. When using the type as
a prefix, this might seem a bit redundant, but given the commonality of the approach, I don't see
it going away any time soon.

Set Types

Set types indicate a group of values, where the list of available values is indicated by
the ordinal type the set is based onto. These ordinal types are usually limited, and
quite often represented by an enumeration or a subrange. If we take the subrange
1..3, the possible values of the set based on it include only 1, only 2, only 3, both 1
and 2, both 1 and 3, both 2 and 3, all the three values, or none of them.

A variable usually holds one of the possible values of the range of its type. A set-type
variable, instead, can contain none, one, two, three, or more values of the range. It
can even include all of the values. Here is an example of a set:

type
 TSuit = (Club, Diamond, Heart, Spade);
 TSuits = set of TSuit;

Now I can define a variable of this type and assign to it some values of the original
type. To indicate some values in a set, you write a comma-separated list, enclosed
within square brackets. The following code shows the assignment to a variable of
several values, a single value, and an empty value:

var
 Cards1, Cards2, Cards3: TSuits;

begin
 Cards1 := [Club, Diamond, Heart];
 Cards2 := [Diamond];
 Cards3 := [];

In Object Pascal, a set is generally used to indicate several nonexclusive flags. For
example a value based on a set type is the style of a font. Possible values indicate a

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 65

bold, italic, underline, and strike-through font. Of course the same font can be both
italic and bold, have no attributes, or have them all. For this reason it is declared as
a set. You can assign values to this set in the code of a program as follows:

Font.Style := []; // no style
Font.Style := [fsBold]; // bold style only
Font.Style := [fsBold, fsItalic]; // two styles active

Set Operators

We have seen that sets are a very Pascal-specific user defined data type. That's why
the set operators are worth a specific coverage. They include union (+), difference
(-), intersection (*), membership test (in), plus some relational operators. To add an
element to a set, you can make the union of the set with another one that has only
the elements you need. Here's an example related to font styles:

// add bold
Style := Style + [fsBold];

// add bold and italic, but remove underline if present
Style := Style + [fsBold, fsItalic] - [fsUnderline];

As an alternative, you can use the standard Include and Exclude procedures, which
are much more efficient (but cannot be used with component properties of the set
type):

Include (Style, fsBold);
Exclude (Style, fsItalic);

Expressions and Operators

We have seen that you can assign to a variable a type-compatible literal value, a con-
stant value, or the value of another variable. In many cases, what you assign to a
variable is the result of an expression, involving one or more values and one or more
operators. Expressions are another core element of the language.

Using Operators

There isn't a general rule for building expressions, since they mainly depend on the
operators being used, and Object Pascal has a number of operators. There are logi-
cal, arithmetic, Boolean, relational, and set operators, plus some other special ones:

// sample expressions

Marco Cantù, Object Pascal Handbook

66 - 02: Variables and Data Types

20 * 5 // multiplication
30 + n // addition
a < b // less than comparison
- 4 // negative value
c = 10 // test for equality (like == in C syntax)

Expressions are common to most programming languages, and most operators are
the same. An expression is any valid combination of constants, variables, literal val-
ues, operators, and function results. Expressions can be used to determine the value
to assign to a variable, to compute the parameter of a function or procedure, or to
test for a condition. Every time you are performing an operation on the value of an
identifier, rather than using an identifier by itself, you are using an expression.

note The result of an expression is generally stored in a temporary variable of the proper data type
automatically generated by the compiler on your behalf. You might want to use an explicit vari -
able when you need to compute the same expression more than once in the same code fragment.
Notice that complex expressions might require multiple temporary variables to store intermediate
results, again something the compiler takes care of for you and you can generally ignore.

Showing the Result of an Expression

If you want to make a few experiments with expressions, there is nothing better than
writing a simple program. As for most of the initial demos of this book, create a sim-
ple program based on a form, and use the custom Show function to display
something to the user. In case the information you want to show is a not a string
message but number or a boolean logical value, you need to convert it, for example
calling the IntToStr or BoolToStr function.

note In Object Pascal parameters passed to a function or procedures are enclosed in parenthesis. Some
other languages (notably Rebol and, to some extent, Ruby) let you pass parameters simply by
writing them after the function or procedure name. Getting back to Object Pascal, nested func -
tions calls use nested parenthesis, like in the code below.

Here is a sample code snippet from the demo program ExpressionsTest:

 Show (IntToStr (20 * 5));
 Show (IntToStr (30 + 222));
 Show (BoolToStr (3 < 30, True));
 Show (BoolToStr (12 = 10, True));

The output is this code snippet is quite trivial:

100
252
True
False

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 67

I've provided this demo as a skeleton for you to try out different types of expressions
and operators, and see the corresponding output.

note Expressions you write in Object Pascal are parsed by the compiler and generate assembly code. If
you want to change one of these expressions, you need to change the source code and recompile
the application. The system libraries, however, have support for dynamic expressions calculated at
runtime, a features tied to reflection and covered in Chapter 16.

Operators and Precedence

Expressions are made of operators applied to values. As I mentioned, most opera-
tors are shared among the various programming languages are are quite intuitive,
such as the basic match and comparison operators. In this section I'll highlight only
specific elements of Object Pascal operators.

You can see a list of the operators of the language below, grouped by precedence and
compared to operators in C#, Java, and Objective-C (and most languages based on
the C language syntax, anyway).

Relational and Comparison Operators (Lowest Precedence)

= Test whether equal (in C this is ==)
<> Test whether not equal (in C this is !=)
< Test whether less than
> Test whether greater than
<= Test whether less than or equal to, or a subset of a set
>= Test whether greater than or equal to, or a superset of a set
in Test whether the item is a member of the set
is Test whether an object is compatible with a given type (covered in

Chapter 8) or implements a given interface (covered in Chapter 11)

Additive Operators

+ Arithmetic addition, set union, string concatenation, pointer offset
addition

- Arithmetic subtraction, set difference, pointer offset subtraction
or Boolean or bitwise or (in C this is either || or |)
xor Boolean or bitwise exclusive or (in C bitwise exclusive or is ^)

Multiplicative and Bitwise Operators

* Arithmetic multiplication or set intersection
/ Floating-point division
div Integer division (in C this also uses /)

Marco Cantù, Object Pascal Handbook

68 - 02: Variables and Data Types

mod Modulo (the remainder an of integer division) (in C this is %)
as Allows a type-checked conversion at runtime (covered in Chapter 8)
and Boolean or bitwise and (in C this is either && or &)
shl Bitwise left shift (in C this is <<)
shr Bitwise right shift (in C this is >>)

Unary Operators (Highest Precedence)

@ Memory address of a variable or function (returns a pointer, in C this
is &)

not Boolean or bitwise not (in C this is !)

Different from many other programming languages, the and and or operators have
higher precedence than comparison ones. So if you write:

a < b and c < d

the compiler will do the and operation first, generally resulting in a compiler error. If
you want to test both comparisons, you should enclose each of the < expressions in
parentheses:

(a < b) and (c < d)

For math operations, instead, the common rules apply, with multiplication and divi-
sion taking precedence over addition and subtraction. The first two expressions
below are equivalent, while the third is different:

10 + 2 * 5 // result is 20
10 + (2 * 5) // result is 20
(10 + 2) * 5 // result is 60

Some of the operators have different meanings when used with different data types.
For example, the + operator can be used to add two numbers, concatenate two
strings, make the union of two sets, and even add an offset to a pointer (if the spe-
cific pointer type has pointer math enabled):

10 + 2 + 11
10.3 + 3.4
'Hello' + ' ' + world'

However, you cannot add two characters, as is possible in C.

An unusual operator is div. In Object Pascal, you can divide any two numbers (real
or integers) with the / operator, and you'll invariably get a real-number result. If you
need to divide two integers and want an integer result, use the div operator instead.
Here are two sample assignments (this code will become clearer as we cover data
types in the next chapter):

realValue := 123 / 12;
integerValue := 123 div 12;

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 69

To make sure the integral division has no remainder, you can use the mod operator
and check if the result is zero, like in the following Boolean expression:

(x mod 12) = 0

Date and Time

While there was no native type for date and time in the early versions of the Pascal
language, Object Pascal has a native type for date and time. It uses a floating-point
representation to handle date and time information. To be more precise the System
unit defines a specific TDateTime data type for that purpose.

This is a floating-point type, because it must be wide enough to store years, months,
days, hours, minutes, and seconds, down to millisecond resolution in a single vari-
able:

· Dates are stored as the number of days since 1899-12-30 (with negative values
indicating dates before 1899) in the integer part of the TDateTime value

· Times are stored as fractions of a day in the decimal part of the value

note In case you are wondering were that strange date comes from, there is a rather long story behind
it tied to Excel and dates representations in Windows applications. The idea was to consider day
number 1 as the first of January 1900, so that New Year's eve of 1899 would have been day num -
ber 0. However, the original developer of that date representation duly forgot that year 1900
wasn't a leap year, and so calculations were later adjusted by 1 day, turning the first of January
1900 into day number 2.

As mentioned, TDateTime is not a predefined type the compiler understands, but it is
defined in the System unit as:

type
 TDateTime = type Double;

note The System unit could be somehow considered almost as part of the core language, given it is
always automatically included in each compilation, without a uses statement (actually adding the
System unit to a uses section will cause a compilation error). Technically, though, this unit is
considered as the core part of the run-time library (RTL), and it will be covered in Chapter 18.

There are also two related types to handle the time and date portions of a TDateTime
structure, defined as TDate and TTime. These specific types are aliases of the full
TDateTime, but they are treated by system functions trimming the unused part of the
data.

Marco Cantù, Object Pascal Handbook

70 - 02: Variables and Data Types

Using date and time data types is quite easy, because Delphi includes a number of
functions that operate on this type. There are several core functions in the SysUtils
unit, and many specific functions in the DateUtils unit (which despite the name
includes also functions for manipulating time).

Here you can find a short list of commonly used date/time manipulation functions:

Now Returns the current date and time into a date/time value.
Date Returns only the current date.
Time Returns only the current time.
DateTimeToStrConverts a date and time value into a string, using default format-

ting; to have more control on the conversion use the FormatDateTime
function instead.

DateToStr Converts the date portion of a date/time value into a string.
TimeToStr Converts the time portion of a date/time value into a string.
FormatDateTime Formats a date and time using the specified format; you can specify

which values you want to see and which format to use by providing a
complex format string.

StrToDateTimeConverts a string with date and time information to a date/time
value, raising an exception in case of an error in the format of the
string. Its companion function, StrToDateTimeDef returns the
default value in case of an error rather than raising an exception.

DayOfWeek Returns the number corresponding to the day of the week of the
date/time value passed as parameter.

DecodeDate Retrieves the year, month, and day values from a date value.
DecodeTime Retrieves the hours, minutes, seconds, and milliseconds from a date

value.
EncodeDate Turns year, month, and day values into a date/time value.
EncodeTime Turns hour, minute, second, and millisecond values into a date/time

value.

To show you how to use this data type and some of its related routines, I've built a
simple example, named TimeNow. When the program starts it automatically com-
putes and displays the current time and date.

var
 StartTime: TDateTime;
begin
 StartTime := Now;
 Show ('Time is ' + TimeToStr (StartTime));
 Show ('Date is ' + DateToStr (StartTime));

The first statement is a call to the Now function, which returns the current date and
time. This value is stored in the StartTime variable.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 71

note When an Object Pascal function is called with no parameters there is no need to type the empty
parentheses unlike with the C style languages.

The next two statements display the time portion of the TDateTime value, converted
into a string, and the date portion of the same value. This is the output of the pro-
gram:

Time is 6:33:14 PM
Date is 10/7/2014

To compile this program you need to refer to functions that are part of the SysUtils
unit (a short name for “system utilities”). Besides calling TimeToStr and DateToStr
you can use the more powerful FormatDateTime function.

Notice that time and date values are transformed into strings depending on the sys-
tem's international settings. The date and time formatting information is read from
the system, depending on the operating system and the locale, populating a
TFormatSettings data structure. If you need customized formatting, you can create
a custom structure of that type and pass it as parameter to most date time format-
ting functions.

note The TimeNow project has also a second button you can use to enable a timer. This is component
that executes an event handler automatically over time (you specify the interval). In the demo, if
you enable the timer you'll see the current time added to the list every second. A more useful user
interface would be to update a label with the current time every second, basically building a clock.

Typecasting and Type Conversions

As we have seen, you cannot assign a variable of one data type to one of a different
type. The reason is, depending on the actual representation of the data, you might
end up with something meaningless.

Now, this is not true for each and every data type. Numerical types, for example, can
always be promoted safely. “Promoted” here means you can always safely assign a
value to a type with a larger representation. So you can assign a word to an integer,
and an integer to an Int64 value. The opposite operation, called “demotion”, is
allowed by the compiler but it will issue a warning, because you might end up with
partial data. Other automatic conversions are one way only: For example, you can
assign an integer to a floating point number, but the opposite operation is illegal.

Marco Cantù, Object Pascal Handbook

72 - 02: Variables and Data Types

There are scenarios you want to change the type of a value and the operation makes
sense. When you need to do this, there are two choices. One is to perform a direct
type cast, which will copy the physical data and might result in a proper conversion
or a not depending on the types. When you perform a typecast, you are telling the
compiler “I know what I'm doing, let me go for it”. So, better if you really know what
you are doing, as you are losing the compiler safety net.

Type casting uses a simple functional notation, with the name of the destination
data type used as a function:

var
 N: Integer;
 C: Char;
 B: Boolean;

begin
 N := Integer ('X');
 C := Char (N);
 B := Boolean (N);

You can safely typecast between data types having the same size (that is the same
number of bytes to represent the data – unlike in the code snippet above!). It is usu-
ally safe to typecast between ordinal types, but you can also typecast between
pointer types (and also objects) as long as you know what you are doing.

Direct type casting is a dangerous programming practice, because it allows you to
access a value as if it represented something else. Since the internal representations
of data types generally do not match (and might even change depending on the tar-
get platform), you risk accidentally creating hard-to-track errors. For this reason,
you should generally avoid type casting.

The second choice to assign a variable to one of a different type is to use a type con-
version function. A list of functions allowing you to convert between various basic
types is summarized below (and I've already used some of these functions in the
demos of this chapter):

Chr Converts an ordinal number into a character.
Ord Converts an ordinal-type value into the number indicating its order.
Round Converts a real-type value into an Integer-type value, rounding its

value (also see the following note).
Trunc Converts a real-type value into an Integer-type value, truncating its

value.
Int Returns the Integer part of the floating-point value argument.
FloatToDecimal Converts a floating-point value to record including its decimal

representation (exponent, digits, sign).
FloatToStr Converts a floating-point value to its string representation using

default formatting.

Marco Cantù, Object Pascal Handbook

02: Variables and Data Types - 73

StrToFloat Converts a string to a floating-point value.

note The implementation of the Round function is based on the native implementation offered by the
CPU. Moderns processors generally adopts the so-called "Banker's Rounding", which rounds mid -
dle values (such as 5.5 or 6.5) up and down depending whether they follow an odd or an even
number. There are other rounding functions, such as RoundTo, that offer you more control on the
actual operation.

As mentioned earlier in this chapter, some of these conversion functions are avail-
able also as direct operations on the data type (thanks to the type helper
mechanism). While there are classic conversions like IntToStr, you can apply the
ToString operation to most numeric types to convert them to a string representa-
tion. There are many conversions you can apply directly to variables using type
helpers, and that should be your preferred coding style.

Some of these routines work on the data types that we'll discuss in the following sec-
tions. Notice that the table doesn't include routines for special types (such as
TDateTime or variant) or routines specifically intended for formatting more than
conversion, like the powerful Format and FormatFloat routines.

Marco Cantù, Object Pascal Handbook

74 - 03: Language Statements

03: language

statements

If the concept of data type was one of the breakthrough of the Pascal programming
language when it was first invented, the other side is represented by the code or pro-
gramming statements. At that time, this idea was clarified by Nicklaus Wirth's
outstanding book “Algorithms + Data Structures = Programs”, published by Prentice
Hall in February 1976 (a classic book, still reprinted and available). While this book
predates object-oriented programming by many years, it can be considered one of
the foundations of modern programming, based on a strong notion of data type, and
in this way a foundation of the concepts that lead to object-oriented programming
languages.

Statements of the programming language are based on keywords (covered in Chap-
ter 1) and other elements which allow you to indicate to a compiler a sequence of
operations to perform. Statements are often enclosed in procedures or functions, as
we'll start to see in more detail in the next chapter. For now, we'll just focus on the
basic types of instructions you can write to create a program.

As we saw in Chapter 1 (in the section covering white space and code formatting),
the actual program code can be written quite freely. I also covered comments and

Marco Cantù, Object Pascal Handbook

03: Language Statements - 75

some other special elements, but never fully introduced some core concepts, like a
programming statement.

Simple and Compound Statements

Programming instructions are generally called statements. A program block can be
made of a several statements. There are two types of statements, simple and com-
pound.

A statement is called simple when it doesn't contain any other sub-statements.
Examples of simple statements are assignment statements and procedure calls. In
Object Pascal simple statements are separated by a semicolon:

X := Y + Z; // assignment
Randomize; // procedure call
...

To define a compound statement, you can include one of more statements within the
keywords begin and end, which act as brackets. A compound statement can appear
anywhere a simple Object Pascal statement can appear. Here is an example:

begin
 A := B;
 C := A * 2;
end;

The semicolon after the last statement of the compound statement (that is, before
the end) isn't required, as in the following:

begin
 A := B;
 C := A * 2
end;

Both versions are correct. The first version has a useless (but harmless) final semi-
colon. This semicolon is, in fact, a null statement or an empty statement; that is, a
statement with no code. This is significantly different from many other program-
ming languages (like those based on the C syntax), in which the semicolon is a
statement terminator (not a separator) and is always required at the end of a state-
ment.

Notice that, at times, a null statement can be specifically used inside loops or in
other particular cases in place of an actual statement, as in:

while condition_with_side_effect do
 ; // null or empty statement

Marco Cantù, Object Pascal Handbook

76 - 03: Language Statements

Although these final semicolons serve no purpose, most developers tend to use them
and I suggest you to do the same. Sometimes after you've written a couple of lines
you might want to add one more statement. If the last semicolon is missing you have
to remember to add it, so it is usually better to add it in the first place. As we'll see
right away, there is an exception to this rule of adding extra semicolons, and that is
when the next element is an else statement inside a condition.

The If Statement

A conditional statement is used to execute either one of the statements it contains or
none of them, depending on a specific test (or condition). There are two basic flavors
of conditional statements: if statements and case statements.

The if statement can be used to execute a statement only if a certain condition is
met (if-then) or to choose between two different alternatives (if-then-else). The
condition is defined with a Boolean expression.

A simple Object Pascal example, called IfTest, will demonstrate how to write condi-
tional statements. In this program we'll use a checkbox to get user input, by reading
its IsChecked property (and storing it to a temporary variable, although this isn't
strictly required, as you could directly check the property value in the conditional
expression):

var
 isChecked: Boolean;
begin
 isChecked := CheckBox1.IsChecked;
 if isChecked then
 Show ('Checkbox is checked');

If the checkbox is checked, the program will show a simple message. Otherwise
nothing happens. By comparison, the same statement using the C language syntax
will look like the following (where the conditional expression must be enclosed
within parentheses):

if (isChecked)
 Show ("Checkbox is checked");

Some other languages have the notion of an endif element to allow you to write
multiple statements, where in Object Pascal syntax the conditional statement is a
single statement by default. You use a begin-end block to execute more than one
statement as part of the same condition.

Marco Cantù, Object Pascal Handbook

03: Language Statements - 77

If you want to do different operations depending on the condition, you can use an
if-then-else statement (and in this case I used a direct expression to read the
checkbox status):

 // if-then-else statement
 if CheckBox1.IsChecked then
 Show ('Checkbox is checked')
 else
 Show ('Checkbox is not checked');

Notice that you cannot have a semicolon after the first statement and before the
else keyword or the compiler will issue a syntax error. The reason is that the if-
then-else statement is a single statement, so you cannot place a semicolon in the
middle of it.

An if statement can be quite complex. The condition can be turned into a series of
conditions (using the and, or, and not Boolean operators), or the if statement can
nest a second if statement. Beside nesting if statements, when there are multiple
distinct conditions, it is common to have consecutive statements if-then-else-if-
then. You can keep chaining as many of these else-if conditions as you want.

The third button of the IfTest example demonstrates these scenarios, using the first
character of an edit box (which might be missing, hence the external test) as input:

var
 aChar: Char;
begin
 // multiple nested if statements
 if Edit1.Text.Length > 0 then
 begin
 aChar := Edit1.Text.Chars[0];

 // checks for a lowercase char (two conditions)
 if (aChar >= 'a') and (aChar <= 'z') then
 Show ('char is lowercase');

 // follow up conditions
 if aChar <= Char(47) then
 Show ('char is lower symbol')
 else if (aChar >= '0') and (aChar <= '9') then
 Show ('char is a number')
 else
 Show ('char is not a number or lower symbol');
 end;

Look at the code carefully and run the program to see if you understand it (and play
with similar programs you can write to learn more). You can consider more options
and Boolean expressions and increase the complexity of this small example, making
any test you like.

Marco Cantù, Object Pascal Handbook

78 - 03: Language Statements

Case Statements

If your if statements become very complex, at times you can replace them with case
statements. A case statement consists of an expression used to select a value and a
list of possible values, or a range of values. These values are constants, and they
must be unique and of an ordinal type. Eventually, there can be an else statement
that is executed if none of the values you specified correspond to the value of the
selector. While there isn't a specific endcase statement, a case is always terminated
by an end (which in this case isn't a block terminator, as there isn't a matching
begin).

note Creating a case statement requires an enumerated value. A case statement based on a string value
is currently not allowed. In that case you need to use nested if statements or a different data struc -
ture, like a dictionary (as I show later in the book in Chapter 14).

Here is an example (part of the CaseTest project), which uses as input the integral
part of the number entered in a NumberBox control, a numeric input control:

var
 number: Integer;
 aText: string;
begin
 number := Trunc(NumberBox1.Value);
 case number of
 1: aText := 'One';
 2: aText := 'Two';
 3: aText := 'Three';
 end;
 if aText <> '' then
 Show(aText);

Another example is the extension of the previous complex if statement, turned into a
number of different conditions of a case test:

case aChar of
 '+' : aText := 'Plus sign';
 '-' : aText := 'Minus sign';
 '*', '/': aText := 'Multiplication or division';
 '0'..'9': aText := 'Number';
 'a'..'z': aText := 'Lowercase character';
 'A'..'Z': aText := 'Uppercase character';
 #12032..#12255: aText := 'Kangxi Radical';
else
 aText := 'Other character: ' + aChar;
end;

Marco Cantù, Object Pascal Handbook

03: Language Statements - 79

note As you can see in the previous code snippet, a range of values is defined with the same syntax of a
subrange data type. Multiple values for a single branch, instead, are separated by a comma. For
the Kangxi Radical section I've used the numerical value rather than the actual characters,

because most of the fixed-size fonts used by the IDE editor won't display properly symbols like ⼀
(the first element of the group).

It is considered good practice to include the else part to signal an undefined or
unexpected condition. A case statement in Object Pascal selects one execution path,
it doesn't position itself at an entry point. In other word, it will execute the state-
ment or block after the colon of the selected value and it will skip to the next
statement after the case.

This is very different from the C language (and some of its derived languages) which
treat branches of a switch statement as entry points and will execute all following
statements unless you specifically use a break request (although this is a specific
scenario in which Java and C# actually differ in their implementation). The C lan-
guage syntax is like the following:

switch (aChar) {
 case '+': Text = "plus sign"; break;
 case '-': Text = "minus sign"; break;
 ...
 default: Text = "unknown"; break;
}

The For Loop

The Object Pascal language has the typical repetitive or looping statements of most
programming languages, including for, while, and repeat statements, plus the
more modern for-in (or for-each) cycle. Most of these loops will be familiar if
you've used other programming languages, so I'll only cover them briefly (indicating
the key differences from other languages).

The for loop in Object Pascal is strictly based on a counter, which can be either
increased or decreased each time the loop is executed. Here is a simple example of a
for loop used to add the first ten numbers (part of the ForTest demo).

var
 Total, I: Integer;
begin
 Total := 0;
 for I := 1 to 10 do
 Total := Total + I;

Marco Cantù, Object Pascal Handbook

80 - 03: Language Statements

 Show(Total.ToString);

For those curious, the output is 55. The for loop in Pascal is less flexible than in
other languages (it is not possible to specify an increment different than one), but it
is simple and easy to understand. As a comparison, this is the same for loop written
in the C language syntax:

 int total = 0;
 for (int i = 1; i <= 10; i++) {
 total = total + i;
 }

In these languages, the increment is an expression you can use to specify any kind of
sequence, which can lead to some really unreadable code as the following:

 int total = 0;
 for (int i = 10; i > 0; total += i--) {
 ..
 }

Speed before comprehension ;-)
]

In Object Pascal, instead, you can only use a single step increment. If you want to
test for a more complex condition, or if you want to provide a customized counter,
you'll need to use a while or repeat statement, instead of a for loop.

The only alternative to single increment is single decrement, or a reverse for loop:

var
 Total, I: Integer;
begin
 Total := 0;
 for I := 10 downto 1 do
 Total := Total + I;

note Reverse counting is useful, for example, when you are affecting a list-based data structure you are
looping through. When deleting some elements, you often go backwards, as with a forward loop
you might affect the sequence you are operating onto (that is, if you delete the third element of a
list, the fourth element becomes the third: now you are on the third, move to the next one (the
fourth) but you are actually operating on what was the fifth element, skipping one).

In Object Pascal the counter of a for loop doesn't need to be a number. It can be a
value of any ordinal type, such as a character or an enumerated type. This helps you
to write more readable code. Here is an example with a for loop based on the Char
type:

var
 aChar: Char;
begin
 for aChar := 'a' to 'z' do
 Show (aChar);

Marco Cantù, Object Pascal Handbook

03: Language Statements - 81

This code (part of the ForTest program) shows all of the letters of the English alpha-
bet, one in a separate line of the output Memo control.

note I've already shown a similar demo, but based on an integer counter, as part of the CharsTest
example of Chapter 2. In that case, though, the chars were concatenated in a single output string.

Here is another code snippet that shows a for loop based on a custom enumeration:

type
 TSuit = (Club, Diamond, Heart, Spade);

var
 ASuit: TSuit;
begin
 for ASuit := Club to Spade do
 ...

This last loop that cycles on all of the elements of the data type, could also be written
to explicitly operate on each element of the type rather than specifically indicating
the first and the last one, by writing:

 for ASuit := Low (TSuit) to High (TSuit) do

In a similar way, it is quite common to write for loop on all elements of a data struc-
ture, such as a string. In this case you can use this code (also part of the ForTest
project):

var
 S: string;
 I: Integer;
begin
 S := 'Hello world';
 for I := Low (S) to High (S) do
 Show(S[I]);

This code can be error prone, as you need to remember how to query for the first
and last element of the structure. This is why in a similar scenario, it is better to use
a for-in loop, a special-purpose for loop discussed in the next section.

note How the compiler treats direct access to the string using the [] operators and determines the
lower and upper bounds of a string is a rather complex topic in Object Pascal. While this will be
covered in Chapter 6, the code above (and all other snippets based on strings) work in all possible
scenarios.

Marco Cantù, Object Pascal Handbook

82 - 03: Language Statements

The for-in Loop

Microsoft's Visual Basic has always had a specific loop construct for cycling over all
of the elements of a list or collection, called for each. The same idea was later intro-
duced in C#, where the foreach mechanism is quite open and based on the use of
the IEnumerator interface and a standard coding pattern, while Java uses the for
keyword to express both types of for loops.

Recent versions of Object Pascal have a similar loop called for-in. In this for loop
the cycle operates on each element of an array, a list, a string, or some other type of
container. Object Pascal doesn't require the IEnumerator interface, but the internal
implementation is somewhat similar.

note You can find the technical details of how to support the for-in loop in a class, adding custom
enumeration support, in Chapter 10.

Let's start with a very simple container, a string, which can be seen as a collection of
characters. We have seen at the end of the previous section how to use a for loop to
operate on all elements of a string. The same exact effect can be obtained with the
following for-in loop based on a string, where the Ch variable receives as value each
of the string elements in turn:

var
 S: string;
 Ch: Char;
begin
 S := 'Hello world';
 for Ch in S do
 Show(Ch);

This snippet is also part of the ForTest example. The advantage over using a tradi-
tional for loop is that you don't need to remember which is the first element of the
string and how to extract the position of the last one. This loop is easier to write and
maintain and has a similar efficiency.

The for-in loop can be used to access to the elements of the several different data
structures:

● Characters in a string (see the previous code snippet)
● Active values in a set
● Items in a static or dynamic array, including two-dimensional arrays (cov-

ered in Chapter 5)
● Objects referenced by classes with GetEnumerator support, including many

predefined ones like strings in a string list, elements of the various container

Marco Cantù, Object Pascal Handbook

03: Language Statements - 83

classes, the components owned by a form, and many others. How to imple-
ment this will be discussed in Chapter 10.

Now it is a little difficult at this point in the book to cover these advanced usage pat-
terns, so I'll get back to examples of this loop later in the book.

note The for-in loop in some languages (for example JavaScript) has a bad reputation for being very
slow to run. This is not the case in Object Pascal, where is takes about the same time of a corre -
sponding standard for loop. To prove this, I've added to the LoopsTest example some timing
code, which first creates a string of 30 million elements and later scans it with both types of loops
(doing a very simple operation at each iteration. The difference in speed is about 10% in favor of
the classic for loop (62 milliseconds vs. 68 milliseconds on my Windows machine).

While and Repeat Statements

The idea behind the while-do and the repeat-until loops is repeating the execution
of a code block over and over until a given condition is met. The difference between
these two loops is that condition is checked at the beginning or at the end of the
loop. In other words, the code block of the repeat statement is always executed at
least once.

note Most other programming languages have only one type of open looping statement, generally
called and behaving like a while loop. The C language syntax has the same two option as the Pas -
cal syntax, with the while and do-while cycles. Notice, thought, that they use the same logical
condition, differently from the repeat-until loop that has a reverse condition.

You can easily understand why the repeat loop is always executed at least once, by
looking at a simple code example:

while (I <= 100) and (J <= 100) do
begin
 // use I and J to compute something...
 I := I + 1;
 J := J + 1;
end;

repeat
 // use I and J to compute something...
 I := I + 1;
 J := J + 1;
until (I > 100) or (J > 100);

Marco Cantù, Object Pascal Handbook

84 - 03: Language Statements

note You will have noticed that in both the while and repeat conditions I have enclosed the “sub-
conditions” in parentheses. It is necessary in this case, as the compiler will execute or before per-
forming the comparisons (as I covered in the section about operators of Chapter 2).

If the initial value of I or J is greater than 100, the while loop is completely skipped,
while statements inside the repeat loop are executed once anyway.

The other key difference between these two loops is that the repeat-until loop has
a reversed condition. This loop is executed as long as the condition is not met.
When the condition is met, the loop terminates. This is the opposite of a while-do
loop, which is executed while the condition is true. For this reason I had to reverse
the condition in the code above to obtain a similar effect.

note The “reverse condition” is formally known as the “De Morgan's” laws (described, for example, on
Wikipedia at http://en.wikipedia.org/wiki/De_Morgan%27s_laws).

Examples of Loops

To explore some more details of loops, let's look at a small practical example. The
LoopsTest program highlights the difference between a loop with a fixed counter
and a loop with an open counter. The first fixed counter loop, a for loop, displays
numbers in sequence:

var
 I: Integer;
begin
 for I := 1 to 20 do
 Show ('Number ' + IntToStr (I));
end;

The same could have been obtained also with a while loop, with an internal incre-
ment of one (notice you increment the value after using the current one). With a
while loop, however, you are free to set a custom increment, for example by 2:

var
 I: Integer;
begin
 I := 1;
 while I <= 20 do
 begin
 Show ('Number ' + IntToStr (I));
 Inc (I, 2)
 end;
end;

Marco Cantù, Object Pascal Handbook

03: Language Statements - 85

This code shows all of the odd numbers from one to 19. These loops with fixed incre-
ments are logically equivalent and execute a predefined number of times. This is not
always the case. There are loops that are more undetermined in their execution,
depending for example on external conditions.

note When writing a while loop you must always consider the case the condition is never met. For
example, if you write the loop above but forget to increment the loop counter, this will result into
an infinite loop (which will stall the program forever, consuming the CPU at 100%, until the oper -
ating system kills it).

To show an example of a less deterministic loop I've written a while loop still based
on a counter, but one that is increased randomly. To accomplish this, I've called the
Random function with a range value of 100. The result of this function is a number
between 0 and 99, chosen randomly. The series of random numbers control how
many times the while loop is executed:

var
 I: Integer;
begin
 Randomize;
 I := 1;
 while I < 500 do
 begin
 Show ('Random Number: ' + IntToStr (I));
 I := I + Random (100);
 end;
end;

If you remember to add a call the Randomize procedure, which resets the random
number generator at a different point for each program execution, each time you run
the program, the numbers will be different. The following is the output of two sepa-
rate executions, displayed side by side:

Random Number: 1 Random Number: 1
Random Number: 40 Random Number: 47
Random Number: 60 Random Number: 104
Random Number: 89 Random Number: 201
Random Number: 146 Random Number: 223
Random Number: 198 Random Number: 258
Random Number: 223 Random Number: 322
Random Number: 251 Random Number: 349
Random Number: 263 Random Number: 444
Random Number: 303 Random Number: 466
Random Number: 349
Random Number: 366
Random Number: 443
Random Number: 489

Notice that not only are the generated numbers different each time, but so is the
number of items. This while loop is executed a random numbers of times. If you

Marco Cantù, Object Pascal Handbook

86 - 03: Language Statements

execute the program several times in a row, you'll see that the output has a different
number of lines.

Breaking the Flow with Break and Continue

Despite the differences, each of the loops lets you execute a block of statements a
number of times, based on some rules. However, there are scenarios you might want
to add some additional behavior. Suppose, as an example, you have a for loop where
you search for the occurrence of a given letter (this code is part of the FlowTest
demo):

var
 S: string;
 I: Integer;
 Found: Boolean;
begin
 S := 'Hello World';
 Found := False;
 for I := Low (S) to High (S) do
 if (S[I]) = 'o' then
 Found := True;

At the end you can check for the value of found to see if the given letter was part of
the string. The problem is that the program keeps repeating the loop and checking
for the given character even after it found an occurrence of it (which would be an
issue with a very long string).

A classic alternative would be to turn this into a while loop and check for both condi-
tions (the loop counter and the value of Found):

var
 S: string;
 I: Integer;
 Found: Boolean;
begin
 S := 'Hello World';
 Found := False;
 I := Low (S);
 while not Found and (I <= High(S)) do
 begin
 if (S[I]) = 'o' then
 Found := True;
 Inc (I);
 end;

While this code is logical and readable, there is more code to write, and if the condi-
tions become multiple and more complex, combining all of the various options
would make the code very complicated.

Marco Cantù, Object Pascal Handbook

03: Language Statements - 87

That's why the language (or, to be more precise, its runtime support) has system
procedures that let you alter the standard flow of a loop's execution:

· The Break procedure interrupts a loop, jumping directly to the first statement fol-
lowing it, skipping any further execution

· The Continue procedure jumps to the loop test or counter increment, continuing
with the next iteration of the loop (unless the condition is no longer true or the
counter has reached its highest value)

Using the Break operation, we can modify the original loop for matching a character
as follows:

var
 S: string;
 I: Integer;
 Found: Boolean;
begin
 S := 'Hello World';
 Found := False;
 for I := Low (S) to High (S) do
 if (S[I]) = 'o' then
 begin
 Found := True;
 Break; // jumps out of the for loop
 end;

Two more system procedures, Exit and Halt, let you immediately return from the
current function or procedure or terminate the program. I'll cover Exit in the next
chapter, while there is basically no reason to ever call Halt (so I won't really discuss
it in the book).

Here Comes Goto? No Way

There is actually more to breaking the flow than the four system procedures above.
The original Pascal language counted among its features the infamous goto state-
ment, letting you attach a label to any line of the source code, and jump to that line
from another location. Differently from conditional and looping statements, which
reveal why you want to diverge from a sequential code flow, goto statements gener-
ally look like erratic jumps, and are really completely discouraged. Did I mention
they are not supported in Object Pascal? No, I didn't, nor am I going to show you a
code example. To me goto is long gone.

note There are other language statements I haven't covered so far but are part of the language defini -
tion. One of them is the with statement, which is specifically tied to records, so I'll cover it in
Chapter 5. With is another “debated” language feature, but not hated as much as goto.

Marco Cantù, Object Pascal Handbook

88 - 03: Language Statements

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 89

04: procedures

and functions

Another important idea emphasized in the Object Pascal language (along with simi-
lar features of the C language) is the concept of the routine, basically a series of
statements with a unique name, which can be activated many times. Routines (or
functions) are called by their name. This way you avoid having to write the same
code over and over, and will have a single version of the code used in many places
through the program. From this point of view, you can think of routines as a basic
code encapsulation mechanism.

Marco Cantù, Object Pascal Handbook

90 - 04: Procedures and Functions

Procedures and Functions

In Object Pascal, a routine can assume two forms: a procedure and a function. In
theory, a procedure is an operation you ask the computer to perform, a function is a
computation returning a value. This difference is emphasized by the fact that a func-
tion has a result, a return value, or a type, while a procedure doesn't. The C language
syntax provides for a single mechanism, functions, and in this language a procedure
is a function with a void (or null) result.

Both types of routines can have multiple parameters of specified data types. As we'll
see later, procedures and functions are also the basis of the methods of a class, and
also in this case the distinction between the two forms remains. In fact, differently
from C, C++, Java, C#, or JavaScript, you need to one of these two keywords when
declaring a function or a method.

In practice, even if there are two separate keywords, the difference between func-
tions and procedures is very limited: you can call a function to perform some work
and then ignore the result (which might be an optional error code or something like
that) or you can call a procedure which passes back a result in one of the parameters
(more on reference parameters later in this chapter).

Here are is the definition of a procedure using the Pascal language syntax, which
uses the specific procedure keyword and is part of the FunctionTest project:

procedure Hello;
begin
 Show ('Hello world!');
end;

As a comparison, this would be the same function written with the C language syn-
tax, which has no keyword, requires the parenthesis even in case there are no
parameters, and has a void or empty return value to indicate no result:

void Hello ()
{
 Show ("Hello world!");
};

In fact, in the C language syntax there is no difference between procedure and func-
tion. In the Pascal language syntax, instead, a function has a specific keyword and
must have a return value (or return type).

note There is another very specific syntactical difference between Object Pascal and other languages,
that is presence of a semicolon at the end of the function or procedure signature in the definition,
before the begin keyword.

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 91

There are two ways to indicate the result of the function call, assign the value to
function name or use the Result keyword:

// classic style
function DoubleOld (Value: Integer) : Integer;
begin
 DoubleOld := Value * 2;
end;

// modern alternative
function Double (Value: Integer) : Integer;
begin
 Result := Value * 2;
end;

note Differently from the classic Pascal language syntax, Object Pascal has actually three ways to indi -
cate the result of a function, including the Exit mechanism discussed in this chapter in the section
“Exit with a Result”.

The use of Result instead of the function name to assign the return value of a func-
tion is the most common syntax and tends to make the code more readable. The use
of the function name is a classic Pascal notation, now rarely used.

Again, by comparison the same function could be written with the C language syntax
as the following:

int Double (int Value)
{
 return Value * 2;
};

If this is how these routines can be defined, the calling syntax is relatively straight-
forward, as you type in the identifier followed by the parameters within parenthesis.
In case there are no parameters, the empty parenthesis can be omitted (again, unlike
languages based on the C syntax). This code snippet and several following ones are
part of the FunctionsTest project of this chapter:

 // call the procedure
 Hello;

 // call the function
 X := Double (100);
 Y := Double (X);
 Show (Y.ToString);

This is the encapsulation of code concept that I've introduced. When you call the
Double function, you don't need to know the algorithm used to implement it. If you
later find out a better way to double numbers, you can easily change the code of the

Marco Cantù, Object Pascal Handbook

92 - 04: Procedures and Functions

function, but the calling code will remain unchanged (although executing it might
become faster).

The same principle can be applied to the Hello procedure: We can modify the pro-
gram output by changing the code of this procedure, and the main program code will
automatically change its effect. Here is how we can change the procedure implemen-
tation code:

procedure Hello;
begin
 Show ('Hello world, again!');
end;

Forward Declarations

When you need to use an identifier (of any kind), the compiler must have already
seen it, to know to what the identifier refers. For this reason, you usually provide a
full definition before using any routine. However, there are cases in which this is not
possible. If procedure A calls procedure B, and procedure B calls procedure A, when
you start writing the code, you will need to call a routine for which the compiler still
hasn't seen a definition.

In this cases (and in many others) you can declare the existence of a procedure or
function with a certain name and given parameters, without providing its actual
code. One way to declare a procedure or functions without defining it is to write its
name and parameters (referred to as the function signature) followed by the forward
keyword:

procedure NewHello; forward;

Later on, the code should provide a full definition of the procedure (which must be
in the same unit), but the procedure can now be called before it is fully defined. Here
is an example, just to give you the idea:

procedure DoubleHello; forward;

procedure NewHello;
begin
 if MessageDlg ('Do you want a double message?',
 TMsgDlgType.mtConfirmation,
 [TMsgDlgBtn.mbYes, TMsgDlgBtn.mbNo],
 0) = mrYes then
 DoubleHello
 else
 ShowMessage ('Hello');
end;

procedure DoubleHello;

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 93

begin
 NewHello;
 NewHello;
end;

note The MessageDlg function called in the previous snippet is a relatively simple way to ask a confir -
mation of the user in the FM framework (a similar functions exists in the VCL framework as well).
The parameters are the message, the type of dialog box, and buttons you want to display. The
result is the identifier of the button that was selected.

This approach (which is also part of the FunctionTest demo project) allows you to
write mutual recursion: DoubleHello calls Hello, but Hello might call DoubleHello
too. In other words, if you keep selecting the Yes button the program will continue
showing the message, and show each twice for every Yes. In recursive code, there
must be a condition to terminate the recursion, to avoid a condition known as stack
overflow.

note Function calls uses a stack for the parameters, the return value, local variables and more. If a
functions keeps calling itself in an endless loop, the memory area for the stack (which is generally
of a fixed and predefined size, determined by the linker) will terminate through an error known as
a stack overflow. Needless to say that the popular developers support site
(www.stackoverflow.com) took its name from this programming error.

Although a forward procedure declaration is not very common in Object Pascal,
there is a similar case that is much more frequent. When you declare a procedure or
function in the interface section of a unit, it is automatically considered as a forward
declaration, even if the forward keyword is not present. Actually you cannot write
the body of a routine in the interface section of a unit. At the same time, you must
provide in the same unit the actual implementation of each routine you have
declared.

A Recursive Function

Given I mentioned recursion and gave a rather peculiar example of it (with two pro-
cedures calling each other), let me also show you a classic example of a recursive
function calling itself. Using recursion is often an alternative way to code a loop.

To stick with a classic demo, suppose you want to compute the power of a number,
and you lack the proper function (which is available in the run-time library, of
course). You might remember from math, that 2 at the power of 3 corresponds to
multiplying 2 by itself 3 times, that is 2*2*2.

Marco Cantù, Object Pascal Handbook

94 - 04: Procedures and Functions

One way to express this in code would be to write a for loop that is executed 3 times
(or the value of the exponent) and multiplies 2 (or the value of the base) by the cur -
rent total, starting with 1:

function PowerL (Base, Exp: Integer): Integer;
var
 I: Integer;
begin
 Result := 1;
 for I := 1 to Exp do
 Result := Result * Base;
end;

An alternative approach is to repeatedly multiply the base by the power of the same
number, with a decreasing exponent, until the exponent is 0, in which case the result
is invariably 1. This can be expressed by calling the same function over and over, in a
recursive way:

function PowerR (Base, Exp: Integer): Integer;
var
 I: Integer;
begin
 if Exp = 0 then
 Result := 1
 else
 Result := Base * PowerR (Base, Exp - 1);
end;

The recursive version of the program is likely not faster than the version based on
the for loop, nor more readable. However there are scenarios such as parsing code
structures (a tree structure for example) in which there isn't a fixed number of ele-
ments to process, and hence writing a loop is close to impossible, while a recursive
functions adapts itself to the role.

In general, though, recursive code is powerful but tends to be more complex. After
many years in which recursion was almost forgotten, compared to the early days of
programming, new functional languages such Haskell, Erlang and Elixir that make
heavy use of recursion and are driving this idea back to popularity. In any case, you
can find the two power functions in the code in the FunctionTest demo.

note The two power functions of the demo don't handle the use of a negative exponent. The recursive
version in such a case will loop forever (an until the program hits a physical constraint). Also, by
using integers it is relatively fast to reach the maximum data type size and overflow it. I wrote
these functions with these inherent limitations to try to keep their code simple.

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 95

What Is a Method?

We have seen how you can write a forward declaration in the interface section of a
unit of by using the forward keyword. The declaration of a method inside a class
type is also considered a forward declaration.

But what exactly is a method? A method is a special kind of function or procedure
that is related to a data type, a record or a class. In Object Pascal, every time we han-
dle an event for a visual component, we need to define a method, generally a
procedure, but the term method is used to indicate both functions and procedures
tied to a class or record.

Here is an empty method automatically added to the source code of a form (which is
indeed a class, as we'll explore much later in the book):

procedure TForm1.Button1Click(Sender: TObject);
begin
 {here goes your code}
end;

Parameters and Return Values

When you call a function or procedure you need to pass the correct number of
parameters and make sure they match the expected type. If not, the compiler will
issue an error message, similar to a type mismatch when you assign to a variable a
value of a wrong type. Given the previous definition of the Double function, taking
an Integer parameter, if you call:

Double (10.0);

The compiler will show the error:

[dcc32 Error] E2010 Incompatible types: 'Integer' and 'Extended'

tip The editor helps you by suggesting the parameters list of a function or procedure with a fly-by hint
as soon as you type its name and the open parenthesis. This feature is called Code Parameters and
is part of the Code Insight technology (known in other IDEs as IntelliSense).

There are scenarios in which limited type conversion is allowed, similarly to assign-
ments, but in general you should try to use parameters of the specific type (this is
compulsory for reference parameters, as we'll see in a while).

When you call a function, you can pass an expression as a parameter instead of a
value. The expression is evaluated and its result assigned to the parameter. In sim-

Marco Cantù, Object Pascal Handbook

96 - 04: Procedures and Functions

pler cases, you just pass the name of a variable. In this case, the value of the variable
is copied to the parameter (which generally has a different name). I strongly dis-
courage you to use the same name for a parameter and for a variable passed as the
value of that parameter, because this can be quite confusing.

Finally, notice that you can have a function or procedure with different versions (a
feature called overloading) and with parameters you can skip to let them use a pre-
defined value (a feature called default parameters). These two key features for
functions and procedures are detailed in specific sections later in this chapter.

Exit with a Result

We have seen that returning a result from a function uses quite a different syntax
compared to the C language (or other languages deriving from it). Not only the syn-
tax is different, but also the behavior. Assigning a value to Result (or to the function
name) doesn't terminate the function as a return statement does.

Object Pascal developers often take advantage of this feature, by using Result as a
temporary storage. Rather than writing:

function ComputeValue: Integer;
var
 value: Integer;
begin
 value := 0;
 while ...
 Inc (value);
 Result := value;
end;

You can omit the temporary variable and directly use Result instead. Whatever
value Result has when the function terminates, would be the value returned by the
function:

function ComputeValue: Integer;
begin
 Result := 0;
 while ...
 Inc (Result);
end;

On the other hand there are situations in which you want to assign a value and exit
from the procedure right away, for example in a specific if branch. If you need to
assign the function result and stop the current execution you have to use two sepa-
rate statements, assign the Result and then use the Exit keyword.

If you remember the code of the FlowTest demo of the last chapter (covered in the
section “Breaking the Flow with Break and Continue”), this could be rewritten as a

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 97

function, replacing the call to Break with a call to Exit. I've made this change in the
following code snippet, part of the ParamsTest demo:

function CharInString (S: string; Ch: Char): Boolean;
var
 I: Integer;
begin
 Result := False;
 for I := Low (S) to High (S) do
 if (S[I]) = Ch then
 begin
 Result := True;
 Exit;
 end;
end;

In Object Pascal you can replace the two statements of the if block with a special
call to Exit passing to it the return value of the function, in a way resembling the C
language return statement. So you can write the code above in a more compact way
(also because with a single statement you can avoid the begin-end block):

function CharInString2 (S: string; Ch: Char): Boolean;
var
 I: Integer;
begin
 Result := False;
 for I := Low (S) to High (S) do
 if (S[I]) = Ch then
 Exit (True);
end;

note Exit in Object Pascal is a function so you must enclose the value to be returned in parentheses
whereas return in C-style languages is a compiler keyword not requiring parentheses.

Reference Parameters

In Object Pascal, procedures and functions allow parameter passing by value and by
reference. Passing parameters by value is the default: the value is copied on the stack
and the routine uses and manipulates this copy of the data, not the original value (as
I described earlier in the section “Function Parameters and Return Values”).

Passing a parameter by reference means that its value is not copied onto the stack in
the formal parameter of the routine. Instead, the program refers to the original
value, also in the code of the routine. This allows the procedure or function to
change the actual value of the variable that was passed as parameter. Parameter
passing by reference is expressed by the var keyword.

Marco Cantù, Object Pascal Handbook

98 - 04: Procedures and Functions

This technique is available in most programming languages, also because avoiding a
copy often means that the program executes faster. It isn't present in C (where you
can just use a pointer), but it was introduced in C++ and other languages based on
the C syntax, where you use the & (pass by reference) symbol. Here is an example of
passing a parameter by reference using the var keyword:

procedure DoubleTheValue (var Value: Integer);
begin
 Value := Value * 2;
end;

In this case, the parameter is used both to pass a value to the procedure and to
return a new value to the calling code. When you write:

var
 X: Integer;
begin
 X := 10;
 DoubleTheValue (X);
 Show (X.ToString);

the value of the X variable becomes 20, because the function uses a reference to the
original memory location of X, affecting its original value.

Compared to general parameters passing rules, passing values to reference parame-
ters is subject to more restrictive rules, given what you are passing is not a value, but
an actual variable. You cannot pass a constant value as a reference parameter, an
expression, the result of a function, or a property. Another rule is you cannot pass a
variable of a slightly different type (requiring automatic conversion). The type of the
variable and the parameter must match exactly, or as the compiler error message
says:

[dcc32 Error] E2033 Types of actual and formal var parameters must be
identical

This is the error message you'll get if you write, for example (this is also part of the
ParamsTest demo, but commented out):

var
 C: Cardinal;
begin
 C := 10;
 DoubleTheValue (C);

Passing parameters by reference makes sense for ordinal types and for records (as
we'll see in the next chapter). These types are often called value types because they
have by default a pass-by-value and assign-by-value semantic.

Object Pascal objects and strings have a slightly different behavior we'll investigate
in more detail later on. Objects variables are references, so you can modify the actual

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 99

data of an object passed as parameter. These types are part of the different group,
often indicated as reference types.

Beside standard and reference (var) parameter types, Object Pascal has also a very
unusual kind of parameter specifier, out. An out parameter has no initial value and
it's used only to return a value. Except for not having an initial value, out parame-
ters behave like var parameters.

note The out parameters were introduced for supporting the corresponding concept in Windows' Com -
ponent Object model (or COM). They are rarely used outside of this context; in general, it is better
to stick with the more efficient (and easier to understand) var parameters.

Constant Parameters

As an alternative to reference parameters, you can use a const parameter. Since you
cannot assign a new value to a constant parameter inside the routine, the compiler
can optimize parameter passing. The compiler can choose an approach similar to
reference parameters (or a const reference in C++ terms), but the behavior will
remain similar to value parameters, because the original value cannot be modified
by the function.

In fact, if you try to compile the following code (available, but commented out in the
ParamsTest project), the system will issue an error:

function DoubleTheValue (const Value: Integer): Integer;
begin
 Value := Value * 2; // compiler error
 Result := Value;
end;

The error message you'll see might not be immediately intuitive, as it says:

[dcc32 Error] E2064 Left side cannot be assigned to

Constant parameters are quite common for strings, because in this case the compiler
can disable the reference counting mechanism obtaining a slight optimization. The
same is true for passing constant objects in versions of Object Pascal that use ARC
(Automatic Reference Counting). More about these topics later on in the book: It is
worth mentioning them here anyway because these optimizations are the most com-
mon reason for using constant parameters, a features that make limited sense for
ordinal and scalar types.

Marco Cantù, Object Pascal Handbook

100 - 04: Procedures and Functions

Function Overloading

At times you might want to have two very similar functions with different parame-
ters and a different implementation. While traditionally you'd have to come up with
a slight different name for each, modern programming languages let you overload a
symbol with multiple definitions.

The idea of overloading is simple: The compiler allows you to define two or more
functions or procedures using the same name, provided that the parameters are dif-
ferent. By checking the parameters, in fact, the compiler can determine which of the
version of the function you want to call. Consider this series of functions extracted
from the System.Math unit of the run-time library:

function Min (A,B: Integer): Integer; overload;
function Min (A,B: Int64): Int64; overload;
function Min (A,B: Single): Single; overload;
function Min (A,B: Double): Double; overload;
function Min (A,B: Extended): Extended; overload;

When you call Min (10, 20), the compiler determines that you're calling the first
function of the group, so the return value will also be an Integer.

There are two basic rules of overloading:

● Each version of an overloaded function (or procedure) must be followed by
the overload keyword (including the first one).

● Among overloaded functions, there must be a difference in the number or in
the type of the parameters. Parameter names are not considered, because
they are not indicated during the call. Also, the return type cannot be used to
distinguish among two overloaded functions.

note There is an exception to the rule you cannot distinguish functions on the return values and it is for
the Implicit and Explicit conversion operators, covered in Chapter 5.

Here are three overloaded versions of a ShowMsg procedure I've added to the
OverloadTest example (an application demonstrating both overloading and default
parameters):

procedure ShowMsg (str: string); overload;
begin
 Show ('Message: ' + str);
end;

procedure ShowMsg (FormatStr: string;
 Params: array of const); overload;
begin
 Show ('Message: ' + Format (FormatStr, Params));

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 101

end;

procedure ShowMsg (I: Integer; Str: string); overload;
begin
 ShowMsg (I.ToString + ' ' + Str);
end;

The three functions show a message box with a string, after optionally formatting
the string in different ways. Here are the three calls of the program:

ShowMsg ('Hello');
ShowMsg ('Total = %d.', [100]);
ShowMsg (10, 'MBytes');

And this is their effect:

Message: Hello
Message: Total = 100.
Message: 10 MBytes

tip The Code Parameters technology of the IDE works very nicely with overloaded procedures and
functions. As you type the open parenthesis after the routine name, all the available alternatives
are listed. As you enter the parameters, the Code Insight technology uses their type to determine
which of the alternatives are still available.

What if you try to call the function with parameters that don't match any of the
available overloaded versions? You'll get an error message, of course. Suppose you
want to call:

ShowMsg (10.0, 'Hello');

The error you'll see in this case is a very specific one:

[dcc32 Error] E2250 There is no overloaded version of 'ShowMsg' that
can be called with these arguments

The fact that each version of an overloaded routine must be properly marked implies
that you cannot overload an existing routine of the same unit that is not marked
with the overload keyword. The error message you get when you try is:

Previous declaration of '<name>' was not marked with the 'overload'
directive.

You can, however, create a routine with the same name of one that was declared in a
different unit, given that units act as namespaces. In this case, you are not overload-
ing a function with a new version, but you are replacing the function with a new
version, hiding the original one (which can be referenced using the unit name
prefix). This is why the compiler won't be able to pick a version based on the param-
eters, but it will try to match the only version is sees, issuing an error if the
parameters types don't match.

Marco Cantù, Object Pascal Handbook

102 - 04: Procedures and Functions

Overloading and Ambiguous Calls

When you call an overloaded function, the compiler will generally find a match and
work correctly or issue an error if none of the overloaded versions has the right
parameters (as we have just seen). But there is also a third scenario: Given the com-
piler can do some type conversions for the parameters of a function, there might be
different possible conversions for a single call. When the compiler finds multiple
versions of a function it can call, and there isn't one that is a perfect type match
(which would be picked) it issues an error message indicating that the function call
is ambiguous.

This is not a common scenario, and I had to build a rather illogical example to show
it to you, but it is worth considering the case (as it does happen occasionally in real
world). Suppose you decide to implement two overloaded functions to add integers
and floating point numbers:

function Add (N: Integer; S: Single): Single; overload;
begin
 Result := N + S;
end;

function Add (S: Single; N: Integer): Single; overload;
begin
 Result := N + S;
end;

These functions are in the OverloadTest example. Now you can call them passing
the two parameters in any order:

Show (Add (10, 10.0).ToString);
Show (Add (10.0, 10).ToString);

However the fact is that, in general, a function can accept a parameter of a different
type when there is a conversion, like accepting an integer when the function expects
a parameter of a floating point type. So what happens if you call:

Show (Add (10, 10).ToString);

The compiler can call the first version of the overloaded function, but it can also call
the second version. Not knowing what you are asking for (and know knowing if call-
ing one function or the other will produce the same effect), it will issue an error:

[dcc32 Error] E2251 Ambiguous overloaded call to 'Add'
 Related method: function Add(Integer; Single): Single;
 Related method: function Add(Single; Integer): Single;

tip In the errors pane of the IDE you'll see an error message with the first line above, and a plus sign
on the side you can expand to see the following two lines with the details of which overloaded
functions the compiler is considering ambiguous.

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 103

If this is a real world scenario, and you need to make the call, you can add a manual
type conversions call to solve the problem and indicate to the compiler which of the
versions of the function you want to call:

Show (Add (10, 10.ToSingle).ToString);

A particular case of ambiguous calls can happen if you use variants, a rather peculiar
data type I'll cover only later in the book.

Default Parameters

Another feature related to overloading, is the possibility of giving a default value to
some of the parameters of a function, so that you can call the function with or with-
out those parameters. If the parameter is missing in the call, it will take the default
value.

Let me show an example (still part of the OverloadTest example). We can define the
following encapsulation of the Show call, providing two default parameters:

procedure NewMessage (Msg: string;
 Caption: string = 'Message';
 Separator: string = ': ');
begin
 Show (Caption + Separator + Msg);
end;

With this definition, we can call the procedure in each of the following ways:

NewMessage ('Something wrong here!');
NewMessage ('Something wrong here!', 'Attention');
NewMessage ('Hello', 'Message', '--');

This is the output:

Message: Something wrong here!
Attention: Something wrong here!
Message--Hello

Notice that the compiler doesn't generate any special code to support default param-
eters; nor does it create multiple (overloaded) copies of the functions or procedure.
The missing parameters are simply added by the compiler to the calling code. There
is one important restriction affecting the use of default parameters: You cannot
"skip" parameters. For example, you can't pass the third parameter to the function
after omitting the second one.

There are a few other rules for the definition and the calls of functions and proce-
dures (and methods) with default parameters:

· In a call, you can only omit parameters starting from the last one. In other words,
if you omit a parameter you must also omit the following ones.

Marco Cantù, Object Pascal Handbook

104 - 04: Procedures and Functions

· In a definition, parameters with default values must be at the end of the parame-
ters list.

· Default values must be constants. Obviously, this limits the types you can use
with default parameters. For example, a dynamic array or an interface type can-
not have a default parameter other than nil; records cannot be used at all.

· Parameters with defaults must be passed by value or as const. A reference (var)
parameter cannot have a default value.

Using default parameters and overloading at the same time makes it more likely to
get you in a situation which confuses the compiler, raising an ambiguous call error,
as mentioned in the previous section. For example, if I add the following new ver-
sion of the NewMessage procedure to the previous example:

procedure NewMessage (Str: string; I: Integer = 0); overload;
begin
 Show (Str + ': ' + IntToStr (I))
end;

then the compiler won't complain, as this is a legitimate definition. However, the
call:

NewMessage ('Hello');

is flagged by the compiler as:

[dcc32 Error] E2251 Ambiguous overloaded call to 'NewMessage'
 Related method: procedure NewMessage(string; string; string);
 Related method: procedure NewMessage(string; Integer);

Notice that this error shows up in a line of code that compiled correctly before the
new overloaded definition. In practice, we have no way to call the NewMessage proce-
dure with one string parameter, as the compiler doesn't know whether we want to
call the version with only the string parameter or the one with the string parameter
and the integer parameter with a default value. When it has a similar doubt, the
compiler stops and asks the programmer to state his or her intentions more clearly.

Inlining

Inlining Object Pascal functions and methods is a low-level language feature that
can lead to significant optimizations. Generally, when you call a method, the com-
piler generates some code to let your program jump to a new execution point. This
implies setting up a stack frame and doing a few more operations and might require
a dozen or so machine instructions. However, the method you execute might be very
short, possibly even an access method that simply sets or returns some private field.

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 105

In such a case, it makes a lot of sense to copy the actual code to the call location,
avoiding the stack frame setup and everything else. By removing this overhead, your
program will run faster, particularly when the call takes place in a tight loop exe-
cuted thousands of times.

For some very small functions, the resulting code might even be smaller, as the code
pasted in place might be smaller than the code required for the function call. How-
ever, notice that if a longer function is inlined and this function is called in many
different places in your program, you might experience code bloat, which is an
unnecessary increase in the size of the executable file.

In Object Pascal you can ask the compiler to inline a function (or a method) with the
inline directive, placed after the function (or method) declaration. It is not neces-
sary to repeat this directive in the definition. Always keep in mind that the inline
directive is only a hint to the compiler, which can decide that the function is not a
good candidate for inlining and skip your request (without warning you in any way).
The compiler might also inline some, but not necessarily all, of the calls of the func-
tion after analyzing the calling code and depending on the status of the $INLINE
directive at the calling location. This directive can assume three different values
(notice that this feature is independent from the optimization compiler switch):

● With default value, {$INLINE ON}, inlining is enabled for functions marked
by the inline directive.

● With {$INLINE OFF} you can suppress inlining in a program, in a portion of
a program, or for a specific call site, regardless of the presence of the inline
directive in the functions being called.

● With {$INLINE AUTO} the compiler will generally inline the functions you
mark with the directive, plus automatically inline very short functions.
Watch out because this directive can cause code bloat.

There are many functions in the Object Pascal Run-Time Library that have been
marked as inline candidates. For example, the Max function of the Math unit has defi-
nitions like:

function Max(const A, B: Integer): Integer;
 overload; inline;

To test the actual effect of inlining this function, I’ve written the following loop in
the InliningTest example:

var
 sw: TStopWatch;
 I, J: Integer;
begin
 J := 0;
 sw := TStopWatch.StartNew;
 for I := 0 to LoopCount do
 J := Max (I, J);

Marco Cantù, Object Pascal Handbook

106 - 04: Procedures and Functions

 sw.Stop;
 Show ('Max ' + J.ToString +
 ' [' + sw.ElapsedMilliseconds.ToString + '] ');

In this code, the TStopWatch record of the System.Diagnostics unit, a structure that
keep track of the time (or system ticks) elapsed between the Start (or StartNew)
and the Stop calls.

The form has two buttons both calling this same exact code, but one of them has
inlining disabled at the call site. Notice you need to compile with the Release config-
uration to see any difference (as inlining is a Release optimization). With twenty
million interactions (the value of the LoopCount constant), on my computer I get the
following results:

// on Windows (running in a VM)
Max on 20000000 [17]
Max off 20000000 [45]

// on Android (on device)
Max on 20000000 [280]
Max off 20000000 [376]

How can we read this data? On Windows, inlining more than doubles the execution
speed, while on Android it makes the program about 35% faster. However, on a
device the program runs much slower (an order of magnitude) so while on Windows
we shave off 30 milliseconds on my Android device this optimization saves about
100 milliseconds.

The same program does a second similar test with the Length function, a compiler-
magic function that was specifically modified to be inlined. Again the inlined version
is significantly faster on both Windows and Android:

// on Windows (running in a VM)
Length inlined 260000013 [11]
Length not inlined 260000013 [40]

// on Android (on device)
Length inlined 260000013 [401]
Length not inlined 260000013 [474]

This is the code used by this second testing loop:

var
 sw: TStopWatch;
 I, J: Integer;
 sample: string;
begin
 J := 0;
 sample:= 'sample string';
 sw := TStopWatch.StartNew;
 for I := 0 to LoopCount do
 Inc (J, Length(sample));
 sw.Stop;

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 107

 Show ('Length not inlined ' + IntToStr (J) +
 ' [' + IntToStr (sw.ElapsedMilliseconds) + '] ');
end;

The Object Pascal compiler doesn’t define a clear cut limit on the size of a function
that can be inlined or a specific list of constructs (for or while loops, conditional
statements) that would prevent inlining. However, since inlining a large function
provides little advantage yet exposes you to the risk of some real disadvantages (in
terms of code bloat), you should avoid it.

One limitation is that the method or function cannot reference identifiers (such as
types, global variables, or functions) defined in the implementation section of the
unit, as they won’t be accessible in the call location. However, if you are calling a
local function, which happens to be inlined as well, then the compiler will accept
your request to inline your routine.

A drawback is that inlining requires more frequent recompilations of units, as when
you modify an inlined function, the code of each of the calling sites will need to be
recompiled as well. Within a unit, you might write the code of the inlined functions
before calling them, but better place them at the beginning of the implementation
section.

note Object Pascal uses a single pass compiler, so it cannot paste in the code of a function it hasn’t
compiled yet.

Within different units, you need to specifically add other units with inlined functions
to your uses statements, even if you don’t call those methods directly. Suppose your
unit A calls an inlined function defined in unit B. If this function in turn calls
another inlined function in unit C, your unit A needs to refer to C as well. If not,
you’ll see a compiler warning indicating the call was not inlined due to the missing
unit reference. A related effect is that functions are never inlined when there are cir-
cular unit references (through their implementation sections).

Advanced Features of Functions

If what I have covered so far includes the core features related to functions, there are
several advanced capabilities worth exploring. If you are really a newbie in terms of
software development, however, you might want to skip the rest of this chapter for
now and move to the next one.

Marco Cantù, Object Pascal Handbook

108 - 04: Procedures and Functions

Object Pascal Calling Conventions

Whenever your code calls a function, the two sides need to agree on the actual prac-
tical way parameters are passed from the caller to the callee, something called
calling convention. Generally, a function call takes place by passing the parameters
(and expecting the return value) via the stack memory area. However, the order in
which the parameters and return value are placed on the stack changes depending
on the programming language and platform, with most languages capable of using
multiple different calling conventions.

A long time ago, the 32-bit version of Delphi introduced a new approach to passing
parameters, known as “fastcall”: Whenever possible, up to three parameters can be
passed in CPU registers, making the function call much faster. Object Pascal uses
this fast calling convention by default although it can also be requested by using the
register keyword.

The problem is that this is the default convention, and functions using it are not
compatible with external libraries, like Windows API functions in Win32. The func-
tions of the Win32 API must be declared using the stdcall (standard call) calling
convention, a mixture of the original pascal calling convention of the Win16 API
and the cdecl calling convention of the C language. All of these calling conventions
are supported in Object Pascal, but you'll rarely use something different than the
default unless you need to invoke a library written in a different language, like a sys-
tem library.

The typical case you need to move away from the default fast calling convention is
when you need to call the native API of a platform, which requires a different calling
convention depending on the operating system. Even Win64 uses a different model
to Win32, so Object Pascal supports many different options, not really worth detail-
ing here. Mobile operating systems, instead, tend to expose classes, rather than
native functions, although the issue of respecting a given calling convention has to
be taken into account even in that scenario.

Procedural Types

Another unique feature of Object Pascal is the presence of procedural types. These
are really an advanced language topic, which only a few programmers will use regu-
larly. However, since we will discuss related topics in later chapters (specifically,
method pointers, a technique heavily used by the environment to define event han-
dlers, and anonymous methods), it's worth giving a quick look at them here.

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 109

In Object Pascal (but not in the more traditional Pascal language) there is the con-
cept of a procedural type (which is similar to the C language concept of a function
pointer – something languages like C# and Java have dropped, because it is tied to
global functions).

The declaration of a procedural type indicates the list of parameters and, in the case
of a function, the return type. For example, you can declare a new procedural type,
with an Integer parameter passed by reference, with this code:

type
 TIntProc = procedure (var Num: Integer);

This procedural type is compatible with any routine having exactly the same param-
eters (or the same function signature to use C jargon). Here is an example of a
compatible routine:

procedure DoubleTheValue (var Value: Integer);
begin
 Value := Value * 2;
end;

Procedural types can be used for two different purposes: you can declare variables of
a procedural type or pass a procedural type (that is, a function pointer) as parameter
to another routine. Given the preceding type and procedure declarations, you can
write this code:

var
 IP: TIntProc;
 X: Integer;
begin
 IP := DoubleTheValue;
 X := 5;
 IP (X);
end;

This code has the same effect as the following shorter version:

var
 X: Integer;
begin
 X := 5;
 DoubleTheValue (X);
end;

The first version is clearly more complex, so why and when should we use it? There
are cases in which being able to decide which function to call and actually calling it
later on can be very powerful. It is possible to build a complex example showing this
approach. However, I prefer to let you explore a fairly simple one, called ProcType.

This example is based on two procedures. One procedure is used to double the value
of the parameter like the one I've already shown. A second procedure is used to
triple the value of the parameter, and therefore is named TripleTheValue:

Marco Cantù, Object Pascal Handbook

110 - 04: Procedures and Functions

procedure TripleTheValue (var Value: Integer);
begin
 Value := Value * 3;
end;

Instead of calling these functions directly, one or the other are saved in a procedural
type variable. The variable is modified as a users selects a checkbox, and the current
procedure is called in this generic way as a user clicks the button. The program uses
two initialized global variables (the procedure to be called and the current value), so
that these values are preserved over time. This is the full code, save for the defini-
tions of the actual procedures, already shown above:

var
 IntProc: TIntProc = DoubleTheValue;
 Value: Integer = 1;

procedure TForm1.CheckBox1Change(Sender: TObject);
begin
 if CheckBox1.IsChecked then
 IntProc := TripleTheValue
 else
 IntProc := DoubleTheValue;
end;

procedure TForm1.Button1Click(Sender: TObject);
begin
 IntProc (Value);
 Show (Value.ToString);
end;

When the user changes the check box status, all following button clicks will call the
active function. So if you press the button twice, change the selection, and press the
button twice again, you'll first double twice and then triple twice the current value,
producing the following output:

2
4
12
36

Another practical example of the use of procedural types is when you need to pass a
function to an operating system like Windows (where they are generally called “call-
back functions”). As mentioned at the beginning of this section, in addition to
procedural types Object Pascal developers use method pointers (covered in Chapter
10) and anonymous methods (covered in Chapter 15).

note The most common object oriented mechanism to obtain a late bound function call (that is a func -
tion call that can change at runtime) is the use of virtual methods. While virtual methods are very
common in Object Pascal, procedural types are seldom used. The technical foundation, though, is
somehow similar. Virtual functions and polymorphism are covered in Chapter 8.

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 111

External Functions Declarations

Another important element for system programming is represented by external dec-
larations. Originally used to link code to external functions that were written in
assembly language, external declarations became commonplace Windows program-
ming to call a function from a DLL (a dynamic link library). An external function
declaration implies the ability to call a function not fully available to the compiler or
the linker, but requiring the ability to load an external dynamic library and invoke
one of its functions.

note Whenever you call an API for a given platform in your Object Pascal code you lose the ability to
recompile the application for any other platform than the specific one. The exception is if the call
is surrounded by platform specific $IFDEF compiler directives.

This is, for example, how you can invoke Windows API functions from an Object
Pascal application. If you open the Winapi.Windows unit you'll find many function
declarations and definitions like:

// forward declaration
function GetUserName(lpBuffer: LPWSTR;
 var nSize: DWORD): BOOL; stdcall;

// external declaration (instead of actual code)
function GetUserName; external advapi32
 name 'GetUserNameW';

You seldom need to write declarations like the one just illustrated, since they are
already listed in the Windows unit and many other system units. The only reason you
might need to write this external declaration code is to call functions from a custom
DLL, or to call Windows functions not translated in the platform API.

This declaration means that the code of the function GetUserName is stored in the
advapi32 dynamic library (advapi32 is a constant associated with the full name of
the DLL, 'advapi32.dll') with the name GetUserNameW, as this API function has both
an ASCII and a WideString version. Inside an external declaration, in fact, we can
specify that our function refers to a function of a DLL that originally had a different
name.

Delayed Loading of DLL Functions

In the Windows operating system, there are two ways to invoke an API function of
the Windows SDK (or any other DLL): you can let the application loader resolve all

Marco Cantù, Object Pascal Handbook

112 - 04: Procedures and Functions

references to external functions or you can write specific code that looks for a func-
tion and executes it if available.

The former code is easier to write (as we saw in the previous section): as all you need
is the external function declaration. However if the library or even just one of the
functions you want to call is not available on all versions of Windows, your program
will not be able to start on the operating system versions that don't provide that
function.

Dynamic loading allows for more flexibility, but implies loading the library manu-
ally, using the GetProcAddress API for finding the function you want to call, and
invoking it after casting the pointer to the proper type. This kind of code is quite
cumbersome and error prone.

That's why it is good that the Object Pascal compiler and linker have specific support
for a feature now available at the Windows operating system level and already used
by some C++ compilers, the delayed loading of functions until the time they are
called. The aim of this declaration is not to avoid the implicit loading of the DLL,
which takes place anyway, but to allow the delayed binding of that specific function
within the DLL.

You basically write the code in a way that's very similar to the classic execution of
DLL function, but the function address is resolved the first time the function is
called and not at load time. This means that if the function is not available you get a
run-time exception, EExternalException. However, you can generally verify the
current version of the operating system or the version of the specific library you are
calling, and decide in advance whether you want to make the call or not.

note If you want something more specific and easier to handle at a global level than an exception, you
can hook into the error mechanism for the delayed loading call, as explained by Allen Bauer in his
blog post: http://blogs.embarcadero.com/abauer/2009/08/29/38896

From the Object Pascal language perspective, the only difference is in the declara-
tion of the external function. Rather than writing:

function MessageBox;
 external user32 name 'MessageBoxW';

You can now write (again, from an actual example in the Windows unit):

function WindowFromPhysicalPoint;
 external user32
 name 'WindowFromPhysicalPoint' delayed;

At run time, considering that the API was added to Vista (that is, Windows 6.0) for
the first time, you might want to write code like the following:

 if CheckWin32Version (6, 0) then

Marco Cantù, Object Pascal Handbook

04: Procedures and Functions - 113

 begin
 hwnd := WindowFromPhysicalPoint (aPoint);

This is much, much less code than you had to write without delayed loading to be
able to run the same program on older versions of Windows.

Another relevant observation is that you can use the same mechanism when build-
ing your own DLLs and calling them in Object Pascal, providing a single executable
that can bind to multiple versions of the same DLL as long as you use delayed load-
ing for the new functions.

Again, this is mostly related to Windows programming, and doesn't really apply to
other operating systems that expose classes and higher level abstractions rather than
plain C language functions as the core of the Windows API still does today. Given
features like external declarations and delayed loading are technically part of the
compiler and the language, though, I though it was worth mentioning them in this
chapter.

Marco Cantù, Object Pascal Handbook

05: arrays and

records

When I introduced data types in Chapter 2, I referred to the fact that in Object Pas-
cal there are both built in data types and type constructors. A simple example of a
type constructor is the enumerated type, covered in that chapter.

The real power of type definition comes with more advanced mechanisms, such as
arrays, records, and classes. In this chapter I'll cover the first two, which in their
essence date back to the early definition of Pascal, but have been changed so much
over the years (and made so powerful) that they barely resemble their ancestral
type constructors with the same name.

Towards the end of the chapter I'll also briefly introduce some advanced Object
Pascal data types as pointers. The real power of custom data types, however, will be
unveiled in Chapter 7, where we'll start looking into classes and object-oriented
programming.

Array Data Types

Array types define lists with elements of a specific type. These lists can have a fixed
number of elements (static arrays) or of a variable number of elements (dynamic

05: Arrays and Records - 115

arrays). You generally use an index within square brackets to access one of the ele-
ments of an array. Square brackets are also used to specify the number of values of a
fixed size array.

The Object Pascal language supports different array types, from traditional static
arrays to dynamic ones. Use of dynamic arrays is recommended, particularly with
the mobile versions of the compiler. I'll introduce static arrays first, and later focus
on dynamic ones.

Static Arrays

Traditional Pascal language arrays are defined with a static or fixed size. An example
is in the following code snippets, which defines a list of 24 integers, presenting the
temperatures during the 24 hours of a day:

type
 TDayTemperatures = array [1..24] of Integer;

In this classic array definition, you can use a subrange type within square brackets,
actually defining a new specific subrange type using two constants of an ordinal
type. This subrange indicates the valid indexes of the array. Since you specify both
the upper and the lower index of the array, the indexes don’t need to be zero-based,
as it is the case in C, C++, Java, and most other languages (although 0-based arrays
are also quite common in Object Pascal). Notice also that static array indexes in
Object Pascal can be numbers, but also other ordinal types like characters, enumer-
ated types, and more. Non-integral indexes are quite rare, though.

note There are languages like JavaScript that make heavy use of associative arrays. Object Pascal
arrays are limited to ordinal indexes, so you cannot directly use a string as index. There are ready
to use data structures in the RTL implementing Dictionaries and other similar data structures. I'll
cover them in the chapter about Generics, in the third part of the book.

Since the array indexes are based on subranges, the compiler can check their range.
An invalid constant subrange results in a compile-time error; and an out-of-range
index used at run-time results in a run-time error, but only if the corresponding
compiler option is enabled.

note This is the Range checking option of the Runtime errors group of the Compiling page of the
Project Options dialog of the IDE. I've already mentioned this option in Chapter 2, in the section
“Subrange Types”.

Marco Cantù, Object Pascal Handbook

116 - 05: Arrays and Records

Using the array definition above, you can set the value of a DayTemp1 variable of the
TDayTemperatures type as follows (and as I've done in the ArraysTest program, from
which the following code snippets have been extracted):

type
 TDayTemperatures = array [1..24] of Integer;

var
 DayTemp1: TDayTemperatures;

begin
 DayTemp1 [1] := 54;
 DayTemp1 [2] := 52;
 ...
 DayTemp1 [24] := 66;

 // The following line causes:
 // E1012 Constant expression violates subrange bounds
 // DayTemp1 [25] := 67;

Now a standard way to operate on arrays, given their nature, is to use for cycles. This
is an example of a loop used to display all of the temperatures for a day:

var
 I: Integer;
begin
 for I := 1 to 24 do
 Show (I.ToString + ': ' + DayTemp1[I].ToString);

While this code works, having hard-coded the array boundaries (1 and 24) is far
from ideal, as the array definition itself might change over time and you might want
to move to using a dynamic array.

Array Size and Boundaries

When you work with an array, you can always test its boundaries by using the stan-
dard Low and High functions, which return the lower and upper bounds. Using Low
and High when operating on an array is highly recommended, especially in loops,
since it makes the code independent of the current range of the array (which might
go from 0 to the length of the array minus one, might start form 1 and reach the
array's length, or have any other subrange definition). If you should later change the
declared range of the array indexes, code that uses Low and High will still work. If
you write a loop hard-coding the range of an array you’ll have to update the code of
the loop when the array size changes. Low and High make your code easier to main-
tain and more reliable.

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 117

note Incidentally, there is no run-time overhead for using Low and High with static arrays. They are
resolved at compile-time into constant expressions, not actual function calls. This compile-time
resolution of expressions and function calls also happens for many other system functions.

Another relevant function is Length, which returns the number of elements of the
array. I've combined these three functions in the following code that computes and
displays the average temperature for the day:

var
 I: Integer;
 Total: Integer;
begin
 Total := 0;
 for I := Low(DayTemp1) to High(DayTemp1) do
 Inc (Total, DayTemp1[I]);
 Show ((Total / Length(DayTemp1)).ToString);

This code is also part of the ArraysTest example.

Multi-Dimensional Static Arrays

An array can have more than one dimension, expressing a matrix or a cube rather
than a list. Here are two sample definitions:

type
 TAllMonthTemps = array [1..24, 1..31] of Integer;
 TAllYearTemps = array [1..24, 1..31, 1..12] of Integer;

You can access an element as:

var
 AllMonth1: TAllMonthTemps;
 AllYear1: TAllYearTemps;
begin
 AllMonth1 [13, 30] := 55; // hour, day
 AllYear1 [13, 30, 8] := 55; // hour, day, month

note Static arrays immediately take up a lot of memory (in the case above on the stack), which should
be avoided. The AllYear1 variable requires 8,928 Integers, taking up 4 bytes each, that is almost
35KB. Allocating such a large block in the global memory or on the stack (as in the demo code) is
really a mistake. A dynamic array, instead, uses the heap memory, and offers much more flexibil -
ity in terms of memory allocation and management.

Given these two array types are built on the same core types, you should better
declare them using the preceding data types, as in the following code:

type
 TMonthTemps = array [1..31] of TDayTemperatures;
 TYearTemps = array [1..12] of TMonthTemps;

Marco Cantù, Object Pascal Handbook

118 - 05: Arrays and Records

This declaration inverts the order of the indexes as presented above, but it also
allows assignment of whole blocks between variables. Let's see how you can assign
individual values:

 Month1 [30][14] := 44;
 Month1 [30, 13] := 55; // day, hour
 Year1 [8, 30, 13] := 55; // month, day, hour

In theory, you should use the first line, selecting one of the array of arrays, and than
an element of the resulting array. However, the version with the two indexes within
square brackets is also allowed. Or with three indexes, in the “cube” example.

The importance of using intermediate types lies on the fact that arrays are type com-
patible only if they refer to the same exact type name (that is exactly the same type
definition) not if their type definitions happen to refer to the same implementation.
This type compatibility rule is the same for all types in the Object Pascal, with only
some specific exceptions.

For example, the following statement copies a months's temperatures to the third
month of the year:

 Year1[3] := Month1;

Instead, a similar statement based on the stand alone array definitions (which are
not type compatible):

 AllYear1[3] := AllMonth1;

would cause the error:

Error: Incompatible types: 'array[1..31] of array[1..12] of Integer'
and 'TAllMonthTemps'

As I mentioned, static arrays suffer memory management issues, specifically when
you want to pass them as parameters or allocate only a portion of a large array.
Moreover, you cannot resize them during the lifetime of the array variable. This is
why is is preferable to use dynamic arrays, even if they require a little extra manage-
ment, for example regarding memory allocation.

Dynamic Arrays

In the traditional Pascal language arrays had a fixed-size arrays and you specified
the number of elements of the array as you declared the data type. Object Pascal
supports also a direct and native implementation of dynamic arrays.

note “Direct implementation of dynamic arrays” here is in contrast to using pointers and dynamic
memory allocation to obtain a similar effect... with very complex and error-prone code.

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 119

Dynamic arrays are dynamically allocated and reference counted (making parameter
passing much faster, as only the reference is passed, and not a copy of the complete
array). When you are done, you can clear an array by setting its variable to nil or its
length to zero, but given they are reference counted in most cases the compiler will
automatically free the memory for you.

With a dynamic array, you declare an array type without specifying the number of
elements and then allocate it with a given size using the SetLength procedure:

var
 Array1: array of Integer;
begin
 // this would cause a runtime Range Check error
 // Array1 [1] := 100;
 SetLength (Array1, 10);
 Array1 [1] := 100; // this is OK

You cannot use the array until you've assigned its length, allocating the required
memory on the heap. If you do so, you'd either see a Range Check error (if the corre-
sponding compiler option is active) or an Access Violation (on Windows) or similar
memory access error on another platform. The SetLength call sets all the values to
zero. The initialization code makes it possible to start reading and writing values of
the array right away, without any fear of memory errors (unless you violate the array
boundaries).

If you need to allocate memory explicitly, you don't need to free it directly. In the
code snippet above, as the code terminates and the Array1 variable goes out of
scope, the compiler will automatically free its memory (in this case the ten integers
that have been allocated). So while you can assign a dynamic array variable to nil or
call SetLength with 0 value, this is generally not needed (and rarely done).

Notice that the SetLength procedure can also be used to resize an array, without
loosing its current content (if you are growing it) or loosing it only partially (if you
are shrinking it). As in the initial SetLength call you indicate only the number of ele-
ments of the array, the index of a dynamic array invariably starts from 0 and goes up
to the number of elements minus 1. In other words, dynamic arrays don't support
two features of classic static Pascal arrays, the non-zero low bound and the non-inte-
ger indexes. At the same time, they match more closely how arrays work in most
languages based on the C syntax.

Just like static arrays, to know about the current size of a dynamic array, you can use
the Length, High, and Low functions. For dynamic arrays, however, Low always
returns 0, and High always returns the length minus one. This implies that for an
empty array High returns -1 (which, when you think about it, is a strange value, as it
is lower than that returned by Low).

Marco Cantù, Object Pascal Handbook

120 - 05: Arrays and Records

So, as an example, in the DynArray demo I've populated and extracted the informa-
tion from a dynamic array using adaptable loops. This is the type and variable
definition:

type
 TIntegersArray = array of Integer;

var
 IntArray1: TIntegersArray;

The array is allocated and populated with values matching the index, using the fol-
lowing loop:

var
 I: Integer;
begin
 SetLength (IntArray1, 20);
 for I := Low (IntArray1) to High (IntArray1) do
 IntArray1 [I] := I;
end;

A second button has the code both to display each value and compute the average,
similar to the that of the previous example but in a single loop:

var
 I: Integer;
 total: Integer;
begin
 Total := 0;
 for I := Low(IntArray1) to High(IntArray1) do
 begin
 Inc (Total, IntArray1[I]);
 Show (I.ToString + ': ' + IntArray1[I].ToString);
 end;
 Show ('Average: ' + (Total / Length(IntArray1)).ToString);
end;

The output of this code is quite obvious (and mostly omitted):

0: 0
1: 1
2: 2
3: 3
...
17: 17
18: 18
19: 19
Average: 9.5

Beside Length, SetLength, Low, and High, there are also other common procedures
that you can use on arrays, such as the Copy function, you can use to copy a portion
of an array (or all of it). Notice that you can also assign an array from a variable to
another, but in that case you are not making a full copy, but rather having two vari-
ables referring to the same array in memory.

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 121

The only slightly complex code is in the final part of the DynArray program, which
copies one array to the other in two separate ways:

· using the Copy function, which duplicates the array data in a new data structure
using a separate memory area

· using the assignment operator, which effectively creates an alias, a new variable
referring to the same array in memory

At this point, if you modify one of the elements of the new arrays, you will affect the
original version or not depending on the way you made the copy. This is the com-
plete code:

var
 IntArray2: TIntegersArray;
 IntArray3: TIntegersArray;
begin
 // alias
 IntArray2 := IntArray1;

 // separate copy
 IntArray3 := Copy (IntArray1, Low(IntArray1), Length(IntArray1));

 // modify items
 IntArray2 [1] := 100;
 IntArray3 [2] := 100;

 // check values for each array
 Show (Format ('[%d] %d -- %d -- %d',
 [1, IntArray1 [1], IntArray2 [1], IntArray3 [1]]));
 Show (Format ('[%d] %d -- %d -- %d',
 [2, IntArray1 [2], IntArray2 [2], IntArray3 [2]]));

The output you'll get is like the following:

[1] 100 -- 100 -- 1
[2] 2 -- 2 -- 100

The changes to IntArray2 propagate to IntArray1, because they are just two refer-
ences to the same physical array; the changes to IntArray3 are separate, because it
has a separate copy of the data.

New Native Operations on Dynamic Arrays

There was a recent addition to dynamic arrays, making them even more a prime fea-
ture of the language, namely support for assigning constant arrays to dynamic arrays
and for dynamic arrays concatenation.

Marco Cantù, Object Pascal Handbook

122 - 05: Arrays and Records

note These extensions to dynamic arrays were added in Delphi XE7 and in the September 2014 release
of Appmethod

In practice, you can write code like the following, which is significantly simplified
from earlier code snippets:

var
 di: array of Integer;
 i: Integer;
begin
 di := [1, 2, 3]; // initialization
 di := di + di; // concatenation
 di := di + [4, 5]; // mixed concatenation

 for i in di do
 begin
 Show (i.ToString);
 end;

Notice the use of a for-in statement to scan the array elements in this code, which is
part of the DynArrayConcat application project. Notice that these arrays can be
based on any data type, from simple integers like in the code above, to record and
classes.

There is a second addition that was done along side with assignment and concatena-
tion, but that is part of the RTL more than the language. It is not possible to use on
dynamic arrays functions that were common for strings, like Insert and Delete.

This means you can now write code like the following (part of the same project):

var
 di: array of Integer;
 i: Integer;
begin
 di := [1, 2, 3, 4, 5, 6];
 Insert ([8, 9], di, 4);
 Delete (di, 2, 1); // remove the third (0-based)

Open Array Parameters

There is a very special scenario for the use of arrays, which is passing a flexible list of
parameters to a function. Beside passing an array directly, there are two special syn-
tax structures explained in this and the next section. An example of such a function,
by the way, is the Format function that I called in the last code snippet and that has
an array of values in square brackets as its second parameter.

Unlike the C language (and some of the other languages based on C syntax), in the
traditional Pascal language a function or procedure always has a fixed number of

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 123

parameters. However, in Object Pascal there is a way to pass a varying number of
parameters to a routine using as parameter an array, a technique known as open
array parameters.

note Historically, open array parameters predate dynamic arrays, but today these two features look so
similar in the way they work that they are almost indistinguishable these days. That's why I cov -
ered open array parameters only after discussing dynamic arrays.

The basic definition of an open array parameter is the same of a typed dynamic array
type, prefixed by the const specifier. This means you indicate the type of the param-
eter(s), but you don't need to indicate how many elements of that type the array is
going to have. Here is an example of such a definition, extracted form the OpenArray
example:

function Sum (const A: array of Integer): Integer;
var
 I: Integer;
begin
 Result := 0;
 for I := Low(A) to High(A) do
 Result := Result + A[I];
end;

You can call this function by passing to it an array-of-Integer constant expression
(which can also include variables as part of the expressions used to compute the
individual values):

X := Sum ([10, Y, 27*I]);

Given a dynamic array of Integer, you can pass it directly to a routine requiring
an open array parameter of the same base type (Integers in this case). Here is an
example, where the complete array is passed as parameter:

var
 List: array of Integer;
 X, I: Integer;
begin
 // initialize the array
 SetLength (List, 10);
 for I := Low (List) to High (List) do
 List [I] := I * 2;
 // call
 X := Sum (List);

This is if you have a dynamic array. If you have a static array of the matching base
type, you can also pass it to a functions expecting an open array parameter, or you
can call the Slice function to pass only a portion of the existing array (as indicated
by its second parameter). The following snippet (also part of the OpenArray exam-
ple) shows how to pass a static array or a portion of it to the Sum function:

Marco Cantù, Object Pascal Handbook

124 - 05: Arrays and Records

var
 List: array [1..10] of Integer;
 X, I: Integer;
begin
 // initialize the array
 for I := Low (List) to High (List) do
 List [I] := I * 2;

 // call
 X := Sum (List);
 Show (X.ToString);

 // pass portion of the array
 X := Sum (Slice (List, 5));
 Show (X.ToString);

Type-Variant Open Array Parameters

Besides these typed open array parameters, the Object Pascal language allows you to
define type-variant or untyped open arrays. This special kind of array has an unde-
fined number of elements, but also an undefined data type for those elements along
with the possibility of passing elements of different types. This is one of the limited
areas of the language that is not fully type safe.

Technically, the you can define a parameter of type array of const to pass an array
with an undefined number of elements of different types to a function. For example,
here is the definition of the Format function (we'll see how to use this function in
Chapter 6, while covering strings, but I've already used it is some demos):

function Format (const Format: string;
 const Args: array of const): string;

The second parameter is an open array, which receives an undefined number of val-
ues. In fact, you can call this function in the following ways:

N := 20;
S := 'Total:';
Show (Format ('Total: %d', [N]));
Show (Format ('Int: %d, Float: %f', [N, 12.4]));
Show (Format ('%s %d', [S, N * 2]));

Notice that you can pass a parameter as either a constant value, the value of a vari-
able, or an expression. Declaring a function of this kind is simple, but how do you
code it? How do you know the types of the parameters? The values of a type-variant
open array parameter are compatible with the TVarRec type elements.

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 125

note Do not confuse the TVarRec record with the TVarData record used by the Variant type. These two
structures have a different aim and are not compatible. Even the list of possible types is different,
because TVarRec can hold Object Pascal data types, while TVarData can hold Windows OLE data
types. Variants are covered later in this chapter.

The following are the data types supported in a type-variant open array value and by
the TVarRec record:

 vtInteger vtBoolean vtChar
 vtExtended vtString vtPointer
 vtPChar vtObject vtClass
 vtWideChar vtPWideChar vtAnsiString
 vtCurrency vtVariant vtInterface
 vtWideString vtInt64 vtUnicodeString

The record structure has a field with the type (VType) and variant field you can use
to access the actual data (more about records in a few pages, even if this is an
advanced usage for that construct).

A typical approach is to use a case statement to operate on the different types of
parameters you can receive in such a call. In the SumAll function example, I want to
be able to sum values of different types, transforming strings to integers, characters
to the corresponding ordinal value, and adding 1 for True Boolean values. The code
is certainly quite advanced (and it uses pointers dereferences), so don't worry if you
don't fully understand it for now:

function SumAll (const Args: array of const): Extended;
var
 I: Integer;
begin
 Result := 0;
 for I := Low(Args) to High (Args) do
 case Args [I].VType of
 vtInteger:
 Result := Result + Args [I].VInteger;
 vtBoolean:
 if Args [I].VBoolean then
 Result := Result + 1;
 vtExtended:
 Result := Result + Args [I].VExtended^;
 vtWideChar:
 Result := Result + Ord (Args [I].VWideChar);
 vtCurrency:
 Result := Result + Args [I].VCurrency^;
 end; // case
end;

I've added this function to the OpenArray example, which calls it as follows:

var
 X: Extended;
 Y: Integer;

Marco Cantù, Object Pascal Handbook

126 - 05: Arrays and Records

begin
 Y := 10;
 X := SumAll ([Y * Y, 'k', True, 10.34]);
 Show ('SumAll: ' + X.ToString);
end;

The output of this call adds the square of Y, the ordinal value of K (which is 107), 1
for the Boolean value, and the extended number, resulting in:

SumAll: 218.34

Record Data Types

While arrays define lists of identical items referenced by a numerical index, records
define groups of elements of different types referenced by name. In other words, a
record is a list of named items, or fields, each with a specific data type. The defini-
tion of a record type lists all these fields, giving each field a name used to refer to it.

note Records are available in most programming languages. They are defined with the struct keyword
in the C language, while C++ has an extended definition including methods, much like Object Pas -
cal has. Some more “pure” object-oriented languages have only the notion of class, not that of a
record or structure.

Here is a small code snippet (from the RecordsDemo application project) with the
definition of a record type, the declaration of a variable of that type, and few state-
ments using this variable:

type
 TMyDate = record
 Year: Integer;
 Month: Byte;
 Day: Byte;
 end;

var
 BirthDay: TMyDate;
begin
 BirthDay.Year := 1997;
 BirthDay.Month := 2;
 BirthDay.Day := 14;
 Show ('Born in year ' + BirthDay.Year.ToString);

note The terms records at times is used in a rather loose way to refer to two different elements of the
language: a record type definition and a variable of record type (or record instance). Record is
used as a synonym of both record type and record instance.

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 127

There is way more to this data structure in Object Pascal than a simple list of fields,
as the remaining part of this chapter will illustrate, but let's start with this tradi-
tional approach to records. The memory for a record is generally allocated on the
stack for a local variable and in the global memory for a global one. This is high-
lighted by a call to SizeOf, which returns the number of bytes required by a variable
or type, like in this statement:

 Show ('Record size is ' + SizeOf (BirthDay).ToString);

which returns 8 (why it does return 8 and not 6–4 bytes for the Integer and two for
each byte field—I'll discuss in the section “Fields Alignments”).

In other words, records are value types. This implies that if you assign a record to
another, you are making a full copy. If you make a change to a copy, the original
record won't be affected. This code snippets explains the concept in code terms:

var
 BirthDay: TMyDate;
 ADay: TMyDate;
begin
 BirthDay.Year := 1997;
 BirthDay.Month := 2;
 BirthDay.Day := 14;

 ADay := Birthday;
 ADay.Year := 2008;

 Show (MyDateToString (BirthDay));
 Show (MyDateToString (ADay));

The output (in Japanese or international date format) is:

1997.2.14
2008.2.14

The same copy operation takes place when you pass a record as parameter to a func-
tion, like in the MyDateToString I used above:

function MyDateToString (MyDate: TMyDate): string;
begin
 Result := MyDate.Year.ToString + '.' +
 MyDate.Month.ToString + '.' +
 MyDate.Day.ToString;
end;

Each call to this function involves a complete copy of the record's data. To avoid the
copy, and to possibly make a change to the original record you have to explicitly use
a reference parameter. This is highlighted by the following procedure, that makes
some changes to a record passed as parameter:

procedure IncreaseYear (var MyDate: TMyDate);
begin
 Inc (MyDate.Year);

Marco Cantù, Object Pascal Handbook

128 - 05: Arrays and Records

end;

var
 ADay: TMyDate;
begin
 ADay.Year := 2016;
 ADay.Month := 3;
 ADay.Day := 18;

 Increaseyear (ADay);
 Show (MyDateToString (ADay));

Given the Year field of the original record value is increased by the procedure call,
the final output is one year later than the input:

2017.3.18

Using Arrays of Records

As I mentioned, arrays represent a data structure repeated several times, while
records a single structure with different elements. Given these two type constructors
are orthogonal, it is very common to use them together, defining arrays of records
(while it is possible but uncommon to see records of arrays).

The array code is just like that of any other array, with each array element taking the
size of the specific record type. While we'll see later how to use more sophisticated
collection or container classes (for lists of elements), there is a lot in terms of data
management you can achieve with arrays of records.

In the RecordsTest application project I've added an array of the TMyDate type,
which can be allocated, initialized and used with code like the following:

var
 DatesList: array of TMyDate;
 I: Integer;
begin
 // allocate array elements
 SetLength (DatesList, 5);

 // assign random values
 for I := Low(DatesList) to High(DatesList) do
 begin
 DatesList[I].Year := 2000 + Random (50);
 DatesList[I].Month := 1 + Random (12);
 DatesList[I].Day := 1 + Random (27);
 end;

 // display the values
 for I := Low(DatesList) to High(DatesList) do
 Show (I.ToString + ': ' +

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 129

 MyDateToString (DatesList[I]));

Given the app uses random data, the output will be different every time, and could
be like the following I've captured:

0: 2014.11.8
1: 2005.9.14
2: 2037.9.21
3: 2029.3.12
4: 2012.7.2

Variant Records

Since the early versions of the language, record types can also have a variant part;
that is, multiple fields can be mapped to the same memory area, even if they have a
different data type. (This corresponds to a union in the C language.) Alternatively,
you can use these variant fields or groups of fields to access the same memory loca-
tion within a record, but considering those values from different perspectives (in
terms of data types). The main uses of this type were to store similar, but different
data and to obtain an effect similar to that of typecasting (something used in the
early days of the language, when direct typecasting was not allowed). The use of
variant record types has been largely replaced by object-oriented and other modern
techniques, although some system libraries use them internally in special cases.

The use of a variant record type is not type-safe and is not a recommended program-
ming practice, particularly for beginners. You won’t need to tackle them until you
are really an Object Pascal expert, anyway... and that's why I decided to avoid show-
ing you actual samples and covering this feature in more detail. If you really want a
hint, have a look at the use of TvarRec I did in the demo of the section “Type-Variant
Open Array Parameters”.

Fields Alignments

Another advanced topic related with records is the way their fields are aligned,
which also helps understand the actual size of a record. If you look into libraries,
you'll often see the use of the packed keyword applied to records: this implies the
record should use the minimum possible amount of bytes, even if this result in
slower data access operations.

The difference is traditionally related to 16-bit or 32-bit alignment of the various
fields, so that a byte followed by an integer might end up taking up 32 bits even if

Marco Cantù, Object Pascal Handbook

130 - 05: Arrays and Records

only 8 are used. This is because accessing the following integer value on the 32-bit
boundary makes the code faster to execute.

In general field alignment is used by data structures like records to improve the
access speed to individual fields for some CPU architectures. There are different
parameters you can apply to the $ALIGN compiler directive to change it.

With {$ALIGN 1} the compiler will save on memory usage by using all possible
bytes, like when you use the packed specifier for a record. At the other extreme, the
{$ALIGN 16} will use the largest alignment. Further options use 4 and 8 alignments.

As an example, if I go back to the RecordsTest project and add the keyword packed
to the record definition:

type
 TMyDate = packed record
 Year: Integer;
 Month: Byte;
 Day: Byte;
 end;

the output to the call SizeOf will now return 6 rather than 8.

As a more advanced example, which you can skip if you are not already a fluent
Object Pascal developer, let's consider the following structure (available in the
AlignTest application project):

type
 TMyRecord = record
 c: Byte;
 w: Word;
 b: Boolean;
 I: Integer;
 d: Double;
 end;

With {$ALIGN 1} the structure takes 16 bytes (the value returned by SizeOf) and the
fields will be at the following relative memory addresses:

c: 0 w: 1 b: 3 i: 4 d: 8

note Relative addresses are computed by allocating the record and computing the difference between
the numeric value of a pointer to the structure and that of a pointer to the given field, with an
expression like: Integer(@MyRec.w) – Integer(@MyRec1) . Pointers and the address of (@) oper-
ator are covered later in this chapter.

In contrast, if you change the alignment to 4 (which can lead to optimized data
access) the size will be 20 bytes and the relative addresses:

c: 0 w: 2 b: 4 i: 8 d: 12

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 131

If you go to the extreme option and use {$ALIGN 16}, the structure requires 24
bytes and maps the fields as follow:

c: 0 w: 2 b: 4 i: 8 d: 16

What About the With Statement?

Another traditional language statement I failed to mention so far, because it is used
only to work with records or classes, is the with statement. This keyword used to be
peculiar to the Pascal syntax, but it was later introduced in JavaScript and Visual
Basic. This is a keyword that can come up very handy to write less code, but it can
also become very dangerous as it makes code far less readable. You'll find a lot of
debate around the with statement, and I tend to agree this should be used sparingly,
if at all. In any case, I felt it was important to include it in this book anyway (differ-
ently from goto statements).

note There is some debate about whether it will make sense to remove goto statements from the Object
Pascal language, and it was also discussed whether to remove with from the mobile version of the
language. While there are some legitimate usages, given the scoping problems with statements
can cause, there are good reasons to discontinue this features (or change it so that an alias name is
required as in C#).

The with statement is nothing but a shorthand. When you need to refer to a record
type variable (or an object), instead of repeating its name every time, you can use a
with statement. For example, while presenting the record type, I wrote this code:

var
 BirthDay: TMyDate;
begin
 BirthDay.Year := 2008;
 BirthDay.Month := 2;
 BirthDay.Day := 14;

Using a with statement, I could modify the final part of this code, as follows:

 with BirthDay do
 begin
 Year := 2008;
 Month := 2;
 Day := 14;
 end;

This approach can be used in Object Pascal programs to refer to components and
other classes. When you work with components or classes in general, the with state-
ment allows you to skip writing some code, particularly for nested data structures.

Marco Cantù, Object Pascal Handbook

132 - 05: Arrays and Records

So, why am I not encouraging the use of the with statement? The reason is it can
least to subtle errors that are very hard to capture. While some of these hard-to-find
errors are not easy to explain at this point of the book, let's consider a mild scenario,
that can still lead to you scratching your head. This is a record and some code using
it:

type
 TMyRecord = record
 MyName: string;
 MyValue: Integer;
 end;

procedure TForm1.Button2Click(Sender: TObject);
var
 Record1: TMyRecord;
begin
 with Record1 do
 begin
 MyName := 'Joe';
 MyValue := 22;
 end;

 with Record1 do
 Show (Name + ': ' + MyValue.ToString);

Right? The application compiles and runs, but its output is not what you might
expect (at least at first sight):

Form1: 22

The string part of the output is not the record value that was set earlier. The reason
is that the second with statement erroneously uses the Name field, which is not the
record field but another field that happens to be in scope (specifically the name of
the form object the Button2Click method is part of).

If you had written:

Show (Record1.Name + ': ' + Record1.MyValue.ToString);

the compiler would have shown an error message, indicating the given record struc-
ture hasn't got a Name field.

In general, we can say that since the with statement introduces new identifiers in
the current scope, we might hide existing identifiers, or wrongfully access another
identifier in the same scope. This is a good reason for discouraging the use of the
with statement. Even more you should avoid using multiple with statements, such
as:

with MyRecord1, MyDate1 do...

The code following this would probably be highly unreadable, because for each field
used in the block you would need to think about which record it refers to.

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 133

Records with Methods

In Object Pascal records are more powerful than in the original Pascal language or
than structs are in the C language. Records, in fact, can have procedure and func-
tions (called methods) associated with them. They can even redefine the language
operators in custom ways (a feature called operator overloading), as you'll see in
the next section.

A record with methods is somewhat similar to a class, as we'll find out later, with the
most important difference being the way these two structures manage memory.
Records in Object Pascal have two fundamental features of modern programming
languages:

· Methods, which are functions and procedures connected with the record data
structure and having direct access to the record fields. In other words, methods
are function and procedures declared (or having a forward declaration) within
the record type definition.

· Encapsulation, which is the ability to hide direct access to some of the fields (or
methods) of a data structure from the rest of the code. You can obtain encapsula-
tion using the private access specifier, while fields and methods visible to the
outside as marked as public. The default access specifier for a record is public.

Now that you have the core concepts around extended records, let's look at the defi-
nition of a sample record, taken from the RecordMethods demo:

type
 TMyRecord = record
 private
 Name: string;
 Value: Integer;
 SomeChar: Char;
 public
 procedure Print;
 procedure SetValue (NewString: string);
 procedure Init (NewValue: Integer);
 end;

You can see the record structure is divided in two parts, private and public. You can
have multiple sections, as the private and public keywords can be repeated as many
times as you want, but a clear division of these two sections certainly helps readabil-
ity. The methods are listed in the record definition (like in a class definition) without
their complete code. In other words, the record has a forward declaration of the
method.

How do you write the actual code of a method, its complete definition? Almost in the
same way you'd code a global function or procedure. The differences are in the way

Marco Cantù, Object Pascal Handbook

134 - 05: Arrays and Records

you write the method name, which is a combination of the record type name and the
actual record name and on the fact you can directly refer to the fields and the other
methods of the record directly, with no need to write the name of the record:

procedure TMyRecord.SetValue (NewString: string);
begin
 Name := NewString;
end;

In this code one is the local field and aString is the method's only parameter.

note While it might seem tedious having to write the definition of the method first and its full declara -
tion next, you can use the Ctrl+Shift+C combination in the IDE editor to generate one from the
other automatically. Also you can use the Ctrl+Shift+Up/Down Arrow keys to move from a
method declaration to the corresponding definition and vice verse.

Here is the code of the other methods of this record type:

procedure TMyRecord.Init(NewValue: Integer);
begin
 Value := NewValue;
 SomeChar := 'A';
end;

function TMyRecord.ToString: string;
begin
 Result := Name + ' [' + SomeChar + ']: ' + Value.ToString;
end;

Here is a sample snippet of how you can use this record:

var
 MyRec: TMyRecord;
begin
 MyRec.Init(10);
 MyRec.SetValue ('hello');
 Show (MyRec.ToString);

As you might have guessed, the output will be:

hello [A]: 10

Now what if you want to use the fields from the code that uses the record, like in the
snippet above:

 MyRec.Value := 20;

This actually compiles and works, which might be surprising as we declared the field
in the private section, so that only the record methods can access to it. The truth is
that in Object Pascal the private access specifier is actually enabled only between
different units, so that line wouldn't be legal in a different unit, but can be used in
the unit that originally defined the data type. As we will see, this is also true for
classes.

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 135

Self: The Magic Behind Records

Suppose you have two records, like myrec1 and myrec2 of the same record type.
When you call a method and execute its code, how does the method know which of
the two copies of the record it has to work with? Behind the scenes, when you define
a method the compiler adds a hidden parameter to it, a reference to the record you
have applied the method to.

In other words, the call to the method above is converted by the compiler in some-
thing like:

// you write
MyRec.SetValue ('hello');

// the compiler generates
SetValue (@MyRec, 'hello');

In this pseudo code, the @ is the address of operator, used to get the memory loca-
tion of a record instance.

note Again, the address of operator is shortly covered at the end of this chapter in the (advanced) sec-
tion titled “What About Pointers?”

This is how the calling code is translated, but how can the actual method call refer
and use this hidden parameter? By implicitly using a special keyword called self. So
the method's code could be written as:

procedure TMyRecord.SetValue (NewString: string);
begin
 self.Name := NewString;
end;

While this code compiles, it makes little sense to use self explicitly, unless you need
to refer to the record as a whole, for example passing the record as parameter to
another function. This happens more frequently with classes, which have the same
exact hidden parameter for methods and the same self keyword.

One situation in which using an explicit self parameter can make the code more
readable (even if it is not required) is when you are manipulating a second data
structure of the same type, as in case you are testing a value from another instance:

function TMyRecord.IsSameName (ARecord: TMyRecord): Boolean;
begin
 Result := (self.Name = ARecord.Name);
end;

note The “hidden” self parameter is called this in C++ and Java, but it is called self in Objective-C
(and in Object Pascal, of course).

Marco Cantù, Object Pascal Handbook

136 - 05: Arrays and Records

Records and Constructors

When you define a variable of a record type (or a record instance) as a global vari-
able its fields are initialized, but when you define one on the stack (as a local variable
of a function or procedure, it isn't). So if you write code like this (also part of the
RecordMethods project):

var
 MyRec: TMyRecord;
begin
 Show (MyRec.ToString);

its output will be more or less random. While the string is initialized to an empty
string, the character field and the integer field will have the data that happened to be
at the given memory location (just as it happens in general for a character or integer
variable on the stack). In general, you'd get different output depending on the actual
compilation or execution, such as:

 []: 1637580

That's why it is important to initialize a record (as most other variables) before using
it, to avoid the risk of reading illogical data, which can even potentially crash the
application.

Records support a special type of methods called constructors, that you can use to
initialize the record data. Differently from other methods, constructors can also be
applied to a record type to define a new instance (but they can still be applied to an
existing instance).

This is how you can add a constructor to a record:

type
 TMyNewRecord = record
 private
 ...
 public
 constructor Create (NewString: string);
 function ToString: string;
 ...

The constructor is a method with code:

constructor TMyNewRecord.Create (NewString: string);
begin
 Name := NewString;
 Init (0);
end;

Now you can initialize a record with either of the two following coding styles:

var
 MyRec, MyRec2: TMyNewRecord;

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 137

begin
 MyRec := TMyNewRecord.Create ('Myself'); // class-like
 MyRec2.Create ('Myself'); // direct call

Notice that record constructors must have parameters: If you try with Create()
you'll get the error message “Parameterless constructors not allowed on record
types”.

note According to the documentation the definition of a parameterless constructor for records is
reserved for the system (which has its way to initialize some of the records fields, such as strings
and interfaces). This is why any user defined constructor must have at least one parameter. Of
course, you can also have multiple overloaded constructors or multiple constructors with different
names. I'll cover this in more detail when discussing constructors for classes.

Operators Gain New Ground

Another Object Pascal language feature related with records is operator overloading;
that is, the ability to define your own implementation for standard operations (addi-
tion, multiplication, comparison, and so on) on your data types. The idea is that you
can implement an add operator (a special Add method) and then use the + sign to
call it. To define an operator you use class operator keyword combination.

note By reusing existing reserved words, the language designers managed to have no impact on exist -
ing code. This is something they've done quite often recently in keyword combinations like strict
private, class operator, and class var.

The term class here relates to class methods, a concept we'll explore much later (in
Chapter 12). After the directive you write the operator’s name, such as Add:

type
 TPointRecord = record
 public
 class operator Add (
 a, b: TPointRecord): TPointRecord;

The operator Add is then called with the + symbol, as you’d expect:

var
 a, b, c: TPointRecord;
begin
 ...
 c := a + b;

So which are the available operators? Basically the entire operator set of the lan-
guage, as you cannot define brand new language operators:

● Cast Operators: Implicit and Explicit

Marco Cantù, Object Pascal Handbook

138 - 05: Arrays and Records

● Unary Operators: Positive, Negative, Inc, Dec, LogicalNot, BitwiseNot,
Trunc, and Round

● Comparison Operators: Equal, NotEqual, GreaterThan,
GraterThanOrEqual, LessThan, and LessThenOrEqual

● Binary Operators: Add, Subtract, Multiply, Divide, IntDivide, Modulus,
ShiftLeft, ShiftRight, LogicalAnd, LogicalOr, LogicalXor, BitwiseAnd,
BitwiseOr, and BitwiseXor.

In the code calling the operator, you do not use these names but use the correspond-
ing symbol. You use these special names only in the definition, with the class
operator prefix to avoid any naming conflict. For example, you can have a record
with an Add method and add an Add operator to it.

When you define these operators, you spell out the parameters, and the operator is
applied only if the parameters match exactly. To add two values of different types,
you’ll have to specify two different Add operations, as each operand could be the first
or second entry of the expression. In fact, the definition of operators provides no
automatic commutativity. Moreover, you have to indicate the type very precisely, as
automatic type conversions don’t apply. Many times this implies overloading the
overloaded operator and providing multiple versions with different types of parame-
ters.

Another important factor to notice is that there are two special operators you can
define for data conversion, Implicit and Explicit. The first is used to define an
implicit type cast (or silent conversion), which should be perfect and not lossy. The
second, Explicit, can be invoked only with an explicit type cast from a variable of a
type to another given type. Together these two operators define the casts that are
allowed to and from the given data type.

Notice that both the Implicit and the Explicit operators can be overloaded based
on the function return type, which is generally not possible for overloaded methods.
In case of a type cast, in fact, the compiler knows the expected resulting type and can
figure out which is the typecast operation to apply. As an example, the Opera-
torsOver demo defines a record with a few operators:

type
 TPointRecord = record
 private
 x, y: Integer;
 public
 procedure SetValue (x1, y1: Integer);
 class operator Add (a, b: TPointRecord): TPointRecord;
 class operator Explicit (a: TPointRecord): string;
 class operator Implicit (x1: Integer): TPointRecord;
 end;

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 139

Here is the implementation of the methods of the record:

class operator TPointRecord.Add(
 a, b: TPointRecord): TPointRecord;
begin
 Result.x := a.x + b.x;
 Result.y := a.y + b.y;
end;

class operator TPointRecord.Explicit(
 a: TPointRecord): string;
begin
 Result := Format('(%d:%d)', [a.x, a.y]);
end;

class operator TPointRecord.Implicit(
 x1: Integer): TPointRecord;
begin
 Result.x := x1;
 Result.y := 10;
end;

Using such a record is quite straightforward, as you can write code like this:

procedure TForm1.Button1Click(Sender: TObject);
var
 a, b, c: TPointRecord;
begin
 a.SetValue(10, 10);
 b := 30;
 c := a + b;
 Show (string(c));
end;

The second assignment (b:=30;) is done using the implicit operators, due to the lack
of a cast while the Show call uses the cast notation to activate an explicit type conver-
sion. Consider also that the operator Add doesn't modify its parameters; rather it
returns a brand new value.

note The fact operators return new values is what make it harder to think of operator overloading for
classes. If the operator creates a new dynamic objects who is going to dispose it? With the intro -
duction of ARC in the mobile compiler, though, this feature was made available... but not for the
desktop counterpart.

A little known fact is that it is technically possible to call an operator using its fully
qualified internal name (like &op_Addition), prefixing it with an &, instead of using
the operator symbol. For example, you can rewrite the records sum as follows (see
the demo for the complete listing):

c := TPointRecord.&&op_Addition(a, b);

Marco Cantù, Object Pascal Handbook

140 - 05: Arrays and Records

although I can see very few marginal cases in which you might want to do so. (The
entire purpose of defining operators is to be able to use a friendlier notation than a
method name, not an uglier one as the preceding direct call.)

Implementing Commutativity

Suppose you want implement the ability to add an integer number to one of your
records. You can define the following operator (that is available in the code of the
OperatorsOver application project, for a slightly different record type):

class operator TPointRecord2.Add(a: TPointRecord2;
 b: Integer): TPointRecord2;
begin
 Result.x := a.x + b;
 Result.y := a.y + b;
end;

note The reason I've defined this operator on a new type rather than the existing one is that the same
structure already defines an Implicit conversion of an integer to the record type, so I can already
add integers and records without defining a specific operator. This issue is explained better in the
next section.

Now you can legitimately add a floating point value to a record:

var
 a: TPointRecord2;
begin
 a.SetValue(10, 20);
 a := a + 10;

However if you try to write the opposite addition:

 a := 30 + a;

this will fail with the error:

[dcc32 Error] E2015 Operator not applicable to this operand type

In fact, as I mentioned, commutativity is not automatic for operators applied to vari-
ables of different types, but must be specifically implemented either repeating the
call or calling (like below) the other version of the operator:

class operator TPointRecord2.Add(b: Integer;
 a: TPointRecord2): TPointRecord2;
begin
 Result := a + b; // implement commutativity
end;

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 141

Implicit Cast and Type Promotions

It is important to notice that the rules related to the resolution of calls involving
operators are different from the traditional rules involving methods. With automatic
type promotions there’s the chance that a single expression will end up calling dif-
ferent versions of an overloaded operator and cause ambiguous calls. This is why
you need to take a lot of care when writing Implicit operators.

Consider these expressions from the previous example:

a := 50;
c := a + 30;
c := 50 + 30;
c := 50 + TPointRecord(30);

They are all legal! In the first case, the compiler converts 30 to the proper record
type, in the second the conversion takes place after the assignment, and in the third
the explicit cast forces an implicit one on the first value, so that the addition being
performed is the custom one among records. In other words the result of the second
operation is different from the other two, as highlighted in the output and in the
expanded version of these statements:

// output
(80:20)
(80:10)
(80:20)

// expanded statements
c := a + TPointRecord(30);
// that is: (50:10) + (30:10)

c := TPointRecord (50 + 30);
// that is 80 converted into (80:10)

c := TPointRecord(50) + TpointRecord(30);
// that is: (50:10) + (30:10)

Variants

Originally introduced in the language to provide full Windows OLE and COM sup-
port, Object Pascal has the concept of a loosely typed native data type called Variant.
Although the name reminds of variant records (mentioned earlier) and the imple-
mentation has some similarity with open array parameters, this is a separate feature
with a very specific implementation (uncommon in languages outside of the Win-
dows development world).

Marco Cantù, Object Pascal Handbook

142 - 05: Arrays and Records

In this section I won't really refer to OLE and other scenarios in which this data type
is used (like fields access for data sets. I'll get back to dynamic types, RTTI, and
reflection in Chapter 16, where I'll also cover a related (but type safe) type called
TValue. Here I want to discuss this data type from a general perspective.

Variants Have No Type

In general, you can use a variable of the variant type to store any of the basic data
types and perform numerous operations and type conversions. Automatic type con-
versions go against the general type-safe approach of the Object Pascal language and
is an implementation of a type of dynamic typing originally introduced by languages
like Smalltalk and Objective-C, and recently made popular in scripting languages
including JavaScript, PHP, Python, and Ruby.

A variant is type-checked and computed at run time. The compiler won't warn you of
possible errors in the code, which can be caught only with extensive testing. On the
whole, you can consider the code portions that use variants to be interpreted code,
because, as with interpreted code, many operations cannot be resolved until run
time. In particular this affects the speed of the code.

Now that I've warned you against the use of the Variant type, it is time to look at
what you can do with it. Basically, once you've declared a variant variable such as the
following:

var
 V: Variant;

you can assign values of several different types to it:

V := 10;
V := 'Hello, World';
V := 45.55;

Once you have the variant value, you can copy it to any compatible or incompatible
data type. If you assign a value to an incompatible data type, the compiler will gener-
ally not flag it with an error, but will perform a runtime conversion if this makes
sense. Otherwise it will issue a run-time error. Technically a variant stores type
information along with the actual data, allowing a number of handy, but slow and
unsafe, run-time operations.

Consider the following code (part of the VariantTest application project), which is
an extension of the code above:

var
 V: Variant;
 S: string;
begin

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 143

 V := 10;
 S := V;
 V := V + S;
 Show (V);

 V := 'Hello, World';
 V := V + S;
 Show (V);

 V := 45.55;
 V := V + S;
 Show (V);

Funny, isn't it? This is the output (not surprisingly):

20
Hello, World10
55.55

Besides assigning a variant holding a string to the S variable, you can assign to it a
variant holding an integer or a floating-point number. Even worse, you can use the
variants to compute values, with the operation V := V + S; that gets interpreted in
different ways depending on the data stored in the variant. In the code above, that
same line can add integers, floating point values, or concatenate strings.

Writing expressions that involve variants is risky, to say the least. If the string con-
tains a number, everything works. If not, an exception is raised. Without a
compelling reason to do so, you shouldn't use the Variant type; stick with the stan-
dard Object Pascal data types and type-checking approach.

Variants in Depth

For those interested in understanding variants in more details, let me add some
technical information about how variants work and how you can have more control
on them. The RTL includes a variant record type, TVarData, which has the same
memory layout as the Variant type. You can use this to access the actual type of a
variant. The TVarData structure includes the type of the Variant, indicated as VType,
some reserved fields, and the actual value.

note For more details look to the TVarData definition in the RTL source code, in the System unit. This
is far from a simple structure and I recommend only developers with some experience look into
the implementation details of the variant type.

The possible values of the VType field correspond to the data types you can use in
OLE automation, which are often called OLE types or variant types. Here is a com-
plete alphabetical list of the available variant types:

Marco Cantù, Object Pascal Handbook

144 - 05: Arrays and Records

varAny varArray varBoolean
varByte varByRef varCurrency
varDate varDispatch varDouble
varEmpty varError varInt64
varInteger varLongWord varNull
varOleStr varRecord varShortInt
varSingle varSmallint varString
varTypeMask varUInt64 varUnknown
varUString varVariant varWord

Most of these constant names of variant types are easy to understand. Notice that
there is the concept of null value, you obtain by assigning NULL (and not nil).

There are also many functions for operating on variants that you can use to make
specific type conversions or to ask for information about the type of a variant (see,
for example, the VarType function). Most of these type conversion and assignment
functions are actually called automatically when you write expressions using vari-
ants. Other variant support routines actually operate on variant arrays, again a
structure used almost exclusively for OLE integration on Windows.

Variants Are Slow!

Code that uses the Variant type is slow, not only when you convert data types, but
even when you simply add two variant values holding integers. They are almost as
slow as interpreted code. To compare the speed of an algorithm based on variants
with that of the same code based on integers, you can look at the second button of
the VariantTest project.

This program runs a loop, timing its speed and showing the status in a progress bar.
Here is the first of the two very similar loops, based on Int64 and variants:

const
 maxno = 10000000; // 10 million

var
 time1, time2: TDateTime;
 n1, n2: Variant;
begin
 time1 := Now;
 n1 := 0;
 n2 := 0;

 while n1 < maxno do
 begin
 n2 := n2 + n1;
 Inc (n1);
 end;

 // we must use the result

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 145

 time2 := Now;
 Show (n2);
 Show ('Variants: ' + FormatDateTime (
 'ss.zzz', Time2-Time1) + ' seconds');

The timing code is worth looking at, because it's something you can easily adapt to
any kind of performance test. As you can see, the program uses the Now function to
get the current time and the FormatDateTime function to output the time difference,
showing only the seconds ("ss") and the milliseconds ("zzz").

In this example the speed difference is actually so great that you'll notice it even
without precise timing:

49999995000000
Variants: 01.169 seconds
49999995000000
Integers: 00.026 second

These are the numbers I get on my Windows virtual machine, and that's about 50
times slower for the variant based code. The actual values depend on the computer
you use to run this program, but the relative difference won't change much. Even on
my Android phone I get a similar proportion (but much longer times overall):

49999995000000
Variants: 07.717 seconds
49999995000000
Integers: 00.157 second

On my phone this code takes 6 times as much as on Windows, but now the fact is the
net different is over 7 seconds, making the variant based implementation noticeably
slow to the user, while the Int64 based one is still extremely fast (a user would
hardly notice a tenth of a second).

What About Pointers?

Another fundamental data type of the Object Pascal language is represented by
pointers. Some of the object-oriented languages have gone a long way to hide this
powerful, but dangerous, language construct, while Object Pascal lets a programmer
use it when needed (which is generally not very often).

But what is a pointer, and where does its name come from? Differently than most
other data types, a pointer doesn't hold an actual value, but it holds an indirect ref-
erence to a variable, which in turn has a value. A more technical way to express this
is that a pointer type defines a variable that holds the memory address of another
variable of a given data type (or of an undefined type).

Marco Cantù, Object Pascal Handbook

146 - 05: Arrays and Records

note This is an advanced section of the book, added here because pointers are part of the Object Pascal
language and should be part of the core knowledge of any developer, although it is not a basic
topic and if you are new to the language you might want to skip this section the first time you read
the book. Again, there is a chance you might have used programming languages with no (explicit)
pointers, so this short section could be an interesting read!

The definition of a pointer type is not based on a specific keyword, but uses a special
symbol, the caret (^). For example you can define a pointer to variable of the Integer
type with the following declaration:

type
 TPointerToInt = ^Integer;

Once you have defined a pointer variable, you can assign to it the address of another
variable of the same type, using the @ operator:

var
 P: ^Integer;
 X: Integer;
begin
 X := 10;
 P := @X;
 // change the value of X using the pointer
 P^ := 20;
 Show ('X: ' + X.ToString);
 Show ('P^: ' + P^.ToString);
 Show ('P: ' + Integer(P).ToHexString (8));

This code is part of the PointersTest application project. Given the pointer P refers
to the variable X, you can use P^ to refer to the value of the variable, and read or
change it. You can also display the value of the pointer itself, that is the memory
address of X, by casting the pointer to an integer. Rather than showing the plain
numeric value, the code shows the hexadecimal representation, which is more com-
mon for memory addresses. This is the output (where the pointer address might
depend on the specific compilation):

X: 20
P^: 20
P: 0018FC18

warn Casting the pointer to an Integer is correct code only on 32-bit platforms, not on 64-bit ones. A
better option is to cast to NativeInt, however that type lacks the integer helpers, and that would
have made the sample code more complex. So the code of this demo is 32-bit specific.

Let me summarize, for clarity. When you have a pointer P:

· By using the pointer directly (with the expression P) you refer to the address of
the memory location the pointer is referring to

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 147

· By dereferencing the pointer (with the expression P^) you refer to the actual con-
tent of that memory location

Instead of referring to an existing memory location, a pointer can also refer to a new
and specific memory block dynamically allocated on the heap with the New proce-
dure. In this case, when you don't need the value accessed by the pointer anymore,
you’ll also have to get rid of the memory you’ve dynamically allocated, by calling the
Dispose procedure.

note Memory management in general and the way the heap works in particular are covered in Chapter
13. In short, the heap is a (large) area of memory in which you can allocate and release blocks of
memory in no given order. As an alternative to New and Dispose you can use GetMem and FreeMem,
but the former two are preferable and safer to use.

Here is a code snippet that allocates memory dynamically:

var
 P: ^Integer;
begin
 // initialization
 New (P);
 // operations
 P^ := 20;
 Show (P^.ToString);
 // termination
 Dispose (P);

If you don't dispose of the memory after using it, your program may eventually use
up all the available memory and crash. The failure to release memory you don't need
any more is known as a memory leak.

note To be safer the code above should indeed use an exception handling try-finally block, a topic I
decided not to introduce at this point of the book, but I'll cover later in Chapter 9.

If a pointer has no value, you can assign the nil value to it. You can test whether a
pointer is nil to see if it currently refers to a value with a direct equality test or by
using the specific Assigned function as shown below.

This kind of test is often used, because dereferencing (that is accessing the value at
the memory address stored in the pointer) an invalid pointer causes a memory
access violation (with slightly different effects depending on the operating system):

var
 P: ^Integer;
begin
 P := nil;
 Show (P^.ToString);

Marco Cantù, Object Pascal Handbook

148 - 05: Arrays and Records

You can see an example of the effect of this code by running the PointersTest appli-
cation. The error you'll see (on Windows) should be similar to:

Access violation at address 0080B14E in module 'PointersTest.exe'.
Read of address 00000000.

One of the ways to make pointer data access safer, is to add a “pointer is not null”
safe-check like the following:

 if P <> nil then
 Show (P^.ToString);

As I mentioned earlier, an alternative way, which is generally preferable for read-
ability reasons, is to use the Assigned pseudo-function:

 if Assigned (P) then
 writeln (P^.ToString);

note Assigned is not a real function, because it is “resolved” by the compiler producing the proper
code. Also, it can be used over a procedural type variable (or method reference) without actually
invoking it, but only checking if it is assigned.

Object Pascal also defines a Pointer data type, which indicates untyped pointers
(such as void* in the C language). If you use an untyped pointer you should use
GetMem instead of New (indicating the number of bytes to allocate (given this value
cannot be inferred from the type itself). The GetMem procedure is required each time
the size of the memory variable to allocate is not defined.

The fact that pointers are seldom necessary in Object Pascal is an interesting advan-
tage of this language. Still, having this feature available can help in implementing
some extremely efficient low level functions and when calling the API of an operat-
ing system. In any case, understanding pointers is important for advanced
programming and for a full understanding of language object model, which use
pointers (generally called references) behind the scenes.

File Types, Anyone?

The last Object Pascal data type constructor covered (briefly) in this chapter is the
file type. File types represent physical disk files, certainly a peculiarity of the original
Pascal language, given very few old or modern programming languages include the
notion of a file as a primitive data type. The Object Pascal language has a file key-
word, which is a type specifier, like array or record. You use file to define a new
type, and then you can use the new data type to declare new variables:

Marco Cantù, Object Pascal Handbook

05: Arrays and Records - 149

type
 IntFile = file of Integers;
var
 IntFile1: IntFile;

It is also possible to use the file keyword without indicating a data type, to specify
an untyped file. Alternatively, you can use the TextFile type, defined in the System
unit of the Run Time Library to declare files of ASCII characters (or, more correctly
in these times, files of bytes).

Direct use of files, although still supported, is less and less common these days, as
the Run Time Library includes many classes for managing binary and text files at a
much higher level (including the support for Unicode encodings for text files, for
example). Object Pascal applications generally use the RTL streams (the TStream
and derived classes) to handle any complex file read and write operations. Streams
represent virtual files, which can be mapped to physical files, to a memory block, to
a socket, or any other continuous series of bytes.

One area when you still see some of the old time file management routines in use is
when you write console applications, where you can use write, writeln, read, and
related function for operating with a special file, which is the standard input and
standard output (C and C++ have similar support for input and output from the con-
sole, and many other languages offer similar services).

Marco Cantù, Object Pascal Handbook

150 - 06: All About Strings

06: all about

strings

Character strings are one of the most commonly used data types in any program-
ming language. Object Pascal makes string handling fairly simple, yet very fast and
extremely powerful. Even if the basics of strings are easy to grasp and I've used
strings for output in the previous chapters, behind the scenes the situation is a little
more complex than it might seem at first sight. Text manipulation involves several
closely related topics worth exploring: to fully understand string processing you
need to know about Unicode representations, understand how strings map to arrays
of characters, and learn about some of the most relevant string operations of the run
time library, including saving string to text files and loading them.

Object Pascal has several options for string manipulation and makes available differ-
ent data types and approaches. The focus of the chapter will be on the standard
string data type, but I'll also devote a little time to older string types you can still use
in the desktop compiler (but not in the mobile ones). Before we get to that, though,
let me start from the beginning: the Unicode representation.

Marco Cantù, Object Pascal Handbook

06: All About Strings - 151

Unicode: An Alphabet for the Entire
World

Object Pascal string management is centered around the Unicode character set and,
particularly, the use of one of its representations, called UTF-16. Before we get to the
technical details of the implementation, it is worth devoting a few sections to fully
understanding the Unicode standard.

The idea behind Unicode (which is what makes it simple and complex at the same
time) is that every single character in all known alphabets of the world has its own
description, a graphical representation, and a unique numeric value (called a Uni-
code code point).

note The reference web site of the Unicode consortium is http://www.unicode.org, which a rich
amount of documents. The ultimate reference is “The Unicode Standard” book, which can be
found at http://www.unicode.org/book/aboutbook.html.

Not all developers are familiar with Unicode, and many still think of characters in
terms of older, limited representations like ASCII and in terms of ISO encoding. By
having a short section covering these older standards, you'd better appreciate the
peculiarities (and the complexity) of Unicode.

Characters from the Past: from ASCII to ISO
Encodings

Character representations started with the American Standard Code for Infor-
mation Interchange (ASCII), which was developed in the early '60s as a standard
encoding of computer characters, encompassing the 26 letters of the English
alphabet, both lowercase and uppercase, the 10 numerical digits, common punc-
tuation symbols, and a number of control characters (still in use today).

ASCII uses a 7 bit encoding system to represent 128 different characters. Only char-
acters between #32 (Space) and #126 (Tilde) have a visual representation, as show
in Figure 6.1 (extracted from an Object Pascal application running on Windows).

Marco Cantù, Object Pascal Handbook

152 - 06: All About Strings

Figure 6.1:
A table with the
printable ASCII
character set

While ASCII was certainly a foundation (with its basic set of 128 characters that
are still part of the core of Unicode), it was soon superseded by extended ver-
sions that used the 8th bit to add another 128 characters to the set.

Now the problem is that with so many languages around the world, there was no
simple way to figure out which other characters to include in the set (at times
indicated as ASCII-8). To make the story short, Windows adopted a different set
of characters, called a code page, with a set of characters depending on your
locale configuration and version of Windows. Beside Windows code pages there
are many other standards based on a similar paging approach, and those pages
became part of international ISO standards.

The most relevant was certainly the ISO 8859 standard, which defines several
regional sets. The most used set (well, the one used in most Western countries
to be a little more precise) is the Latin set, referenced as ISO 8859-1.

note Even if partially similar, Windows 1252 code page doesn't fully conform to the ISO 8859-1 set.
Windows adds extra characters like the € symbol, extra quotation marks, and more, in the area
from 128 to 150. Differently from all other values of the Latin set, those Windows extensions do
not conform with the Unicode code points.

Unicode Code Points and Graphemes

If I really want to be precise, I should include one more concept beyond that of code
points. At times, in fact, multiple code points could be used to represent a single
grapheme (a visual character). This is generally not a letter, but a combination of
letters or letters and symbols. For example, if you have a sequence of the code point

Marco Cantù, Object Pascal Handbook

06: All About Strings - 153

representing the Latin letter a (#$0061) followed by the code point representing the
grave accent (#$0300), this should be displayed as a single accented character.

In Object Pascal coding terms, if you write the following (part of the CodePoints
application project), the message will have one single accented character, as in Fig-
ure 6.2.

var
 str: String;
begin
 str := #$0061 + #$0300;
 ShowMessage (str);

Figure 6.2:
A single grapheme can
be the result of
multiple code points

In this case we have two characters, representing two code points, but only one
grapheme (or visual elements). The fact is that while in the Latin alphabet you can
use a specific Unicode code point to represent the given grapheme (letter a with
grave accent is code point $00E0), in other alphabets combining Unicode code
points is the only way to obtain a given grapheme (and the correct output).

Even if the display is that of an accented character, there is no automatic normaliza-
tion or transformation of the value (only a proper display), so the string internally
remains different from one with the character à.

note The rendering of graphemes from multiple code points might depend on specific support from the
operating system and on text rendering techniques being used, so you might find out that for
some of the graphemes not all operating systems offer the correct output.

From Code Points to Bytes (UTF)

While ASCII used a direct and easy mapping of character to their numeric represen-
tation, Unicode uses a more complex approach. As I mentioned, every element of
the Unicode alphabet has an associated code point, but the mapping to the actual
representation is often more complicated.

Marco Cantù, Object Pascal Handbook

154 - 06: All About Strings

One of the elements of confusion behind Unicode is that there are multiple ways to
represent the same code point (or Unicode character numerical value) in terms of
actual storage, of physical bytes, in memory or on a file. The issue stems from the
fact that the only way to represent all Unicode code points in a simple and uniform
way is to use four bytes for each code point. This accounts for a fixed-length repre-
sentation (each character requires always the same amount of bytes), but most
developers would perceive this as too expensive in memory and processing terms.

note In Object Pascal the Unicode Code Points can be represented directly in a 4-bytes representation
by using the UCS4Char data type.

That's why the Unicode standard defines other representations, generally requiring
less memory, but in which the number of bytes for each symbol is different, depend-
ing its code point. The idea is to use a smaller representation for the most common
elements, and a longer one for those infrequently encountered.

The different physical representations of the Unicode code points are called Unicode
Transformation Formats (or UTF). These are algorithmic mappings, part of the Uni-
code standard, that map each code point (the absolute numeric representation of a
character) to a unique sequence of bytes representing the given character. Notice
that the mappings can be used in both directions, converting back and forth between
different representations.

The standard defines three of these formats, depending on how many bits are used
to represent the initial part of the set (the initial 128 characters): 8, 16, or 32. It is
interesting to notice that all three forms of encodings need at most 4 bytes of data
for each code point.

· UTF-8 transforms characters into a variable-length encoding of 1 to 4 bytes.
UTF-8 is popular for HTML and similar protocols, because it is quite compact
when most characters (like tags in HTML) fall within the ASCII subset.

· UTF-16 is popular in many operating systems (including Windows and Mac OS
X) and development environments. It is quite convenient as most characters fit in
two bytes, reasonably compact, and fast to process.

· UTF-32 makes a lot of sense for processing (all code points have the same
length), but it is memory consuming and has limited use in practice.

There is a common misconception that UTF-16 can map directly all code points with
two bytes, but since Unicode defines over 100,000 code points you can easily figure
out they won't fit into 64K elements. It is true, however, that at times developers use
only a subset of Unicode, to make it fit in a 2-bytes-per-characters fixed-length rep-
resentation. In the early days, this subset of Unicode was called UCS-2, now you

Marco Cantù, Object Pascal Handbook

06: All About Strings - 155

often see it referenced as Basic Multilingual Plane (BMP). However, this is only a
subset of Unicode (one of many planes).

note A problem relating to multi-byte representations (UTF-16 and UTF-32) is which of the bytes
comes first? According to the standard, all forms are allowed, so you can have a UTF-16 BE (big-
endian) or LE (little-endian), and the same for UTF-32. The big-endian byte serialization has the
most significant byte first, the little-endian byte serialization has the least significant byte first.
The bytes serialization is often marked in files along with the UTF representation with a header
called Byte Order Mark (BOM).

The Byte Order Mark

When you have a text file storing Unicode characters, there is a way to indicate
which is the UTF format being used for the code points. The information is stored in
a header or marker at the beginning of the file, called Byte Order Mark (BOM). This
is a signature indicating the Unicode format being used and the byte order form (lit-
tle or big endian – LE or BE). The following table provides a summary of the various
BOMs, which can be 2, 3, or 4 bytes long:

00 00 FE FF UTF-32, big-endian

FF FE 00 00 UTF-32, little-endian

FE FF UTF-16, big-endian

FF FE UTF-16, little-endian

EF BB BF UTF-8

We'll see later in this chapter how Object Pascal manages the BOM within its
streaming classes. The BOM appears at the very beginning of a file with the actual
Unicode data immediately following it. So a UTF-8 file with the content AB contains
five hexadecimal values (3 for the BOM, 2 for the letters):

EF BB BF 41 42

If a text file has none of these signatures, it is generally considered as an ASCII text
file, but it might as well contain text with any encoding.

note On the other hand, when you are receiving data from a web request or through other Internet pro -
tocols, you might have a specific header (part of the protocol) indicating the encoding, rather than
relying on a BOM.

Marco Cantù, Object Pascal Handbook

156 - 06: All About Strings

Looking at Unicode

How do we create a table of Unicode characters like those I displayed earlier for
ASCII ones? We can start by displaying code points in the Basic Multilingual Plane
(BMP), excluding what are called surrogate pairs.

note Not all numeric values are true UTF-16 code points, since there are some non-valid numerical val -
ues for characters (called surrogates) used to form a paired code and represent code points above
65535. A good example of a surrogate pair is the symbol used in music scores for the F (or bass)
clef, �. It is code point 1D122 which is represented in UTF-16 by two values, D834 followed by
DD22.

Displaying all of the elements of the BMP would requires a 256 * 256 grid, hard to
accommodate on screen. This is why the ShowUnicode application project has a tab
with two pages: The first tab has the primary selector with 256 blocks, while the sec-
ond page shows a grid with the actual Unicode elements, one section at a time. This
program has a little more of a user interface than most others in the book, and you
can as well skim through its code if you are only interested in its output (and not the
internals).

When the program starts, it fills the ListView control in the first page of the TabCon-
trol with 256 entries, each indicating the first and last character of a group of 256.
Here is the actual code of the OnCreate event handler of the form and a simple func-
tion used to display each element, while the corresponding output is in Figure 6.2:

// helper function
function GetCharDescr (nChar: Integer): string;
begin
 if Char(nChar).IsControl then
 Result := 'Char #' + IntToStr (nChar) + ' []'
 else
 Result := 'Char #' + IntToStr (nChar) +
 ' [' + Char (nChar) + ']';
end;

procedure TForm2.FormCreate(Sender: TObject);
var
 I: Integer;
 ListItem: TListViewItem;
begin
 for I := 0 to 255 do // 256 pages * 256 characters each
 begin
 ListItem := ListView1.Items.Add;
 ListItem.Tag := I;
 if (I < 216) or (I > 223) then
 ListItem.Text :=
 GetCharDescr(I*256) + '/' + GetCharDescr(I*256+255)
 else

Marco Cantù, Object Pascal Handbook

06: All About Strings - 157

 ListItem.Text := 'Surrogate Code Points';
 end;
end;

Figure 6.2:
The first page of the
ShowUnicode
application project has
a long list of sections of
Unicode characters

Notice how the code saves the number of the “page” in the Tag property of the items
of the ListView, an information used later to fill a page. As a user selects one of the
items, the application moves to the second page of the TabControl, filling its string
grid with the 256 characters of the section:

procedure TForm2.ListView1ItemClick(const Sender: TObject;
 const AItem: TListViewItem);
var
 I, NStart: Integer;
begin
 NStart := AItem.Tag * 256;
 for I := 0 to 255 do
 begin
 StringGrid1.Cells [I mod 16, I div 16] :=
 IfThen (not Char(I + NStart).IsControl, Char (I + NStart), '');
 end;

Marco Cantù, Object Pascal Handbook

158 - 06: All About Strings

 TabControl1.ActiveTab := TabItem2;

The IfThen function used in the code above is a two way test: If the condition passed
in the first parameter is true, the function returns the value of the second parameter;
if not, it returns the value of the third one. The test in the first parameter uses the
IsControl method of the Char type helper, to filter out non-printable control char-
acters.

note The IfThen function operates more or less like the ?: operator of most programming languages
based on the C syntax. There is a version for strings and a separate one for Integers. For the string
version you have to include the System.StrUtils unit, for the Integer version of IfThen the
System.SysUtils unit.

The grid of Unicode characters produced by the application is visible in Figure 6.3.
Notice that the output varies depending on the ability of the selected font and the
specific operating system to display a given Unicode character.

Figure 6.3:
The second page of the
ShowUnicode
application project has
some of the actual
Unicode characters

Marco Cantù, Object Pascal Handbook

06: All About Strings - 159

The Char Type Revisited

After this introduction to Unicode, let's get back to the real topic of this chapter,
which is how the Object Pascal language manages characters and strings. I intro-
duced the Char data type in Chapter 2, and mentioned some of the type helper
functions available in the Character unit. Now that you have a better understanding
of Unicode, it is worth revisiting that section and going though some more details.

First of all, the Char type does not invariably represent a Unicode code point. The
data type, in fact, uses 2 bytes for each element. While it does represent a code point
for elements in Unicode'e Basic Multi-language Plane (BMP), a Char can also be part
of a pair of surrogate values, representing a code point.

Technically, there is a different type you could use to represent any Unicode code
point directly, and this is the UCS4Char type, which used 4 bytes to represent a
value). This type is rarely used, as the extra memory required is generally hard to
justify, but you can see that the Character unit (cover next) includes also several
operations for this data type.

Back to the Char type, remember it is an enumerated type (even if a rather large
one), so it has the notion of sequence and offers code operations like Ord, Inc, Dec,
High, and Low. Most extended operations, including the specific type helper, are not
part of the basic system RTL units but require the inclusion of the Character unit.

Unicode Operations With The Character Unit

Most of the specific operations for Unicode characters (and also Unicode strings, of
course) are defined in a special units called System.Character. This unit defines the
TCharHelper helper for the Char type, which lets you apply operations directly to the
type.

note The Character unit defines also a TCharacter record, which is basically a collection of static class
functions, plus a number of global routines mapped to these method. These are older, deprecated
functions, given that now the preferred way to work on the Char type at the Unicode level is the
use of the class helper.

The unit also defines two interesting enumerated types. The first is called
TUnicodeCategory and maps the various characters in broad categories like control,
space, uppercase or lowercase letter, decimal number, punctuation, math symbol,
and many more. The second enumeration is called TUnicodeBreak and defines the
family of the various spaces, hyphen, and breaks. If you are used to ASCII opera-

Marco Cantù, Object Pascal Handbook

160 - 06: All About Strings

tions, this is a big change. Numbers in Unicode are not only the characters between
0 and 9; spaces are not limited to the character #32; and so on for many other
assumption of the (much simpler) 256-elements alphabet.

The Char type helper has over 40 methods that comprise many different tests and
operations. They can be used for:

· Getting the numeric representation of the character (GetNumericValue).

· Asking for the category (GetUnicodeCategory) or checking it against one of the
various categories (IsLetterOrDigit, IsLetter, IsDigit, IsNumber, IsControl,
IsWhiteSpace, IsPunctuation, IsSymbol, and IsSeparator). I used the
IsControl operation in the previous demo.

· Checking if it is lowercase or uppercase (IsLower and IsUpper) or converting it
(ToLower and ToUpper).

· Verifying if it is part of a UTF-16 surrogate pair (IsSurrogate, IsLowSurrogate,
and IsHighSurrogate) and convert surrogate pairs in various ways.

· Converting it to and from UTF32 (ConvertFromUtf32 and ConvertToUtf32) and
UCS4Char type (ToUCS4Char).

· Checking if it is part of a given list of characters (IsInArray).

Notice that some of these operations can be applied to the type as a whole, rather
than to a specific variable. In that can you have to call them using the Char type as
prefix, as in the second code snippet below.

To experiment a bit with these operations on Unicode characters, I've create an
application project called CharTest. One of the examples of this demo is the effect of
calling uppercase and lowercase operations on Unicode elements. In fact, the classic
UpCase function of the RTL works only for the base 26 English language characters
of the ANSI representation, while it fails some Unicode character that do have a spe-
cific uppercase representations (not all alphabets have the concept of uppercase, so
this is not a universal notion).

To test this scenario, in the CharTest application project I've added the following
snippet that tries to convert an accented letter to uppercase:

var
 ch1: Char;
begin
 ch1 := 'ù';
 Show ('UpCase ù: ' + UpCase(ch1));
 Show ('ToUpper ù: ' + ch1.ToUpper);

The traditional Upcase call won't convert the latin accented character, while the
ToUpper function works properly:

UpCase ù: ù

Marco Cantù, Object Pascal Handbook

06: All About Strings - 161

ToUpper ù: Ù

There are many Unicode-related features in the Char type helper, like those high-
lighted in the code below, which defines a string as including also a character
outside of the BMP (the low 64K of Unicode code points). The code snippet, also
part of the CharTest application project, has a few tests on the various elements of
the string, all returning True:

var
 str1: string;
begin
 str1 := '1.' + #9 + Char.ConvertFromUtf32 (128) +
 Char.ConvertFromUtf32($1D11E);
 ShowBool (str1.Chars[0].IsNumber);
 ShowBool (str1.Chars[1].IsPunctuation);
 ShowBool (str1.Chars[2].IsWhiteSpace);
 ShowBool (str1.Chars[3].IsControl);
 ShowBool (str1.Chars[4].IsSurrogate);
end;

The display function used in this case is an adapted version:

procedure TForm1.ShowBool(value: Boolean);
begin
 Show(BoolToStr (Value, True));
end;

note Unicode code point $1D11E is musical symbol G clef.

Unicode Character Literals

We have seen in several examples that you can assign an individual character literal
or a string literal to a variable of the string type. In general using the numeric repre-
sentation of a character with the # prefix is quite simple. There are some exceptions,
though.

For backwards compatibility, plain character literals are converted depending on
their context. Take the following simple assignment of the numerical value 128,
which probably indicates the use of the Euro currency symbol (€):

var
 str1: string;
begin
 str1 := #$80;

This code is not Unicode compliant, as the code point for that symbol is 8364. The
value, in fact, doesn't come from the official ISO codepages but was a specific
Microsoft implementation for Windows. To make it easier to move existing code to
Unicode, the Object Pascal compiler can treat 2-digit string literals as ANSI charac-

Marco Cantù, Object Pascal Handbook

162 - 06: All About Strings

ters (which might depend on your actual code page). Surprisingly enough if you take
that value, convert it to a Char, and display it again... the numerical representation
will change to the correct one. So by executing the statement:

 Show (str1 + ' - ' + IntToStr (Ord (str1[1])));

I'll get the output:

€ - 8364

Given you might prefer fully migrating your code and getting rid of older ANSI-
based literal values, you can change the compiler behavior by using the special direc-
tive $HIGHCHARUNICODE. This directive determines how literal values between #$80
and #$FF are treated by the compiler. What I discussed earlier is the effect of the
default option (OFF). If you turn it on, the same program will produce this output:

� - 128

The number is interpreted as an actual Unicode code point and the output will con-
tain a non-printable control character. Another option to express that specific code
point (or any Unicode code point below #$FFFF) is to use the four-digits notation:

 str1 := #$0080;

This is not interpreted as the Euro currency symbol regardless of the setting of the
$HIGHCHARUNICODE directive.

What is nice is that you can use the four digits notation to express far eastern char-
acters, like the following two Japanese characters:

 str1 := #$3042#$3044;
 Show (str1 + ' - ' + IntToStr (Ord (str1.Chars[0])) +
 ' - ' + IntToStr (Ord (str1.Chars[1])));

displayed as (along with their Integer representation):

あい - 12354 – 12356

note あい translates to “meeting” according to BabelFish, but I'm not 100% sure where I originally
found it, and given I don't know Japanese this might as well be wrong.

You can also use literal elements over #$FFFF that will be converted to the proper
surrogate pair.

Marco Cantù, Object Pascal Handbook

06: All About Strings - 163

The String Data Type

The string data type in Object Pascal is way more sophisticated than a simple array
of characters, and has features that go well beyond what most programming lan-
guages do with similar data types. In this section I'll introduce the key concepts
behind this data type, and in coming sections we'll explore some of these features in
more details.

In the following bullet list I've captured the key concepts for understanding how
strings work in the language (remember, you can use string without knowing much
of this, as the internal behavior is very transparent):

· Data for the string type is dynamically allocated on the heap. A string vari-
able is just a reference to the actual data. Not that you have to worry much about
this, as the compiler handles this transparently. Like for a dynamic array, as you
declare a new string, this is empty.

· While you can assign data to a string in many ways, you can also allocate a
specific memory area calling the SetLength function. The parameter is the
number of characters (of 2 bytes each), the string should be able to have. When
you extend a string, the existing data is preserved (but it might be moved to a
new physical memory location). When you reduce the size, some of the content
will likely be lost. Setting the length of a string is seldom necessary. The only
common case is when you need to pass a string buffer to an operating system
function for the given platform.

· If you want to increase the size of a string in memory (by concatenating it with
another string) but there is something else in the adjacent memory, then the
string cannot grow in the same memory location, and a full copy of the string
must therefore be made in another location.

· To clear a string you don't operate on the reference itself, but can simply set it to
an empty string, that is ''. Or you can use the Empty constant, which corresponds
to that value.

· According to the rules of Object Pascal, the length of a string (which you can
obtain by calling Length) is the number of valid elements, not the number of allo-
cated elements. Differently from C, which has the concept of a string terminator
(#0), all versions of Pascal since the early days tend to favor the use of a specific
memory area (part of the string) where the actual length information is stored. At
times, however, you'll find strings that also have the terminator.

· Object Pascal strings use a reference-counting mechanism, which keeps track
of how many string variables are referring to a given string in memory. Reference

Marco Cantù, Object Pascal Handbook

164 - 06: All About Strings

counting will free the memory when a string isn't used anymore—that is, when
there are no more string variables referring to the data... and the reference count
reaches zero.

· Strings use a copy-on-write technique, which is highly efficient. When you
assign a string to another or pass one to a string parameter, no data is copied and
the reference count in increased. However, if you do change the content of one of
the references, the system will first make a copy and than affect only that copy,
with the other references remaining unchanged.

· The use of string concatenation for adding content to an existing string is
generally very fast and has no significant drawback. While there are alternative
approaches, concatenating strings is fast and powerful. This is not true for many
programming languages these days.

Now I can guess this description can be a little confusing, so let's look at the use of
strings in practice. In a while I'll get to a demo showcasing some of the operations
above, including reference counting and copy-on-write. Before we do so, however,
let me get back to the string helper operations and some other fundamental RTL
functions for strings management.

Before we proceed further, let me examine some of the elements of the previous list
in terms of actual code. Given string operations are quite seamless it is difficult to
fully grasp what happens, unless you start looking inside the strings memory struc-
ture, which I'll do later in this chapter, as it would be too advanced for now. So let's
start with some simple string operations, extracted from the Strings101 application
project:

var
 String1, String2: string;
begin
 String1 := 'hello world';
 String2 := String1;
 Show ('1: ' + String1);
 Show ('2: ' + String2);
 String2 := String2 + ', again';
 Show ('1: ' + String1);
 Show ('2: ' + String2);
end;

This first snippet, when executed, shows that if you assign two strings to the same
content, modifying one won't affect the other. That is, String1 is not affected by the
changes to String2:

1: hello world
2: hello world
1: hello world
2: hello world, again

Marco Cantù, Object Pascal Handbook

06: All About Strings - 165

Still, as we'll figure out better in a later demo, the initial assignment doesn't cause a
full copy of the string, the copy is delayed (again, a feature called copy-on-write).

Another important feature to understand is how the length is managed. If you ask
for the length of a string, you get the actual value (which is stored in the string meta-
data, making the operation very fast). But if you call SetLength, you are allocating
memory, which most often will be not initialized. This is generally used when pass-
ing the string as a buffer to an external system function. If you need a blank string,
instead, you can use the pseudo-constructor (Create). Finally, you can use
SetLength to trim a string. All of these are demonstrated by the following code:

var
 string1: string;
begin
 string1 := 'hello world';
 Show(string1);
 Show ('Length: ' + string1.Length.ToString);

 SetLength (string1, 100);
 Show(string1);
 Show ('Length: ' + string1.Length.ToString);

 string1 := 'hello world';
 Show(string1);
 Show ('Length: ' + string1.Length.ToString);

 string1 := string1 + string.Create(' ', 100);
 SetLength (string1, 100);
 Show(string1);
 Show ('Length: ' + string1.Length.ToString);

The output is more or less the following:

hello world
Length: 11

hello world~̆~̫~͌~ʹ~Η~υ~ϧ~Ј~Щ~ы~ѭ~ҏ~ұ~Ә~Ӽ~ԟ~Շ~հ~ ~ڋ~گ~ۓ~٦֐~ֳ~ו~׵~؛~ف~
~ܚ~ܼ~ݡ~ރ~ޤ~ߊ߰~~ࠔ~࠻~ࡢ~ࢉ~ࢮ~࣐۵ ~⌇~〈~

Length: 100
hello world
Length: 11
hello world
Length: 100

The third concept I want to underline in this section is that of an empty string. A
string is empty when its content is an empty string. For both assignment and testing
you can use two consecutive quotes, or specific functions:

var
 string1: string;
begin
 string1 := 'hello world';
 if string1 = '' then

Marco Cantù, Object Pascal Handbook

166 - 06: All About Strings

 Show('Empty')
 else
 Show('Not empty');

 string1 := ''; // or string1.Empty;
 if string1.IsEmpty then
 Show('Empty')
 else
 Show('Not empty');

With this simple output:

Not empty
Empty

Passing Strings as Parameters

As I've explained, if you assign a string to another, you are just copying a reference,
while the actual string in memory is not duplicated. However, if you write code that
changes that string (and only at that point) the string is first copied, and than modi-
fied.

Something very similar happens when you pass a string as parameter to a function
or procedure. By default, you get a new reference and if you modify the string in the
function, the change doesn't affect the original string. If you want a different behav-
ior, that is the ability to modify the original string in the function, you need to pass
the string by reference, using the var keyword (as it happens for most other simple
and managed data types).

But what if you don't modify the string passed as parameter? In that case, you can
apply an actual optimization by using the const modifier for the parameter. In this
case the compiler won't let you change the string in the function or procedure, but it
will also optimize the parameter passing operation. In fact, a const string doesn't
require the function to increase the string reference count when it starts and
decrease it when it ends. While these operations are very fast, executing those thou-
sands or millions of times will add a slight overhead to your programs. This is why
passing string as const is recommended in cases where the function doesn't have to
modify the value of the string parameter.

In coding terms, these are the declarations of three procedures with a string param-
eters passed in different ways:

procedure ShowMsg1 (str: string);
procedure ShowMsg2 (var str: string);
procedure ShowMsg3 (const str: string);

Marco Cantù, Object Pascal Handbook

06: All About Strings - 167

The Use of [] and String Characters Counting
Modes

As you are likely to know if you have used Object Pascal or any other programming
language, a key string operation is accessing one of the elements of a string, some-
thing often achieved using the square brackets notation ([]), in the same way you
access to the elements of an array.

In Object Pascal there are two slightly different ways to perform these operations:

· The Chars[] string type helper operation (the entire list is in the next section) is a
read only character access that uses a 0-based index.

· The standard [] string operator supports both reading and writing, and can use
either a zero-based or a one-based index depending on a compiler setting.

This is a bit confusing, at first, and does require some clarification, which I'm going
to provide after a short historical note. The reason for this note, which you can skip
if not interested, is that it would be difficult to understand why the language behaves
in the current way without looking at what happened over time.

note Let me look back in time for a second, to explain you how we got here today. In the early days of
the Pascal language, strings were treated like an array of characters in which the first element
(that is the 0th element of the array) was used to store the number of valid characters in the
string, or the string length. In those days, while the C language had to recompute the length of a
string each time, looking for a terminator, Pascal code could just make a direct check to that byte.
Given that the byte number 0 was used for the length, it happened that the first actual character
stored in the string was at position 1. Over time, almost all other languages had zero-based strings
and arrays. Later, Object Pascal adopted 0-based dynamic arrays and most of the RTL and com -
ponent libraries used 0-based data structures, with strings being a significant exception. While
moving to the mobile world, the Object Pascal language designers decided to give “priority” to
zero-based strings, allowing developers to still use the older model in case they had existing
Object Pascal source code to move over. Needless to say this generated a lot of debate in the devel -
oper community.

If we want to draw a comparison to better explain the differences in the base of the
index, consider how floors are counted in Europe and in North America (I honestly
don't know about the rest of the world). In Europe the ground floor is floor 0, and
the first floor is the one above it (at times formally indicated as “floor one above
ground”). In North America, the first floor is the ground floor, and the second first is
the first above ground level. In other words, America uses a 1-based floor index,
while Europe uses a 0-based floor index. For strings, instead, the largest majority of
programming languages uses the 0-based notation, regardless of the continent they
were invented.

Marco Cantù, Object Pascal Handbook

168 - 06: All About Strings

Let me explain the situation with string indexes a little better. As I mentioned above,
the Char[] invariably uses a zero-based index. So if you write
var
 string1: string;
begin
 string1 := 'hello world';
 Show (string1.Chars[1]);

the output will be:

e

What if you use the direct [] notation, that is what will be the output of:
 Show (string1[1]);

This might be either h or e, depending on a compiler define, $ZEROBASEDSTRING. If
this is ON the output will be e, if it is OFF the output will be h. Now given this setting
was introduced for backwards compatibility, the mobile compiler has it set to ON by
default, while the Windows compiler has it set to OFF. How can we handle this dis-
crepancy? There are a few alternative options:

· For new applications, my suggestion is to enable zero-based strings setting for all
of your code (at the project options level) including the desktop code, and follow
the standard approach used by most programming languages.

· If you have existing code, tested and verified, currently working with the classic
Pascal 1-based notation, bring this over the mobile by disabling the compiler flag
for all platforms.

· Make sure your code works in both cases, by abstracting the index, for example
using Low(string) as the index of the first value. This works returning the proper
value depending on the local compiler setting for the string base. However, while
this makes sense for libraries you want to keep readable and usable regardless of
the compiler setting (like the RTL libraries), it requires some extra work which is
not really required at the application level.

While implementing the first and second strategy is relatively simple, implementing
code that works regardless of this setting takes a little effort. I did this in the section
covering the for loop, for example, when I wrote:

var
 s: string;
 I: Integer;
begin
 s := 'Hello world';
 for I := Low (s) to High (s) do
 Show(s[I]);

Marco Cantù, Object Pascal Handbook

06: All About Strings - 169

In other words, a string invariably has elements ranging from the result of the Low
function to that of the High function applied to the same string. If you want to know,
in general, which is the active compiler setting, you can use:

Low (string)

This returns either 0 or 1 depending on the active option. In any case, always keep in
mind that this is just a local compiler setting that determines how the index within
square brackets is interpreted.

note A string is just a string, and the concept of a zero-based string I completely wrong. The data struc -
ture in memory is not different in any way, so you can pass any string to any function that uses a
notation with any base value, and there is no problem at all. In other words, if you have a code
fragment accessing to strings with a zero-based notation you can pass the string to a function that
is compiled using the settings for a one-based notation.

Concatenating Strings

I have already mentioned that unlike other languages, Object Pascal has full support
for direct string concatenation, which is actually a rather fast operation. In this
chapter I'll just show you some string concatenations code, while doing some speed
testing. Later on, in Chapter 18, I'll briefly document the TStringBuilder class,
which follows the .NET notation for assembling a string out of different fragments.
While there are reasons to use TStringBuilder, performance is not the most rele-
vant one (as the following example will show).

So, how do we concatenate strings in Object Pascal? Simply by using the + operator:

var
 str1, str2: string;
begin
 str1 := 'Hello,';
 str2 := ' world';
 str1 := str1 + str2;

Notice how I used the str1 variable both on the left and on the right of the assign-
ment, adding some more content to an existing string rather than assigning to a
brand new one. Both operations are possible, but adding content to an existing
string is where you can get some nice performance.

This type of concatenation can be also done in a loop, like the following extracted
from the LargeString application project:

uses
 Diagnostics;

const

Marco Cantù, Object Pascal Handbook

170 - 06: All About Strings

 MaxLoop = 2000000; // two million

var
 str1, str2: string;
 I: Integer;
 t1: TStopwatch;
begin
 str1 := 'Marco ';
 str2 := 'Cantu ';

 t1 := TStopwatch.StartNew;
 for I := 1 to MaxLoop do
 str1 := str1 + str2;

 t1.Stop;
 Show('Length: ' + str1.Length.ToString);
 Show('Concatenation: ' + t1.ElapsedMilliseconds.ToString);
end;

By running this code, I get the following timing on a Windows virtual machines and
on an Android device (the computer is quite a bit faster):

// Windows (in a VM)
Length: 12000006
Concatenation: 59

// Android (Nexus 4)
Length: 12000006
Concatenation: 991

The application project has also similar code based on the TStringBuilder class.
While I don't want to get to the details of that code (again, I'll describe the class in
Chapter 18) I want to share the actual timing, for comparison with the plain concate-
nation timing just displayed

// Windows (in a VM)
Length: 12000006
StringBuilder: 79

// Android (Nexus 4)
Length: 12000006
StringBuilder: 1057

As you can see, concatenation can be safely considered the fastest option.

The String Helper Operations

Given the importance of the string type, it should come to no surprise that the
helper for this type has a rather long list of operations you can perform. And given

Marco Cantù, Object Pascal Handbook

06: All About Strings - 171

its importance and the commonality of these operations in most applications, I think
it is worth going through this list with some care.

I've logically grouped the string helper operations (most of which have many over-
loaded versions), shortly describing what they do, considering that quite often the
names are rather intuitive:

· Copy or partial copy operations like Copy, CopyTo, Join, and SubString

· String modification operations like Insert, Remove, and Replace

· For conversion from various data types to string, you can use Parse and Format

· Conversion to various data types, when possible can be achieved using
ToBoolean, ToInteger, ToSingle, ToDouble, and ToExtended while you can turn
a string into an array of characters with ToCharArray

· Fill a string white space or specific characters with PadLeft, PadRight, and one of
the overloaded versions of Create. At the opposite, you can remove white space
at one end of the string or both using TrimRight, TrimLeft, and Trim

· String comparison and equality test (Compare, CompareOrdinal, CompareText,
CompareTo, and Equals)—but keep in mind you can also, to some extent, use the
equality operator and the comparison operators

· Changing case with LowerCase and UpperCase, ToLower and ToUpper, and
ToUpperInvariant

· Test the string content with operations like Contains, StartsWith, EndsWith.
Search in the string can be done using IndexOf for finding the position of a given
character (from the beginning or from a given location), the similar IndexOfAny
(which looks for one of the elements of an array of characters), the LastIndexOf
and LastIndexOfAny operations which work backwards from the end of the
string, and the special purpose operations IsDelimiter and LastDelimiter

· Access to general information about the string with functions like Length, which
returns the number of characters, CountChars, which also takes surrogate pairs
into account, GetHashCode, which return a hash of the string, and the various
tests for “emptiness” which include IsEmpty, IsNullOrEmpty, and
IsNullOrWhiteSpace

· String special operations like Split, which breaks a string into multiple ones
based on a specific character, and removing or adding quotes around the string
with QuotedString and DeQuoted

· And, finally, access to individual characters with Char[], which has the numerical
index of the element of the string among square brackets. This can be used only
for reading a value (not for changing it) and uses a zero-based index like all other
string helper operations.

Marco Cantù, Object Pascal Handbook

172 - 06: All About Strings

It is important to notice, in fact, that all of the string helper methods have been build
following the string RTL used by other languages, which includes the concept that
string elements start with zero and go up to the length of the string minus one. In
other words, all string helper operations use zero-based indexes as parameters and
return values.

note The Split operation is relatively new to the Object Pascal RTL. A previously common approach
was loading a string in a string list, after setting a specific line separator, and later access the indi -
vidual strings, or lines. The Split operation is significantly more efficient and flexible.

Given the large amount of operations you can apply directly to strings, I could have
created several projects demonstrating these capabilities. Instead, I'll stick to a few
relatively simple operations, albeit very common ones.

The StringHelperTest application project has two buttons. In each of them the first
part of the code builds and displays a string:

var
 Str1, Str2: string;
 I, NIndex: Integer;
begin
 Str1 := '';

 // create string
 for I := 1 to 10 do
 Str1 := Str1 + 'Object ';

 Str2:= string.Copy (Str1);
 Str1 := Str2 + 'Pascal ' + Str2.Substring (10, 30);
 Show(Str1);

Noticed how I used the Copy function, to create a unique copy of the data of the
string, rather than an alias... even if in this particular demo it won't have made any
difference. The Substring call at the end is used to extract a portion of the string.
The resulting text is:

Object Object Object Object Object Object Object Object Object Object
Pascal ect Object Object Object Objec

After this initialization, the first button has code for searching for a substring and for
repeating such a search, with a different initial index, to count the occurrences of a
given string (in the example a single character):

 // find substring
 Show('Pascal at: ' +
 Str1.IndexOf ('Pascal').ToString);

 // count occurrences
 I := -1;
 NCount := 0;

Marco Cantù, Object Pascal Handbook

06: All About Strings - 173

 repeat
 I := Str1.IndexOf('O', I + 1); // search from next element
 if I >= 0 then
 Inc (NCount); // found one
 until I < 0;

 Show('O found: ' +
 NCount.ToString + ' times');

I know the repeat loop is not the simplest one: it starts with a negative index, as any
following search begins with the index after the current one; it counts occurrences;
and its termination is based on the fact that if the element is not found it returns -1.
The output of the code is:

Pascal at: 70
O found: 14 times

The second button has code to perform a search and replace one or more elements
of a string with something else. In the first part, it creates a new string copying the
initial and final part and adding some new text in the middle. In the second, it uses
the Replace function that can operate on multiple occurrences simply by passing to
it the proper flag (rfReplaceAll). This is the code:

 // single replace
 nIndex := str1.IndexOf ('Pascal');
 str1 := str1.Substring(0, nIndex) + 'Object' +
 str1.Substring(nIndex + ('Pascal').Length);
 Show (str1);

 // multi-replace
 str1 := str1.Replace('O', 'o', [rfReplaceAll]);
 Show (str1);

As the output is rather long and not easy to read, here I've listed only the central
portion of each string:

...Object Pascal ect Object Object...

...Object Object ect Object Object...

...object object ect object object...

Again, this is just a minimal sampler of the rich string operations you can perform
using the operations available for the string type using the string type helper.

More String RTL

An effect of the decision to implement the string helper following the names of oper-
ations common in other programming languages is the fact that the names of the
type operations often diverge from the traditional Object Pascal ones (which are still

Marco Cantù, Object Pascal Handbook

174 - 06: All About Strings

available as global functions today. The following table has some of the not-match-
ing functions names:

global string type helper
Pos IndexOf
IntToStr Parse
StrToInt ToInteger
CharsOf Create
StringReplace Replace

note Remember that there is a big difference between the global and the Char helper operations: The
first group uses a one-based notation for indexing elements within a string, while the latter group
uses a zero-based notation (as explained earlier).

These are only the most commonly used functions of the string RTL that have
changed name, while many others still use the same like UpperCase or QuotedString.
The System.SysUtils unit has a lot more, and the specific System.StrUtils unit
has also many functions focused on string manipulation that are not part of the
string helper.

Some notable functions part of the System.StrUtils unit are:

· ResemblesText, which implements a Soundex algorithm (finding words with sim-
ilar sound even if a different spelling);

· DupeString, which returns the requested number of copies of the given string;

· IfThen, which returns the first string passed if a condition is true, else it will
return the second string (I used this function in a code snippet earlier in this
chapter);

· ReserveString, which returns a string with the opposite characters sequence.

Formatting Strings

While concatenating string with the plus (+) operator and using some of the conver-
sion functions you can indeed build complex strings out of existing values of various
data types, there is a different and more powerful approach to formatting numbers,
currency values, and other strings into a final string. Complex string formatting can
be achieved by calling the Format function, a very traditional but still extremely
common mechanism, not only in Object Pascal but in most programming languages.

Marco Cantù, Object Pascal Handbook

06: All About Strings - 175

note The family of “print format string” or printf functions date back to the early days of program-
ming and languages like FORTRAN 66, COBOL, and ALGOL 68. The specific format string
structure still in use today (and used by Object Pascal) is close to the C language printf function.
For a historical overview you can refer to en.wikipedia.org/wiki/Printf_format_string.

The Format function requires as parameters a string with the basic text and some
placeholders (marked by the % symbol) and an array of values, generally one for
each of the placeholders. For example, to format two numbers into a string you can
write:

Format ('First %d, Second %d', [n1, n2]);

where n1 and n2 are two Integer values. The first placeholder is replaced by the first
value, the second matches the second, and so on. If the output type of the place-
holder (indicated by the letter after the % symbol) doesn't match the type of the
corresponding parameter, a runtime error occurs. Having no compile-time type
checking is actually the biggest drawback of using the Format function. Similarly, not
passing enough parameters causes a runtime error.

The Format function uses an open-array parameter (a parameter that can have an
arbitrary number of values or arbitrary data types, as covered in Chapter 5). Besides
using %d, you can use one of many other placeholders defined by this function and
briefly listed the following table. These placeholders provide a default output for the
given data type. However, you can use further format specifiers to alter the default
output. A width specifier, for example, determines a fixed number of characters in
the output, while a precision specifier indicates the number of decimal digits. For
example,

Format ('%8d', [n1]);

converts the number n1 into an eight-character string, right-aligning the text (use
the minus (-) symbol to specify left-justification) filling it with white spaces. Here is
the list of formatting placeholders for the various data types:

d (decimal) The corresponding integer value is converted to a string of decimal
digits.

x (hexadecimal) The corresponding integer value is converted to a string of
hexadecimal digits.

p (pointer) The corresponding pointer value is converted to a string expressed
with hexadecimal digits.

s (string) The corresponding string, character, or PChar (pointer to a character
array) value is copied to the output string.

e (exponential) The corresponding floating-point value is converted to a string based
on scientific notation.

Marco Cantù, Object Pascal Handbook

176 - 06: All About Strings

f (floating point) The corresponding floating-point value is converted to a
string based on floating point notation.

g (general) The corresponding floating-point value is converted to the shortest
possible decimal string using either floating-point or exponential
notation.

n (number) The corresponding floating-point value is converted to a float-
ing-point string but also uses thousands separators.

m (money) The corresponding floating-point value is converted to a string rep-
resenting a currency amount. The conversion is generally based on
regional settings.

The best way to see examples of these conversions is to experiment with format
strings yourself. To make this easier I've written the FormatString application
project, which allows a user to provide formatting strings for a few predefined inte-
ger values.

The form of the program has an edit box above the buttons, initially holding a sim-
ple predefined formatting string acting as a placeholder ('%d - %d - %d'). The first
button of the application lets you display a more complex sample format string in
the edit box (the code has a simple assignment to the edit text of the format string
'Value %d, Align %4d, Fill %4.4'). The second button lets you apply the format
string to the predefined values, using the following code:

var
 strFmt: string;
 n1, n2, n3: Integer;
begin
 strFmt := Edit1.Text;
 n1 := 8;
 n2 := 16;
 n3 := 256;

 Show (Format ('Format string: %s', [strFmt]));
 Show (Format ('Input data: [%d, %d, %d]', [n1, n2, n3]));
 Show (Format ('Output: %s', [Format (strFmt, [n1, n2, n3])]));
 Show (''); // blank line
end;

If you display the output first with the initial format string and next with the sample
format string (that is if you press the second button, the first, and than the second
again), you should get an output like the following:

Format string: %d - %d - %d
Input data: [8, 16, 256]
Output: 8 - 16 - 256

Format string: Value %d, Align %4d, Fill %4.4d
Input data: [8, 16, 256]
Output: Value 8, Align 16, Fill 0256

Marco Cantù, Object Pascal Handbook

06: All About Strings - 177

However the idea behind the program is to edit the format string and experiment
with it, to see all of the various available formatting options.

The Internal Structure of Strings

While you can generally use strings without knowing much about their internals, it
is interesting to have a look to the actual data structure behind this data type. In the
early days of the Pascal language, strings had a maximum of 255 elements of one
byte each and would use the first byte (or zero byte) for storing the string length. A
lot of time has passed since those early days, but the concept of having some extra
information about the string stored as part of its data remains a specific approach of
the Object Pascal language (unlike many languages that derive from C and use the
concept of a string terminator).

note ShortString is the name of the traditional Pascal string type, a string of one byte characters or
AnsiChar limited to 255 characters. The ShortString type is still available in the desktop compil-
ers, but not in the mobile ones. You can represent a similar data structure with a dynamic array of
bytes, or TBytes, or a plain static arrays of Byte elements.

As I already mentioned, a string variable is nothing but a pointer to a data structure
allocated on the heap. Actually, the value stored in the string is not a reference to the
beginning of the data structure, but a reference to the first of the characters of the
string, with string metadata data available at negative offsets from that location.
The in-memory representation of the data of the string type is the following:

-12 -10 -8 -4 String reference address

Code page Elem size Ref count Length First char of string

The first element (counting backwards from the beginning of the string itself) is an
Integer with the string length, the second element holds the reference count. Further
fields (used on desktop compilers) are the element size in bytes (either 1 or 2 bytes)
and the code page for older Ansi-based string types (available on the desktop com-
pilers).

Quite surprisingly, it is possible to access to most of these fields with specific low-
level string metadata functions, beside the rather obvious Length function:

function StringElementSize(const S: string): Word;
function StringCodePage(const S: string): Word;
function StringRefCount(const S: string): Longint;

As an example, you can create a string and ask for some information about it, as I
did in the StringMetaTest example:

Marco Cantù, Object Pascal Handbook

178 - 06: All About Strings

var
 str1: string;
begin
 str1 := 'F' + string.Create ('o', 2);

 Show ('SizeOf: ' + SizeOf (str1).ToString);
 Show ('Length: ' + str1.Length.ToString);
 Show ('StringElementSize: ' +
 StringElementSize (str1).ToString);
 Show ('StringRefCount: ' +
 StringRefCount (str1).ToString);
 Show ('StringCodePage: ' +
 StringCodePage (str1).ToString);
 if StringCodePage (str1) = DefaultUnicodeCodePage then
 Show ('Is Unicode');
 Show ('Size in bytes: ' +
 (Length (str1) * StringElementSize (str1)).ToString);
 Show ('ByteLength: ' +
 ByteLength (str1).ToString);

note There is a specific reason the program builds the 'Foo' string dynamically rather than assigning a
constant, and that is because constant string have the reference count disabled (or set to -1). In
the demo I preferred showing a proper value for the reference count, hence the dynamic string
construction.

This program produces output similar to the following when running on Windows:

SizeOf: 4
Length: 3
StringElementSize: 2
StringRefCount: 1
StringCodePage: 1200
Is Unicode
Size in bytes: 6
ByteLength: 6

The following is the output if you run the same program on Android:

SizeOf: 4
Length: 3
StringElementSize: 2
StringRefCount: 1
StringCodePage: 1200
Is Unicode
Size in bytes: 6
ByteLength: 6

The code page returned by a UnicodeString is 1200, a number stored in the global
variable DefaultUnicodeCodePage. In the code above (and its output) you can
clearly notice the difference between the size of a string variable (invariably 4), the
logical length, and the physical length in bytes. This can be obtained by multiplying
the size in bytes of each character times the number of characters, or by calling Byte-

Marco Cantù, Object Pascal Handbook

06: All About Strings - 179

Length. This latter function, however, doesn't support some of the string types of the
older desktop compiler.

Looking at Strings in Memory

The ability to look into a string's metadata can be used to better understand how
string memory management works, particularly in relationship with the reference
counting. For this purpose, I've added some more code to the StringMetaTest appli-
cation project.

The program has two global strings: MyStr1 and MyStr2. The program assigns a
dynamic string to the first of the two variables (for the reason explained earlier in
the note) and then assigns the second variable to the first:

 MyStr1 := string.Create(['H', 'e', 'l', 'l', 'o']);
 MyStr2 := MyStr1;

Besides working on the strings, the program shows their internal status, using the
following StringStatus function:

function StringStatus (const Str: string): string;
begin
 Result := 'Addr: ' +
 IntToStr (Integer (Str)) +
 ', Len: ' +
 IntToStr (Length (Str)) +
 ', Ref: ' +
 IntToStr (PInteger (Integer (Str) - 8)^) +
 ', Val: ' + Str;
end;

It is important in the StringStatus function to pass the string parameter as a const
parameter. Passing this parameter by copy will cause the side effect of having one
extra reference to the string while the function is being executed. By contrast, pass-
ing the parameter via a reference (var) or constant (const) doesn't imply a further
reference to the string. In this case I've used a const parameter, as the function is
not supposed to modify the string.

To obtain the memory address of the string (useful to determine its actual identity
and to see when two different strings refer to the same memory area), I've simply
made a hard-coded typecast from the string type to the Integer type. Strings are ref-
erences-in practice, they're pointers: Their value holds the actual memory location
of the string not the string itself.

The code used for testing what happens to the string is the following:

 Show ('MyStr1 - ' + StringStatus (MyStr1));
 Show ('MyStr2 - ' + StringStatus (MyStr2));

Marco Cantù, Object Pascal Handbook

180 - 06: All About Strings

 MyStr1 [1] := 'a';
 Show ('Change 2nd char');
 Show ('MyStr1 - ' + StringStatus (MyStr1));
 Show ('MyStr2 - ' + StringStatus (MyStr2));

Initially, you should get two strings with the same content, the same memory loca-
tion, and a reference count of 2.

MyStr1 - Addr: 51837036, Len: 5, Ref: 2, Val: Hello
MyStr2 - Addr: 51837036, Len: 5, Ref: 2, Val: Hello

As the application changes the value of one of the two strings (it doesn't matter
which one), the memory location of the updated string will change. This is the effect
of the copy-on-write technique. This is the second part of the output:

Change 2nd char
MyStr1 - Addr: 51848300, Len: 5, Ref: 1, Val: Hallo
MyStr2 - Addr: 51837036, Len: 5, Ref: 1, Val: Hello

You can freely extend this example and use the StringStatus function to explore the
behavior of long strings in many other circumstances, with multiple reference, when
they are passed as parameters, assigned to local variables, and more.

Strings and Encodings

As we have seen the string type in Object Pascal is mapped to the Unicode UTF16
format, with 2-bytes per element and management of surrogate pairs for code points
outside of the BMP (Basic Multi-language Plane). There are many cases, though, in
which you need to save to file, load from file, transmit over a socket connection, or
receive form a connection textual data that uses a different representation, like ANSI
or UTF8.

To convert files and in memory data among different formats (or encodings), the
Object Pascal RTL has a handy TEncoding class, defined in the System.SysUtils
unit along with several inherited classes.

note There are several other handy classes in the Object Pascal RTL that you can use for reading and
writing data in text formats. For example, the TStreamReader and TStreamWriter classes offer
support for text files with any encoding. These classes will be introduced in Chapter 18.

Although I still haven't introduced classes and inheritance, this set of encoding
classes is very easy to use, as there is already a global object for each encoding, auto-
matically created for you. In other words, an object of each of these encoding classes
is available within the TEncoding class, as a class property:

Marco Cantù, Object Pascal Handbook

06: All About Strings - 181

type
 TEncoding = class
 ...
 public
 class property ASCII: TEncoding read GetASCII;
 class property BigEndianUnicode: TEncoding
 read GetBigEndianUnicode;
 class property Default: TEncoding read GetDefault;
 class property Unicode: TEncoding read GetUnicode;
 class property UTF7: TEncoding read GetUTF7;
 class property UTF8: TEncoding read GetUTF8;

note The Unicode encoding is based on the TUnicodeEncoding class that uses the same UTF-16 LE
(Little Endian) format used by the string type. The BigEndianUnicode, instead, uses the less com -
mon Big Endian representation. If you are not familiar with “Endianness” this is a terms used to
indicate the sequence of two bytes making a code point (or any other data structure). Little
Endian has the most significant byte first, and Big Endian has the most significant byte last. For
more information, see en.wikipedia.org/wiki/Endianness.

Again, rather than exploring these classes in general, something a little difficult at
this point of the book, let's focus on a couple of practical examples. The TEncoding
class has methods for reading and writing Unicode strings to byte arrays, perform-
ing appropriate conversions.

To demonstrate UTF format conversions via TEncoding classes, but also keep my
example simple and focused and avoid working with the file system, in the
EncodingsTest application project I've created an UTF-8 string in memory using
some specific data, and converted it to UTF-16 with a single function call:

var
 Utf8string: TBytes;
 Utf16string: string;
begin
 // process Utf8data
 SetLength (Utf8string, 3);
 Utf8string[0] := Ord ('a'); // single byte ANSI char < 128
 Utf8string[1] := $c9; // double byte, reversed latin a
 Utf8string[2] := $90;

 Utf16string := TEncoding.UTF8.GetString(Utf8string);
 Show ('Unicode: ' + Utf16string);

The output should be:

Unicode: aɐ

Now to better understand the conversion and the difference in the representations,
I've added the following code:

 Show ('Utf8 bytes:');
 for AByte in Utf8String do
 Show (AByte.ToString);

Marco Cantù, Object Pascal Handbook

182 - 06: All About Strings

 Show ('Utf16 bytes:');
 UniBytes := TEncoding.Unicode.GetBytes (Utf16string);
 for AByte in UniBytes do
 Show (AByte.ToString);

This code produces a memory dump, with decimal values, for the two representa-
tions of the string, UTF8 (a one byte and a two byte code point) and UTF16 (with
both code points being 2 bytes):

Utf8 bytes:
97
201
144
Utf16 bytes:
97
0
80
2

Notice that direct character to byte conversion, for UTF-8, work only for ANSI-7
characters, that is values up to 127. For higher level ANSI characters there is no
direct mapping and you must perform a conversion, using the specific encoding
(which will however fail on multi-byte UTF-8 elements). So both of the following
produce wrong output:

 // error: cannot use char > 128
 Utf8string[0] := Ord ('à');
 Utf16string := TEncoding.UTF8.GetString(Utf8string);
 Show ('Wrong high ANSI: ' + Utf16string);
 // try different conversion
 Utf16string := TEncoding.ANSI.GetString(Utf8string);
 Show ('Wrong double byte: ' + Utf16string);

 // output
 Wrong high ANSI:
 Wrong double byte: àÉ

�The encoding classes let you convert in both directions, so in this case I'm convert-
ing from Unicode to UTF-8, doing some processing of the UTF-8 string (something
to be done with care, given the variable length nature of this format), and convert
back to UTF-16:

var
 Utf8string: TBytes;
 Utf16string: string;
 I: Integer;
begin
 Utf16string := 'This is my nice string with à and Æ';
 Show ('Initial: ' + Utf16string);

 Utf8string := TEncoding.UTF8.GetBytes(Utf16string);
 for I := 0 to High(Utf8string) do

Marco Cantù, Object Pascal Handbook

06: All About Strings - 183

 if Utf8string[I] = Ord('i') then
 Utf8string[I] := Ord('I');
 Utf16string := TEncoding.UTF8.GetString(Utf8string);
 Show ('Final: ' + Utf16string);

The output is:

Initial: This is my nice string with à and Æ
Final: ThIs Is my nIce strIng wIth à and Æ

Other Types for Strings

While the string data type is by far the most common and largely used type for rep-
resenting strings, Object Pascal desktop compilers had and still have a variety of
string types. Some of these types can be used also on mobile applications, but the
general recommendation is to do the appropriate conversion or just use TBytes
directly to manipulate string with a 1-byte representation, as in the application
project described in the last section.

While developers who used Object Pascal in the past might have a lot of code based
on these pre-Unicode types (or directly managing UTF-8), modern applications
really require full Unicode support. Also while some types, like UTF8String, are
available in the desktop compilers, their support in terms of RTL is severely limited.
Again, you can use an array of bytes to represent a similar type and adapt existing
code to handle it, but the recommendation is to move to plain and standard Unicode
strings.

note While there has been a lot of discussion and criticism about the lack of native types like AnsiString
and UTF8String in the Object Pascal mobile compilers, honestly there is almost no other pro -
gramming language out there that has more than one native or intrinsic string type. Multiple
string types are more complex to master, can cause unwanted side effects (like extensive auto -
matic conversion calls that slow down programs), and cost a lot for the maintenance of multiple
version of all of the string management and processing functions.

The UCS4String type

An interesting but little used string type is the UCS4String type, available on all
compilers. This is just an UTF32 representation of a string, and no more than an
array of UTF32Char elements, or 4-bytes characters. The reason behind this type, as

Marco Cantù, Object Pascal Handbook

184 - 06: All About Strings

mentioned earlier, is that is offers a direct representation of all of the Unicode code
points. The obvious drawback is such a string takes twice as much memory than a
UTF-16 string (which already takes twice as much than an ANSI string)..

Although this data type can be used in specific situations, it is not particularly suited
for general circumstances. Also, this types doesn't support copy-on-write nor has
any real system functions and procedures for processing it.

note Whilst the UCS4String guarantees one UTF32Char per Unicode code point, it cannot guarantee
one UTF32Char per grapheme, or “visual character”.

Older, Desktop Only String Types

As mentioned, the desktop versions of the Object Pascal compilers offer support for
some older, traditional string types. These include

· The ShortString type, which corresponds to the original Pascal language string
type. These strings have a limit of 255 characters. Each element of a short string
is of type ANSIChar (a type also available only in desktop compilers).

· The ANSIString type, which corresponds to variable-length strings. These strings
are allocated dynamically, reference counted, and use a copy-on-write technique.
The size of these strings is almost unlimited (they can store up to two billion
characters!). Also this string type is based on the ANSIChar type.

· The WideString type is similar to a 2-bytes Unicode string in terms of represen-
tation, is based on the Char type, but unlike the standard string type is doesn't
use copy-on-write and it is less efficient in terms of memory allocation. If you
wonder why it was added to the language, the reason was for compatibility with
string management in Microsoft's COM architecture.

· UTF8String is a string based on the variable character length UTF-8 format. As I
mentioned there is little run-time library support for this type.

· RawByteString is an array of characters with no code page set, on which no char-
acter conversion is ever accomplished by the system (thus logically resembling a
TBytes structure, but allowing some direct string operations an array of bytes
currently lacks).

· A string construction mechanism allowing you to define a 1-byte string associated
with a specific ISO code page, a remnant of the pre-Unicode past.

Again, all of these string types can be used on desktop compilers, but are available
only for backwards compatibility reason. The goal is to use Unicode, TEncoding, and
other modern string management techniques whenever possible.

Marco Cantù, Object Pascal Handbook

part ii: oop in

object pascal

Many modern programming languages support some form of object-oriented pro-
gramming (OOP) paradigm. Many of them use a class-based one that is based on
three fundamental concepts:

· Classes, data types with a public interface and a private data structure, imple-
menting encapsulation; instances of these data types are generally called
objects,

· Class extensibility or inheritance, which is the ability to extend a data type with
new features without modifying the original one,

· Polymorphism or late binding, which is the ability to refer to objects of different
classes with a uniform interface, and still operate on objects in the way defined
by their specific type.

note Other languages such as IO, JavaScript, Lua and Rebol use a prototype based object-oriented
paradigm, which has a concept similar to a class, no inheritance, and dynamic typing that can be
used to implement polymorphism, even if in a rather different way.

You can write Object Pascal applications even without knowing a lot about object
oriented programming. As you create a new form, add new components, and han-
dle events, the IDE prepares most of the related code for you automatically. But
knowing the details of the language and its implementation will help you under-

186 - Part II: OOP in Object Pascal

stand precisely what the system is doing and allow you to master the language com-
pletely.

You also be able to create complex architectures within your applications, and even
entire libraries, and embrace and extend the components that come with the devel-
opment environment.

The second part of the book is focused on core object-oriented programming (OOP)
techniques. The aim of this part of the book is both to teach the fundamental con-
cepts of OOP and to detail how Object Pascal implements them, comparing it with
other similar OOP languages.

note A language-neutral overview of the concepts behind OOP is available in Appendix D.

Summary of Part II

Chapter 7: Objects

Chapter 8: Inheritance

Chapter 9: Handling Exceptions

Chapter 10: Properties and Events

Chapter 11: Interfaces

Chapter 12: Manipulating Classes

Chapter 13: Objects and Memory

Marco Cantù, Object Pascal Handbook

07: Objects - 187

07: objects

Even if you don’t have a detailed knowledge of object-oriented programming (OOP),
this chapter will introduce each of the key concepts. If you are already fluent in OOP,
you can probably go through the material relatively quickly and focus on Object Pas-
cal language specifics, in comparison to other languages you might already know.

The OOP support in Object Pascal has a lot of similarities to languages like C# and
Java, it also has some resemblances with C++ and other static and strongly-typed
languages. Dynamic languages, instead, tend to offer a different interpretation of
OOP, as they treat the type system in a more loose and flexible way.

note A lot of the conceptual similarities between C# and Object Pascal are due to the fact that the two
languages share the same designer, Anders Hejlsberg. He was the original author of the Turbo
Pascal compilers, of the first version of Delphi's Object Pascal, and later moved to Microsoft and
designed C# (and more recently the JavaScript derivative TypeScript). You can read more about
the Object Pascal language history in Appendix A.

Marco Cantù, Object Pascal Handbook

188 - 07: Objects

Introducing Classes and Objects

Class and object are two terms commonly used in Object Pascal and other OOP lan-
guages. However, because they are often misused, let’s be sure we agree on their
definitions from the very beginning:

· A class is a user-defined data type, which has a state (or a representation) and
defines some operations (or behaviors). In other terms, a class has some internal
data and some methods, in the form of procedures or functions. A class usually
describes the characteristics and behavior of a number of similar objects,
although there are special purpose classes that are meant for a single object.

· An object is an instance of a class, that is a variable of the data type defined by the
class. Objects are actual entities. When the program runs, objects take up some
memory for their internal representation.

The relationship between an object and a class is the same as the one between any
other variable and its data type. Only, in this case variables have a special name.

note The OOP terminology dates back to the first few languages that adopted the model, like Smalltalk.
Most of the original terminology, however, was later dropped in favor of terms in use in proce -
dural languages. So while terms like classes and objects are still commonly used, you'd generally
hear the term invoking a method more often than the original term sending a message to a
receiver (an object). A full and detailed guide to the OOP jargon and how it evolved over time
could be interesting, but would take too much space in this book.

The Definition of a Class

In Object Pascal you can use the following syntax to define a new class data type
(TDate), with some local data fields (Month, Day, Year) and some methods (SetValue,
LeapYear):

type
 TDate = class
 Month, Day, Year: Integer;
 procedure SetValue (m, d, y: Integer);
 function LeapYear: Boolean;
 end;

note We have already seen a similar structure for records, which are quite similar to classes in term of
definition. There are differences in memory management and other areas, as detailed later in this
chapter. Historically, though, in Object Pascal this syntax was first adopted for classes and later
ported back to records.

Marco Cantù, Object Pascal Handbook

07: Objects - 189

The convention in Object Pascal is to use the letter T as a prefix for the name of
every class you write, like for any other type (T stands for Type, in fact). This is just a
convention—to the compiler, T is just a letter like any other—but it is so common
that following it will make your code easier to understand by other programmers.

Unlike other languages, the class definition in Object Pascal doesn't include the
actual implementation (or definition) of the methods, but only their signature (or
declaration). This makes the class code more compact and significantly more read-
able.

note Although it might look that getting to the actual implementation of the method is more time con -
suming the editor allows you to use the combination of the Shift and Up and Down arrow keys to
navigate from the method declarations to their implementations and vice verse. Moreover, you
can let the editor generate a skeleton of the definition of the methods, after you write the class def -
inition, by using Class Completion (pressing the Ctrl+C keys while the cursor is within the class
definition).

Also keep in mind that beside writing the definition of a class (with its fields and
methods) you can also write a declaration. This has only the class name, as in:

type
 TMyDate = class;

The reason for such a declaration lies in the fact that you might need to have two
classes referencing each other. Given in Object Pascal you cannot use a symbol until
it is defined, to refer a not-yet-defined class you need a declaration. I wrote the fol-
lowing code fragment only to show you the syntax, not that it makes any sense:

type
 THusband = class;

 TWife = class
 husband: THusband;
 end;

 THusband = class
 wife: TWife;
 end;

You'll encounter similar cross-references in real code, which is why this syntax is
important to keep in mind. Notice, that like for methods, a class declared in a unit
must be fully defined later in the same unit.

Marco Cantù, Object Pascal Handbook

190 - 07: Objects

Classes in Other OOP Languages

As a comparison, this is the TDate class written in C# and in Java (which in this sim-
plified case happen to be the same) using a more appropriate set of naming rules,
with the code of the methods omitted:

// C# and Java language

class Date
{
 int month;
 int day;
 int year;

 void setValue (int m, int d, int y)
 {
 // code
 }

 bool leapYear()
 {
 // code
 }
}

In Java and C# the methods' code comes within the class definition, while in Object
Pascal the methods declared in a class should be fully defined in the implementation
portion of the same unit that includes the class definition. In other words, in Object
Pascal a class is always completely defined in a single unit (while a unit can, of
course, contain multiple classes). By contrast, while in C++ methods are separately
implemented like in Object Pascal, but a header file containing a class definition has
no strict correspondence to an implementation file with the method's code. A corre-
sponding C++ class would look like:

// C++ language

class Date
{
 int month;
 int day;
 int year;

 void setValue (int m, int d, int y);
 BOOL leapYear();
}

Marco Cantù, Object Pascal Handbook

07: Objects - 191

The Class Methods

Like with records, when you define the code of a method you need to indicate which
class it is part of (in this example the TDate class) by using the class name as a prefix
and the dot notation, as in the following code:

procedure TDate.SetValue(m, d, y: Integer);
begin
 Month := m;
 Day := d;
 Year := y;
end;

function TDate.LeapYear: Boolean;
begin
 // call IsLeapYear in SysUtils.pas
 Result := IsLeapYear (Year);
end;

Differently from most other OOP languages that define methods as functions, Object
Pascal brings over the core distinction between procedures and functions, depend-
ing on the presence of a return value, also for methods. This is not the case in C++,
where a separately defined method implementation would look like:

// C++ method
void Date::setValue(int m, int d, int y)
{
 month = m;
 day = d;
 year = y;
};

Creating an Object

After this comparison with other popular languages, let's get back to Object Pascal to
see how you can use a class. Once the class has been defined, we can create an object
of this type and use it as in the following code snippet (extracted from the Dates1
application project like all of the code in this section):

var
 ADay: TDate;
begin
 // create
 ADay := TDate.Create;
 // use
 ADay.SetValue (1, 1, 2016);
 if ADay.LeapYear then
 Show ('Leap year: ' + IntToStr (ADay.Year));

Marco Cantù, Object Pascal Handbook

192 - 07: Objects

The notation used is nothing unusual, but it is powerful. We can write a complex
function (such as LeapYear) and then access its value for every TDate object as if it
were a primitive data type. Notice that ADay.LeapYear is an expression similar to
ADay.Year, although the first is a function call and the second a direct data access.
As we’ll see in Chapter 10, the notation used by Object Pascal to access properties is
again the same.

note Calls of methods with no parameters in most programming languages based on the C language
syntax require parenthesis, like in ADay.LeapYear(). This syntax is legal also in Object Pascal,
but rarely used. Methods with no parameters are generally called without the parenthesis. This is
very different from many languages in which a reference to a function or method with no paren -
thesis returns the function address. As we have see in the section “Procedural Types” in Chapter 4,
Object Pascal uses the same notation for calling a function or reading its address, depending on
the context of the expression.

The output of the code snippet above is fairly trivial:

Leap year: 2016

Again, let me compare the object creation with similar code written in other pro-
gramming languages:

// C# and Java languages (object reference model)
Date aDay = new Date();

// C++ language (two alternative styles)
Date aDay; // local allocation
Date* aDay = new Date(); // "manual" reference

The Object Reference Model

In some OOP languages like C++, declaring a variable of a class type creates an
instance of that class (more or less like it happens with records in Object Pascal).
The memory for a local object is taken from the stack, and released when the func-
tion terminates. In most cases, though, you have to explicitly use pointers and
references to have more flexibility in managing the lifetime of an object, adding a lot
of extra complexity.

The Object Pascal language, instead, is based on an object reference model, exactly
like Java or C#. The idea is that each variable of a class type does not hold the actual
value of the object with its data (to store the day, month, and year, for example).
Rather, it contains only a reference, or a pointer, to indicate the memory location
where the actual object data is stored.

Marco Cantù, Object Pascal Handbook

07: Objects - 193

note In my opinion, adopting the object reference model was one of the best design decisions made by
the compiler team in the early days of the language, when this model wasn't so common in pro -
gramming languages (in fact, at the time Java wasn't available and C# didn't exist).

This is why in these languages you need to explicitly create an object and assign it to
a variable, as objects are not automatically initialized. In other words, when you
declare a variable, you don’t create an object in memory, you only reserve the mem-
ory location for a reference to the object. Object instances must be created manually
and explicitly, at least for the objects of the classes you define. (In Object Pascal,
though, instances of components you place on a form are built automatically by the
run time library.)

In Object Pascal, to create an instance of an object, we can call its special Create
method, which is a constructor or another custom constructor defined by the class
itself. Here is the code again:

 ADay := TDate.Create;

As you can see, the constructor is applied to the class (the type), not to the object
(the variable). That's because you are asking the class to create a new instance of its
type, and the result is a new object you'd generally assign to a variable.

Where does the Create method come from? It is a constructor of the class TObject,
from which all the other classes inherit, so it is universally available. It is very com-
mon to add custom constructors to your classes, though, as we'll see later in this
chapter.

Disposing Objects and ARC

In languages that use an object reference model, you need a way to create an object
before using it, and you also need a means of releasing the memory it occupies when
it is no longer needed. If you don't dispose of it, you end filling up memory with
objects you don’t need any more, causing a problem known as a memory leak. To
solve this issue languages like C# and Java, based on a virtual execution environ-
ment (or virtual machine) adopt garbage collection. While this make developer's life
easier, this approach is subject to some complex performance-related issues that it
isn't really relevant in explaining Object Pascal. So interesting as the issues are I
don't wantto delve into them here.

In Object Pascal, you generally release the memory of an object by calling its special
Free method (again, a method of TObject, available in each class). Free removes the
object from memory after calling its destructor (which can have special clean up
code). So you can complete the code snippet above as:

Marco Cantù, Object Pascal Handbook

194 - 07: Objects

var
 ADay: TDate;
begin
 // create
 ADay := TDate.Create;
 // use
 ...
 // free the memory
 ADay.Free;
end;

While this is the standard approach, the component library adds concepts like object
ownership to significantly lessen the impact of manual memory management, mak-
ing this a relatively simple issue to handle.

To further simplify memory management, the Object Pascal compilers for the
mobile platforms introduce an additional mechanism called Automatic Reference
Counting (or ARC). The ARC model uses reference counting and some other
advanced techniques to automatically dispose of objects that are not needed any
longer (or have no references pointing to them). So on these platforms, the call to
Free an object is generally superfluous: as the execution of the code above reaches
the end statement, the ADay variable goes out of scope and the referenced object is
automatically deleted. In any case, if you keep the Free statement in the code, it
does no harm at all and everything will work smoothly both with the desktop and
mobile compilers.

note Automatic Reference Counting (ARC) is a standard memory management technique for iOS
development in ObjectiveC and Swift, the preferred languages in Apple's Xcode. Object Pascal
borrowed from that model, including weak references and other elements, but extends it in a few
ways and has a very efficient implementation.

There is much more to memory management and ARC that you need to know, but
given this is a rather important topic and not a simple one, I decided to offer only a
short introduction here and have a full chapter focused on this topic, namely Chap-
ter 13. In that chapter I'll show you in detail the different techniques used on each
platform and those that work across all platforms.

What's Nil?

As I've mentioned, a variable can refer to an object of a given class. But it might not
be initialized yet, or the object it used to refer to might not be available any longer.
This is where you can use nil. This is a constant value indicating that the variable is
not assigned to any object (or it is assigned to a 0 memory location). When a variable
of a class type has no value, you can initialize it this way:

Marco Cantù, Object Pascal Handbook

07: Objects - 195

 ADay := nil;

To check if an object has been assigned the variable, you can write either of the fol-
lowing expressions:

if ADay <> nil then ...
if Assigned (ADay) then ...

Do not make the mistake of assigning nil to an object to remove it from memory.
Setting an object to nil and freeing it are two different operations, at least on the
desktop compilers (ARC makes things a little different and it might free an object
when you set a reference to nil). So you often need to both free an object and set its
reference to nil, or call a special purpose procedure that does both operations at
once, called FreeAndNil. Again, more information and some actual demos will be
coming in Chapter 13.

Records vs. Classes in Memory

As I've mentioned earlier, one of the main differences between records and objects
relates to their memory model. Record type variables use local memory, they are
passed as parameters to functions by value by default, and they have a “copy by
value” behavior on assignments. This contrasts with class type variables that are
allocated on the dynamic memory heap, are passed by reference, and have a “copy
by reference” behavior on assignments (thus copying the reference to the same
object in memory, not the actual data).

note A consequence of this different memory management is that records lack inheritance and poly -
morphisms, two features we'll be focusing on in the next chapter.

For example, when you declare a record variable on the stack, you can start using it
right away, without having to call its constructor. This means record variables are
leaner (and more efficient) on the memory manager than regular objects, as they do
not participate in the management of the dynamic memory and ARC. These are the
key reasons for using records instead of objects for small and simple data structures.

Regarding the difference in the way records and objects are passed as parameters,
consider that the default is to make a full copy of the memory block representing the
record (including all of its data) or of the reference to the object (while the data is
not copied). Of course, you can use var or const record parameters to modify the
default behavior for passing record type parameters.

Marco Cantù, Object Pascal Handbook

196 - 07: Objects

Private, Protected, and Public

A class can have any amount of data fields and any number of methods. However,
for a good object-oriented approach, data should be hidden, or encapsulated, inside
the class using it. When you access a date, for example, it makes no sense to change
the value of the day by itself. In fact, changing the value of the day might result in an
invalid date, such as February 30th. Using methods to access the internal representa-
tion of an object limits the risk of generating erroneous situations, as the methods
can check whether the date is valid and refuse to modify the new value if it is not.
Proper encapsulation is particularly important because it gives the class writer the
freedom to modify the internal representation in a future version.

The concept of encapsulation is quite simple: just think of a class as a “black box”
with a small, visible portion. The visible portion, called the class interface, allows
other parts of a program to access and use the objects of that class. However, when
you use the objects, most of their code is hidden. You seldom know what internal
data the object has, and you usually have no way to access the data directly. Rather
you use the methods to access the data of an object or act on it.

Encapsulation using private and protected members is the object-oriented solution
to a classic programming goal known as information hiding.

Object Pascal has three basic access (or visibility) specifiers: private, protected,
and public. A fourth one, published, will be discussed in the Chapter 10. Here are
the three basic ones:

· The private access specifier denotes fields and methods of a class that are not
accessible outside the unit (the source code file) that declares the class.

· The public access specifier denotes fields and methods that are freely accessible
from any other portion of a program as well as in the unit in which they are
defined.

· The protected access specifier is used to indicate methods and fields with limited
visibility. Only the current class and its derived classes (or subclasses) can access
protected elements. We’ll discuss this keyword again in the “Protected Fields
and Encapsulation” section of the next chapter.

note Two further access specifiers, strict private and strict protected were added to the language to
match the behavior of other OOP languages. They'll be discussed shortly. They are not listed here
because they are not very commonly used, despite their roles.

Generally, the fields of a class should be private; the methods are usually public.
However, this is not always the case. Methods can be private or protected if they

Marco Cantù, Object Pascal Handbook

07: Objects - 197

are needed only internally to perform some partial operations. Fields can be
protected if you are fairly sure that their type definition is not going to change and
you might want to manipulate them directly in derived classes (as explained in the
next chapter), although this is rarely recommended.

As a general rule, you should invariably avoid public fields, and generally expose
some direct access to data using properties, as we’ll see in detail in Chapter 10. Prop-
erties are an extension to the encapsulation mechanism of other OOP languages and
are very important in Object Pascal.

As mentioned, access specifiers only restrict code outside a unit from accessing cer-
tain members of classes declared in that unit. This means that if two classes are in
the same unit, there is no protection for their private fields, something covered in
the next section in more detail.

An Example of Private Data

As an example of the use of these access specifiers for implementing encapsulation,
consider this new version of the TDate class:

type
 TDate = class
 private
 Month, Day, Year: Integer;
 public
 procedure SetValue (m, d, y: Integer);
 function LeapYear: Boolean;
 function GetText: string;
 procedure Increase;
 end;

In this version, the fields are now declared to be private, and there are some new
methods. The first, GetText, is a function that returns a string with the date. You
might think of adding other functions, such as GetDay, GetMonth, and GetYear,
which simply return the corresponding private data, but similar direct data-access
functions are not always needed. Providing access functions for each and every field
might reduce the encapsulation, weaken the abstraction, and make it harder to mod-
ify the internal implementation of a class later on. Access functions should be
provided only if they are part of the logical interface of the class you are implement-
ing, not because there are matching fields.

The second new method is the Increase procedure, which increases the date by one
day. This is far from simple, because you need to consider the different lengths of
the various months as well as leap and non-leap years. What I’ll do to make it easier
to write the code is to change the internal implementation of the class to use Object

Marco Cantù, Object Pascal Handbook

198 - 07: Objects

Pascal TDateTime type for the internal implementation. So the actual class will
change to the following code you can find in the Dates2 application project:

type
 TDate = class
 private
 FDate: TDateTime;
 public
 procedure SetValue (m, d, y: Integer);
 function LeapYear: Boolean;
 function GetText: string;
 procedure Increase;
 end;

Notice that because the only change is in the private portion of the class, you won’t
have to modify any of your existing programs that use it. This is the advantage of
encapsulation!

note In this new version of the class, the (only) field has an identifier that starts with the letter “F”. This
is a fairly common convention in Object Pascal and one I'll often use in the book. While this is the
official style, there is another alternative and commonly used convention, which is use the letter
“f” lowercase as field prefix.

To end this section, let me finish describing the project, by listing the source code of
the class methods, which rely on a few system functions for mapping dates to the
internal structure and vice verse:

procedure TDate.SetValue (m, d, y: Integer);
begin
 fDate := EncodeDate (y, m, d);
end;

function TDate.GetText: string;
begin
 Result := DateToStr (fDate);
end;

procedure TDate.Increase;
begin
 fDate := fDate + 1;
end;

function TDate.LeapYear: Boolean;
begin
 // call IsLeapYear in SysUtils and YearOf in DateUtils
 Result := IsLeapYear (YearOf (fDate));
end;

Notice also how the code to use the class cannot refer to the Year value any more,
but it can only return information about the date object as allowed by its methods:

var

Marco Cantù, Object Pascal Handbook

07: Objects - 199

 ADay: TDate;
begin
 // create
 ADay := TDate.Create;

 // use
 ADay.SetValue (1, 1, 2016);
 ADay.Increase;

 if ADay.LeapYear then
 Show ('Leap year: ' + ADay.GetText);

 // free the memory (for non ARC platforms)
 ADay.Free;

The output is not much different than before:

Leap year: 1/2/2016

When Private Is Really Private

I have already mentioned that, differently from most other OOP languages, in Object
Pascal class access specifiers like private and protected only restrict access to
given class members from code outside the unit in which the class is declared. In
other words, any global function or any method of a class written in the same unit,
can access the private data of any class in the unit. To overcome this anomaly (com-
pared to other languages and compared to the concept of encapsulation), the
language introduced also the strict private and strict protected specifiers.

These two specifiers work in the way you'd probably expect and followed by most
other OOP languages, which means that other classes even within the same unit can-
not access strict private symbols of a class and can access strict protected symbols
only if they inherit from that class.

Even if these strict access specifier offer a better and safer implementation of encap-
sulation, most Object Pascal developers tend to stick with the classic, loose version,
and simply avoid bypassing the rules in their code.

note The C++ language has the concept of friend classes, that is classes allowed to access another class
private data. Following this terminology, we can say that in Object Pascal all classes in the same
unit are automatically considered as friend classes.

Marco Cantù, Object Pascal Handbook

200 - 07: Objects

Encapsulation and Forms

One of the key ideas of encapsulation is to reduce the number of global variables
used by a program. A global variable can be accessed from every portion of a pro-
gram. For this reason, a change in a global variable affects the whole program. On
the other hand, when you change the representation of a field of a class, you only
need to change the code of some methods of that class referring to the given field,
and nothing else. Therefore, we can say that information hiding refers to encapsu-
lating changes.

Let me clarify this idea with a practical example. When you have a program with
multiple forms, you can make some data available to every form by declaring it as a
global variable in the interface portion of the unit of the form:

var
 Form1: TForm1;
 nClicks: Integer;

This works but has two problems. First, the data (nClicks) is not connected to a spe-
cific instance of the form, but to the entire program. If you create two forms of the
same type, they’ll share the data. If you want every form of the same type to have its
own copy of the data, the only solution is to add it to the form class:

type
 TForm1 = class(TForm)
 public
 nClicks: Integer;
 end;

The second problem is that if you define the data as a global variable or as a public
field of a form, you won’t be able to modify its implementation in the future without
affecting the code that uses the data. For example, if you only have to read the cur -
rent value from other forms, you can declare the data as private and provide a
method to read the value:

type
 TForm1 = class(TForm)
 // components and event handlers here
 public
 function GetClicks: Integer;
 private
 nClicks: Integer;
 end;

function TForm1.GetClicks: Integer;
begin
 Result := nClicks;
end;

Marco Cantù, Object Pascal Handbook

07: Objects - 201

An even better solution is to add a property to the form, as we’ll see in Chapter 10.
You can experiment with this code by opening the ClicksCount application project.
In short, the form of this project has two buttons and a label at the top, with most of
the surface empty for a user to click (or tap) onto it. In this case, the count is
increased and the label is updated with the new value:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Single);
begin
 Inc (nClicks);
 Label1.Text := nClicks.ToString;
end;

You can see the application in action in Figure 7.1. The project's form also has two
buttons, one for creating a new form of the same type and the second to close it (so
you can give focus back to the previous form). This is done to emphasize how differ-
ent instances of the same form type each have their own clicks count. This is the
code of the two methods:

procedure TForm1.Button1Click(Sender: TObject);
var
 NewForm: TForm1;
begin
 NewForm := TForm1.Create(Application);
 NewForm.Show;
end;

procedure TForm1.Button2Click(Sender: TObject);
begin
 Close;
end;

Marco Cantù, Object Pascal Handbook

202 - 07: Objects

Figure 7.1:
The form of the
ClicksCount
application project
showing the number of
clicks or taps on a form
(tracked using private
form data)

The Self Keyword

We’ve seen that methods are very similar to procedures and functions. The real dif-
ference is that methods have an extra, implicit parameter. This is a reference to the
current object, the object the method is applied to. Within a method you can refer to
this parameter—the current object—using the Self keyword. This extra hidden
parameter is needed when you create several objects of the same class, so that each
time you apply a method to one of the objects, the method will operate only on its
own data and not affect the other sibling objects.

note We have already seen the role of the Self keywords in Chapter 5, while discussing records. The
concept and its implementation are very similar. Again, historically Self was first introduced for
classes and later extended to records, when methods were added also to this data structure.

Marco Cantù, Object Pascal Handbook

07: Objects - 203

For example, in the SetValue method of the TDate class, listed earlier, we simply use
Month, Year, and Day to refer to the fields of the current object, something you might
express as:

Self.Month := m;
Self.Day := d;

This is actually how the Object Pascal compiler translates the code, not how you are
supposed to write it. The Self keyword is a fundamental language construct used by
the compiler, but at times it is used by programmers to resolve name conflicts and to
make tricky code more readable.

note The C++, Java, C#, and JavaScript languages have a similar feature based on the keyword this.
However in JavaScript using this is a method to refer to object fields is compulsory, unlike in C++,
C# and Java.

All you really need to know about Self is that the technical implementation of a call
to a method differs from that of a call to a generic subroutine. Methods have that
extra hidden parameter, Self. Because all this happens behind the scenes, you don't
need to know how Self works at this time.

The second important think to know is that you can explicitly use Self to refer to the
current object as a whole, for example passing the current object as parameter to
another function.

Creating Components Dynamically

As an example of what I've just mentioned, the Self keyword is often used when you
need to refer to the current form explicitly in one of its methods. The typical exam-
ple is the creation of a component at run time, where you must pass the owner of the
component to its Create constructor and assign the same value to its Parent prop-
erty. In both cases, you have to supply the current form object as parameter or value,
and the best way to do this is to use the Self keyword.

note The ownership of a component indicates a lifetime and memory management relationship
between two objects. When the owner of a component is freed the component will also be freed.
Parenthood refers to visual controls hosting a child control within their surface.

To demonstrate this kind of code, I’ve written the CreateComps application project.
This application has a simple form with no components and a handler for its
OnMouseDown event, which also receives as its parameter the position of the mouse

Marco Cantù, Object Pascal Handbook

204 - 07: Objects

click. I need this information to create a button component in that position. Here is
the code of the method:

procedure TForm1.FormMouseDown (Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
var
 Btn: TButton;
begin
 Btn := TButton.Create (Self);
 Btn.Parent := Self;
 Btn.Position.X := X;
 Btn.Position.Y := Y;
 Btn.Height := 35;
 Btn.Width := 135;
 Btn.Text := Format ('At %d, %d', [X, Y]);
end;

Notice you need to add the FMX.StdCtrls unit to the uses statement to compile this
event handler.

The effect of this code is to create buttons at mouse-click positions, with a caption
indicating the exact location, as you can see in Figure 7.2. In the code above, notice
in particular the use of the Self keyword, as the parameter of the Create method
and as the value of the Parent property.

Figure 7.2:
The output of the
CreateComps
application project
example on a mobile
device

When writing a procedure like the code you’ve just seen, you might be tempted to
use the Form1 variable instead of Self. In this specific example, that change wouldn’t

Marco Cantù, Object Pascal Handbook

07: Objects - 205

make any practical difference (although it won't be good coding practice), but if
there are multiple instances of a form, using Form1 would really be an error.

In fact, if the Form1 variable refers to a form of that type being created (generally the
first one) and if you create two instances of the same form type, by clicking on any
following forms the new button will always be displayed in the first one. Its owner
and Parent will be Form1 and not the form on which the user has clicked.

In general, writing a method in which you refer to a particular instance of the same
class when the current object is required is a really a bad, bad OOP practice.

Constructors

In the code above, to create an object of a class (or allocate the memory for an
object), I've called the Create method. This is a constructor, a special method that
you can apply to a class to allocate memory for a new instance of that class:

 ADay := TDate.Create;

The instance is returned by the constructor and can be assigned to a variable for
storing the object and using it later on.

When you are creating an objet, its memory is initialized. All of the data of the new
instance to set to zero (or nil, or empty string, or the proper “default” value for a
given data type).

If you want your instance data to start out with a nonzero value (particular when a
zero value makes little sense as a default), then you need to write a custom construc-
tor to do that. The new constructor can be called Create, or it can have any other
name. What determines its role is not the name but the use of a specific keyword,
constructor.

note In other words, Object Pascal supports named constructors, while in many OOP languages the
constructor must be named after the class itself. With named constructors, you can have more
than one constructor with the same parameters (beside overloading the Create symbol – over-
loading is covered in the next section). Another very special feature of the language, quite unique
among OOP languages, is that constructors can also be virtual. I'll show some examples the cover
the consequences later in the book.

The main reason to add a custom constructor to a class is to initialize its data. If you
create objects without initializing them, calling methods later on may result in odd
behavior or even a run-time error. Instead of waiting for these errors to appear, you
should use preventive techniques to avoid them in the first place. One such tech-

Marco Cantù, Object Pascal Handbook

206 - 07: Objects

nique is the consistent use of constructors to initialize objects’ data. For example, we
must call the SetValue procedure of the TDate class after we’ve created the object.
As an alternative, we can provide a customized constructor, which creates the object
and gives it an initial value:

constructor TDate.Create;
begin
 FDate := Today;
end;

constructor TDate.CreateFromValues (m, d, y: Integer);
begin
 FDate := SetValue (m, d, y);
end;

You can use these constructors as follows, as I've done in the Date3 application
project, in the code attached to two separate buttons:

ADay1 := TDate.Create;
ADay2 := TDate.CreateFromValues (12, 25, 2015);

Although in general you can use any name for a constructor, keep in mind that if you
use a name other than Create, the Create constructor of the base TObject class will
still be available. If you are developing and distributing code for others to use, a pro-
grammer calling this default Create constructor might bypass the initialization code
you’ve provided. By defining a Create constructor with some parameters (or none,
as in the example above), you replace the default definition with a new one and
make its use compulsory.

In the same way that a class can have a custom constructor, it can have a custom
destructor, a method declared with the destructor keyword and invariably called
Destroy. This destructor method which can perform some resource cleanup before
an object is destroyed, but in many cases a custom destructor is not required.

Just as a constructor call allocates memory for the object, a destructor call frees the
memory. Custom destructors are really only needed for objects that acquire
resources in their constructors or during their lifetime.

Differently from the default Create constructor, the default Destroy destructor is
virtual and it is highly recommended that developer override this virtual destructor
(virtual methods are covered in the next chapter).

That's because instead of a calling destructor directly to free an object, it is a good a
common Object Pascal programming practice to call the special Free method of the
TObject class, which in turn calls Destroy only if the object exists—that is, if it is not
nil. So, it you define a destructor with a different name, it won't be called by Free.
Again, more on this topic when we'll focus on memory management in Chapter 13.

Marco Cantù, Object Pascal Handbook

07: Objects - 207

note As covered in the next chapter, Destroy is a virtual method. You can replace its base definition
with a new one in an inherited class marking it with the override keyword. By the way, having a
static method that calls a virtual one is a very common programming style, called the template
pattern. In a destructor, you should generally only write resource cleanup code. Try to avoid more
complex operations, likely to raise exceptions or to take a significant amount of time.

Managing Local Class Data with Constructors
and Destructors

Even if I'll cover more complex scenarios later in the book, here I want to show you a
simple case of resource protection using a constructor and a destructor. This is the
most common scenario for using a destructor. Suppose you have a class with the fol-
lowing structure (also part of the Date3 application project):

type
 TPerson = class
 private
 FName: string;
 FBirthDate: TDate;
 public
 constructor Create (name: string);
 destructor Destroy; override;
 // some actual methods
 function Info: string;
 end;

This class has a reference to another, internal object called FDate. When an instance
of the TPerson class is created, this internal (or child) object should also be created,
and when the instance is destroyed, the child object should also be disposed of. Here
is how you can write the code of the constructor and overridden destructor, and of
the internal method that can always take for granted that the internal object exists:

constructor TPerson.Create (name: string);
begin
 FName := Name;
 FBirthDate := TDate.Create;
end;

destructor TPerson.Destroy;
begin
 FBirthDate.Free;
 inherited;
end;

function TPerson.Info: string;
begin
 Result := FName + ': ' + FBirthDate.GetText;

Marco Cantù, Object Pascal Handbook

208 - 07: Objects

end;

note To understand the override keyword used to define the destructor and the inherited keyword
within its definition, you'll have to wait until the next chapter. For now suffice to say the first is
used to indicate that the class has a new definition replacing the base Destroy destructor, while
the latter is used to invoke that base class destructor. Notice also that override is used in the
method declaration, but not in the method implementation code.

Now you can use an object of the external class as in the following scenario, and the
internal object will be properly created when the TPerson object is created and
destroyed in a timely fashion when TPerson is destroyed:

var
 Person: TPerson;
begin
 Person := TPerson.Create ('John');
 // use the class and its internal object
 Show (Person.Info);
 Person.Free;
end;

Again, you can find this code as part of the Dates3 application project.

While this is the standard way of writing such code in Object Pascal, the ARC-
enabled compilers won't require the explicit calls to Free in the destructor or in the
sample code above. So under ARC the destructor won't be required, although (again)
it won't harm.

note Currently the only Object Pascal compilers that enable ARC are the Android compilers, the iOS
device compiler and the iOS Simulator compiler. More might become available in the future. The
differences in memory usage and coding style are highlighted in Chapter 13.

Overloaded Methods and Constructors

Object Pascal supports overloaded functions and methods: you can have multiple
methods with the same name, provided that the parameters are different. We have
already seen how overloading works for global functions and procedures the same
rules apply to methods. By checking the parameters, the compiler can determine
which version of the method you want to call.

Again, there are two basic rules for overloading:

· Each version of the method must be followed by the overload keyword.

· The differences must be in the number or type of the parameters or both. The
return type, instead, cannot be used to distinguish among two methods.

Marco Cantù, Object Pascal Handbook

07: Objects - 209

If overloading can be applied to all of the methods of a class, this feature is particu-
larly relevant for constructors, because we can have multiple constructors and call
them all Create, which makes them easy to remember.

note Historically, overloading was added to C++ specifically to allow the use of multiple constructors,
given they must have the same name (the name of the class). In Object Pascal, this feature could
have been considered unnecessary, simply because multiple constructors can have different spe -
cific names, but was added to the language anyway as it also proved to be useful in many other
scenarios.

As an example of overloading, I’ve added to the TDate class two different versions of
the SetValue method:

type
 TDate = class
 public
 procedure SetValue (Month, Day, Year: Integer); overload;
 procedure SetValue (NewDate: TDateTime); overload;

procedure TDate.SetValue (Month, Day, Year: Integer);
begin
 FDate := EncodeDate (Year, Month, Day);
end;

procedure TDate.SetValue(NewDate: TDateTime);
begin
 FDate := NewDate;
end;

After this simple step, I’ve added to the class two separate Create constructors, one
with no parameters, which hides the default constructor, and one with the initializa-
tion values. The constructor with no parameters uses today's date as the default
value:

type
 TDate = class
 public
 constructor Create; overload;
 constructor Create (Month, Day, Year: Integer); overload;

constructor TDate.Create (Month, Day, Year: Integer);
begin
 FDate := EncodeDate (Year, Month, Day);
end;

constructor TDate.Create;
begin
 FDate := Date;
end;

Marco Cantù, Object Pascal Handbook

210 - 07: Objects

Having these two constructors makes it possible to define a new TDate object in two
different ways:

var
 Day1, Day2: TDate;
begin
 Day1 := TDate.Create (1999, 12, 25);
 Day2 := TDate.Create; // today

This code is part of the Dates4 application project.

The Complete TDate Class

Throughout this chapter, I’ve shown you bits and pieces of the source code for differ-
ent versions of a TDate class. The first version was based on three integers to store
the year, the month, and the day; a second version used a field of the TDateTime type
provided by Delphi. Here is the complete interface portion of the unit that defines
the TDate class:

unit Dates;

interface

type
 TDate = class
 private
 FDate: TDateTime;
 public
 constructor Create; overload;
 constructor Create (Month, Day, Year: Integer); overload;
 procedure SetValue (Month, Day, Year: Integer); overload;
 procedure SetValue (NewDate: TDateTime); overload;
 function LeapYear: Boolean;
 procedure Increase (NumberOfDays: Integer = 1);
 procedure Decrease (NumberOfDays: Integer = 1);
 function GetText: string;
 end;

implementation
...

The aim of the new methods, Increase and Decrease (which have a default value for
their parameter), is quite easy to understand. If called with no parameter, they
change the value of the date to the next or previous day. If a NumberOfDays parame-
ter is part of the call, they add or subtract that number:

procedure TDate.Increase (NumberOfDays: Integer = 1);
begin
 FDate := FDate + NumberOfDays;
end;

Marco Cantù, Object Pascal Handbook

07: Objects - 211

The method GetText returns a string with the formatted date, using the DateToStr
function for the conversion:

function TDate.GetText: string;
begin
 GetText := DateToStr (FDate);
end;

We’ve already seen most of the methods in the previous sections, so I won’t provide
the complete listing; you can find it in the code of the ViewDate example I’ve written
to test the class. The form is a little more complex than others in the book, and it has
a caption to display a date and six buttons, which can be used to modify the value of
the object. You can see the main form of the ViewDate application project at run
time in Figure 7.2. To make the label component look nice, I’ve given it a big font,
made it as wide as the form, set its Alignment property to taCenter, and set its
AutoSize property to False.

Figure 7.2:
The output of the
ViewDate application
at start-up

The start-up code of this program is in the OnCreate event handler of the form. In
the corresponding method, we create an instance of the TDate class, initialize this
object, and then show its textual description in the Text of the label, as shown in
Figure 7.2.

Marco Cantù, Object Pascal Handbook

212 - 07: Objects

procedure TDateForm.FormCreate(Sender: TObject);
begin
 ADay := TDate.Create;
 LabelDate.Text := ADay.GetText;
end;

ADay is a private field of the class of the form, TDateForm. By the way, the name for
the class is automatically chosen by the development environment when you change
the Name property of the form to DateForm.

The specific date object is created when the form is created (setting up the same
relationship we saw earlier between the person class and its date sub-object) and is
then destroyed along with the form:

procedure TDateForm.FormDestroy(Sender: TObject);
begin
 ADay.Free;
end;

When the user clicks one of the six buttons, we need to apply the corresponding
method to the ADay object and then display the new value of the date in the label:

procedure TDateForm.BtnTodayClick(Sender: TObject);
begin
 ADay.SetValue (Today);
 LabelDate.Text := ADay.GetText;
end;

An alternative way to write the last method is to destroy the current object and cre-
ate a new one:

procedure TDateForm.BtnTodayClick(Sender: TObject);
begin
 ADay.Free;
 ADay := TDate.Create;
 LabelDate.Text := ADay.GetText;
end;

In this particular circumstance, this is not a very good approach (because creating a
new object and destroying an existing one entails a lot of time overhead, when all we
need is to change the object’s value), but it allows me to show you a couple of Object
Pascal techniques. The first thing to notice is that we destroy the previous object
before assigning a new one. The assignment operation, in fact, replaces the refer-
ence, leaving the object in memory (even if no pointer is referring to it). When you
assign an object to another object, the compiler simply copies the reference to the
object in memory to the new object reference.

This is what happens on desktop platforms. On ARC-enabled mobile platforms,
instead, the code above could be written without the call to Free:

procedure TDateForm.BtnTodayClick(Sender: TObject);
begin
 ADay := TDate.Create;

Marco Cantù, Object Pascal Handbook

07: Objects - 213

 LabelDate.Text := ADay.GetText;
end;

As the new object is assigned, in fact, the old one looses the only reference and is
automatically disposed.

One side issue is how do you copy the data from one object to another. This case is
very simple, because there is only one field and a method to initialize it. In general if
you want to change the data inside an existing object, you have to copy each field, or
provide a specific method to copy all of the internal data. Some classes have an
Assign method, which does this deep-copy operation.

note To be more precise, in the runtime library all of the classes inheriting from TPersistent have the
Assign method, but most of those inheriting from TComponent don’t implement it, raising an
exception when it is called. The reason lies in the streaming mechanism supported by the runtime
libraries and the support for properties of TPersistent types, but this is way too complex to delve
into at this point of the book.

Nested Types and Nested Constants

Object Pascal allows you to declare new classes in the interface section of a unit,
allowing other units of the program to reference them, or in the implementation sec-
tion, where they are accessible only from methods of other classes of the same unit
or from global routines implemented in that unit after the class definition.

A more recent additional option is the possibility to declare a class (or any other
type) within another class. As any other member of the class, the nested class and
other nested types can have a restricted visibility (say, private or protected). Rele-
vant examples of nested types include enumerations used by the same class and
other implementation-support classes.

A related syntax allows you to define a nested constant, a constant value associated
with the class (again usable only internally if private or from the rest of the program
if public). As an example, consider the following declaration of a nested class
(extracted from the NestedClass unit of the NestedTypes application project):

type
 TOne = class
 private
 someData: Integer;
 public
 // nested constant
 const foo = 12;
 // nested type

Marco Cantù, Object Pascal Handbook

214 - 07: Objects

 type
 TInside = class
 public
 procedure InsideHello;
 private
 Msg: string;
 end;
 public
 procedure Hello;
 end;

procedure TOne.Hello;
var
 ins: TInside;
begin
 ins := TInside.Create;
 ins.Msg := 'hi';
 ins.InsideHello;
 Show ('constant is ' + IntToStr (foo));
 ins.Free;
end;

procedure TOne.TInside.InsideHello;
begin
 msg := 'new msg';
 Show ('internal call');
 if not Assigned (InsIns) then
 InsIns := TInsideInside.Create;
 InsIns.Two;
end;

procedure TOne.TInside.TInsideInside.Two;
begin
 Show ('this is a method of a nested/nested class');
end;

The nested class can be used directly within the class (as demonstrated in the list-
ing) or outside the class (if it is declared in the public section), but with the fully
qualified name TOne.TInside. The full name of the class is used also in the defini-
tion of the method of the nested class, in this case TOne.TInside. The hosting class
can have a field of the nested class type immediately after you've declared the nested
class (as you can see in the code of the NestedClass application project).

The class with the nested classes is used as follows:

var
 One: TOne;
begin
 One := TOne.Create;
 One.Hello;
 One.Free;

This produces the following output:

Marco Cantù, Object Pascal Handbook

07: Objects - 215

internal call
this is a method of a nested/nested class
constant is 12

How would you benefit from using a nested class in the Object Pascal language? The
concept is commonly used in Java to implement event handler delegates and makes
sense in C# where you cannot hide a class inside a unit. In Object Pascal nested
classes are the only way you can have a field of the type of another private class (or
inner class) without adding it to the global name space and making it globally visi-
ble.

If the internal class is used only by a method, you can achieve the same effect by
declaring the class within the implementation portion of the unit. But if the inner
class is referenced in the interface section of the unit (for example because it is used
for a field or a parameter), it must be declared in the same interface section and will
end up being visible. The trick of declaring such a field of a generic or base type and
then casting it to the specific (private) type is much less clean than using a nested
class.

note In chapter 10 there is a practical example in which nested classes come in handy, namely imple -
menting a custom iterator for a for in loop.

Marco Cantù, Object Pascal Handbook

216 - 08: Inheritance

08: inheritance

If the key reason for writing classes is encapsulation, the key reason for using inheri-
tance among classes is flexibility. Combine the two concepts and you can have data
types you can use and are not going to change with the ability to create modified ver-
sions of those types, in what was originally known as the “open-close principle”.
Now it is true that inheritance is a very strong binding leading to tight coupled code,
but it is also true it offers great power to the developer (and, yes, more responsibil-
ity). Rather than opening up a debate on this feature, however, my goal here is to
describe you how type inheritance works and specifically how it works in the Object
Pascal language.

Inheriting from Existing Types

We often need to use a slightly different version of an existing class that we have
written or that someone has given to us. For example, you might need to add a new
method or slightly change an existing one. You can do this easily by modifying the
original code, unless you want to be able to use the two different versions of the class
in different circumstances. Also, if the class was originally written by someone else
(and you have found it in a library), you might want to keep your changes separate.

Marco Cantù, Object Pascal Handbook

08: Inheritance - 217

A typical old-school alternative for having two similar versions of a class is to make a
copy of the original type definition, change its code to support the new features, and
give a new name to the resulting class. This might work, but it also might create
problems: in duplicating the code you also duplicate the bugs; and if you want to add
a new feature, you’ll need to add it two or more times, depending on the number of
copies of the original code you’ve made over time. Moreover, this approach results in
two completely different data types, so the compiler cannot help you take advantage
of the similarities between the two types.

To solve these kinds of problems in expressing similarities between classes, Object
Pascal allows you to define a new class directly from an existing one. This technique
is known as inheritance (or subclassing, or type derivation) and is one of the funda-
mental elements of object-oriented programming languages. To inherit from an
existing class, you only need to indicate that class at the beginning of the declaration
of the subclass. For example, this is done automatically each time you create a new
form:

type
 TForm1 = class(TForm)
 end;

This simple definition indicates that the TForm1 class inherits all the methods, fields,
properties, and events of the TForm class. You can apply any public method of the
TForm class to an object of the TForm1 type. TForm, in turn, inherits some of its meth-
ods from another class, and so on, up to the TObject class (which is the base class of
all classes).

By comparison C++ and C# and Java would use something like:

class Form1 : TForm
{
 ...
}

As a simple example of inheritance, we can change the ViewDate application project
of the last chapter slightly, deriving a new class from TDate and modifying one of its
functions, GetText. You can find this code in the DATES.PAS file of the DerivedDates
application project.

type
 TNewDate = class (TDate)
 public
 function GetText: string;
 end;

In this example, TNewDate is derived from TDate. It is common to say that TDate is
an ancestor class or base class or parent class of TNewDate and that TNewDate is a
subclass, descendant class, or child class of TDate.

Marco Cantù, Object Pascal Handbook

218 - 08: Inheritance

To implement the new version of the GetText function, I used the FormatDateTime
function, which uses (among other features) the predefined month names. Here is
the GetText method, where ‘dddddd’ stands for the long data format:

function TNewDate.GetText: string;
begin
 Result := FormatDateTime (‘dddddd’, fDate);
end;

Once we have defined the new class, we need to use this new data type in the code of
the form of the DerivedDates project. Simply define the ADay object of type
TNewDate, and call its constructor in the FormCreate method:

type
 TDateForm = class(TForm)
 ...
 private
 ADay: TNewDate; // updated declaration
 end;

procedure TDateForm.FormCreate(Sender: TObject);
begin
 ADay := TNewDate.Create; // updated line
 DateLabel.text := TheDay.GetText;
end;

Without any other changes, the new application will work properly. The TNewDate
class inherits the methods to increase the date, add a number of days, and so on. In
addition, the older code calling these methods still works. Actually, to call the new
version of the GetText method, we don’t need to change the source code! The Object
Pascal compiler will automatically bind that call to a new method. The source code
of all the other event handlers remains exactly the same, although its meaning
changes considerably, as the new output demonstrates (see Figure 8.1).

Marco Cantù, Object Pascal Handbook

08: Inheritance - 219

Figure 8.1:
The output of the
DerivedDates program,
with the name of the
month and of the day
depending on
Windows regional
settings

A Common Base Class

We have seen that if you can inherit from a given base class by writing:

type
 TNewDate = class (TDate)
 ...
 end;

But what happens if you omit a base class and write:

type
 TNewDate = class
 ...
 end;

In this case your class inherits from a base class, called TObject. In other words
Object Pascal has a single-rooted class hierarchy, in which all classes directly or
indirectly inherit from a common ancestor class. The most commonly used methods
of TObject are Create, Free, and Destroy; but there are many others I'll use

Marco Cantù, Object Pascal Handbook

220 - 08: Inheritance

throughout the book. A complete description of this fundamental class (that could
be considered both part of the language and also part of the runtime library) with a
reference to all of its methods is available in Chapter 17.

note The concept of a common ancestor class is present also in the C# and Java languages, where this
is simply called Object. The C++ language, on the other hand, hasn't got such an idea, and a C++
program generally has multiple independent class hierarchies.

Protected Fields and Encapsulation

The code of the GetText method of the TNewDate class compiles only if it is written
in the same unit as the TDate class. In fact, it accesses the fDate private field of the
ancestor class. If we want to place the descendant class in a new unit, we must either
declare the fDate field as protected or add a simple, possibly protected method in
the ancestor class to read the value of the private field.

Many developers believe that the first solution is always the best, because declaring
most of the fields as protected will make a class more extensible and will make it
easier to write subclasses. However, this violates the idea of encapsulation. In a large
hierarchy of classes, changing the definition of some protected fields of the base
classes becomes as difficult as changing some global data structures. If ten derived
classes are accessing this data, changing its definition means potentially modifying
the code in each of the ten classes.

In other words, flexibility, extension, and encapsulation often become conflicting
objectives. When this happens, you should try to favor encapsulation. If you can do
so without sacrificing flexibility, that will be even better. Often this intermediate
solution can be obtained by using a virtual method, a topic I’ll discuss in detail below
in the section “Late Binding and Polymorphism.” If you choose not to use encapsula-
tion in order to obtain faster coding of the subclasses, then your design might not
follow the object-oriented principles.

Remember also that protected fields share the same access rules of private ones, so
that any other class in the same unit can always access protected members of other
classes. As mentioned in the previous chapter, you can use stronger encapsulation
by using the strict protected access specifier.

Marco Cantù, Object Pascal Handbook

08: Inheritance - 221

Using the “Protected Hack”

If you are new to Object Pascal and to OOP, this is a rather advanced sec-
tion you might want to skip the first time you are reading this book, as it
might be quite confusing.

Given how unit protection works, even protected members of base classes of classes
declared in the current unit can be directly accesses. This is the rationale behind
what it generally called “the protected hack”, that is the ability to define a derived
class identical to its base class for the only purpose of gaining access to the protected
member of the base class. Here is how it works.

We’ve seen that the private and protected data of a class is accessible to any func-
tions or methods that appear in the same unit as the class. For example, consider
this simple class (part of the Protection application project):

type
 TTest = class
 protected
 ProtectedData: Integer;
 public
 PublicData: Integer;
 function GetValue: string;
 end;

The GetValue method simply returns a string with the two integer values:

function TTest.GetValue: string;
begin
 Result := Format (‘Public: %d, Protected: %d’,
 [PublicData, ProtectedData]);
end;

Once you place this class in its own unit, you won’t be able to access its protected
portion from other units directly. Accordingly, if you write the following code,

procedure TForm1.Button1Click(Sender: TObject);
var
 Obj: TTest;
begin
 Obj := TTest.Create;
 Obj.PublicData := 10;
 Obj.ProtectedData := 20; // won’t compile
 Show (Obj.GetValue);
 Obj.Free;
end;

the compiler will issue an error message, Undeclared identifier: “ProtectedData.” At
this point, you might think there is no way to access the protected data of a class
defined in a different unit. However, there is a way around it. Consider what hap-
pens if you create an apparently useless derived class, such as

Marco Cantù, Object Pascal Handbook

222 - 08: Inheritance

type
 TFake = class (TTest);

Now, in the same unit where you have declared it, you can call any protected method
of the TFake class. In fact you can call protected methods of a class declared in the
same unit. How does this helps using an object of class TTest, though? Considering
that the two classes share the same exact memory layout (as there are no differ-
ences) you can force the compiler to treat an object of a class like one of the other,
with what is generally a type-unsafe cast:

procedure TForm1.Button2Click(Sender: TObject);
var
 Obj: TTest;
begin
 Obj := TTest.Create;
 Obj.PublicData := 10;
 TFake (Obj).ProtectedData := 20; // compiles!
 Show (Obj.GetValue);
 Obj.Free;
end;

This code compiles and works properly, as you can see by running the Protection
application project. Again, the reason is that the TFake class automatically inherits
the protected fields of the TTest base class, and because the TFake class is in the
same unit as the code that tries to access the data in the inherited fields, the pro-
tected data is accessible.

Now that I’ve shown you how to do this, I must warn you that violating the class-
protection mechanism this way is likely to cause errors in your program (from
accessing data that you really shouldn’t), and it runs counter to good OOP tech-
nique. However, there are rare times when using this technique is the best solution,
as you’ll see by looking at the library source code and the code of many components.

Overall, this technique is a hack and it should be avoided whenever possible,
although it can be considered to all effects as part of the language specification and
is available on all platforms and in all present and past versions of Object Pascal.

From Inheritance to Polymorphism

Inheritance is a nice technique in terms of letting you avoid code duplication and
share code methods among different classes. Its true power, however, comes from
the ability to handle objects of different classes in a uniform manner, something
often indicated in object-oriented programming languages by the term polymor-
phism or referenced as late binding.

Marco Cantù, Object Pascal Handbook

08: Inheritance - 223

There are several elements we have to explore to fully understand this feature: type
compatibility among derived classes, virtual methods, and more, as covered in the
next few sections.

Inheritance and Type Compatibility

As we have seen to some extent, Object Pascal is a strictly typed language. This
means that you cannot, for example, assign an integer value to a Boolean variable, at
least not without an explicit typecast. The basic rule is that two values are type-com-
patible only if they are of the same data type, or (to be more precise) if their data
type has the same name and their definition comes from the same unit.

There is an important exception to this rule in the case of class types. If you declare a
class, such as TAnimal, and derive from it a new class, say TDog, you can then assign
an object of type TDog to a variable of type TAnimal. That is because a dog is an ani-
mal! So, although this might surprise you, the following constructor calls are both
legal:

var
 MyAnimal1, MyAnimal2: TAnimal;
begin
 MyAnimal1 := TAnimal.Create;
 MyAnimal2 := TDog.Create;

In more precise terms, you can use an object of a descendant class any time an
object of an ancestor class is expected. However, the reverse is not legal; you cannot
use an object of an ancestor class when an object of a descendant class is expected.
To simplify the explanation, here it is again in code terms:

MyAnimal := MyDog; // This is OK
MyDog := MyAnimal; // This is an error!!!

In fact, while we can always say that a dog is an animal, we cannot assume that any
given animal is a dog. This might be true at times, but not always. This is quite logi-
cal, and the language type compatibility rules follow this same logic.

Before we look at the implications of this important feature of the language, you can
try out the Animals1 application project, which defines the two simple TAnimal and
TDog classes, inheriting one from the other:

type
 TAnimal = class
 public
 constructor Create;
 function GetKind: string;
 private
 FKind: string;
 end;

Marco Cantù, Object Pascal Handbook

224 - 08: Inheritance

 TDog = class (TAnimal)
 public
 constructor Create;
 end;

The two Create methods simply set the value of FKind, which is returned by the
GetKind function.

The form of this example, shown in Figure 8.2, has two radio buttons (hosted by a
panel) to pick an object of one or the other class. This object is stored in the private
field MyAnimal of type TAnimal. An instance of this class is created and initialized
when the form is created and re-created each time one of the radio buttons is
selected (here I'm showing only the code of the second radio button):

procedure TFormAnimals.FormCreate(Sender: TObject);
begin
 MyAnimal := TAnimal.Create;
end;

procedure TFormAnimals.RadioButton2Change(Sender: TObject);
begin
 MyAnimal.Free;
 MyAnimal := TDog.Create;
end;

Figure 8.2:
The form of the
Animals1 application
project in the
development
environment

Finally, the Kind button calls the GetKind method for the current animal and dis-
plays the result in the memo covering the bottom part of the form:

procedure TFormAnimals.BtnKindClick(Sender: TObject);
begin
 Show(MyAnimal.GetKind);
end;

Marco Cantù, Object Pascal Handbook

08: Inheritance - 225

Late Binding and Polymorphism

Object Pascal functions and procedures are usually based on static binding, which is
also called early binding. This means that a method call is resolved by the compiler
or the linker, which replaces the request with a call to the specific memory location
where the compiled function or procedure resides. (This is also known as the
address of the function.) Object-oriented programming languages allow the use of
another form of binding, known as dynamic binding, or late binding. In this case,
the actual address of the method to be called is determined at run time based on the
type of the instance used to make the call.

The advantage of this technique is known as polymorphism. Polymorphism means
you can write a call to a method, applying it to a variable, but which method Delphi
actually calls depends on the type of the object the variable relates to. Delphi cannot
determine until run time the actual class of the object the variable refers to, simply
because of the type-compatibility rule discussed in the previous section.

note Object Pascal methods default to early binding, like C++ and C#. One of the reasons is this is
more efficient. Java, instead, defaults to late binding (and offers ways to indicate to the compiler
it can optimize a method using early binding).

Suppose that a class and its subclass (let’s say TAnimal and TDog, again) both define
a method, and this method has late binding. Now you can apply this method to a
generic variable, such as MyAnimal, which at run time can refer either to an object of
class TAnimal or to an object of class TDog. The actual method to call is determined
at run time, depending on the class of the current object.

The Animals2 application project extends the Animals1 project to demonstrate this
technique. In the new version, the TAnimal and the TDog classes have a new method:
Voice, which means to output the sound made by the selected animal, both as text
and as sound. This method is defined as virtual in the TAnimal class and is later
overridden when we define the TDog class, by the use of the virtual and override
keywords:

type
 TAnimal = class
 public
 function Voice: string; virtual;

 TDog = class (TAnimal)
 public
 function Voice: string; override;

Of course, the two methods also need to be implemented. Here is a simple approach:

function TAnimal.Voice: string;

Marco Cantù, Object Pascal Handbook

226 - 08: Inheritance

begin
 Result := 'AnimalVoice';
end;

function TDog.Voice: string;
begin
 Result := 'ArfArf';
end;

Now what is the effect of the call MyAnimal.Voice? It depends. If the MyAnimal vari-
able currently refers to an object of the TAnimal class, it will call the method
TAnimal.Voice. If it refers to an object of the TDog class, it will call the method
TDog.Voice instead. This happens only because the function is virtual.

The call to MyAnimal.Voice will work for an object that is an instance of any descen-
dant of the TAnimal class, even classes that are defined after this method call or
outside its scope. The compiler doesn’t need to know about all the descendants in
order to make the call compatible with them; only the ancestor class is needed. In
other words, this call to MyAnimal.Voice is compatible with all future TAnimal sub-
classes.

This is the key technical reason why object-oriented programming languages favor
reusability. You can write code that uses classes within a hierarchy without any
knowledge of the specific classes that are part of that hierarchy. In other words, the
hierarchy—and the program—is still extensible, even when you’ve written thousands
of lines of code using it. Of course, there is one condition—the ancestor classes of the
hierarchy need to be designed very carefully.

The Animals2 project demonstrates the use of these new classes and has a form sim-
ilar to that of the previous example. This code is executed by clicking on the button,
showing the output and also producing some sound:

begin
 Show (MyAnimal.Voice);
 MediaPlayer1.FileName := SoundsFolder + MyAnimal.Voice + '.wav';
 MediaPlayer1.Play;
end;

note The application uses a MediaPlayer component to play one of the two sound files that come with
the application (the sound files are named after the actual sounds, that is the values returned by
the Voice method). A rather random noise for the generic animal, and some barking for the dog.
Now the code works easily on Windows, as long as the files are in the proper folder, but it
requires some effort for the deployment on mobile platforms.

Take a look at the actual demo to see how the deployment and the folders were structured.

Marco Cantù, Object Pascal Handbook

08: Inheritance - 227

Overriding, Redefining, and Reintroducing
Methods

As we have just seen, to override a late-bound method in a descendant class, you
need to use the override keyword. Note that this can take place only if the method
was defined as virtual in the ancestor class. Otherwise, if it was a static method,
there is no way to activate late binding, other than by changing the code of the
ancestor class.

note You might remember I used the same keyword also in the last chapter to override the Destroy
default destructor, inherited from the base TObject class.

The rules are simple: A method defined as static remains static in every subclass,
unless you hide it with a new virtual method having the same name. A method
defined as virtual remains late-bound in every subclass. There is no way to change
this, because of the way the compiler generates different code for late-bound meth-
ods.

To redefine a static method, you simply add a method to a subclass having the same
parameters or different parameters than the original one, without any further speci-
fications. To override a virtual method, you must specify the same parameters and
use the override keyword:

type
 TMyClass = class
 procedure One; virtual;
 procedure Two; // static method
 end;

 TMySubClass = class (MyClass)
 procedure One; override;
 procedure Two;
 end;

The redefined method, Two, has no late binding. So when you apply it to a variable of
the base class, it calls the base class method no matter what (that is, even if the vari-
able is referring to an object of the derived class, that has a different version for that
method).

There are typically two ways to override a method. One is to replace the method of
the ancestor class with brand a new version. The other is to add some more code to
the existing method. This second approach can be accomplished by using the
inherited keyword to call the same method of the ancestor class. For example, you
can write

procedure TMySubClass.One;

Marco Cantù, Object Pascal Handbook

228 - 08: Inheritance

begin
 // new code
 ...
 // call inherited procedure TMyClass.One
 inherited One;
end;

You might wonder why you need to use the override keyword. In other languages,
when you redefine a virtual method in a subclass, you automatically override the
original one. However, having a specific keyword allows the compiler to check the
correspondence between the name of the method in the ancestor class and name of
the method in the subclass (misspelling a redefined function is a common error in
some other OOP languages), check that the method was virtual in the ancestor class,
and so on.

note There is another popular OOP language that has the same override keyword, C#. This is not sur -
prising, given the fact the languages share a common designer. Anders Hejlsberg has some
lengthly articles explaining why the override keyword is a fundamental versioning tool for design -
ing libraries, as you can read at http://www.artima.com/intv/nonvirtual.html . More
recently, Apple's Swift language has also adopted the override keyword to modify methods in
derived classes.

Another advantage of this keyword is that if you define a static method in any class
inherited by a class of the library, there will be no problem, even if the library is
updated with a new virtual method having the same name as a method you’ve
defined. Because your method is not marked by the override keyword, it will be
considered a separate method and not a new version of the one added to the library
(something that would probably break your existing code).

The support for overloading adds some further complexity to this picture. A subclass
can provide a new version of a method using the overload keyword. If the method
has different parameters than the version in the base class, it becomes effectively an
overloaded method; otherwise it replaces the base class method. Here is an example:

type
 TMyClass = class
 procedure One;
 end;

 TMySubClass = class (TMyClass)
 procedure One (S: string); overload;
 end;

Notice that the method doesn’t need to be marked as overload in the base class.
However, if the method in the base class is virtual, the compiler issues the warning
Method ‘One’ hides virtual method of base type ‘TMyClass .’ To avoid this message

Marco Cantù, Object Pascal Handbook

08: Inheritance - 229

from the compiler and to instruct the compiler more precisely on your intentions,
you can use the specific reintroduce directive:

type
 TMyClass = class
 procedure One; virtual;
 end;

 TMySubClass = class (TMyClass)
 procedure One (S: string); reintroduce; overload;
 end;

You can find this code in the ReintroduceTest application project and experiment
with it further.

note A scenario in which the reintroduce keyword is used is when you want to add a custom Create
constructor to a component class, that already inherits a virtual Create constructor from the
TComponent base class.

Inheritance and Constructors

As we have seen, you can use the inherited keyword the invoke same name method
(or also a different method) in a method of a derived class. The same is true also for
constructors. While in other languages like C++, C# or Java, the call to the base
class constructor is implicit and compulsory (when you have to pass parameters to
the base class constructor), in Object Pascal calling a base class constructor is not
strictly required.

In most cases, however, manually calling the base class constructor is extremely
important. This is the case, for example, for any component class, as the component
initialization is actually done a the TComponent class level:

constructor TMyComponent.Create (Owner: TComponent);
begin
 inherited Create (Owner);
 // specific code...
end;

This is particularly important because for components Create is a virtual method.
Similarly for all classes, the Destroy destructor is a virtual method and you should
remember calling inherited in it.

One question remains: If you are creating a class, which only implicitly inherits from
TObject, in its constructors do you need to call the base TObject Create construc-
tor? From a technical point of view, and answer is “no” given that constructor is
empty. However, I consider it s good habit to always call the base class constructor,
no matter what. If you are a performance maniac, however, I'll concede this can

Marco Cantù, Object Pascal Handbook

230 - 08: Inheritance

needlessly slow down your code... by a completely unnoticeable fraction of microsec-
ond.

Jokes aside, there are good reasons for both approaches, but particularly for a begin-
ner with the language I recommend always calling the base class constructor as good
programming habit, promoting safer coding.

Virtual versus Dynamic Methods

In Object Pascal, there are two different ways to activate late binding. You can
declare a method as virtual, as we have seen before, or declare it as dynamic. The
syntax of these two keywords is exactly the same, and the result of their use is also
the same. What is different is the internal mechanism used by the compiler to imple-
ment late binding.

Virtual methods are based on a virtual method table (or VMT, but colloquially also
known as a vtable). A virtual method table is an array of method addresses. For a
call to a virtual method, the compiler generates code to jump to an address stored in
the nth slot in the object’s virtual method table.

Virtual method tables allow fast execution of the method calls. Their main drawback
is that they require an entry for each virtual method for each descendant class, even
if the method is not overridden in the subclass. At times, this has the effect of propa-
gating virtual method table entries throughout a class hierarchy (even for methods
that aren’t redefined). This might require a lot of memory just to store the same
method address a number of times.

Dynamic method calls, on the other hand, are dispatched using a unique number
indicating the method. The search for the corresponding function is generally slower
than the simple one-step table lookup for virtual methods. The advantage is that
dynamic method entries only propagate in descendants when the descendants over-
ride the method. For large or deep object hierarchies, using dynamic methods
instead of virtual methods can result in significant memory savings with only a min-
imal speed penalty.

From a programmer’s perspective, the difference between these two approaches lies
only in a different internal representation and slightly different speed or memory
usage. Apart from this, virtual and dynamic methods are the same.

Now having explained the difference between these two models, it is important to
underline that in the largest number of cases, application developers use virtual
rather than dynamic.

Marco Cantù, Object Pascal Handbook

08: Inheritance - 231

Message Handlers on Windows

When you are building applications for Windows, a special purpose late-bound
method can be used to handle a Windows system message. For this purpose Object
Pascal provides yet another directive, message, to define message-handling methods,
which must be procedures with a single var parameter of the proper type. The
message directive is followed by the number of the Windows message the method
wants to handle. For example, the following code allows you to handle a user-
defined message, with the numeric value indicated by the wm_User Windows con-
stant:

type
 TForm1 = class(TForm)
 ...
 procedure WmUser (var Msg: TMessage); message wm_User;
 end;

The name of the procedure and the actual type of the parameters are up to you, as
log as the physical data structure matches with the Windows message structure. The
units use to interface with the Windows API include a number of predefined record
types for the various Windows messages. This technique can be extremely useful for
veteran Windows programmers, who know all about Windows messages and API
functions, but it absolutely not compatible with other operating systems (like OS X,
iOS, and Android).

Abstracting Methods and Classes

When you are creating a hierarchy of classes, at times it is difficult to determine
which is the base class, given it might not represent an actual entity, but only be
used to hold some shared behavior. An example would be an animal base class for
something like a cat or a dog class. Such a class for which you are not expected to
create any object is often indicated as an abstract class, because it has no concrete
and complete implementation. An abstract class can have abstract methods, meth-
ods that don't have an actual implementation.

Abstract Methods

The abstract keyword is used to declare virtual methods that will be defined only in
subclasses of the current class. The abstract directive fully defines the method; it is

Marco Cantù, Object Pascal Handbook

232 - 08: Inheritance

not a forward declaration. If you try to provide a definition for the method, the com-
piler will complain.

In Object Pascal, you can create instances of classes that have abstract methods.
However, when you try to do so, the compiler issues the warning message: Con-
structing instance of <class name> containing abstract methods. If you happen to
call an abstract method at run time, Delphi will raise a specific runtime exception.

note C++, Java, and other languages use a more strict approach: in these languages, you cannot create
instances of abstract classes.

You might wonder why you would want to use abstract methods. The reason lies in
the use of polymorphism. If class TAnimal has the virtual abstract method Voice,
every subclass can redefine it. The advantage is that you can now use the generic
MyAnimal object to refer to each animal defined by a subclass and invoke this
method. If this method was not present in the interface of the TAnimal class, the call
would not have been allowed by the compiler, which performs static type checking.
Using a generic MyAnimal object, you can call only the method defined by its own
class, TAnimal.

You cannot call methods provided by subclasses, unless the parent class has at least
the declaration of this method—in the form of an abstract method. The next appli-
cation project, Animals3, demonstrates the use of abstract methods and the
abstract call error. Here are the interfaces of the classes of this new example:

type
 TAnimal = class
 public
 constructor Create;
 function GetKind: string;
 function Voice: string; virtual; abstract;
 private
 Kind: string;
 end;

 TDog = class (TAnimal)
 public
 constructor Create;
 function Voice: string; override;
 function Eat: string; virtual;
 end;

 TCat = class (TAnimal)
 public
 constructor Create;
 function Voice: string; override;
 function Eat: string; virtual;
 end;

Marco Cantù, Object Pascal Handbook

08: Inheritance - 233

The most interesting portion is the definition of the class TAnimal, which includes a
virtual abstract method: Voice. It is also important to notice that each derived
class overrides this definition and adds a new virtual method, Eat. What are the
implications of these two different approaches? To call the Voice function, we can
simply write the same code as in the previous version of the program:

 Show (MyAnimal.Voice);

How can we call the Eat method? We cannot apply it to an object of the TAnimal
class. The statement

 Show (MyAnimal.Eat);

generates the compiler error Field identifier expected.

To solve this problem, you can use a dynamic and safe type cast to treat the TAnimal
object as a TCat or as a TDog object, but this would be a very cumbersome and error-
prone approach:

begin
 if MyAnimal is TDog then
 Show (TDog(MyAnimal).Eat)
 else if MyAnimal is TCat then
 Show (TCat(MyAnimal).Eat);

This code will be explained later in the section “Safe Type Cast Operators”. Adding
the virtual method definition to the TAnimal class is a typical solution to the prob-
lem, and the presence of the abstract keyword favors this choice. The code above
looks ugly, and avoiding such a code is precisely the reason for using polymorphism.

Finally notice that when a class has an abstract method, it is often considered to be
an abstract class. However you can also specifically mark a class with the abstract
directive (and it will be considered an abstract class even if it has no abstract meth-
ods). Again, in Object Pascal this won't prevent you from creating an instance of the
class, so in this language the usefulness of an abstract class declaration is quite lim-
ited.

Sealed Classes and Final Methods

As I mentioned, Java has a very dynamic approach with late binding (or virtual
functions) being the default. For this reason the language introduced concepts like
classes you cannot inherit from (sealed) and methods you cannot override in derived
classes (final methods, or non-virtual methods).

Sealed classes are classes you cannot further inherit from. This might make sense if
you are distributing components (without the source code) or runtime packages and
you want to limit the ability of other developers to modify your code. One of the

Marco Cantù, Object Pascal Handbook

234 - 08: Inheritance

original goals was also to increase runtime security, something you won't generally
need in a fully compiled language like Object Pascal.

Final methods are virtual methods you cannot further override in inherited classes.
Again, while they do make sense in Java (where all methods are virtual by default
and final methods are significantly optimized) they were adopted in C# where vir-
tual functions are explicitly marked and are much less important. Similarly, they
were added to Object Pascal, were they are rarely used.

In terms of syntax, this is the code of a sealed class:

type
 TDeriv1 = class sealed (TBase)
 procedure A; override;
 end;

Trying to inherit from it causes the error, “Cannot extend sealed class TDeriv1”.
This is the syntax of a final method:

type
 TDeriv2 = class (TBase)
 procedure A; override; final;
 end;

Inheriting from this class and overriding the A method causes the compiler error,
“Cannot override a final method”.

Safe Type Cast Operators

As we have seen earlier, the language type compatibility rule for descendant classes
allows you to use a descendant class where an ancestor class is expected. As I men-
tioned, the reverse is not possible.

Now suppose that the TDog class has an Eat method, which is not present in the
TAnimal class. If the variable MyAnimal refers to a dog, you might want to be able to
call the function. But if you try, and the variable is referring to another class, the
result is an error. By making an explicit typecast, we could cause a nasty run-time
error (or worse, a subtle memory overwrite problem), because the compiler cannot
determine whether the type of the object is correct and the methods we are calling
actually exist.

To solve the problem, we can use techniques based on run-time type information.
Essentially, because each object at run time “knows” its type and its parent class. We
can ask for this information with the is operator or using some of the methods of

Marco Cantù, Object Pascal Handbook

08: Inheritance - 235

the TObject class. The parameters of the is operator are an object and a class type,
and the return value is a Boolean:

if MyAnimal is TDog then
 ...

The is expression evaluates as True only if the MyAnimal object is currently referring
to an object of class TDog or a type descendant from and compatible with TDog. This
means that if you test whether a TDog object stored in a TAnimal variable is really a
TDog object, the test will succeed. In other words, this expression evaluates as True if
you can safely assign the object (MyAnimal) to a variable of the data type (TDog).

note The actual implementation of the is operator is provided by the InheritsFrom method of the
TObject class. So you could write the same expression as MyAnimal.InheritsFrom(TDog). The
reason to use this method directly comes from the fact that it can also be applied to class refer -
ences and other special purpose types than don't support the is operator.

Now that you know for sure that the animal is a dog, you can use a direct type cast
(that would in general be unsafe) by writing the following code:

if MyAnimal is TDog then
begin
 MyDog := TDog (MyAnimal);
 Text := MyDog.Eat;
end;

This same operation can be accomplished directly by another related type cast oper-
ator, as, which converts the object only if the requested class is compatible with the
actual one. The parameters of the as operator are an object and a class type, and the
result is an object “converted” to the new class type. We can write the following
snippet:

MyDog := MyAnimal as TDog;
Text := MyDog.Eat;

If we only want to call the Eat function, we might also use an even shorter notation:

(MyAnimal as TDog).Eat;

The result of this expression is an object of the TDog class data type, so you can apply
to it any method of that class. The difference between the traditional cast and the
use of the as cast is that the second one checks the actual type of the object and
raises an exception if the type is not compatible with the type you are trying to cast it
to. The exception raised is EInvalidCast (exceptions are described in the next chap-
ter).

note By contrast, in the C# language the as expression will return nil if the object is not type-compati-
ble, while the direct type cast will raise an exception. So basically the two operations are reversed
compared to Object Pascal.

Marco Cantù, Object Pascal Handbook

236 - 08: Inheritance

To avoid this exception, use the is operator and, if it succeeds, make a plain typecast
(in fact there is no reason to use is and as in sequence, doing the type check twice –
although you'll often see the combined use of is and as):

if MyAnimal is TDog then
 TDog(MyAnimal).Eat;

Both type cast operators are very useful in Object Pascal because you often want to
write generic code that can be used with a number of components of the same type
or even of different types. For example, when a component is passed as a parameter
to an event-response method, a generic data type is used (TObject), so you often
need to cast it back to the original component type:

procedure TForm1.Button1Click(Sender: TObject);
begin
 if Sender is TButton then
 ...
end;

This is a common technique I’ll use it in some later examples (events are introduced
in Chapter 10).

The two type cast operators, is and as, are extremely powerful, and you might be
tempted to consider them as standard programming constructs. Although they are
indeed powerful, you should probably limit their use to special cases. When you
need to solve a complex problem involving several classes, try using polymorphism
first. Only in special cases, where polymorphism alone cannot be applied, should
you try using the type conversion operators to complement it.

note The use of the type cast operators has a slight negative impact on performance, because it must
walk the hierarchy of classes to see whether the typecast is correct. As we have seen, virtual
method calls just require a memory lookup, which is much faster.

Visual Form Inheritance

Inheritance is not only used in library classes or for the classes you write, but it's
quite pervasive of the entire development environment based around Object Pascal.
As we have seen, when you create a form in the IDE, this is an instance of a class
that inherits from TForm. So any visual application has a structure based on inheri-
tance, even in case you end up writing most your code in simple event handlers.

What is less known, though, even by more experienced developers, is that you can
inherit a new form from one you've already created, a feature generally called visual

Marco Cantù, Object Pascal Handbook

08: Inheritance - 237

form inheritance (and something quite peculiar to Object Pascal development envi-
ronment).

The interesting element here is you can visually see the power on inheritance in
action, and directly figure out its rules! In this useful also in practice? Well, it mostly
depends on the kind of application you are building. If it has a number of forms,
some of which are very similar to each other or simply include common elements,
then you can place the common components and the common event handlers in the
base form and add the specific behavior and components to the subclasses. Another
common scenario is to use visual form inheritance to customize some of the forms of
an applications for specific companies, without duplicating any source code (which
is the core reason for using inheritance in the first place).

You can also use visual form inheritance to customize an application for different
operating systems and form factors (phone to tablets, for example), without dupli-
cating any source code or form definition code; just inherit the specific versions for a
client from the standard forms. Remember that the main advantage of visual inheri-
tance is that you can later change the original form and automatically update all the
derived forms. This is a well-known advantage of inheritance in object-oriented pro-
gramming languages. But there is a beneficial side effect: polymorphism. You can
add a virtual method to a base form and override it in a subclassed form. Then you
can refer to both forms and call this method for each of them.

note Another approach in building forms with the same elements is to rely on frames, that is on visual
composition of form panels. In both cases at design time you can work on two versions of a form.
However, in visual form inheritance, you are defining two different classes (parent and derived),
whereas with frames, you work on a frame class and an instance of that frame hosted by a form.

Inheriting From a Base Form

The rules governing visual form inheritance are quite simple, once you have a clear
idea of what inheritance is. Basically, a subclass form has the same components as
the parent form as well as some new components. You cannot remove a component
of the base class, although (if it is a visual control) you can make it invisible. What’s
important is that you can easily change properties of the components you inherit.

Notice that if you change a property of a component in the inherited form, any mod-
ification of the same property in the parent form will have no effect. Changing other
properties of the component will affect the inherited versions, as well. You can
resynchronize the two property values by using the Revert to Inherited local menu
command of the Object Inspector. The same thing is accomplished by setting the
two properties to the same value and recompiling the code. After modifying multiple

Marco Cantù, Object Pascal Handbook

238 - 08: Inheritance

properties, you can resynchronize them all to the base version by applying the
Revert to Inherited command of the component’s local menu.

Besides inheriting components, the new form inherits all the methods of the base
form, including the event handlers. You can add new handlers in the inherited form
and also override existing handlers.

To demonstrate how visual form inheritance works, I’ve built a very simple example,
called VisualInheritTest. I’ll describe step-by-step how to build it. First, start a
new mobile project, and add two buttons to its main form. Then select File  New,
and choose the “Inheritable Items” page in the New Items dialog box (see Figure
8.3). Here you can choose the form from which you want to inherit.

Figure 8.3:
The New Items dialog
box allows you to
create an inherited
form.

The new form has the same two buttons. Here is the initial textual description of the
new form:

inherited Form2: TForm2
 Caption = ‘Form2’
 ...
end

And here is its initial class declaration, where you can see that the base class is not
the usual TForm but the actual base class form:

type
 TForm2 = class(TForm1)
 private
 { Private declarations }
 public
 { Public declarations }
 end;

Marco Cantù, Object Pascal Handbook

08: Inheritance - 239

Notice the presence of the inherited keyword in the textual description; also notice
that the form indeed has some components, although they are defined in the base
class form. If you change the caption of one of the buttons and add a new button the
textual description will change accordingly:

inherited Form2: TForm2
 Caption = 'Form2'
 ...
 inherited Button1: TButton
 Text = 'Hide Form'
 end
 object Button3: TButton
 ...
 Text = 'New Button'
 OnClick = Button3Click
 end
end

Only the properties with a different value are listed, because the others are simply
inherited as they are.

Figure 2.7:
The two forms of the
VirtualInheritTest
example at run time

Each of the buttons of the first form has an OnClick handler, with simple code. The
first button shows the second form calling its Show method; the second button a sim-
ple message.

What happens in the inherited form? First we should change the behavior of the
Show button to implement it as a Hide button. This implies not executing the base
class event handler (so I've commented out the default inherited call). For the
Hello button, instead, we can add a second message to the one displayed by the base
class, by leaving the inherited call:

procedure TForm2.Button1Click(Sender: TObject);
begin
 // inherited;

Marco Cantù, Object Pascal Handbook

240 - 08: Inheritance

 Hide;
end;

procedure TForm2.Button2Click(Sender: TObject);
begin
 inherited;
 ShowMessage ('Hello from Form2');
end;

Remember that differently from an inherited method, that can use the inherited
keyword to call the base class method with the same name, in an event handler the
inherited keyword stands for a call to the corresponding event handler of the base
form (regardless of the event handler method name).

Of course, you can also consider each method of the base form as a method of your
form, and call them freely. This example allows you to explore some features of vis-
ual form inheritance, but to see its true power you’ll need to look at more complex
real-world examples than this book has room to explore.

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 241

09: handling

exceptions

Before we proceed with the coverage of other features of classes in the Object Pascal
language, we need to focus on one particular group of objects used to handle error
conditions, known as exceptions.

The idea of exception handling is to make programs more robust by adding the
capability of handling software or hardware errors (and any other type of error) in a
simple and uniform way. A program can survive such errors or terminate gracefully,
allowing the user to save data before exiting. Exceptions allow you to separate the
error handling code from your normal code, instead of intertwining the two. You
end up writing code that is more compact and less cluttered by maintenance chores
unrelated to the actual programming objective.

Another benefit is that exceptions define a uniform and universal error-reporting
mechanism, which is also used by the component libraries. At run time, the system
raises exceptions when something goes wrong. If your code has been written prop-
erly, it can acknowledge the problem and try to solve it; otherwise, the exception is
passed to its calling code, and so on. Ultimately, if no part of your code handles the
exception, the system generally handles it, by displaying a standard error message
and trying to continue the program. In the unusual scenario your code is executed

Marco Cantù, Object Pascal Handbook

242 - 09: Handling Exceptions

outside of any exception handling block, raising an exception will cause the program
to terminate.

The whole mechanism of exception handling in Object Pascal is based on five sepa-
rate keywords:

· try delimits the beginning of a protected block of code

· except delimits the end of a protected block of code and introduces the excep-
tion-handling code

· on marks the individual exception handling statements, tied to specific excep-
tions, each having the syntax on exception-type do statement

· finally is used to specify blocks of code that must always be executed, even
when exceptions occur

· raise is the statement used to trigger an exception and has as parameter an
exception object (this operation is called throw in other programming languages)

This is a simple comparison table of exception handling keywords in Object Pascal
with languages based on the C++ exceptions syntax (like C# and Java):

try try

except on catch

finally finally

raise throw

In general terms, using the C++ language terminology, you throw an exception
object and catch it by type. This is the same in Object Pascal, where you pass to the
raise statement an exception object and you receive it as a parameter of the except
on statements.

Try-Except Blocks

Let me start with a rather simple try-except example (part of the ExceptionsTest
application project), one that has a generic exception handling block:
function DividePlusOne (A, B: Integer): Integer;
begin
 try
 Result := A div B; // raises exception if B equals 0
 Inc (Result);
 except
 Result := 0;
 end;
 //more

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 243

end;

note When you run a program in the debugger, the debugger will stop the program by default when an
exception is encountered, even if there is an exception handler. This is normally what you want,
of course, because you’ll know where the exception took place and can see the call of the handler
step-by-step. If you just want to let the program run when the exception is properly handled, and
see what a user would see, run the program with the “Run without debugging” command.

Not that “silencing” the exception and setting the result to 0 really makes a lot of
sense, but the code is good enough to understand the core mechanism in a reason-
able coding scenario. This is the code of the event handler used to call the function:
var
 N: Integer;
begin
 N := DividePlusOne (10, Random(3));
 Show (N.ToString);

As you can see the program uses a randomly generated value so that when you click
the button you can be in a valid situation (2 times out of 3) or in an invalid one. This
way there can be two different program flows:

· If B is not zero, the program does the division, executes the increment, and then
skips the except block up the end statement following it (//more)

· If B is zero, the division raises an exception, all of the following statements are
skipped (well, only one in this case) up to the first enclosing try-expect block,
which gets executed instead. After the exception block, the program won't get
back to the original statement, but skips until after the except block executing the
first statement after it (//more).

A way to describe this exception model is to say it follows an approach of non-
resumption. In case of an error, trying to handle the error condition and getting back
to the statement that caused it, is very dangerous, as the status of the program at
that point is probably undefined. Exceptions significantly change the execution flow,
skipping execution of the following statement and rolling back the stack until the
proper error handling code is found.

The code above had a very simple except block, with no on statement. When you
need to handle multiple types of exceptions (or multiple exception class types) or
want to access to the exception object passed to the block, you need to have one or
more on statements:
function DividePlusOneBis (A, B: Integer): Integer;
begin
 try
 Result := A div B; // error if B equals 0
 Result := Result + 1;
 except

Marco Cantù, Object Pascal Handbook

244 - 09: Handling Exceptions

 on E: EDivByZero do
 begin
 Result := 0;
 ShowMessage (E.Message);
 end;
 end;
end;

In the exception-handling statement, we catch the EDivByZero exception, which is
defined by the run-time library. There are a number of these exception types refer-
ring to run-time problems (such as a division by zero or a wrong dynamic cast), to
system problems (such as out-of-memory errors), or to component errors (such as a
wrong index). All of these exceptions classes inherit from the base class Exception,
which offers some minimal features like the Message property I used in the code
above. These classes form an actual hierarchy with some logical structure.

note Notice that while types in Object Pascal are generally marked with an initial letter T, exception
classes take an exception to the rule and generally start with the letter E.

The Exceptions Hierarchy

Here is a partial list of the core RTL exception classes defined in the SysUtils unit
(most of the other system libraries add their own exception types):

Exception
 EArgumentException
 EArgumentOutOfRangeException
 EArgumentNilException
 EPathTooLongException
 ENotSupportedException
 EDirectoryNotFoundException
 EFileNotFoundException
 EPathNotFoundException
 EListError
 EInvalidOpException
 ENoConstructException
 EAbort
 EHeapException
 EOutOfMemory
 EInvalidPointer
 EInOutError
 EExternal
 EExternalException
 EIntError
 EDivByZero
 ERangeError
 EIntOverflow
 EMathError

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 245

 EInvalidOp
 EZeroDivide
 EOverflow
 EUnderflow
 EAccessViolation
 EPrivilege
 EControlC
 EQuit
 EInvalidCast
 EConvertError
 ECodesetConversion
 EVariantError
 EPropReadOnly
 EPropWriteOnly
 EAssertionFailed
 EAbstractError
 EIntfCastError
 EInvalidContainer
 EInvalidInsert
 EPackageError
 ECFError
 EOSError
 ESafecallException
 EMonitor
 EMonitorLockException
 ENoMonitorSupportException
 EProgrammerNotFound
 ENotImplemented
 EObjectDisposed
 EJNIException

note I don't know about you, but I still have to figure out the exact usage scenario of what I consider
the most odd exception class, the EProgrammerNotFound exception.

Now that you have seen the core exceptions hierarchy, I can add one piece of infor-
mation to the previous description of the except-on statements. These statements
are evaluated in sequence until the system finds an exception class matching the
type of the exception object that was raised. Now the matching rule used is the type
compatibility rule we examined in the last chapter: an exception object is compatible
with any of the base types of its own specific type (like a TDog object was compatible
with the TAnimal class).

This means you can have multiple exception handler types that match the exception.
If you want to be able to handle the more granular exceptions (the lower classes of
the hierarchy) along with the more generic one in case none of the previous matches,
you have to list the handler blocks from the more specific to the more generic (or
from the child exception class up to its parent classes). Also, if you write a handler
for the type Exception it will be a catch-all clause. Here is a code snippet with two
handlers in one block:

Marco Cantù, Object Pascal Handbook

246 - 09: Handling Exceptions

function DividePlusOne (A, B: Integer): Integer;
begin
 try
 Result := A div B; // error if B equals 0
 Result := Result + 1;
 except
 on EDivByZero do
 begin
 Result := 0;
 MessageDlg (‘Divide by zero error’,
 mtError, [mbOK], 0);
 end;
 on E: Exception do
 begin
 Result := 0;
 MessageDlg (E.Message,
 mtError, [mbOK], 0);
 end;
 end; // end of except block
end;

In this code there are two different exception handlers after the same try block. You
can have any number of these handlers, which are evaluated in sequence as
explained above.

Keep in mind that using a handler for every possible exception is not usually a good
choice. It is better to leave unknown exceptions to the system. The default exception
handler generally displays the error message of the exception class in a message box,
and then resumes normal operation of the program.

note You can actually modify the normal exception handler by providing a method for the
Application.OnException event, for example logging the exception message in a file rather than
displaying it to the user.

Raising Exceptions

Most exceptions you’ll encounter in your Object Pascal programming will be gener-
ated by the system, but you can also raise exceptions in your own code when you
discover invalid or inconsistent data at run time.

In most cases, for a custom exception you'll define your own exception type. Simply
create a new subclass of the default exception class or one of its existing subclasses
we saw above:

type
 EArrayFull = class (Exception);

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 247

In most cases, you don't need to add any methods or fields to the new exception
class and the declaration of an empty derived class will suffice.

The scenario for this exception type would be a method that adds elements to an
array raising an error when the array is full. This is accomplished by creating the
exception object and passing it to the raise keyword:

if MyArray.Full then
 raise EArrayFull.Create ('Array full');

This Create method (inherited from the base Exception class) has a string parame-
ter to describe the exception to the user.

note You don’t need to worry about destroying the object you have created for the exception, because it
will be deleted automatically by the exception-handler mechanism.

There is a second scenario for using the raise keyword. Within an except block you
might want to perform some actions but don't trap the exception, letting it flow to
the enclosing exception handler block. In this case, you can call raise with no
parameters. The operation is called re-raising an exception.

Exceptions and the Stack

When the program raises an exception and the current routine doesn’t handle it,
what happens to your method and function call stack? The program starts searching
for a handler among the functions already on the stack. This means that the pro-
gram exits from existing functions and does not execute the remaining statements.
To understand how this works, you can either use the debugger or add a number of
simple output lines, to be informed when a certain source code statement is exe-
cuted. In the next application project, ExceptionFlow, I’ve followed this second
approach.

For example, when you press the Raise1 button in the form of the ExceptionFlow
project, an exception is raised and not handled, so that the final part of the code will
never be executed:

procedure TForm1.ButtonRaise1Click(Sender: TObject);
begin
 // unguarded call
 AddToArray (24);
 Show ('Program never gets here');
end;

Marco Cantù, Object Pascal Handbook

248 - 09: Handling Exceptions

Notice that this method calls the AddToArray procedure, which invariably raises the
exception. When the exception is handled, the flow starts again after the handler
and not after the code that raises the exception. Consider this modified method:

procedure TForm1.ButtonRaise2Click(Sender: TObject);
begin
 try
 // this procedure raises an exception
 AddToArray (24);
 Show ('Program never gets here');
 except
 on EArrayFull do
 Show ('Handle the exception');
 end;
 Show ('ButtonRaise1Click call completed');
end;

The last Show call will be executed right after the second one, while the first is always
ignored. I suggest that you run the program, change its code, and experiment with it
to fully understand the program flow when an exception is raised.

note Given the code location where you handle the exception is different than the one the exception
was raised, it would be nice to be able to know in which method the exception was actually raised.
While there are ways to get a stack trace when the exception is raised and make that information
available in the handler, this is really an advanced topic I don't plan to cover here. In most cases,
Object Pascal developers rely on third party libraries and tools (like JclDebug from Jedi Compo -
nent Libray, MadExcept, or EurekaLog).

The Finally Block

There is a fourth keyword for exception handling that I’ve mentioned but haven’t
used so far, finally. A finally block is used to perform some actions (usually
cleanup operations) that should always be executed. In fact, the statements in the
finally block are processed whether or not an exception takes place. The plain code
following a try block, instead, is executed only if an exception was not raised or if it
was raised and handled. In other words, the code in the finally block is always exe-
cuted after the code of the try block, even if an exception has been raised.

Consider this method (part of the ExceptFinally application project), which per-
forms some time-consuming operations and shows in the form caption its status:

procedure TForm1.btnWrongClick(Sender: TObject);
var
 I, J: Integer;
begin

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 249

 Caption := 'Calculating';

 J := 0;
 // long (and wrong) computation...
 for I := 1000 downto 0 do
 J := J + J div I;

 Caption := 'Finished';
 Show ('Total: ' + J.ToString);
end;

Because there is an error in the algorithm (as the variable I can reach a value of 0
and is also used in a division), the program will break, but it won’t reset the form
caption. This is what a try-finally block is for:

procedure TForm1.BtnTryFinallyClick(Sender: TObject);
var
 I, J: Integer;
begin
 Caption := 'Calculating';
 J := 0;
 try
 // long (and wrong) computation...
 for I := 1000 downto 0 do
 J := J + J div I;
 Show ('Total: ' + J.ToString);
 finally
 Caption := 'Finished';
 end;
end;

When the program executes this function, it always resets the cursor, whether an
exception (of any sort) occurs or not. The drawback to this version of the function is
that it doesn’t handle the exception.

Finally And Except

Curiously enough, in the Object Pascal language a try block can be followed by
either an except or a finally statement but not both at the same time. Given you'd
often want to have both blocks, the typical solution is to use two nested try blocks,
associating the internal one with a finally statement and the external one with an
except statement or vice versa, as the situation requires. Here is the code of this
third button of the ExceptFinally example:

procedure TForm1.BtnTryTryClick(Sender: TObject);
var
 I, J: Integer;
begin
 Caption := 'Calculating';
 J := 0;
 try try

Marco Cantù, Object Pascal Handbook

250 - 09: Handling Exceptions

 // long (and wrong) computation...
 for I := 1000 downto 0 do
 J := J + J div I;
 Show ('Total: ' + J.ToString);
 except
 on E: EDivByZero do
 begin
 // re-raise the exception with a new message
 raise Exception.Create ('Error in Algorithm');
 end;
 end;
 finally
 Caption := 'Finished';
 end;
end;

Exceptions in the Real World

Exceptions are a great mechanism for error reporting and error handling at large
(that is not within a single code fragment, but as part of a larger architecture).
Exceptions in general should not be a substitute for checking a local error condition
(although some developers use them this way). For example, if you are not sure
about a file name, checking if a file exists before opening is generally considered a
better approach than opening the file anyway using exceptions to handle the sce-
nario the file is not there. However, checking if there is still enough memory disk
space before writing to the file, is a type of check that makes little sense to do all over
the places, as that is an extremely rare condition.

One way to put it is that a program should check for common error conditions and
leave the unusual and unexpected ones to the exception handling mechanism. Of
course, the line between the two scenarios are often blurred, and different develop-
ers will have different ways to judge.

Where you'd invariably use exceptions is for letting different classes and modules
pass error conditions to each other. Returning error codes is extremely tedious and
error prone compared to using exceptions. Raising exceptions is more common in a
component or library class than in an event handler. You can end up writing a lot of
code without raising on handling exceptions.

What is extremely important and very common in every day code, instead, is using
finally blocks to protect resources in case of an exception. You should always protect
blocks that refer to external resource with a finally statement, to avoid resource
leaks in case an exception is raised. Every time you open and close, connect and dis-

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 251

connect, create and destroy something in a single block, a finally statement is
required.

Ultimately, a finally statement let you keep a program stable even in case an excep-
tion is raised, letting the user continue to use or (in case of more significant issues)
orderly shut down the application.

Global Exceptions Handling

If an exception raised by an event handler stops the standard flow of execution, will
it also terminate the program if no exception handler is found? This is really the case
for a console application or other special purpose code structures, while most visual
applications (included those based on the VCL or FireMonkey libraries) have a
global message handling loop that wraps each execution in a try-except block, so
that if an exception is raise in an event handler, this is trapped.

What happens at this point depends on the library, but there is a generally a pro-
grammatic way to intercept those exceptions with global handlers or a way to
display an error message. While some of the details differ, this is true for both VCL
and FireMonkey. In the previous demos, you saw a simple error message displayed
when an exception was raised.

If you want to change that behavior you can handle the OnException event of the
global Application object. Although this operation pertains more to the visual
library and event handling side of the application, it is also tied to the exception han-
dling that it is worth to cover it here.

I've taken the previous example, called it ErrorLog, and I’ve added a new method to
the main form:

 public
 procedure LogException (Sender: TObject; E: Exception);

In the OnCreate event handler I've added the code to hook a method to the global
OnException event, and after that I've written the actual code of the global handler:

procedure TForm1.FormCreate(Sender: TObject);
begin
 Application.OnException := LogException;
end;

procedure TForm1.LogException(Sender: TObject; E: Exception);
begin
 Show('Exception ' + E.Message);
end;

Marco Cantù, Object Pascal Handbook

252 - 09: Handling Exceptions

note You'll learn the details of how you can assign a method pointer to an event (like I did above) in
the next chapter.

With the new method in the global exceptions handler, the program writes to the
output the error message, without stopping the application with an error message.

Exceptions and Constructors

There is a slightly more advanced issue surrounding exceptions, namely what hap-
pens when an exception is raised within the constructor of an object. Not all Object
Pascal programmers know that in such circumstances the destructor of that object
(if available) will be called.

This is important to know, because it implies that a destructor might be called for a
partially initialized object. Taking for granted that internal objects exist in a destruc-
tor because they are created in the constructor might get you into some dangerous
situations in case of actual errors (that is, raising another exception before the first
one is handled).

This also implies that the proper sequence for a try-finally should involve creating
the object outside of the block, as it is automatically protected by the compiler. So if
the constructor fails there is no need to Free the object. This is why the standard
coding style in Object Pascal is to protect an object by writing:

AnObject := AClass.Create;
try
 // use the object...
finally
 AnObject.Free;
end;

note Something similar also happens for two special methods of the TObject class, AfterDestruction
and BeforeConstruction, a pseudo-constructor and a pseudo-destructor introduced for C++
compatibility (but seldom used in Object Pascal). Similarly to what happens with the plain con -
structor and destructor, if an exception is raised in the AfterConstruction, BeforeDestruction
is called (and also the plain destructor, of course).

Notice that you don't need to use the finally block when using the ARC-enabled
Object Pascal compilers, as in that case the release of the object memory is auto-
matic, as I'll detail in Chapter 13. Given I've often witnessed errors in properly
disposing of an object in a destructor, let me further clarify the issue with an actual
demo showing the problem... along with the actual fix. Suppose you have a class

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 253

including a string list, and that you write the following code to create and destroy the
class (part of the ConstructorExcept code):

type
 TObjectWithList = class
 private
 FStringList: TStringList;
 public
 constructor Create (Value: Integer);
 destructor Destroy; override;
 end;

constructor TObjectWithList.Create(Value: Integer);
begin
 if Value < 0 then
 raise Exception.Create('Negative value not allowed');

 FStringList := TStringList.Create;
 FStringList.Add('one');
end;

destructor TObjectWithList.Destroy;
begin
 FStringList.Clear;
 FStringList.Free;
 inherited;
end;

At first sight, the code seems correct. The constructor is allocating the sub-object
and the destructor is properly disposing it (which is required when using a non
ARC-enabled Object Pascal compiler). Moreover, the calling code is written in a way
that if an exception is raise after the constructor, the Free method is called, but if the
exception is in the constructor nothing happens:

var
 Obj: TObjectWithList;
begin
 Obj := TObjectWithList.Create (-10);
 try
 // do something
 finally
 Show ('Freeing object');
 Obj.Free;
 end;

So does this work? Absolutely not! When this code is involved an exception is raise
in the constructor before creating the string list, and the system immediately
invokes the destructor, which tries to clear the non-exiting list raising an access vio-
lation or a similar error.

Why would this happen? Again, if you reverse the sequence in the constructor (cre-
ate the string list first, raise the exception later) everything works properly because

Marco Cantù, Object Pascal Handbook

254 - 09: Handling Exceptions

the destructor indeed needs to free the string list. But that is not the real fix, only a
workaround. What you should always consider is protecting the code of a destructor
in a way it never assumes the constructor was completely executed. This could be an
example:

destructor TObjectWithList.Destroy;
begin
 if Assigned (FStringList) then
 begin
 FStringList.Clear;
 FStringList.Free;
 end;
 inherited;
end;

Advanced Exceptions

This is one of the sections of the book you might want to skip the first time
you read it, as it might be a little too complex. Unless you have already a
good knowledge of the language, I suggest moving to the next chapter.

In the final part of the chapter, I'm going to cover some more advanced topics
related with exceptions handling. I'll cover nested exceptions (RaiseOuterException)
and intercepting exceptions of a class (RaisingException). These features were not
part of the early versions of Delphi, and add significative power to the system.

Nested Exceptions and the InnerException
Mechanism

What happens if you raise an exception within an exception handler? The traditional
answer is that the new exception will replace the existing one, which is why it is a
common practice to combine at least the error messages, writing code like this (lack-
ing any actual operation, and showing only the exceptions-related statements):

procedure TFormExceptions.ClassicReraise;
begin
 try
 // do something...
 raise Exception.Create('Hello');
 except on E: Exception do
 // try some fix...
 raise Exception.Create('Another: ' + E.Message);

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 255

 end;
end;

This code is part of the AdvancedExcept application project. When calling the
method and handling the exception, you'll see a single exception with the combined
message:

procedure TFormExceptions.btnTraditionalClick(
 Sender: TObject);
begin
 try
 ClassicReraise;
 except
 on E: Exception do
 Show ('Message: ' + E.Message);
 end;
end;

The (quite obvious) output is:

Message: Another: Hello

Now in Object Pascal there is system-wide support for nested exceptions. Within an
exception handler, you can create and raise a new exception and still keep the cur-
rent exception object alive, connecting it to the new exception. To accomplish this,
the Exception class has an InnerException property, referring to the previous
exception, and a BaseException property that lets you access the first exception of a
series, as exception nesting can be recursive. These are the elements of the
Exception class related to the management of nested exceptions:

type
 Exception = class(TObject)
 private
 FInnerException: Exception;
 FAcquireInnerException: Boolean;
 protected
 procedure SetInnerException;
 public
 function GetBaseException: Exception; virtual;
 property BaseException: Exception read GetBaseException;
 property InnerException: Exception read FInnerException;
 class procedure RaiseOuterException(E: Exception); static;
 class procedure ThrowOuterException(E: Exception); static;
 end;

note Static class methods are a special form of class methods. Both of these language features will be
explained in Chapter 12.

From the perspective of a user, to raise an exception while preserving the existing
one you should call the RaiseOuterException class method (or the identical
ThrowOuterException, which uses C++-oriented naming). When you handle a simi-

Marco Cantù, Object Pascal Handbook

256 - 09: Handling Exceptions

lar exception you can use the new properties to access further information. Notice
that you can call RaiseOuterException only within an exception handler as the
source code-based documentation tells:

Use this function to raise an exception instance from within an exception
handler and you want to "acquire" the active exception and chain it to the
new exception and preserve the context. This will cause the
FInnerException field to get set with the exception currently in play.

You should only call this procedure from within an except block where this
new exception is expected to be handled elsewhere.

For an actual example you can refer to the AdvancedExcept application project. In
this example I've added a method that raises a nested exception in the new way
(compared to the ClassicReraise method listed earlier):

procedure TFormExceptions.MethodWithNestedException;
begin
 try
 raise Exception.Create ('Hello');
 except
 Exception.RaiseOuterException (
 Exception.Create ('Another'));
 end;
end;

Now in the handler for this outer exception we can access both exception objects
(and also see the effect of calling the new ToString method):

 try
 MethodWithNestedException;
 except
 on E: Exception do
 begin
 Show ('Message: ' + E.Message);
 Show ('ToString: ' + E.ToString);
 if Assigned (E.BaseException) then
 Show ('BaseException Message: ' +
 E.BaseException.Message);
 if Assigned (E.InnerException) then
 Show ('InnerException Message: ' +
 E.InnerException.Message);
 end;
 end;

The output of this call is the following:

Message: Another
ToString: Another
Hello
BaseException Message: Hello
InnerException Message: Hello

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 257

There are two relevant elements to notice. The first is that in the case of a single
nested exception the BaseException property and the InnerException property
both refer to the same exception object, the original one. The second is that while
the message of the new exception contains only the actual message, by calling
ToString you get access to the combined messages of all the nested exceptions, sep-
arated by an sLineBreak (as you can see in the code of the method Exception.
ToString). The choice of using a line break in this case produces odd looking output,
but once you know about it you can format it the way you like, replacing the line
breaks with a symbol of your choice or assigning them to the Text property of a
string list.

As a further example, let me show you what happens when raising two nested excep-
tions. This is the new method:

procedure TFormExceptions.MethodWithTwoNestedExceptions;
begin
 try
 raise Exception.Create ('Hello');
 except
 begin
 try
 Exception.RaiseOuterException (
 Exception.Create ('Another'));
 except
 Exception.RaiseOuterException (
 Exception.Create ('A third'));
 end;
 end;
 end;
end;

This called a method that is identical to the one we saw previously and produces the
following output:

Message: A third
ToString: A third
Another
Hello
BaseException Message: Hello
InnerException Message: Another

This time the BaseException property and the InnerException property refer to dif-
ferent objects and the output of ToString spans three lines.

Intercepting an Exception

Another advanced feature added over time to the exception handling system is the
method:

Marco Cantù, Object Pascal Handbook

258 - 09: Handling Exceptions

procedure RaisingException(P: PExceptionRecord); virtual;

According to the source code documentation:

This virtual function will be called right before this exception is about to be
raised. In the case of an external exception, this is called soon after the
object is created since the "raise" condition is already in progress.

The implementation of the function in the Exception class manages the inner excep-
tion (by calling the internal SetInnerException), which probably explains why it
was introduced in the first place, at the same time as the inner exception mecha-
nism.

In any case, now that we have this feature available we can take advantage of it. By
overriding this method, in fact, we have a single post-creation function that is invari-
ably called, regardless of the constructor used to create the exception. In other
words, you can avoid defining a custom constructor for your exception class and let
users call one of the many constructors of the base Exception class, and still have
custom behavior. As an example, you can log any exception of a given class (or sub-
class).

This is a custom exception class (defined again in the AdvancedExcept example) that
overrides the RaisingException method:

type
 ECustomException = class (Exception)
 protected
 procedure RaisingException(
 P: PExceptionRecord); override;
 end;

procedure ECustomException.
 RaisingException(P: PExceptionRecord);
begin
 // log exception information
 FormExceptions.Show('Exception Addr: ' + IntToHex (
 Integer(P.ExceptionAddress), 8));
 FormExceptions.show('Exception Mess: ' + Message);

 // modify the message
 Message := Message + ' (filtered)';

 // standard processing
 inherited;
end;

What this method implementation does is to log some information about the excep-
tion, modify the exception message and then invoke the standard processing of the
base classes (needed for the nested exception mechanism to work). The method is
invoked after the exception object has been created but before the exception is
raised. This can be noticed because the output produced by the Show calls is gener-

Marco Cantù, Object Pascal Handbook

09: Handling Exceptions - 259

ated before the exception is caught by the debugger! Similarly, if you put a break-
point in the RaisingException method, the debugger will stop there before catching
the exception.

Again, nested exceptions and this intercepting mechanism are not commonly used
in application code, as they are language features more meant for library and com-
ponent developers.

Marco Cantù, Object Pascal Handbook

part iii: advanced

features

Now that we've delved into the language foundations and into the object-oriented
programming paradigm, it is time to discover some of the latest and more
advanced features of the Object Pascal language. Generics, anonymous methods,
and reflection open up to developing code using new paradigms that extend object-
oriented programming in significant ways.

Some of these more advanced language features, in fact, let developers embrace
new ways of writing code, offering even more type and code abstractions, and
allowing for a more dynamic approach to coding using reflection to its fullest
potential.

The last part of the section will expand on these language features by offering an
overview of core run-time library elements, which are so core to the Object Pascal
development model to make the distinction between language to library quite
blurred. We'll inspect, for example, the TObject class that, as we saw earlier, is the
base class of all classes you write: far to prominent a role to be confined to a library
implementation detail.

Part III: Advanced Features - 261

Chapters of Part III

Chapter 14: Generics

Chapter 15: Anonymous Methods

Chapter 16: Reflection and Attributes

Chapter 17: The TObject Class

Chapter 18: The Run Time Library

Marco Cantù, Object Pascal Handbook

262 - 14: Generics

14: generics

The strong type checking provided by Object Pascal is useful for improving the cor-
rectness of the code, a topic I've stressed a lot in this book. Strong type checking,
though, can also be a nuisance, as you might want to write a procedure or a class
that can act on different data types. This issue is addressed by a feature of the Object
Pascal language, available also in similar languages like C# and Java, called gener-
ics.

The concept of generic or template classes come from the C++ language. This is
what I wrote in 1994 in a book about C++:

You can declare a class without specifying the type of one or more data
members: this operation can be delayed until an object of that class is actu-
ally declared. Similarly, you can define a function without specifying the
type of one or more of its parameters until the function is called.

note The book is “Borland C++ 4.0 Object-Oriented Programming”, written by me with Steve Tendon
in the early 90ies.

This chapter delves into the topic, starting with the foundations but also covering
some advanced usage scenarios, and even indicating how generics can even be
applied to standard visual programming.

Marco Cantù, Object Pascal Handbook

14: Generics - 263

Generic Key-Value Pairs

As a first example of a generic class, I've implemented a key-value pair data struc-
ture. The first code snippet below shows the data structure written in a traditional
fashion, with an object used to hold the value:

type
 TKeyValue = class
 private
 FKey: string;
 FValue: TObject;
 procedure SetKey(const Value: string);
 procedure SetValue(const Value: TObject);
 public
 property Key: string read FKey write SetKey;
 property Value: TObject read FValue write SetValue;
 end;

To use this class you can create an object, set its key and value, and use it, as in the
following snippets of various methods of the main form of the KeyValueClassic
application project:

// FormCreate
kv := TKeyValue.Create;

// Button1Click
kv.Key := 'mykey';
kv.Value := Sender;

// Button2Click
kv.Value := self; // the form

// Button3Click
ShowMessage('[' + kv.Key +',' + kv.Value.ClassName + ']');

What if you need a similar class, holding an Integer rather than an object? Well,
either you make a very unnatural (and dangerous) type cast, or you create a new and
separate class to hold a string key with a numeric value. Although copy and paste of
the original class might sound a solution, you end up with two copies for a very simi-
lar piece of code, you are going against good programming principles... and you'll
have to update with new features or correct the same bugs two, or three or twenty
times.

Generics make it possible to use a much broader definition for the value, writing a
single generic class. Once you instantiate the key-value generic class, it becomes a
specific class, tied to a given data type. So you still end up with two, or three, or
twenty classes compiled into your application, but you have a single source code def-
inition for all of them, still replying on proper string type checking and without a

Marco Cantù, Object Pascal Handbook

264 - 14: Generics

runtime overhead. But I'm getting ahead of myself: let's start with the syntax used to
define the generic class:

type
 TKeyValue<T> = class
 private
 FKey: string;
 FValue: T;
 procedure SetKey(const Value: string);
 procedure SetValue(const Value: T);
 public
 property Key: string read FKey write SetKey;
 property Value: T read FValue write SetValue;
 end;

In this class definition, there is one unspecified type, indicated by the placeholder T.
The symbol T is frequently used by convention, but as far as the compiler is con-
cerned you can use just any symbol you like. Using T generally makes the code more
readable when the generic class uses only one parametric type; in case the class
needs multiple parametric types it is common to name them according to their
actual role, rather than using a sequence of letters (T, U, V) as it happened in C++
during the early days.

note “T” has been the standard name, or placeholder, for a generic type since the days the C++ lan-
guage introduced templates in the early 1990s. Depending on the authors, the “T” stands for
either “Type” or “Template type”.

The generic TKeyValue<T> class uses the unspecified type as the type of one of its
two fields, the property value, and the setter method parameter. The methods are
defined as usual, but notice that regardless of the fact they have to do with the
generic type, their definition contains the complete name of the class, including the
generic type:

procedure TKeyValue<T>.SetKey(const Value: string);
begin
 FKey := Value;
end;

procedure TKeyValue<T>.SetValue(const Value: T);
begin
 FValue := Value;
end;

To use the class, instead, you have to fully qualify it, providing the actual type of the
generic type. For example, you can now declare a key-value object hosting buttons as
values by writing:

kv: TKeyValue<TButton>;

Marco Cantù, Object Pascal Handbook

14: Generics - 265

The full name is required also when creating an instance, because this is the actual
type name (while the generic, uninstantiated type name is like a type construction
mechanism).

Using a specific type of the value of the key-value pair makes the code much more
robust, as you can now only add TButton (or derived) objects to the key-value pair
and can use the various methods of the extracted object. These are some snippets
from the main form of the KeyValueGeneric application project:

// FormCreate
kv := TKeyValue<TButton>.Create;

// Button1Click
kv.Key := 'mykey';
kv.Value := Sender as TButton;

// Button2Click
kv.Value := Sender as TButton; // was "self"

// Button3Click
ShowMessage ('[' + kv.Key + ',' + kv.Value.Name + ']');

When assigning a generic object in the previous version of the code we could add
either a button or a form, now we can use only button, a rule enforced by the com-
piler. Likewise, rather than a generic kv.Value.ClassName in the output we can use
the component Name, or any other property of the TButton class.

Of course, we can also mimic the original program by declaring the key-value pair
as:

kvo: TKeyValue<TObject>;

In this version of the generic key-value pair class, we can add any object as value.
However, we won't be able to do much on the extracted objects, unless we cast them
to a more specific type. To find a good balance, you might want to go for something
in between specific buttons and any object, requesting the value to be a component:

kvc: TKeyValue<TComponent>;

You can see corresponding code snippets in the same KeyValueGeneric application
project. Finally, we can also create an instance of the generic key-value pair class
that doesn't store object values, but rather plain integers:

var
 kvi: TKeyValue<Integer>;
begin
 kvi := TKeyValue<Integer>.Create;
 try
 kvi.Key := 'object';
 kvi.Value := 100;
 kvi.Value := Left;
 ShowMessage ('[' + kvi.Key + ',' +

Marco Cantù, Object Pascal Handbook

266 - 14: Generics

 IntToStr (kvi.Value) + ']');
 finally
 kvi.Free;
 end;

Type Rules on Generics

When you declare an instance of a generic type, this type gets a specific version,
which is enforced by the compiler in all subsequent operations. So if you have a
generic class like:

type
 TSimpleGeneric<T> = class
 Value: T;
 end;

as you declare a specific object with a given type, you cannot assign a different type
to the Value field. Given the following two objects, some of the assignments below
(part of the TypeCompRules application project) are incorrect:

var
 sg1: TSimpleGeneric<string>;
 sg2: TSimpleGeneric<Integer>;
begin
 sg1 := TSimpleGeneric<string>.Create;
 sg2 := TSimpleGeneric<Integer>.Create;

 sg1.Value := 'foo';
 sg1.Value := 10; // Error
 // E2010 Incompatible types: 'string' and 'Integer'

 sg2.Value := 'foo'; // Error
 // E2010 Incompatible types: 'Integer' and 'string'
 sg2.Value := 10;

Once you define a specific type in the generic declaration, this is enforced by the
compiler, as you should expect from a strongly-typed language like Object Pascal.
Type checking is also in place for generic objects as a whole. As you specify the
generic parameter for an object, you cannot assign to it a similar generic type based
on a different and incompatible type instance. If this seems confusing, an example
should help clarifying:

sg1 := TSimpleGeneric<Integer>.Create; // Error
// E2010 Incompatible types:
// 'TSimpleGeneric<System.string>'
// and 'TSimpleGeneric<System.Integer>'

As we'll see in the section “Generic Types Compatibility Rules” in this peculiar case
the type compatibility rule is by structure and not by type name. You cannot assign a
different and incompatible type to a generic type once it has been declared.

Marco Cantù, Object Pascal Handbook

14: Generics - 267

Generics in Object Pascal

In the previous example we have seen how you can define and use a generic class in
Object Pascal. I decided to introduce this feature with an example before delving
into the technicalities, which are quite complex and very important at the same time.
After covering generics from a language perspective we'll get back to more examples,
including the use and definition of generic container classes, one of the main uses of
this technique in the language.

We have seen that when you define a class you can add in an extra “parameter”
within angle brackets to hold the place of a type to be provided later:

type
 TMyClass<T> = class
 ...
 end;

The generic type can be used as the type of a field (as I did in the previous example),
as the type of a property, as the type of a parameter or return value of a function,
and more. Notice that it is not compulsory to use the type for a local field (or array),
as there are cases in which the generic type is used only as a result, a parameter, or
is not used in the declaration of the class, but only in the definition of some of its
methods.

This form of extended or generic type declaration is not only available for classes but
also for records (that as I covered in Chapter 5, can also have methods, properties,
and overloaded operators). A generic class can also have multiple parameterized
types, as in following case in which you can specify an input parameter and a return
value of a different type for a method:

type
 TPWGeneric<TInput,TReturn> = class
 public
 function AnyFunction (Value: TInput): TReturn;
 end;

The implementation of generics in Object Pascal, like in other static languages is not
based on runtime support. It is handled by the compiler and the linker, leaving
almost nothing to the runtime mechanism. Unlike virtual function calls, which are
bound at runtime, generic class methods are generated once for each generic type
you instantiate, and are generated at compile time! We'll see the possible drawbacks
of this approach, but on the positive side it implies that generic classes are as effi-
cient as plain classes, or even more efficient as the need for runtime checks is
reduced. Before we look at some of the internals, though, let me focus on some very
significant rules which break the traditional Pascal language type compatibility
rules.

Marco Cantù, Object Pascal Handbook

268 - 14: Generics

Generic Types Compatibility Rules

In traditional Pascal and in Object Pascal the core type compatibility rules are based
on type name equivalence. In other words, two variables are type compatible only if
their type name is the same, regardless of the actual data structure to which they
refer.

This is a classic example of type incompatibility with static arrays (part of the
TypeCompRules application project):

type
 TArrayOf10 = array [1..10] of Integer;

procedure TForm30.Button1Click(Sender: TObject);
var
 array1: TArrayOf10;
 array2: TArrayOf10
 array3, array4: array [1..10] of Integer;
begin
 array1 := array2;
 array2 := array3; // Error
 // E2010 Incompatible types: 'TArrayOf10' and 'Array'

 array3 := array4;
 array4 := array1; // Error
 // E2010 Incompatible types: 'Array' and 'TArrayOf10'
end;

As you can see in the code above, all four arrays are structurally identical. However,
the compiler will let you assign only those that are type compatible, either because
their type has the same explicit name (like TArrayOf10) or because they have the
same implicit (or compiler generated, type name, as the two arrays declared in a sin-
gle statement.

This type compatibility rule has very limited exceptions, like those related to derived
classes. Another exception to the rule, and a very significant one, is type compatibil-
ity for generic types, which is probably also used internally by the compiler to
determine when to generate a new type from the generic one, with all of its meth-
ods.

The new rule states that generic types are compatible when they share the same
generic class definition and instance type, regardless of the type name associated
with this definition. In other words, the full name of the generic type instance is a
combination of the generic type and the instance type.

In the following example the four variables are all type compatible:

type
 TGenericArray<T> = class
 anArray: array [1..10] of T;

Marco Cantù, Object Pascal Handbook

14: Generics - 269

 end;

 TIntGenericArray = TGenericArray<Integer>;

procedure TForm30.Button2Click(Sender: TObject);
var
 array1: TIntGenericArray;
 array2: TIntGenericArray;
 array3, array4: TGenericArray<Integer>;
begin
 array1 := TIntGenericArray.Create;
 array2 := array1;
 array3 := array2;
 array4 := array3;
 array1 := array4;
end;

Generic Methods for Standard Classes

While the use of generics types to define classes is likely the most common scenario,
generic types can also be used in non-generic classes. In other words, a regular class
can have a generic method. In this case, you don't specific a specific type for the
generic placeholder when you create an instance of the class, but also when you
invoke the method. Here is an example class with a generic method from the
GenericMethod application project:

type
 TGenericFunction = class
 public
 function WithParam <T> (t1: T): string;
 end;

note When I first wrote this code, probably with a reminiscence of my C++ days, I wrote the parameter
as (t: T). Needless to say in a case insensitive language like Object Pascal, this is not a great idea.
The compiler will actually let it go but issue errors every time you refer to the generic type T.

There isn't much you can do inside a similar class method (at least unless you use
constraints, covered later in this chapter), so I wrote some code using special generic
type functions (again covered later) and a special function to convert the type to a
string, which it is not relevant to discuss here:

function TGenericFunction.WithParam<T>(t1: T): string;
begin
 Result := GetTypeName (TypeInfo (T));
end;

Marco Cantù, Object Pascal Handbook

270 - 14: Generics

As you can see this method doesn't even use the actual value passed as parameter,
but only grabs some type information. Again, not knowing at all t1 type makes it
fairly complex to use it in code.

You can call various versions of this “global generic function” as follows:

var
 gf: TGenericFunction;
begin
 gf := TGenericFunction.Create;
 try
 Show (gf.WithParam<string>('foo'));
 Show (gf.WithParam<Integer> (122));
 Show (gf.WithParam('hello'));
 Show (gf.WithParam (122));
 Show (gf.WithParam(Button1));
 Show (gf.WithParam<TObject>(Button1));
 finally
 gf.Free;
 end;

All of the calls above are correct, as the parametric type can be implicit in these calls.
Notice the generic type is displayed (as specified or inferred) and not the actual type
of the parameter, which explains this output:

string
Integer
string
ShortInt
TButton
TObject

If you call the method without indicating the type between angle brackets, the actual
type is inferred from the parameter's type. If you call the method with a type and a
parameter, the parameter's type must match the generic type declaration. So the
three lines below won't compile:

 Show (gf.WithParam<Integer>('foo'));
 Show (gf.WithParam<string> (122));
 Show (gf.WithParam<TButton>(self));

Generic Type Instantiation

Notice this is a rather advanced section focusing on some of the internals of
generics and their potential optimization. Good for a second read, not if
this is the first time you are looking into generics.

With the exception of some optimizations, every time you instantiate a generic type,
whether in a method or in a class, a new type is generated by the compiler. This new

Marco Cantù, Object Pascal Handbook

14: Generics - 271

type shares no code with different instances of the same generic type (or different
versions of the same method).

Let's look at an example (which is part of the GenericCodeGen application project).
The program has a generic class defined as:

type
 TSampleClass <T> = class
 private
 data: T;
 public
 procedure One;
 function ReadT: T;
 procedure SetT (value: T);
 end;

The three methods are implemented as follows (notice that the One method is abso-
lutely independent from the generic type):

procedure TSampleClass<T>.One;
begin
 Form30.Show ('OneT');
end;

function TSampleClass<T>.ReadT: T;
begin
 Result := data;
end;

procedure TSampleClass<T>.SetT(value: T);
begin
 data := value;
end;

Now the main program uses the generic type mostly to figure out the in-memory
address of its methods once an instance is generated (by the compiler). This is the
code

procedure TForm30.Button1Click(Sender: TObject);
var
 t1: TSampleClass<Integer>;
 t2: TSampleClass<string>;
begin
 t1 := TSampleClass<Integer>.Create;
 t1.SetT (10);
 t1.One;

 t2 := TSampleClass<string>.Create;
 t2.SetT ('hello');
 t2.One;

 Show ('t1.SetT: ' +
 IntToHex (PInteger(@TSampleClass<Integer>.SetT)^, 8));
 Show ('t2.SetT: ' +

Marco Cantù, Object Pascal Handbook

272 - 14: Generics

 IntToHex (PInteger(@TSampleClass<string>.SetT)^, 8));

 Show ('t1.One: ' +
 IntToHex (PInteger(@TSampleClass<Integer>.One)^, 8));
 Show ('t2.One: ' +
 IntToHex (PInteger(@TSampleClass<string>.One)^, 8));
end;

The result is something like this (the actual values will vary):

t1.SetT: C3045089
t2.SetT: 51EC8B55
t1.One: 4657F0BA
t2.One: 46581CBA

As I anticipated, not only does the SetT method get a different version in memory
generated by the compiler for each data type used, but even the One method does,
despite the fact they are all identical.

Moreover, if you redeclare an identical generic type, you'll get a new set of imple-
mentation functions. Similarly, the same instance of a generic type used in different
units forces the compiler to generate the same code over and over, possibly causing
significant code bloat. For this reason if you have a generic class with many methods
that don't depend on the generic type, it is recommended to define a base non-
generic class with those common methods and an inherited generic class with the
generic methods: this way the base class methods are only compiled and included in
the executable once.

note There is currently compiler, linker, and low-level RTL work being done to reduce the size increase
caused by generics in scenarios like those outlined in this section. See for example the considera -
tions in http://delphisorcery.blogspot.it/2014/10/new-language-feature-in-xe7.html.

Generic Type Functions

The biggest problem with the generic type definitions we have seen so far is that
there is very little you can do with elements of the generic class type. There are two
techniques you can use to overcome this limitation. The first is to make use of the
few special functions of the runtime library that specifically support generic types;
the second (and much more powerful) is to define generic classes with constraints
on the types you can use.

I'll focus on the first technique in this section and on constraints in the next section.
As I mentioned, there are some RTL functions that work on the parametric type (T)
of generic type definition:

Marco Cantù, Object Pascal Handbook

14: Generics - 273

Default (T) is a actually a new function introduced along with generics that returns
the empty or “zero value” or null value for the current type; this can be zero, an
empty string, nil, and so on; the zero-initialized memory has the same value of a
global variable of the same type (differently from local variables, in fact, global ones
are initialized to “zero” by the compiler);

TypeInfo (T) returns the pointer to the runtime information for the current version
of the generic type; you'll find a lot more information about type information in
Chapter 16;

SizeOf (T) returns memory size of the type in bytes (which in case of a reference
type like a string or an object would be the size of the reference, that is 4 bytes for a
32-bit compiler and 8 bytes for a 64-bit compiler).

IsManagedType(T) indicates is the type is managed in memory, as happens for
strings and dynamic arrays

HasWeakRef(T) is tied to ARC-enabled compilers, and indicates whether the target
type has weak references, requiring specific memory management support

GetTypeKind(T) is a shortcut for accessing the type kind from the type information;
which is a slightly higher level type definition than the one returned by TypeInfo.

note All of these methods return compiler evaluated constants rather than calling actual functions at
runtime. The importance of this is not in the fact these operations are very fast, but that this
makes it possible for the compiler and the linker to optimize the generated code, removing unused
branches. If you have a case or an if statement based on the return value of one of these functions,
the compiler can figure out that for a given type only one of the branches is going to be executed,
removing the useless code. When the same generic method is compiled for a different type, it
might end up using a different branch, but again the compiler can figure out up front and opti -
mize the size of the method.

The GenericTypeFunc application project has a generic class showing the three
generic type functions in action:

type
 TSampleClass <T> = class
 private
 data: T;
 public
 procedure Zero;
 function GetDataSize: Integer;
 function GetDataName: string;
 end;

function TSampleClass<T>.GetDataSize: Integer;
begin
 Result := SizeOf (T);
end;

Marco Cantù, Object Pascal Handbook

274 - 14: Generics

function TSampleClass<T>.GetDataName: string;
begin
 Result := GetTypeName (TypeInfo (T));
end;

procedure TSampleClass<T>.Zero;
begin
 data := Default (T);
end;

In the GetDataName method I used the GetTypeName function (of the TypInfo unit)
rather than directly accessing the data structure because it performs the proper con-
version from the encoded string value holding the type name.

Given the declaration above, you can compile the following test code, that repeats
itself three times on three different generic type instances. I've omitted the repeated
code, but show the statements used to access the data field, as they change depend-
ing on the actual type:

var
 t1: TSampleClass<Integer>;
 t2: TSampleClass<string>;
 t3: TSampleClass<double>;
begin
 t1 := TSampleClass<Integer>.Create;
 t1.Zero;
 Show ('TSampleClass<Integer>');
 Show ('data: ' + IntToStr (t1.data));
 Show ('type: ' + t1.GetDataName);
 Show ('size: ' + IntToStr (t1.GetDataSize));

 t2 := TSampleClass<string>.Create;
 ...
 Show ('data: ' + t2.data);

 t3 := TSampleClass<double>.Create;
 ...
 Show ('data: ' + FloatToStr (t3.data));

Running this code (from the GenericTypeFunc application project) produces the fol-
lowing output:

TSampleClass<Integer>
data: 0
type: Integer
size: 4
TSampleClass<string>
data:
type: string
size: 4
TSampleClass<double>
data: 0
type: Double
size: 8

Marco Cantù, Object Pascal Handbook

14: Generics - 275

Notice that you can use the generic type functions also on specific types, outside of
the context of generic classes. For example, you can write:

var
 I: Integer;
 s: string;
begin
 I := Default (Integer);
 Show ('Default Integer': + IntToStr (I));

 s := Default (string);
 Show ('Default String': + s);

 Show ('TypeInfo String': +
 GetTypeName (TypeInfo (string));

This is the trivial output:

Default Integer: 0
Default String:
TypeInfo String: string

note You cannot apply the TypeInfo call to a variable, like TypeInfo(s) in the code above, but only to
a type.

Class Constructors for Generic Classes

A very interesting case arises when you define a class constructor for a generic class.
In fact, one such constructor is generated by the compiler and called for each generic
class instance, that is, for each actual type defined using the generic template. This is
quite interesting, because it would be very complex to execute initialization code for
each actual instance of the generic class you are going to create in your program
without a class constructor.

As an example, consider a generic class with some class data. You'll get an instance
of this class data for each generic class instance. If you need to assign an initial value
to this class data, you cannot use the unit initialization code, as in the unit defining
the generic class you don't know which actual classes you are going to need.

The following is a bare bones example of a generic class with a class constructor
used to initialize the DataSize class field, taken from the GenericClassCtor applica-
tion project:

type
 TGenericWithClassCtor <T> = class
 private
 FData: T;
 procedure SetData(const Value: T);

Marco Cantù, Object Pascal Handbook

276 - 14: Generics

 public
 class constructor Create;
 property Data: T read FData write SetData;
 class var
 DataSize: Integer;
 end;

This is the code of the generic class constructor, which uses an internal string list
(see the full source code for implementation details) for keeping track of which class
constructors are actually called:

class constructor TGenericWithClassCtor<T>.Create;
begin
 DataSize := SizeOf (T);
 ListSequence.Add(ClassName);
end;

The demo program creates and uses a couple of instances of the generic class, and
also declares the data type for a third, which is removed by the linker:

var
 genInt: TGenericWithClassCtor <SmallInt>;
 genStr: TGenericWithClassCtor <string>;
type
 TGenDouble = TGenericWithClassCtor <Double>;

If you ask the program to show the contents of the ListSequence string list, you'll
see only the types that have actually been initialized:

TGenericWithClassCtor<System.SmallInt>
TGenericWithClassCtor<System.string>

However, if you create generic instances based on the same data type in different
units, the linker might not work as expected and you'll have multiple calls to the
same generic class constructor (or, to be more precise, two generic class construc-
tors for the same type).

note It is not easy to address a similar problem. To avoid a repeated initialization, you might want to
check if the class constructor has already been executed. In general, though, this problem is part
of a more comprehensive limitation of generic classes and the linkers inability to optimize them.

I've added a procedure called Useless in the secondary unit of this example that,
when uncommented, will highlight the problem, with an initialization sequence like:

TGenericWithClassCtor<System.string>
TGenericWithClassCtor<System.SmallInt>
TGenericWithClassCtor<System.string>

Marco Cantù, Object Pascal Handbook

14: Generics - 277

Generic Constraints

As we have seen, there is very little you can do in the methods of your generic class
over the generic type value. You can pass it around (that is, assign it) and perform
the limited operations allowed by the generic type functions I've just covered.

To be able to perform some actual operations of the generic type of class, you gener-
ally have to place a constraint on it. For example, if you limit the generic type to be a
class, the compiler will let you call all of the TObject methods on it. You can also fur-
ther constrain the class to be part of a given hierarchy or to implement a specific
interface, making it possible to call the class or interface method on an instance of
the generic type.

Class Constraints

The simplest constraint you can adopt is a class constraint. To use it, you can declare
generic type as:

type
 TSampleClass <T: class> = class

By specifying a class constraint you indicate that you can use only object types as
generic types. With the following declaration (taken from the ClassConstraint
application project):

type
 TSampleClass <T: class> = class
 private
 data: T;
 public
 procedure One;
 function ReadT: T;
 procedure SetT (t: T);
 end;

you can create the first two instances but not the third:

 sample1: TSampleClass<TButton>;
 sample2: TSampleClass<TStrings>;
 sample3: TSampleClass<Integer>; // Error

The compiler error caused by this last declaration would be:

E2511 Type parameter 'T' must be a class type

What's the advantage of indicating this constraint? In the generic class methods you
can now call any TObject method, including virtual ones! This is the One method of
the TSampleClass generic class:

Marco Cantù, Object Pascal Handbook

278 - 14: Generics

procedure TSampleClass<T>.One;
begin
 if Assigned (data) then
 begin
 Form30.Show ('ClassName: ' + data.ClassName);
 Form30.Show ('Size: ' + IntToStr (data.InstanceSize));
 Form30.Show ('ToString: ' + data.ToString);
 end;
end;

note Two comments here. The first is that InstanceSize returns the actual size of the object, unlike
the generic SizeOf function we used earlier, which returns the size of the reference type. Second,
notice the use of the ToString method of the TObject class.

You can play with the program to see its actual effect, as it defines and uses a few
instances of the generic type, as in the following code snippet:

var
 sample1: TSampleClass<TButton>;
begin
 sample1 := TSampleClass<TButton>.Create;
 try
 sample1.SetT (Sender as TButton);
 sample1.One;
 finally
 sample1.Free;
 end;

Notice that by declaring a class with a customized ToString method, this version
will get called when the data object is of the specific type, regardless of the actual
type provided to the generic type. In other words, if you have a TButton descendant
like:

type
 TMyButton = class (TButton)
 public
 function ToString: string; override;
 end;

You can pass this object as value of a TSampleClass<TButton> or define a specific
instance of the generic type, and in both cases calling One ends up executing the spe-
cific version of ToString:

var
 sample1: TSampleClass<TButton>;
 sample2: TSampleClass<TMyButton>;
 mb: TMyButton;
begin
 ...
 sample1.SetT (mb);
 sample1.One;
 sample2.SetT (mb);

Marco Cantù, Object Pascal Handbook

14: Generics - 279

 sample2.One;

Similarly to a class constraint, you can have a record constraint, declared as:

type
 TSampleRec <T: record> = class

However, there is very little that different records have in common (there is no com-
mon ancestor), so this declaration is somewhat limited.

Specific Class Constraints

If your generic class needs to work with a specific subset of classes (a specific hierar-
chy), you might want to resort to specifying a constraint based on a given base class.
For example, if you declare:

type
 TCompClass <T: TComponent> = class

instances of this generic class can be applied only to component classes, that is, any
TComponent descendant class. This let's you have a very specific generic type (yes, it
sounds odd, but that's what it really is) and the compiler will let you use all of the
methods of the TComponent class while working on the generic type.

If this seems extremely powerful, think twice. If you consider what you can achieve
with inheritance and type compatibly rules, you might be able to address the same
problem using traditional object-oriented techniques rather than having to use
generic classes. I'm not saying that a specific class constraint is never useful, but it is
certainly not as powerful as a higher-level class constraint or (something I find very
interesting) an interface-based constraint.

Interface Constraints

Rather than constraining a generic class to a given class, it is generally more flexible
to accept as type parameter only classes implementing a given interface. This makes
it possible to call the interface on instances of the generic type. This use of interface
constraints for generics is also very common in the C# language. Let me start by
showing you an example (from the IntfConstraint application project). First, we
need to declare an interface:

type
 IGetValue = interface
 ['{60700EC4-2CDA-4CD1-A1A2-07973D9D2444}']
 function GetValue: Integer;
 procedure SetValue (Value: Integer);

Marco Cantù, Object Pascal Handbook

280 - 14: Generics

 property Value: Integer
 read GetValue write SetValue;
 end;

Next, we can define a class implementing it:

type
 TGetValue = class (TSingletonImplementation, IGetValue)
 private
 fValue: Integer;
 public
 constructor Create (Value: Integer = 0);
 function GetValue: Integer;
 procedure SetValue (Value: Integer);
 end;

Things start to get interesting in the definition of a generic class limited to types that
implement the given interface:

type
 TInftClass <T: IGetValue> = class
 private
 val1, val2: T; // or IGetValue
 public
 procedure Set1 (val: T);
 procedure Set2 (val: T);
 function GetMin: Integer;
 function GetAverage: Integer;
 procedure IncreaseByTen;
 end;

Notice that in the code of the generic methods of this class we can write, for exam-
ple:

function TInftClass<T>.GetMin: Integer;
begin
 Result := min (val1.GetValue, val2.GetValue);
end;

procedure TInftClass<T>.IncreaseByTen;
begin
 val1.SetValue (val1.GetValue + 10);
 val2.Value := val2.Value + 10;
end;

With all these definitions, we can now use the generic class as follows:

procedure TFormIntfConstraint.btnValueClick(
 Sender: TObject);
var
 iClass: TInftClass<TGetValue>;
begin
 iClass := TInftClass<TGetValue>.Create;
 try
 iClass.Set1 (TGetValue.Create (5));
 iClass.Set2 (TGetValue.Create (25));

Marco Cantù, Object Pascal Handbook

14: Generics - 281

 Show ('Average: ' + IntToStr (iClass.GetAverage));
 iClass.IncreaseByTen;
 Show ('Min: ' + IntToStr (iClass.GetMin));
 finally
 iClass.val1.Free;
 iClass.val2.Free;
 iClass.Free;
 end;
end;

To show the flexibility of this generic class, I've created another totally different
implementation for the interface:

 TButtonValue = class (TButton, IGetValue)
 public
 function GetValue: Integer;
 procedure SetValue (Value: Integer);
 class function MakeTButtonValue (Owner: TComponent;
 Parent: TWinControl): TButtonValue;
 end;

function TButtonValue.GetValue: Integer;
begin
 Result := Left;
end;

procedure TButtonValue.SetValue(Value: Integer);
begin
 Left := Value;
end;

The class function (not listed in the book) creates a button within a Parent control in
a random position and is used in the following sample code:

procedure TFormIntfConstraint.btnValueButtonClick(
 Sender: TObject);
var
 iClass: TInftClass<TButtonValue>;
begin
 iClass := TInftClass<TButtonValue>.Create;
 try
 iClass.Set1 (TButtonValue.MakeTButtonValue (
 self, ScrollBox1));
 iClass.Set2 (TButtonValue.MakeTButtonValue (
 self, ScrollBox1));
 Show ('Average: ' + IntToStr (iClass.GetAverage));
 Show ('Min: ' + IntToStr (iClass.GetMin));
 iClass.IncreaseByTen;
 Show ('New Average: ' + IntToStr (iClass.GetAverage));
 finally
 iClass.Free;
 end;
end;

Marco Cantù, Object Pascal Handbook

282 - 14: Generics

Interface References vs. Generic Interface
Constraints

In the last example I have defined a generic class that works with any object imple-
menting a given interface. I could have obtained a similar effect by creating a
standard (non-generic) class based on interface references. In fact, I could have
defined a class like (again part of the IntfConstraint application project):

type
 TPlainInftClass = class
 private
 val1, val2: IGetValue;
 public
 procedure Set1 (val: IGetValue);
 procedure Set2 (val: IGetValue);
 function GetMin: Integer;
 function GetAverage: Integer;
 procedure IncreaseByTen;
 end;

What is different between these two approaches? A first difference is that in the class
above you can pass two objects of different types to the setter methods, provided
their classes both implement the given interface, while in the generic version you
can pass only objects of the given type (to any given instance of the generic class). So
the generic version is more conservative and strict in terms of type checking.

In my opinion, the key difference is that using the interface-based version means
having Object Pascal's reference counting mechanism in action, while using the
generic version the class is dealing with plain objects of a given type and reference
counting is not involved. Moreover, the generic version could have multiple con-
straints, like a constructor constraint and lets you use the various generic-functions
(like asking for the actual type of the generic type), something you cannot do when
using an interface. (When you are working with an interface, in fact, you have no
access to the base TObject methods).

In other words, using a generic class with an interface constraint makes it possible
to have the benefits of interfaces without their nuisances. Still, it is worth noticing
that in most cases the two approaches would be equivalent, and in others the inter-
face-based solution would be more flexible.

Default Constructor Constraint

There is another possible generic type constraint, called default constructor or
parameterless constructor. If you need to invoke the default constructor to create a

Marco Cantù, Object Pascal Handbook

14: Generics - 283

new object of the generic type (for example for filling a list) you can use this con-
straint. In theory (and according to the documentation), the compiler should let you
use it only for those types with a default constructor. In practice, if a default con-
structor doesn't exist, the compiler will let it go and call the default constructor of
TObject.

A generic class with a constructor constraint can be written as follows (this one is
extracted by the IntfConstraint application project):

type
 TConstrClass <T: class, constructor> = class
 private
 val: T;
 public
 constructor Create;
 function Get: T;
 end;

note You can also specify the constructor constraint without the class constraint, as the former proba-
bly implies the latter. Listing both of them makes the code more readable.

Given this declaration, you can use the constructor to create a generic internal
object, without knowing its actual type up front, and write:

constructor TConstrClass<T>.Create;
begin
 val := T.Create;
end;

How can we use this generic class and what are the actual rules? In the next example
I have defined two classes, one with a default (parameterless) constructor, the sec-
ond with a single constructor having one parameter:

type
 TSimpleConst = class
 public
 Value: Integer;
 constructor Create; // set Value to 10
 end;

 TParamConst = class
 public
 Value: Integer;
 constructor Create (I: Integer); // set Value to I
 end;

As I mentioned earlier, in theory you should only be able to use the first class, while
in practice you can use both:

var
 constructObj: TConstrClass<TSimpleCost>;
 paramCostObj: TConstrClass<TParamCost>;

Marco Cantù, Object Pascal Handbook

284 - 14: Generics

begin
 constructObj := TConstrClass<TSimpleCost>.Create;
 Show ('Value 1: ' + IntToStr (constructObj.Get.Value));

 paramCostObj := TConstrClass<TParamCost>.Create;
 Show ('Value 2: ' + IntToStr (paramCostObj.Get.Value));

The output of this code is:

Value 1: 10
Value 2: 0

In fact, the second object is never initialized. If you debug the application trace into
the code you'll see a call to TObject.Create (which I consider wrong). Notice that if
you try calling directly:

 with TParamConst.Create do

the compiler will (correctly) raise the error:

[DCC Error] E2035 Not enough actual parameters

note Even if a direct call to TParamConst.Create will fail at compile time (as explained here), a similar
call using a class reference or any other form of indirection will succeed, which probably explains
the behavior of the effect of the constructor constraint.

Generic Constraints Summary and Combining
Them

As there are so many different constraints you can put on a generic type, let me pro-
vide a short summary here, in code terms:

type
 TSampleClass <T: class> = class
 TSampleRec <T: record> = class
 TCompClass <T: TButton> = class
 TInftClass <T: IGetValue> = class
 TConstrClass <T: constructor> = class

What you might not immediately realize after looking at constraints (and this cer-
tainly took me some time to get used to) is that you can combine them. For example,
you can define a generic class limited to a sub-hierarchy and requiring also a given
interface, like in:

type
 TInftComp <T: TComponent, IGetValue> = class
 ...
 end;

Marco Cantù, Object Pascal Handbook

14: Generics - 285

Not all combinations make sense: for example you cannot specify both a class and a
record, while using a class constraint combined with a specific class constraint
would be redundant. Finally, notice that there is nothing like a method constraint,
something that can be achieved with a single-method interface constraint (much
more complex to express, though).

Predefined Generic Containers

Since the early days of templates in the C++ Language, one of the most obvious uses
of template classes has been the definition of template containers or lists, up to the
point that the C++ language defined a Standard Template Library (or STL).

When you define a list of objects, like Object Pascal's own TObjectList, you have a
list that can potentially hold objects of any kind. Using either inheritance or compo-
sition you can indeed define custom containers for specific a type, but this is a
tedious (and potentially error-prone) approach.

Object Pascal compilers come with a small set of generic container classes you can
find in the Generics.Collections unit. The four core container classes are all
implemented in an independent way (the is no inheritance among these classes), all
implemented in a similar fashion (using a dynamic array), and are all mapped to the
corresponding non-generic container class of the older Contnrs unit:

type
 TList<T> = class
 TQueue<T> = class
 TStack<T> = class
 TDictionary<TKey,TValue> = class
 TObjectList<T: class> = class(TList<T>)
 TObjectQueue<T: class> = class(TQueue<T>)
 TObjectStack<T: class> = class(TStack<T>)
 TObjectDictionary<TKey,TValue> = class(TDictionary<TKey,TValue>)

The logical difference among these classes should be quite obvious considering their
names. A good way to test them, is to figure out how many changes you have to per-
form on existing code that uses a non-generic container class.

note The program uses only a few methods, so it is not a great test for interface compatibility between
generic and non-generic lists, but I decided to take an existing program rather than fabricating
one. Another reason for showing this demo, is that you might also have existing programs that
don't use generic collection classes and will be encouraged to enhance them by taking advantage
of this language feature.

Marco Cantù, Object Pascal Handbook

286 - 14: Generics

Using TList<T>

The program, called ListDemoMd2005, has a unit defining a TDate class, and the main
form used to refer to a TList of dates. As a starting point, I added a uses clause
referring to Generics.Collections, then I changed the declaration of the main form
field to:

 private
 ListDate: TList <TDate>;

Of course, the main form OnCreate event handler that does create the list needed to
be updated as well, becoming:

procedure TForm1.FormCreate(Sender: TObject);
begin
 ListDate := TList<TDate>.Create;
end;

Now we can try to compile the rest of the code as it is. The program has a “wanted”
bug, trying to add a TButton object to the list. The corresponding code used to com-
pile and now fails:

procedure TForm1.ButtonWrongClick(Sender: TObject);
begin
 // add a button to the list
 ListDate.Add (Sender); // Error:
 // E2010 Incompatible types: 'TDate' and 'TObject'
end;

The new list of dates is more robust in terms of type-checking than the original
generic list pointers. Having removed that line, the program compiles and works.
Still, it can be improved.

This is the original code used to display all of the dates of the list in a ListBox con-
trol:

var
 I: Integer;
begin
 ListBox1.Clear;
 for I := 0 to ListDate.Count - 1 do
 Listbox1.Items.Add (
 (TObject(ListDate [I]) as TDate).Text);

Notice the type cast, due to the fact that the program was using a list of pointers
(TList), and not a list of objects (TObjectList). We can easily improve the program
by writing:

 for I := 0 to ListDate.Count - 1 do
 Listbox1.Items.Add (ListDate [I].Text);

Marco Cantù, Object Pascal Handbook

14: Generics - 287

Another improvement to this snippet can come from using an enumeration (some-
thing the predefined generic lists fully support) rather than a plain for loop:

var
 aDate: TDate;
begin
 for aDate in ListDate do
 begin
 Listbox1.Items.Add (aDate.Text);
 end;

Finally, the program can be improved by using a generic TObjectList owning the
TDate objects, but that's a topic for the next section.

As I mentioned earlier, the TList<T> generic class has a high degree of compatibil-
ity. It has all the classic methods, like Add, Insert, Remove, and IndexOf. The
Capacity and Count properties are there as well. Oddly, Items become Item, but
being the default property (accessed by using the square brackets without the prop-
erty name) you seldom explicitly refer to it anyway.

Sorting a TList<T>

What is interesting to understand is how sorting works (my goal here is to add sort-
ing support to the ListDemoMd2005 example). The Sort method is defined as:

procedure Sort; overload;
procedure Sort(const AComparer: IComparer<T>); overload;

where the IComparer<T> interface is declared in the Generics.Defaults unit. If you
call the first version the program, it will use the default comparer, initialized by the
default constructor of TList<T>. In our case this will be useless.

What we need to do, instead, is to define a proper implementation of the
IComparer<T> interface. For type compatibility, we need to define an implementa-
tion that works on the specific TDate class. There are multiple ways to accomplish
this, including using anonymous methods (covered in the next section even though
that's a topic introduced in the next chapter). An interesting technique, also because
it gives me the opportunity to show several usage patterns of generics, is to take
advantage of a structural class that is part of the unit Generics.Defaults and is
called TComparer.

note I'm calling this class structural because it helps defining the structure of the code, but doesn't add
a lot in terms of actual implementation. There might be a better name, though.

The class is defined as an abstract and generic implementation of the interface, as
follows:

Marco Cantù, Object Pascal Handbook

288 - 14: Generics

type
 TComparer<T> = class(TInterfacedObject, IComparer<T>)
 public
 class function Default: IComparer<T>;
 class function Construct(
 const Comparison: TComparison<T>): IComparer<T>;
 function Compare(
 const Left, Right: T): Integer; virtual; abstract;
 end;

What we have to do is instantiate this generic class for the specific data type (TDate,
in the example) and also inherit a concrete class that implements the Compare
method for the specific type. The two operations can be done at once, using a coding
idiom that may take a while to digest:

type
 TDateComparer = class (TComparer<TDate>)
 function Compare(
 const Left, Right: TDate): Integer; override;
 end;

If you think this code looks very unusual, you're not alone. The new class inherits
from a specific instance of the generic class, something you could express in two sep-
arate steps as:

type
 TAnyDateComparer = TComparer<TDate>;
 TMyDateComparer = class (TAnyDateComparer)
 function Compare(
 const Left, Right: TDate): Integer; override;
 end;

note Having the two separate declarations might help reduce the generated code where you are reusing
the base TAnyDateComparer type in the same unit.

You can find the actual implementation of the Compare function in the source code,
as that's not the key point I want to stress here. Keep in mind, though, that even if
you sort the list its IndexOf method won't take advantage of it (unlike the
TStringList class).

Sorting with an Anonymous Method

The sorting code presented in the previous section looks quite complicated and it
really is. It would be much easier and cleaner to pass the sorting function to the Sort
method directly. In the past this was generally achieved by passing a function
pointer. In Object Pascal this can be done by passing an anonymous method (a kind
of method pointer, with several extra features, covered in detail in the next chapter).

Marco Cantù, Object Pascal Handbook

14: Generics - 289

note I suggest you have a look at this section even if you don't know much about anonymous methods,
and then read it again after going through the next chapter.

The IComparer<T> parameter of the Sort method of the TList<T> class, in fact, can
be used by calling the Construct method of TComparer<T>, passing an anonymous
method as a parameter defined as:

type
 TComparison<T> = reference to function(
 const Left, Right: T): Integer;

In practice you can write a type-compatible function and pass it as parameter:

function DoCompare (const Left, Right: TDate): Integer;
var
 ldate, rDate: TDateTime;
begin
 lDate := EncodeDate(Left.Year, Left.Month, Left.Day);
 rDate := EncodeDate(Right.Year, Right.Month, Right.Day);
 if lDate = rDate then
 Result := 0
 else if lDate < rDate then
 Result := -1
 else
 Result := 1;
end;

procedure TForm1.ButtonAnonSortClick(Sender: TObject);
begin
 ListDate.Sort (TComparer<TDate>.Construct (DoCompare));
end;

note The DoCompare method above works like an anonymous method even if it does have a name. We'll
see in a later code snippet that this is not required, though. Have patience until the next chapter
for more information about this Object Pascal language construct. Notice also that with a TDate
record I could have defined less than and greater then operators, making this code simpler, but
even with a class I could have placed the comparison code in a method of the class.

If this looks quite traditional, consider you could have avoided the declaration of a
separate function and pass it (its source code) as parameter to the Construct
method, as follows:

procedure TForm1.ButtonAnonSortClick(Sender: TObject);
begin
 ListDate.Sort (TComparer<TDate>.Construct (
 function (const Left, Right: TDate): Integer
 var
 ldate, rDate: TDateTime;
 begin
 lDate := EncodeDate(Left.Year,
 Left.Month, Left.Day);

Marco Cantù, Object Pascal Handbook

290 - 14: Generics

 rDate := EncodeDate(Right.Year,
 Right.Month, Right.Day);
 if lDate = rDate then
 Result := 0
 else if lDate < rDate then
 Result := -1
 else
 Result := 1;
 end));
end;

This example should have whet your appetite for learning more about anonymous
methods! For sure, this last version is much simpler to write than the original com-
parison covered in the previous section, although for many Object Pascal developers
having a derived class might look cleaner and be easier to understand (the inherited
version separates the logic better, making potential code reuse easier, but many
times you won't make use of it anyway).

Object Containers

Beside the generic classes covered at the beginning of this section, there are also
four inherited generic classes that are derived from the base classes defined in the
Generics.Collections unit, mimicking existing classes of the Contnrs unit:

type
 TObjectList<T: class> = class(TList<T>)
 TObjectQueue<T: class> = class(TQueue<T>)
 TObjectStack<T: class> = class(TStack<T>)

Compared to their base classes, there are two key differences. One is that these
generic types can be used only for objects; the second is that they define a custom-
ized Notification method, that in the case when an object is removed from the list
(beside optionally calling the OnNotify event handler), will Free the object.

In other words, the TObjectList<T> class behaves like its non-generic counterpart
when the OwnsObjects property is set. If you are wondering why this is not an option
any more, consider that TList<T> can now be used directly to work with object
types, unlike its non-generic counterpart.

There is also a fourth class, again, called TObjectDictionary<TKey, TValue>, which
is defined in a different way, as it can own the key object, the value objects, or both
of them. See the TDictionaryOwnerships set and the class constructor for more
details.

Marco Cantù, Object Pascal Handbook

14: Generics - 291

Using a Generic Dictionary

Of all the predefined generic container classes, the one probably worth more
detailed study is the generic dictionary, TObjectDictionary<TKey, Tvalue>.

note Dictionary in this case means a collection of elements each with a (unique) key value referring to
it. (It is also known as an associative array.) In a classic dictionary you have words acting as keys
for their definitions, but in programming terms the key doesn't have to be a string (even if this is a
rather frequent case).

Other classes are just as important, but they seem to be easier to use and under-
stand. As an example of using a dictionary, I've written an application that fetches
data from a database table, creates an object for each record, and uses a composite
index with a customer ID and a description as key. The reason for this separation is
that a similar architecture can easily be used to create a proxy, in which the key
takes the place of a light version of the actual object loaded from the database.

These are the two classes used by the CustomerDictionary application project for
the key and the actual value. The first has only two relevant fields of the correspond-
ing database table, while the second has the complete data structure (I've omitted
the private fields, getter methods, and setter methods):

type
 TCustomerKey = class
 private
 ...
 published
 property CustNo: Double
 read FCustNo write SetCustNo;
 property Company: string
 read FCompany write SetCompany;
 end;

 TCustomer = class
 private
 ..
 procedure Init;
 procedure EnforceInit;
 public
 constructor Create (aCustKey: TCustomerKey);
 property CustKey: TCustomerKey
 read FCustKey write SetCustKey;
 published
 property CustNo: Double
 read GetCustNo write SetCustNo;
 property Company: string
 read GetCompany write SetCompany;
 property Addr1: string

Marco Cantù, Object Pascal Handbook

292 - 14: Generics

 read GetAddr1 write SetAddr1;
 property City: string
 read GetCity write SetCity;
 property State: string
 read GetState write SetState;
 property Zip: string
 read GetZip write SetZip;
 property Country: string
 read GetCountry write SetCountry;
 property Phone: string
 read GetPhone write SetPhone;
 property FAX: string
 read GetFAX write SetFAX;
 property Contact: string
 read GetContact write SetContact;
 class var
 RefDataSet: TDataSet;
 end;

While the first class is very simple (each object is initialized when it is created), the
TCustomer class uses a lazy initialization (or proxy) model and keeps around a ref-
erence to the source database shared (class var) by all objects. When an object is
created it is assigned a reference to the corresponding TCustomerKey, while a class
data field refers to the source dataset. In each getter method, the class checks if the
object has indeed been initialized before returning the data, as in the following case:

function TCustomer.GetCompany: string;
begin
 EnforceInit;
 Result := FCompany;
end;

The EnforceInit method checks a local flag, eventually calling Init to load data
from the database to the in-memory object:

procedure TCustomer.EnforceInit;
begin
 if not fInitDone then
 Init;
end;

procedure TCustomer.Init;
begin
 RefDataSet.Locate('custno', CustKey.CustNo, []);

 // could also load each published field via RTTI
 FCustNo := RefDataSet.FieldByName ('CustNo').AsFloat;
 FCompany := RefDataSet.FieldByName ('Company').AsString;
 FCountry := RefDataSet.FieldByName ('Country').AsString;
 ...
 fInitDone := True;
end;

Marco Cantù, Object Pascal Handbook

14: Generics - 293

Given these two classes, I've added a special purpose dictionary to the application.
This custom dictionary class inherits from a generic class instantiated with the
proper types and adds to it a specific method:

type
 TCustomerDictionary = class (
 TObjectDictionary <TCustomerKey, TCustomer>)
 public
 procedure LoadFromDataSet (dataset: TDataSet);
 end;

The loading method populates the dictionary, copying data in memory for only the
key objects:

procedure TCustomerDictionary.LoadFromDataSet(
 dataset: TDataSet);
var
 custKey: TCustomerKey;
begin
 TCustomer.RefDataSet := dataset;
 dataset.First;
 while not dataset.EOF do
 begin
 custKey := TCustomerKey.Create;
 custKey.CustNo := dataset ['CustNo'];
 custKey.Company := dataset ['Company'];
 self.Add(custKey, TCustomer.Create (custKey));
 dataset.Next;
 end;
end;

The demo program has a main form and a data module hosting a ClientDataSet
component. The main form has a ListView control that is filled when a user presses
the only button.

note You might want to replace the ClientDataSet component with a real dataset, expanding the exam -
ple considerably in terms of usefulness, as you could run a query for the keys and a separate one
for the actual data of each single TCustomer object. I have similar code, but adding it here would
have distracted us too much from the goal of the example, which is experimenting with a generic
dictionary class.

After loading the data in the dictionary, the btnPopulateClick method uses an enu-
merator on the dictionary's keys:

procedure TFormCustomerDictionary.btnPopulateClick(
 Sender: TObject);
var
 custkey: TCustomerKey;
 listItem: TListItem;
begin
 DataModule1.ClientDataSet1.Active := True;
 CustDict.LoadFromDataSet(DataModule1.ClientDataSet1);

Marco Cantù, Object Pascal Handbook

294 - 14: Generics

 for custkey in CustDict.Keys do
 begin
 listItem := ListView1.Items.Add;
 listItem.Caption := custkey.Company;
 listItem.SubItems.Add(FloatTOStr (custkey.CustNo));
 listItem.Data := custkey;
 end;
end;

This fills the first two columns of the ListView control, with the data available in the
key objects. Whenever a user selects an item of the ListView control, though, the
program will fill a third column:

procedure TFormCustomerDictionary.ListView1SelectItem(
 Sender: TObject; Item: TListItem; Selected: Boolean);
var
 aCustomer: TCustomer;
begin
 aCustomer := CustDict.Items [Item.data];
 Item.SubItems.Add(IfThen (
 aCustomer.State <> '',
 aCustomer.State + ', ' + aCustomer.Country,
 aCustomer.Country));
end;

The method above gets the object mapped to the given key, and uses its data. Behind
the scenes, the first time a specific object is used, the property access method trig-
gers the loading of the entire data for the TCustomer object.

Dictionaries vs. String Lists

Over the years many Object Pascal developers, myself included, have overused the
TStringList class. Not only you can use it for a plain list of strings and for a list of
name/value pairs, but you can also use it to have a list objects associated with
strings and search these objects.

Since the introduction of It is much better to use generics instead of this use a
favorite tool as swiss-army knife kind of approach. Specific and focused container
classes are a much better option. For example, a generic TDictionary with a string
key and an object-value will generally be better than a string list on two counts:
cleaner and safer code, as there will be fewer type casts involved, and faster execu-
tion, given that dictionaries use hash tables.

To demonstrate these differences I've written a rather simple application project,
called StringListVsDictionary. Its main form stores two identical lists, declared
as:

Marco Cantù, Object Pascal Handbook

14: Generics - 295

 private
 sList: TStringList;
 sDict: TDictionary<string,TMyObject>;

The lists are filled with random but identical entries by a cycle, which repeats this
code:

 sList.AddObject (aName, anObject);
 sDict.Add (aName, anObject);

Two buttons retrieve each element of the list doing a search by name on each of
them. Both methods scan the string list for the values, but the first locates the
objects in the string list, while the second uses the dictionary. Notice that in the first
case you need an as cast to get back the given type, while the dictionary is tied to
that class already. Here is the main loop of the two methods:

 theTotal := 0;
 for I := 0 to sList.Count -1 do
 begin
 aName := sList[I];
 // now search for it
 anIndex := sList.IndexOf (aName);
 // get the object
 anObject := sList.Objects [anIndex] as TMyObject;
 Inc (theTotal, anObject.Value);
 end;

 theTotal := 0;
 for I := 0 to sList.Count -1 do
 begin
 aName := sList[I];
 // get the object
 anObject := sDict.Items [aName];
 Inc (theTotal, anObject.Value);
 end;

I don't want to access the strings in sequence, but figure out how much time it takes
to search in the sorted string list (which does a binary search) compared to the
hashed keys of the dictionary. Not surprisingly the dictionary is faster, here are
numbers in milliseconds for a test:

Total: 99493811
StringList: 2839
Total: 99493811
Dictionary: 686

The result is the same, given the initial values weere identical, but the time is quite
different, with the dictionary taking about one fourth of the time for a million
entries.

Marco Cantù, Object Pascal Handbook

296 - 14: Generics

Generic Interfaces

In the section “Sorting a TList<T>” you might have noticed a rather strange use of a
predefined interface, which had a generic declaration. It is worth looking into this
technique in detail, as it opens up significant opportunities.

The first technical element to notice is that it is perfectly legal to define a generic
interface, as I've done in the GenericInterface example:

type
 IGetValue<T> = interface
 function GetValue: T;
 procedure SetValue (Value: T);
 end;

note This is the generic version of the IGetValue interface of the IntfContraints application project,
covered in the earlier section “Interface Constraints” of this chapter. In that case the interface had
an Integer value, now it has a generic one.

Notice that differently from a standard interface, in case of a generic interface you
don't need to specify a GUID to be used as Interface ID (or IID). The compiler will
generate an IID for you for each instance of the generic interface, even if implicitly
declared. In fact, you don't have to create a specific instance of the generic interface
to implement it, but can define a generic class that implements the generic interface:

type
 TGetValue<T> = class (TInterfacedObject, IGetValue<T>)
 private
 fValue: T;
 public
 constructor Create (Value: T);
 destructor Destroy; override;
 function GetValue: T;
 procedure SetValue (Value: T);
 end;

While the constructor assigns the initial value of the object, the destructor's only
purpose is to log that an object was destroyed. We can create an instance of this
generic class (thus generating a specific instance of the interface type behind the
scenes) by writing:

procedure TFormGenericInterface.btnValueClick(
 Sender: TObject);
var
 aVal: TGetValue<string>;
begin
 aVal := TGetValue<string>.Create (Caption);
 try

Marco Cantù, Object Pascal Handbook

14: Generics - 297

 Show ('TGetValue value: ' + aVal.GetValue);
 finally
 aVal.Free;
 end;
end;

An alternative approach, as we saw in the past for the IntfConstraint application
project, is to use an interface variable of the corresponding type, making the specific
interface type definition explicit (and not implicit as in the previous code snippet):

procedure TFormGenericInterface.btnIValueClick(
 Sender: TObject);
var
 aVal: IGetValue<string>;
begin
 aVal := TGetValue<string>.Create (Caption);
 Show ('IGetValue value: ' + aVal.GetValue);
 // freed automatically, as it is reference counted
end;

Of course, we can also define a specific class that implements the generic interface,
as in the following scenario (from the GenericInterface application project):

type
 TButtonValue = class (TButton, IGetValue<Integer>)
 public
 function GetValue: Integer;
 procedure SetValue (Value: Integer);
 class function MakeTButtonValue (Owner: TComponent;
 Parent: TWinControl): TButtonValue;
 end;

Notice that while the TGetValue<T> generic class implements the generic
IGetValue<T> interface, the TButtonValue specific class implements the
IGetValue<Integer> specific interface. Specifically, as in a previous example, the
interface is remapped to the Left property of the control:

function TButtonValue.GetValue: Integer;
begin
 Result := Left;
end;

In the class above, the MakeTButtonValue class function is a ready-to-use method to
create an object of the class. This method is used by the third button of the main
form, as follows:

procedure TFormGenericInterface.btnValueButtonClick(
 Sender: TObject);
var
 iVal: IGetValue<Integer>;
begin
 iVal := TButtonValue.MakeTButtonValue (self, ScrollBox1);
 Show ('Button value: ' + IntToStr (iVal.GetValue));
end;

Marco Cantù, Object Pascal Handbook

298 - 14: Generics

Although it is totally unrelated to generic classes, here is the implementation of the
MakeTButtonValue class function:

class function TButtonValue.MakeTButtonValue(
 Owner: TComponent; Parent: TWinControl): TButtonValue;
begin
 Result := TButtonValue.Create(Owner);
 Result.Parent := Parent;
 Result.SetBounds(Random (Parent.Width),
 Random (Parent.Height), Result.Width, Result.Height);
 Result.Caption := 'btnv';
end;

Predefined Generic Interfaces

Now that we have explored how to define generic interfaces and combine them with
the use of generic and specific classes, we can get back to having a second look at the
Generics.Default unit. This unit defines two generic comparison interfaces:

IComparer<T> has a Compare method

IEqualityComparer<T> has Equals and GetHashCode methods

These classes are implemented by some generic and specific classes, listed below
(with no implementation details):

type
 TComparer<T> = class(TInterfacedObject, IComparer<T>)
 TEqualityComparer<T> = class(
 TInterfacedObject, IEqualityComparer<T>)
 TCustomComparer<T> = class(TSingletonImplementation,
 IComparer<T>, IEqualityComparer<T>)
 TStringComparer = class(TCustomComparer<string>)

In the listing above you can see that the base class used by the generic implementa-
tions of the interfaces is either the classic reference-counted TInterfacedObject
class or the new TSingletonImplementation class. This is an oddly named class that
provides a basic implementation of IInterface with no reference counting.

note The term singleton is generally used to define a class of which you can create only one instance,
and not one with no reference counting. I consider this quite a misnomer.

 As we have already seen in the “Sorting a TList<T>” section earlier in this chapter,
these comparison classes are used by the generic containers. To make things more
complicated, though, the Generics.Default unit relies quite heavily on anonymous
methods, so you should probably look at it only after reading the next chapter.

Marco Cantù, Object Pascal Handbook

14: Generics - 299

Smart Pointers in Object Pascal

When approaching generics, you might get the wrong first impression that this lan-
guage construct is mostly used for collections. While this is the simplest case for
using generic classes, and very often the first example in books and docs, generics
are useful well beyond the realm of collection (or container) classes. In the last
example of this chapter I'm going to show you a non-collection generic type, that is
the definition of a smart pointer.

If you come from an Object Pascal background, you might not have heard of smart
pointers, an idea that comes from the C++ language. In C++ you can have pointers
to objects, for which you have to manage memory directly and manually, and local
object variables that are managed automatically but have many other limitations
(including the lack of polymorphism). The idea of a smart pointer is to use a locally
managed object to take care of the lifetime of the pointer to the real object you want
to use. If this sounds too complicated, I hope the Object Pascal version (and its code)
will help clarify it.

note The term polymorphisms in OOP languages is used to denote the situation in which you assign to
a variable of a base class an object of a derived class and call one of the base class virtual methods,
potentially ending up calling the version of the virtual method of the specific subclass.

A Smart Pointer Generic Record

In Object Pascal objects are managed by reference, but records have a lifetime
bound to the method in which they are declared. When the method ends, the mem-
ory area for the record is cleaned up. So what we can do is to use a record to manage
the lifetime of an Object Pascal object. Of course, we want to write the code only
once, so we can use a generic record. Here is a first version:

type
 TSmartPointer<T: class> = record
 strict private
 FValue: T;
 function GetValue: T;
 public
 constructor Create(AValue: T);
 property Value: T read GetValue;
 end;

Marco Cantù, Object Pascal Handbook

300 - 14: Generics

The Create and GetValue methods of the record could simply assign and read back
the value. Using this code you can create an object, create a smart pointer wrapping
it, and refer from one to the other:

var
 sl: TStringList;
 smartP: TSmartPointer<TStringList>;
begin
 sl := TStringList.Create;
 smartP.Create (sl);
 sl.Add('foo');
 smartP.Value.Add ('foo2');

As you may have worked out, this code causes a memory leak in the exact same way
as without the smart pointer! In fact the record is destroyed as it goes out of scope,
but it has no way of freeing the internal object. Considering a record has no destruc-
tor, how can we manage the object disposal? A trick is to use an interface inside the
record itself, as the record will automatically free the interfaced object. Should we
add an interface to the object we are wrapping? Probably not, as this imposes a sig-
nificant limitation on the objects we'll be able to pass to the smart pointer.

Interfaces to the Rescue

A better alternative is probably to write a specific wrapper class, tied to an interface,
and use the interface reference counting mechanism to the wrapped object. The
internal class might look like the following:

type
 TFreeTheValue = class (TInterfacedObject)
 private
 fObjectToFree: TObject;
 public
 constructor Create(anObjectToFree: TObject);
 destructor Destroy; override;
 end;

constructor TFreeTheValue.Create(
 anObjectToFree: TObject);
begin
 fObjectToFree := anObjectToFree;
end;

destructor TFreeTheValue.Destroy;
begin
 fObjectToFree.Free;
 inherited;
end;

Marco Cantù, Object Pascal Handbook

14: Generics - 301

Even better, in the actual example I've declared this as a nested type of the generic
smart pointer type. All we have to do in the smart pointer generic type, to enable this
feature, is to add an interface reference and initialize it with a TFreeTheValue object
referring to the contained object:

type
 TSmartPointer<T: class> = record
 strict private
 FValue: T;
 FFreeTheValue: IInterface;
 function GetValue: T;
 public
 constructor Create(AValue: T); overload;
 property Value: T read GetValue;
 end;

The pseudo-constructor (records don't have real constructors) becomes:

constructor TSmartPointer<T>.Create(AValue: T);
begin
 FValue := AValue;
 FFreeTheValue := TFreeTheValue.Create(FValue);
end;

Using the Smart Pointer

With this code in place, we can now write the following code in a program without
causing a memory leak:

procedure TFormSmartPointers.btnSmartClick(
 Sender: TObject);
var
 sl: TStringList;
 smartP: TSmartPointer<TStringList>;
begin
 sl := TStringList.Create;
 smartP.Create (sl);
 sl.Add('foo');
 Show ('Count: ' + IntToStr (sl.Count));
end;

At the end of the method the smartP record is disposed, which causes its internal
interfaced object to be destroyed, freeing the TStringList object. Notice that this
disposal takes place even when an exception is raised, so we don't need to protect
our code with a try-finally block.

note In practice, implicit try-finally blocks are being added all over the places by the compiler to
handle the interface within the record, but we don't have to write them (and the compiler is less
likely to forget one).

Marco Cantù, Object Pascal Handbook

302 - 14: Generics

In the program, I verify that all objects are actually destroyed and there is no mem-
ory leak by setting the global ReportMemoryLeaksOnShutdown to True in the
initialization code. As a counter test, there is a button in the program that causes a
leak, which is caught as the program terminates.

Adding Implicit Conversion

So using the smart pointer record we have been able to remove the need for the Free
call, and hence the need for a try-finally block, but there is still quite some code to
write (and to remember writing). An extension to the smart pointer class is the
inclusion of an Implicit conversion operator, providing the capability to assign the
target object to the smart pointer:

class operator TSmartPointer<T>.
 Implicit(AValue: T): TSmartPointer<T>;
begin
 Result := TSmartPointer<T>.Create(AValue);
end;

With this code (and taking advantage of the Value field) we can now write a more
compact version of the code, like:

var
 smartP: TSmartPointer<TStringList>;
begin
 smartP := TStringList.Create;
 smartP.Value.Add('foo');
 Show ('Count: ' + IntToStr (smartP.Value.Count));

As an alternative, we can use a TStringList variable and use a complicated con-
structor to initialize the smart pointer record even without an explicit reference to it:

var
 sl: TStringList;
begin
 sl := TSmartPointer<TStringList>.
 Create(TStringList.Create).Value;
 sl.Add('foo');
 Show ('Count: ' + IntToStr (sl.Count));

As we've started down this road, we can also define the opposite conversion, and use
the cast notation rather than the Value property:

class operator TSmartPointer<T>.
 Implicit(AValue: T): TSmartPointer<T>;
begin
 Result := TSmartPointer<T>.Create(AValue);
end;

var

Marco Cantù, Object Pascal Handbook

14: Generics - 303

 smartP: TSmartPointer<TStringList>;
begin
 smartP := TStringList.Create;
 TStringList(smartP).Add('foo2');

Now, you might also notice that I've always used a pseudo-constructor in the code
above, but this is not needed on a record. All we need is a way to initialize the inter-
nal object, possibly calling its constructor, the first time we use it. We cannot test if
the internal object is Assigned, because records (unlike classes) are not initialized to
zero. However we can perform that test on the interface variable, which is initialized.

Auto-Creation

The extra code of the smart pointer record type is an overloaded Create procedure
(it cannot be a constructor, as parameterless constructors are not legal for records)
and a lazy initialization of the Value property:

procedure TSmartPointer<T>.Create;
begin
 TSmartPointer<T>.Create (T.Create);
end;

function TSmartPointer<T>.GetValue: T;
begin
 if not Assigned(FFreeTheValue) then
 self := TSmartPointer<T>.Create (T.Create);
 Result := FValue;
end;

With this code we now have many ways to use the smart pointer, including not free-
ing and not even creating it explicitly:

var
 smartP: TSmartPointer<TStringList>;
begin
 smartP.Value.Add('foo');
 Show ('Count: ' + IntToStr (smartP.Value.Count));
end;

The fact that the method above creates a string list and frees it at the end sounds
certainly a big departure from the standard coding model Object Pascal developers
are used to. And this is only one specific case of using generics for non collections
code.

Marco Cantù, Object Pascal Handbook

304 - 14: Generics

The Complete Smart Pointer Code

To end this section, though. Let me list the complete source code of the smart
pointer generic record I've build in several iterations:

type
 TSmartPointer<T: class, constructor> = record
 strict private
 FValue: T;
 FFreeTheValue: IInterface;
 function GetValue: T;
 private
 type
 TFreeTheValue = class (TInterfacedObject)
 private
 fObjectToFree: TObject;
 public
 constructor Create(anObjectToFree: TObject);
 destructor Destroy; override;
 end;
 public
 constructor Create(AValue: T); overload;
 procedure Create; overload;
 class operator Implicit(AValue: T): TSmartPointer<T>;
 class operator Implicit(smart: TSmartPointer <T>): T;
 property Value: T read GetValue;
 end;

The complete code and some of the usage patterns mentioned in this section are in
the SmartPointers project. Now, I'm not advocating using this type of code regu-
larly, rather than more standard memory management techniques. The reason for
this section of the book is to highlight the depth of Object Pascal, which makes it
possible to write some very complex and powerful code like the implementation of
smart pointers explained in this section.

Covariant Return Types with Generics

In general in Object Pascal (and most other static object-oriented languages) a
method can return an object of a class but you cannot override it in a derived class to
return a derived class object. This is a rather common practice called “Covariant
Return Type” and explicitly supported by some languages like C++.

Marco Cantù, Object Pascal Handbook

14: Generics - 305

Of Animals, Dogs, and Cats

In coding terms, if TDog inherits from TAnimal, I'd want to have the methods:

function TAnimal.Get (name: string): TAnimal;
function TDog.Get (name: string): TDog;

However, in Object Pascal you cannot have virtual functions with a different return
value, nor you can overload on the return type, but only when using different param-
eters. Let me show you the complete code of a simple demo. Here are the three
classes involved:

type
 TAnimal = class
 private
 FName: string;
 procedure SetName(const Value: string);
 public
 property Name: string read FName write SetName;
 public
 class function Get (const aName: string): TAnimal;
 function ToString: string; override;
 end;

 TDog = class (TAnimal)

 end;

 TCat = class (TAnimal)

 end;

The implementation of the two methods is quite simple, once you notice that the
class function is actually used to create new objects, internally calling a constructor.
The reason is I don't want to create a constructor directly is that this is a more gen-
eral technique, in which a method of a class can create objects of other classed (or
class hierarchies). This is the code:

class function TAnimal.Get(const aName: string): TAnimal;
begin
 Result := Create;
 Result.fName := aName;
end;

function TAnimal.ToString: string;
begin
 Result := 'This ' + Copy (ClassName, 2, maxint) +
 ' is called ' + FName;
end;

Now we can use the class by writing the following code, which is what I don't terribly
like, given we have to cast back the result to the proper type:

Marco Cantù, Object Pascal Handbook

306 - 14: Generics

var
 aCat: TCat;
begin
 aCat := TCat.Get('Matisse') as TCat;
 Memo1.Lines.Add (aCat.ToString);
 aCat.Free;

Again, what I'd like to do is to be able to assigned the value returned by TCat.Get to
a reference of the TCat class without an explicit cast. How can we do that?

A Method with a Generic Result

It turns out generics can help us solve the problem. Not generic types, which is the
most commonly used form of generics. But generic methods for non-generic types,
discussed earlier in this chapter. What I can add to the TAnimal class is a method
with a generic type parameter, like:

 class function GetAs<T: class> (const aName: string): T;

This method requires a generic type parameter, which needs to be a class (or
instance type) and returns an object of that type. A sample implementation is here:

class function TAnimal.GetAs<T>(const aName: string): T;
var
 res: TAnimal;
begin
 res := Get (aName);
 if res.inheritsFrom (T) then
 Result := T(res)
 else
 Result := nil;
end;

Now we can create an instance and using it omitting the as cast, although we still
have to pass the type as parameter:

var
 aDog: TDog;
begin
 aDog := TDog.GetAs<TDog>('Pluto');
 Memo1.Lines.Add (aDog.ToString);
 aDog.Free;

Marco Cantù, Object Pascal Handbook

14: Generics - 307

Returning a Derived Object of a Different
Class

When you return an object of the same class, you can replace this code with a proper
use of constructors. But the use of generics to obtain covariant return types is actu-
ally more flexible. In fact we can use it to return objects of a different class, or
hierarchy of classes:

type
 TAnimalShop = class
 class function GetAs<T: TAnimal, constructor> (
 const aName: string): T;
 end;

note A class like this, used to create objects of a different class (or more than one, depending on the
parameters os status) is generally called a “class factory”.

We can now use the specific class constraint (something impossible in the class
itself) and we have to specify the constructor constraint to be able to create an object
of the given class from within the generic method:

class function TAnimalShop.GetAs<T>(const aName: string): T;
var
 res: TAnimal;
begin
 res := T.Create;
 res.Name := aName;
 if res.inheritsFrom (T) then
 Result := T(res)
 else
 Result := nil;
end;

Notice that now in the call we don't have to repeat the class type twice:

 aDog := TAnimalShop.GetAs<TDog>('Pluto');

Marco Cantù, Object Pascal Handbook

308 - 15: Anonymous Methods

15: anonymous

methods

The Object Pascal language includes both procedural types (that is, types declaring
pointers to procedures and functions) and method pointers (that is, types declaring
pointers to methods).

note In case you want more information, procedural types were covered in Chapter 4 while events and
method pointer types were described Chapter 10.

Although you might seldom use them directly, these are key features of Object Pas-
cal that every developer works with. In fact, method pointers types are the
foundation for event handlers in components and visual controls: every time you
declare an event handler, even a simple Button1Click you are in fact declaring a
method that will be connected to an event (the OnClick event, in this case) using a
method pointer.

Anonymous methods extend this feature by letting you pass the actual code of a
method as a parameter, rather than the name of a method defined elsewhere. This is
not the only difference, though. What makes anonymous methods very different
from other techniques is the way they manage the lifetime of local variables.

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 309

The definition above matches with a feature called closures in many other lan-
guages, for example JavaScript. If Object Pascal anonymous methods are in fact
closures, how come the language refers to them using a different term? The reason
lies in the fact both terms are used by different languages and that the C++ compiler
produced by Embarcadero uses the term closures for what Object Pascal calls event
handlers (so having a different feature with the same name would have been confus-
ing).

Anonymous methods have been around in different forms and with different names
for many years in quite a few programming languages, most notably dynamic lan-
guages. I've had extensive experience with closures in JavaScript, particularly with
the jQuery library and AJAX calls. The corresponding feature in C# is called an
anonymous delegate.

But here I don't want to devote too much time comparing closures and related tech-
niques in the various programming languages, but rather describe in detail how they
work in Object Pascal.

note From a very high perspective, generics allows code to be code parametrized for a type, anonymous
methods allows code to be parametrized for a method.

Syntax and Semantics of Anonymous
Methods

An anonymous method in Object Pascal is a mechanism to create a method value in
an expression context. A rather cryptic definition, but a rather precise one given it
underlines the key difference from method pointers, the expression context. Before
we get to this, though, let me start from the beginning with a very simple code exam-
ple (included in the AnonymFirst application project along with most other code
snippets in this section).

This is the declaration of an anonymous method type, something you need to pro-
vide given that Object Pascal is a strongly typed language:

type
 TIntProc = reference to procedure (n: Integer);

This is different from a method reference type only in the keywords being used for
the declaration:

type
 TIntMethod = procedure (n: Integer) of object;

Marco Cantù, Object Pascal Handbook

310 - 15: Anonymous Methods

An Anonymous Method Variable

Once you have an anonymous method type you can, in the simplest cases, declare a
variable of this type, assign a type-compatible anonymous method, and call the
method through the variable:

procedure TFormAnonymFirst.btnSimpleVarClick(
 Sender: TObject);
var
 anIntProc: TIntProc;
begin
 anIntProc :=
 procedure (n: Integer)
 begin
 Memo1.Lines.Add (IntToStr (n));
 end;
 anIntProc (22);
end;

Notice the syntax used to assign an actual procedure, with in-place code, to the vari-
able.

An Anonymous Method Parameter

As a more interesting example (with even more surprising syntax), we can pass an
anonymous method as parameter to a function. Suppose you have a function taking
an anonymous method parameter:

procedure CallTwice (value: Integer;
 anIntProc: TIntProc);
begin
 anIntProc (value);
 Inc (value);
 anIntProc (value);
end;

The function calls the method passed as parameter twice with two consecutive inte-
gers values, the one passed as parameter and the following one. You call the function
by passing an actual anonymous method to it, with directly in-place code that looks
surprising:

procedure TFormAnonymFirst.btnProcParamClick(
 Sender: TObject);
begin
 CallTwice (48,
 procedure (n: Integer)
 begin
 Show (IntToHex (n, 4));
 end);

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 311

 CallTwice (100,
 procedure (n: Integer)
 begin
 Show (FloatToStr(Sqrt(n)));
 end);
end;

From the syntax point of view notice the procedure passed as parameter within
parentheses and not terminated by a semicolon. The actual effect of the code is to
call the IntToHex with 48 and 49 and the FloatToStr on the square root of 100 and
101, producing the following output:

0030
0031
10
10.0498756211209

Using Local Variables

We could have achieved the same effect using method pointers albeit with a differ-
ent and less readable syntax. What makes anonymous method clearly different is the
way they can refer to local variables of the calling method. Consider the following
code:

procedure TFormAnonymFirst.btnLocalValClick(
 Sender: TObject);
var
 aNumber: Integer;
begin
 aNumber := 0;
 CallTwice (10,
 procedure (n: Integer)
 begin
 Inc (aNumber, n);
 end);
 Show (IntToStr (aNumber));
end;

Here the method, still passed to the CallTwice procedure, uses the local parameter n,
but also a local variable from the context from which it was called, aNumber. What's
the effect? The two calls of the anonymous method will modify the local variable,
adding the parameter to it, 10 the first time and 11 the second. The final value of
aNumber will be 21.

Marco Cantù, Object Pascal Handbook

312 - 15: Anonymous Methods

Extending the Lifetime of Local Variables

The previous example shows an interesting effect, but with a sequence of nested
function calls, the fact you can use the local variable isn't that surprising. The power
of anonymous methods, however, lies in the fact they can use a local variable and
also extend its lifetime until needed. An example will prove the point more than a
lengthly explanation.

note In slightly more technical details, anonymous methods copy the variables and parameters they
use to the heap when they are created, and keep them alive as long as the specific instance of the
anonymous method.

I've added (using class completion) to the TFormAnonymFirst form class of the
AnonymFirst example a property of an anonymous method pointer type (well, actu-
ally the same anonymous method pointer type I've used in all of the code of the
project):

 private
 FAnonMeth: TIntProc;
 procedure SetAnonMeth(const Value: TIntProc);
 public
 property AnonMeth: TIntProc
 read FAnonMeth write SetAnonMeth;

Then I've added two more buttons to the form of the program. The first saves the
property an anonymous method that uses a local variable (more or less like in the
previous btnLocalValClick method):

procedure TFormAnonymFirst.btnStoreClick(
 Sender: TObject);
var
 aNumber: Integer;
begin
 aNumber := 3;
 AnonMeth :=
 procedure (n: Integer)
 begin
 Inc (aNumber, n);
 Show (IntToStr (aNumber));
 end;
end;

When this method executes the anonymous method is not executed, only stored.
The local variable aNumber is initialized to three, is not modified, goes out of local
scope (as the method terminates), and is displaced. At least, that is what you'd
expect from standard Object Pascal code.

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 313

The second button I added to the form for this specific step calls the anonymous
method stored in the AnonMeth property:

procedure TFormAnonymFirst.btnCallClick(Sender: TObject);
begin
 if Assigned (AnonMeth) then
 begin
 CallTwice (2, AnonMeth);
 end;
end;

When this code is executed, it calls an anonymous method that uses the local vari-
able aNumber of a method that's not on the stack any more. However, since
anonymous methods capture their execution context the variable is still there and
can be used as long as that given instance of the anonymous method (that is, a refer-
ence to the method) is around.

As a further proof, do the following. Press the Store button once, the Call button
two times and you'll see that the same captured variable is being used:

5
8
10
13

note The reason for this sequence is that the value starts at 3, each call to CallTwice passed its param-
eter to the anonymous methods a first time (that is 2) and then a second time after incrementing
it (that is, the second time it passes 3).

Now press Store once more and press Call again. What happens, why is the value of
the local variable reset? By assigning a new anonymous method instance, the old
anonymous method is deleted (along with its own execution context) and a new exe-
cution context is capture, including a new instance of the local variable. The full
sequence Store – Call – Call – Store – Call produces:

5
8
10
13
5
8

It is the implication of this behavior, resembling what some other languages do, that
makes anonymous methods an extremely powerful language feature, which you can
use to implement something that simply wasn't possible in the past.

Marco Cantù, Object Pascal Handbook

314 - 15: Anonymous Methods

Anonymous Methods Behind the
Scenes

If the variable capture feature is one of the most relevant for anonymous methods,
there are a few more techniques that are worth looking at, before we focus on some
real world examples.

The (Potentially) Missing Parenthesis

Notice that in the code above I used the AnonMeth symbol to refer to the anonymous
method, not to invoke it. For invoking it, I should have typed:

AnonMeth (2)

The difference is clear; I need to pass a proper parameter to invoke the method.
Things are slightly more confusing with parameterless anonymous methods. If you
declare:

type
 TAnyProc = reference to procedure;
var
 AnyProc: TAnyProc;

The call to AnyProc must be followed by the empty parentheses, otherwise the com-
piler thinks you are trying to get the method (its address) rather than call it:

AnyProc ();

Something similar happens when you call a function that returns an anonymous
method, as in the following case taken from the usual AnonymFirst application
project:

function GetShowMethod: TIntProc;
var
 x: Integer;
begin
 x := Random (100);
 ShowMessage ('New x is ' + IntToStr (x));
 Result :=
 procedure (n: Integer)
 begin
 x := x + n;
 ShowMessage (IntToStr (x));
 end;
end;

Now the question is, how do you call it? If you simply call

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 315

 GetShowMethod;

It compiles and executes, but all it does is call the anonymous method assignment
code, throwing away the anonymous method returned by the function.

How do you call the actual anonymous method passing a parameter to it? One
option is to use a temporary anonymous method variable:

var
 ip: TIntProc;
begin
 ip := GetShowMethod();
 ip (3);

Notice in this case the parentheses after the GetShowMethod call. If you omit them (a
standard Pascal practice) you'll get the following error:

E2010 Incompatible types: 'TIntProc' and 'Procedure'

Without the parentheses the compiler thinks you want to assign the GetShowMethod
function itself, and not its result to the ip method pointer. Still, using a temporary
variable might not be the best option in this case, as is makes the code unnaturally
complex. A simple call

 GetShowMethod(3);

won't compile, as you cannot pass a parameter to the method. You need to add the
empty parenthesis to the first call, and the Integer parameter to the resulting anony-
mous method. Oddly enough, you can write:

 GetShowMethod()(3);

An alternative solution is to use the internal implementation of anonymous meth-
ods, and call the low-level Invoke method that gets added by the compiler (in which
case you can omit the empty parenthesis):

 GetShowMethod.Invoke (3);

Anonymous Methods Implementation

What is this Invoke method? What happens behind the scenes in the implementa-
tion of anonymous methods? The actual code generated by the compiler for
anonymous methods is based on interfaces, with a single invocation method called
Invoke, plus the usual reference counting support (that's useful to determine the
lifetime of anonymous methods and the context they capture).

You can see those interface methods in the editor if you use code completion, in the
following way:

Marco Cantù, Object Pascal Handbook

316 - 15: Anonymous Methods

Getting details of the internals is probably very complicated and of limited worth.
Suffice to say that the implementation is very efficient, in terms of speed, and
requires about 500 extra bytes for each anonymous method.

In other words, a method reference in Object Pascal is implemented with a special
single method interface, with a compiler-generated method having the same signa-
ture as the method reference it is implementing. The interface takes advantage of
reference counting for its automatic disposal.

note Although practically the interface used for an anonymous method looks like any other interface,
the compiler distinguishes between these special interfaces so you cannot mix them in code.

Beside this hidden interface, for each invocation of an anonymous method the com-
piler creates a hidden object that has the method implementation and the data
required to capture the invocation context. That's how you get a new set of captured
variables for each call of the method.

Ready To Use Reference Types

Every time you use an anonymous method as a parameter you need to define a cor-
responding reference pointer data type. To avoid the proliferation of local types,
Object Pascal provides a number of ready-to-use reference pointer types in the
SysUtils unit. As you can see in the code snippet below, most of these type defini-
tions use parameterized types, so that with a single generic declaration you have a
different reference pointer type for each possible data type:

type
 TProc = reference to procedure;
 TProc<T> = reference to procedure (Arg1: T);
 TProc<T1,T2> = reference to procedure (
 Arg1: T1; Arg2: T2);
 TProc<T1,T2,T3> = reference to procedure (
 Arg1: T1; Arg2: T2; Arg3: T3);
 TProc<T1,T2,T3,T4> = reference to procedure (
 Arg1: T1; Arg2: T2; Arg3: T3; Arg4: T4);

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 317

Using these declarations, you can define procedures that take anonymous method
parameters like in the following:

procedure UseCode (proc: TProc);
function DoThis (proc: TProc): string;
function DoThat (procInt: TProc<Integer>): string;

In the first and second case you pass a parameterless anonymous method, in the
third you pass a method with a single Integer parameter:

UseCode (
 procedure
 begin
 ...
 end);
strRes := DoThat (
 procedure (I: Integer)
 begin
 ...
 end);

Similarly the SysUtils unit defines a set of anonymous method types with a generic
return value:

type
 TFunc<TResult> = reference to function: TResult;
 TFunc<T,TResult> = reference to function (
 Arg1: T): TResult;
 TFunc<T1,T2,TResult> = reference to function (
 Arg1: T1; Arg2: T2): TResult;
 TFunc<T1,T2,T3,TResult> = reference to function (
 Arg1: T1; Arg2: T2; Arg3: T3): TResult;
 TFunc<T1,T2,T3,T4,TResult> = reference to function (
 Arg1: T1; Arg2: T2; Arg3: T3; Arg4: T4): TResult;
 TPredicate<T> = reference to function (
 Arg1: T): Boolean;

These definitions are very broad, as you can use countless combinations of data
types for up to four parameters and a return type. The last definition is very similar
to the second, but corresponds to a specific case that is very frequent, a function tak-
ing a generic parameter and returning a Boolean.

Anonymous Methods in the Real
World

At first sight, it is not easy to fully understand the power of anonymous methods and
the scenarios that can benefit from using them. That's why rather than coming out

Marco Cantù, Object Pascal Handbook

318 - 15: Anonymous Methods

with more convoluted examples covering the language, I decided to focus on some
that have a practical impact and provide starting points for further exploration.

Anonymous Event Handlers

One of the distinguishing features of Object Pascal has been its implementation of
event handlers using method pointers. Anonymous methods can be used to attach a
new behavior to an event without having to declare a separate method and capturing
the method's execution context. This avoids having to add extra fields to a form to
pass parameters from one method to another.

As an example (called AnonButton), I've added an anonymous click event to a but-
ton, declaring a proper method pointer type and adding a new event handler to a
custom button class (defined using an interceptor class):

type
 TAnonNotif = reference to procedure (Sender: TObject);

 // interceptor class
 TButton = class (FMX.StdCtrls.TButton)
 private
 FAnonClick: TAnonNotif;
 procedure SetAnonClick(const Value: TAnonNotif);
 public
 procedure Click; override;
 public
 property AnonClick: TAnonNotif
 read FAnonClick write SetAnonClick;
 end;

note An interceptor class is a derived class having the same name as its base class. Having two classes
with the same name is possible because the two classes are in different units, so their full name
(unitname.classname) is different. Declaring an interceptor class can be handy as you can simply
place a Button control on the form and attach extra behavior to it, without having to install a new
component in the IDE and replace the controls on your form with the new type. The only trick you
have to remember is that if the definition of the interceptor class is in a separate unit (not the
form unit as in this simple example), that unit has to be listed in the uses statement after the unit
defining the base class.

The code of this class is fairly simple, as the setter method saves the new pointer and
the Click method calls it before doing the standard processing (that is, calling the
OnClick event handler if available):

procedure TButton.SetAnonClick(const Value: TAnonNotif);
begin
 FAnonClick := Value;
end;

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 319

procedure TButton.Click;
begin
 if Assigned (FAnonClick) then
 FAnonClick (self)
 inherited;
end;

How can you use this new event handler? Basically you can assign an anonymous
method to it

procedure TFormAnonButton.btnAssignClick(
 Sender: TObject);
begin
 btnInvoke.AnonClick :=
 procedure (Sender: TObject)
 begin
 Show ((Sender as TButton).Text);
 end;
end;

Now this looks rather pointless, as the same effect could easily be achieved using a
standard event handler method. The following, instead, starts making a difference,
as the anonymous method captures a reference to the component that assigned the
event handler, by referencing the Sender parameter.

This can be done after temporarily assigning it to a local variable, as the Sender
parameter of the anonymous method hides the btnKeepRefClick method's Sender
parameter:

procedure TFormAnonButton.btnKeepRefClick(
 Sender: TObject);
var
 aCompRef: TComponent;
begin
 aCompRef := Sender as TComponent;
 btnInvoke.AnonClick :=
 procedure (Sender: TObject)
 begin
 Show ((Sender as TButton).Text +
 ' assigned by ' + aCompRef.Name);
 end;
end;

As you press the btnInvoke button, you'll see its caption along with the name of the
component that assigned the anonymous method handler.

Marco Cantù, Object Pascal Handbook

320 - 15: Anonymous Methods

Timing Anonymous Methods

Developers frequently add timing code to existing routines to compare their relative
speed. Supposing you have two code fragments and you want to compare their speed
by executing them a few million times, you could write the following which is taken
from the LargeString application project of Chapter 6:

procedure TForm1.Button1Click(Sender: TObject);
var
 str1, str2: string;
 I: Integer;
 t1: TStopwatch;
begin
 str1 := 'Marco ';
 str2 := 'Cantu ';

 t1 := TStopwatch.StartNew;
 for I := 1 to MaxLoop do
 str1 := str1 + str2;

 t1.Stop;
 Show('Length: ' + str1.Length.ToString);
 Show('Concatenation: ' + t1.ElapsedMilliseconds.ToString);
end;

A second method has similar code but used the TStringBuilder class rather than
plain concatenation. Now we can take advantage of anonymous methods to create a
timing skeleton and pass the specific code as parameter, as I've done in an updated
version of the code, in the AnonLargeStrings application project.

Rather than repeating the timing code over and over, you can write a function with
the timing code that would invoke the code snippet through a parameterless anony-
mous method:

function TimeCode (nLoops: Integer; proc: TProc): string;
var
 t1: TStopwatch;
 I: Integer;
begin
 t1 := TStopwatch.StartNew;
 for I := 1 to nLoops do
 proc;
 t1.Stop;
 Result := t1.ElapsedMilliseconds.toString;
end;

procedure TForm1.Button1Click(Sender: TObject);
var
 str1, str2: string;
begin
 str1 := 'Marco ';

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 321

 str2 := 'Cantu ';
 Show ('Concatenation: ' +
 TimeCode (MaxLoop,
 procedure ()
 begin
 str1 := str1 + str2;
 end));
 Show('Length: ' + str1.Length.ToString);
end;

Notice, though, that if you execute the standard version and the one based on
anonymous methods you'll get a slightly different output, the anonymous method
version sees a penalty of roughly 10%. The reason is that rather than directly execut-
ing the local code, the program has to make a virtual call to the anonymous method
implementation. As this difference is consistent, the testing code makes perfect
sense anyway. However, if you need to squeeze performance from your code, using
anonymous methods won't be as fast as directly writing the code, with using a direct
function. Using a non-virtual method pointer would probably be somewhere in
between the two in terms of performance.

Thread Synchronization

In multi-threaded applications that need to update the user interface, you cannot
access properties of visual components (or in memory-objects) that are part of the
global thread without a synchronization mechanism. The visual component libraries
for Object Pascal, in fact, aren't thread-safe (as is true for most user-interface
libraries). Two threads accessing an object at the same time could compromise its
state.

The classic solution offered by the TThread class in Object Pascal is to call a special
method, Synchronize, passing as a parameter the reference to another method, the
one to be executed safely. This second method cannot have parameters, so it is com-
mon practice to add extra fields to the thread class to pass the information from one
method to another.

As a practical example, in the book Mastering Delphi 2005 I wrote a WebFind appli-
cation (a program that runs searches on Google via HTTP and extracts the resulting
links from the HTML of the page), with the following thread class:

type
 TFindWebThread = class(TThread)
 protected
 Addr, Text, Status: string;
 procedure Execute; override;
 procedure AddToList;
 procedure ShowStatus;

Marco Cantù, Object Pascal Handbook

322 - 15: Anonymous Methods

 procedure GrabHtml;
 procedure HtmlToList;
 procedure HttpWork (Sender: TObject;
 AWorkMode: TWorkMode; AWorkCount: Int64);
 public
 strUrl: string;
 strRead: string;
 end;

The three protected string fields and some of the extra methods have been intro-
duced to support synchronization with the user interface. For example, the HttpWork
event handler hooked to an event of an internal IdHttp object (an Indy component
supporting the client side of the HTTP protocol), used to have the following code,
that called the ShowStatus method:

procedure TFindWebThread.HttpWork(Sender: TObject;
 AWorkMode: TWorkMode; AWorkCount: Int64);
begin
 Status := 'Received ' + IntToStr (AWorkCount) +
 ' for ' + strUrl;
 Synchronize (ShowStatus);
end;

procedure TFindWebThread.ShowStatus;
begin
 Form1.StatusBar1.SimpleText := Status;
end;

The Synchronize method of the Object Pascal RTL has two different overloaded def-
initions:

type
 TThreadMethod = procedure of object;
 TThreadProcedure = reference to procedure;

 TThread = class
 ...
 procedure Synchronize(
 AMethod: TThreadMethod); overload;
 procedure Synchronize(
 AThreadProc: TThreadProcedure); overload;

For this reason we can remove the Status text field and the ShowStatus function,
and rewrite the HttpWork event handler using the new version of Synchronize and
an anonymous method:

procedure TFindWebThreadAnon.HttpWork(Sender: TObject;
 AWorkMode: TWorkMode; AWorkCount: Int64);
begin
 Synchronize (
 procedure
 begin
 Form1.StatusBar1.SimpleText :=
 'Received ' + IntToStr (AWorkCount) +

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 323

 ' for ' + strUrl;
 end);
end;

Using the same approach throughout the code of the class, the thread class becomes
the following (you can find both thread classes in the version of the WebFind applica-
tion project that comes with the source code of this book):

type
 TFindWebThreadAnon = class(TThread)
 protected
 procedure Execute; override;
 procedure GrabHtml;
 procedure HtmlToList;
 procedure HttpWork (Sender: TObject;
 AWorkMode: TWorkMode; AWorkCount: Int64);
 public
 strUrl: string;
 strRead: string;
 end;

Using anonymous methods simplifies the code needed for thread synchronization.

note Anonymous methods have a lot of relationships with threading, because a thread is used to run
some code and anonymous method represent code. This is why there is support in the TThread
class to use them, but also in the Parallel Programming library (in TParallel.For and to define a
TTask). Given examining multi-threading goes well beyond this chapter, I won't add more exam -
ples in this direction. Still, I'm going to use another thread in the next example, because this is
most often a requirement when making an HTTP call.

AJAX in Object Pascal

The last example in this section, the AnonAjax application demo, is one of my
favorite examples of anonymous methods (even if a bit extreme). The reason is that I
learned using closures (or anonymous methods) in JavaScript, while writing AJAX
applications with the jQuery library.

note The AJAX acronym stands for Asynchronous JavaScript XML, as this was originally the format
used in web services calls done from the browser. As this technology became more popular and
widespread, and web services moved to the REST architecture and the JSON format, the term
AJAX has faded away a bit, in favor of REST.

The AjaxCall global function spawns a thread, passing to the thread an anonymous
method to execute on completion. The function is just a wrapper around the thread
constructor:

type

Marco Cantù, Object Pascal Handbook

324 - 15: Anonymous Methods

 TAjaxCallback = reference to procedure (
 ResponseContent: TStringStream);

procedure AjaxCall (const strUrl: string;
 ajaxCallback: TAjaxCallback);
begin
 TAjaxThread.Create (strUrl, ajaxCallback);
end;

All of the code is in the TAjaxThread class, a thread class with an internal Indy HTTP
client component used to access to a given URL, asynchronously:

type
 TAjaxThread = class (TThread)
 private
 fIdHttp: TIdHttp;
 fURL: string;
 fAjaxCallback: TAjaxCallback;
 protected
 procedure Execute; override;
 public
 constructor Create (const strUrl: string;
 ajaxCallback: TAjaxCallback);
 destructor Destroy; override;
 end;

The constructor does some initialization, copying its parameters to the correspond-
ing local fields of the thread class and creating the fIdHttp object. The real meat of
the class is in its Execute method, which does the HTTP request, saving the result in
a stream that is later reset and passed to the callback function – the anonymous
method:

procedure TAjaxThread.Execute;
var
 aResponseContent: TStringStream;
begin
 aResponseContent := TStringStream.Create;
 try
 fIdHttp.Get (fURL, aResponseContent);
 aResponseContent.Position := 0;
 fAjaxCallback (aResponseContent);
 finally
 aResponseContent.Free;
 end;
end;

As an example of its usage, the AnonAjax application demo has a button used to copy
the content of a Web page to a Memo control (adding the requested URL at the
beginning):

procedure TFormAnonAjax.btnReadClick(Sender: TObject);
begin
 AjaxCall (edUrl.Text,
 procedure (aResponseContent: TStringStream)

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 325

 begin
 Memo1.Lines.Text := aResponseContent.DataString;
 Memo1.Lines.Insert (
 0, 'From URL: ' + edUrl.Text);
 end);
end;

After the HTTP request has finished, you can do any sort of processing you want on
it.

Another example would be to extract links from the HTML file (in a way that resem-
bles the WebFind application covered earlier). Again, to make this function flexible, it
takes as a parameter the anonymous method to execute for each link:

type
 TLinkCallback = reference to procedure (
 const strLink: string);

procedure ExtractLinks (strData: string;
 procLink: TLinkCallback);
var
 strAddr: string;
 nBegin, nEnd: Integer;
begin
 strData := LowerCase (strData);
 nBegin := 1;
 repeat
 nBegin := PosEx ('href="http', strData, nBegin);
 if nBegin <> 0 then
 begin
 // find the end of the HTTP reference
 nBegin := nBegin + 6;
 nEnd := PosEx ('"', strData, nBegin);
 strAddr := Copy (strData, nBegin, nEnd - nBegin);
 // move on
 nBegin := nEnd + 1;
 // execute anon method
 procLink (strAddr)
 end;
 until nBegin = 0;
end;

If you apply this function to the result of an AJAX call and provide a further method
for processing, you end up with two nested anonymous method calls, like in the sec-
ond button of the AnonAjax application demo:

procedure TFormAnonAjax.btnLinksClick(Sender: TObject);
begin
 AjaxCall (edUrl.Text,
 procedure (aResponseContent: TStringStream)
 begin
 ExtractLinks(aResponseContent.DataString,
 procedure (const aUrl: string)
 begin

Marco Cantù, Object Pascal Handbook

326 - 15: Anonymous Methods

 Memo1.Lines.Add (aUrl + ' in ' + edUrl.Text);
 end);
 end);
end;

In this case the Memo control will receive a collection of links, instead of the HTML
of the returned page. A variation to the link extraction routine above would be an
image extraction routine. The ExtractImages function grabs the source (src) of the
img tags of the HTML file returned, and calls another TLinkCallback-compatible
anonymous method (see the source code for the function details).

Now you can envision opening an HTML page (with the AjaxCall function), extract
the image links, and use AjaxCall again to grab the actual images. This means using
a triple-nested closure, in a coding structure that some Object Pascal programmers
might find unreadable (it takes a while to get used to it!), but is certainly very power-
ful and expressive:

procedure TFormAnonAjax.btnImagesClick(Sender: TObject);
var
 nHit: Integer;
begin
 nHit := 0;
 AjaxCall (edUrl.Text,
 procedure (aResponseContent: TStringStream)
 begin
 ExtractImages(aResponseContent.DataString,
 procedure (const aUrl: string)
 begin
 Inc (nHit);
 Memo1.Lines.Add (IntToStr (nHit) + '.' +
 aUrl + ' in ' + edUrl.Text);
 if nHit = 1 then // load the first
 begin
 AjaxCall (aUrl,
 procedure (aResponseContent: TStringStream)
 begin
 // load image of the current type only
 Image1.Picture.Graphic.
 LoadFromStream(aResponseContent);
 end);
 end;
 end);
 end);
end;

note This code snippet was the topic of a blog post of mine, “Anonymous, Anonymous, Anonymous” of
September 2008, which attracted some comments, as you can see on:
http://blog.marcocantu.com/blog/anonymous_3.html.

Marco Cantù, Object Pascal Handbook

15: Anonymous Methods - 327

Beside the fact that the graphic only works in the case where you are loading a file
with the same format as the one already in the Image component, the code and its
result are both impressive.

Notice in particular the numbering sequence, based on the capture of the nHit local
variable. What happens if you press the button twice, in a fast sequence? Each of the
anonymous methods will get a different copy of the nHit counter, and they might
potentially be displayed out of sequence in the list, with the second thread starting
to produce its output before the first.

Marco Cantù, Object Pascal Handbook

328 - end.

end.

This final section of the book has a few appendices, that focus on specific side issues
worth considering, but out of the flow of the text. There is a short history of the Pas-
cal and Object Pascal languages, a glossary, and a short section on getting started
with the Delphi and Appmethod development environments.

Appendix Summary

Appendix A: The Evolution of Object Pascal

Appendix B: Glossary of Terms

Appendix C: Getting Started with the IDE for Building the Demos

Appendix D: An introduction to Object-Oriented Programming Concepts

Marco Cantù, Object Pascal Handbook

A: The Evolution of Object Pascal - 329

a: the evolution of

object pascal

Object Pascal is a language built for the growing range of today's computing devices,
from smartphones and tablets to desktops and servers. It didn't just appear out of
thin air. It has been carefully designed on a solid foundation to be the tool of choice
for modern programmers. It provides an almost ideal balance between the speed of
programming and the speed of the resulting programs, clarity of syntax and power
of expression.

The solid foundation that Object Pascal is built upon is the Pascal family of pro-
gramming languages. In the same way that Google's go language or Apple's
Objective-C language are rooted in C, Object Pascal is rooted in Pascal. No doubt
you would have guessed that from the name.

This short appendix includes a brief history of the family of languages and actual
tools around Pascal, Turbo pascal, Delphi's Pascal, and Object Pascal. While it is not
really necessary to read this to learn the language, it is certainly worth understand-
ing the language's evolution and where it is today.

The Object Pascal programming language we use today in Embarcadero develop-
ment tools was invented in 1995 when Borland introduced Delphi, which at the time

Marco Cantù, Object Pascal Handbook

330 - A: The Evolution of Object Pascal

was its new visual development environment. The first Object Pascal language was
extended from the language already in use in the Turbo Pascal products, where the
language was generally referenced as Turbo Pascal. Borland didn't invent Pascal, it
only helped make it very popular, and extend its foundations to overcome some of
its limitations compared to the C language.

The following sections cover the history of the language from Wirth's Pascal to the
most recent LLVM-based Delphi's Object Pascal compiler for ARM chips and mobile
devices.

Wirth’s Pascal

The Pascal language was originally designed in 1971 by Niklaus Wirth, professor at
the Polytechnic of Zurich, Switzerland. The most complete biography of Wirth is
available at http://www.cs.inf.ethz.ch/~wirth.

Pascal was designed as a simplified version of the Algol language for educational
purposes. Algol itself was created in 1960. When Pascal was invented, many pro-
gramming languages existed, but only a few were in widespread use: FORTRAN,
Assembler, COBOL, and BASIC. The key idea of the new language was order, man-
aged through a strong concept of data types, declaration of variables, and structured
program controls. The language was also designed to be a teaching tool, that is to
teach programming using best practices.

Needless to say that the core tenets of Wirth's Pascal have had a huge influence on
the history of all programming languages, well beyond and above those still based
on the Pascal syntax. As for teaching languages, too often schools and universities
have followed other criteria (like job requests or donations from tool vendors) rather
than looking at which language helps learning the key concepts of programming bet-
ter. But that is another story.

Turbo Pascal

Borland's world-famous Pascal compiler, called Turbo Pascal, was introduced in
1983, implementing "Pascal User Manual and Report" by Jensen and Wirth. The
Turbo Pascal compiler has been one of the best-selling series of compilers of all
time, and made the language particularly popular on the PC platform, thanks to its

Marco Cantù, Object Pascal Handbook

A: The Evolution of Object Pascal - 331

balance of simplicity and power. The original author was Anders Hejlsberg, later
father of the C# language at Microsoft.

Turbo Pascal introduced an Integrated Development Environment (IDE) where you
could edit the code (in a WordStar compatible editor), run the compiler, see the
errors, and jump back to the lines containing those errors. It sounds trivial now, but
previously you had to quit the editor, return to DOS; run the command-line com-
piler, write down the error lines, open the editor and jump to the error lines.

Moreover Borland sold Turbo Pascal for 49 dollars, where Microsoft's Pascal com-
piler was sold for a few hundred. Turbo Pascal's many years of success contributed
to Microsoft eventual dropping its Pascal compiler product.

You can actually download a copy of the original version of Borland's Turbo Pascal
from the Museum section of the Embarcadero Developer Network:

http://edn.embarcadero.com/museum

note After the original Pascal language, Nicklaus Wirth designed the Modula-2 language, an extension
of Pascal syntax now almost forgotten, which introduced a concept of modularization very similar
to the concept of units in early Turbo Pascal and today's Object Pascal.

A further extension of Modula-2 was Modula-3, which had object-oriented features similar to
Object Pascal. Modula-3 was even less used than Modula-2, with most commercial Pascal lan -
guage development moving towards Borland and Apple compilers, until Apple abandoned Object
Pascal for Objective-C, leaving Borland with almost a monopoly on the language.

The early days of Delphi’s Object
Pascal

After 9 versions of Turbo and Borland Pascal compilers, which gradually extended
the language into the Object Oriented Programming (OOP) realm, Borland released
Delphi in 1995, turning Pascal into a visual programming language. Delphi extended
the Pascal language in a number of ways, including many object-oriented extensions
which are different from other flavors of Object Pascal, including those in the Bor-
land Pascal with Objects compiler (the last incarnation of Turbo Pascal).

Marco Cantù, Object Pascal Handbook

http://edn.embarcadero.com/museum

332 - A: The Evolution of Object Pascal

note Year 1995 was really a special year for programming languages, as it saw the debut of Delphi's
Object Pascal, Java, JavaScript, and PHP. These are some of the most popular programming lan -
guages still in use today. In fact, most other popular languages (C, C++, ObjectiveC, and COBOL)
are much older, while the only newer popular language is C#. For a history of programming lan-
guages you can see http://en.wikipedia.org/wiki/History_of_programming_languages .

With Delphi 2, Borland brought the Pascal compiler to the 32-bit world, actually re-
engineering it to provide a code generator common with the C++ compiler. This
brought many optimizations previously found only in C/C++ compilers to the Pascal
language. In Delphi 3 Borland added to the language the concept of interfaces, mak-
ing a leap forward in the expressiveness of classes and their relationships.

With the release of version 7 of Delphi, Borland formally started to call the Object
Pascal language the Delphi language, but nothing really changed in the language at
that time. At that time Borland also created Kylix, a Delphi version for Linux, and
later created a Delphi compiler for Microsoft .NET framework (the product was Del-
phi 8). Both projects were later abandoned, but Delphi 8 (released at the end of
2003) marked a very extensive set of changes to the language, changes that were
later adopted in the Win32 Delphi compiler and all other following compilers.

Object Pascal From CodeGear to
Embarcadero

With Borland unsure about its investments in development tools, later versions like
Delphi 2007, were produced by CodeGear, a subsidiary of the main company. This
subsidiary (or business unit) was later sold to Embarcadero Technologies, the cur-
rent owner of the Delphi and C++Builder product lines (including the combined
RAD Studio offerings). After that release, the company re-focused on growing and
extending the Object Pascal language, adding long-awaited features like Unicode
support (in Delphi 2009), generics, anonymous methods or closures, extended run-
time type information or reflection, and many other significant language features
(mostly covered in Part III of this book).

At the same time, along side the Win32 compiler the company introduced a Win64
compiler (in Delphi XE2) and a Mac OS X compiler, getting back to a multi-platform
strategy after the attempt done earlier on Linux with the short-lived Kylix product.
This time however the idea was to have a single Windows development environment
and cross-compile to other platforms. The Mac support was only the beginning of

Marco Cantù, Object Pascal Handbook

A: The Evolution of Object Pascal - 333

the company's multi-device strategy, embracing desktop and mobile platforms, like
iOS and Android.

Going Mobile

The shift to mobile and the first Object Pascal compiler for ARM chips (as all previ-
ous platforms Delphi supported were only on Intel x86 chips) have been tied to an
overall re-architecture of the compilers and the related tools (or “compiler
toolchain”) based on the open LLVM compiler architecture. The ARM compiler for
iOS released in Delphi XE4 was the first Object Pascal compiler based on LLVM, but
also the first to introduce some new features like Automatic Reference Counting (or
ARC) and a substantial “cleanup” of the string data types.

Later in the same year (2013), Delphi XE5 added support for the Android platform,
with a second ARM compiler based on LLVM. To summarize, Delphi XE5, shipped
with 6 compilers for the Object Pascal language (for the Win32, Win64, Mac OS X,
iOS Simulator on Mac, iOS ARM, and Android ARM support). All these compilers
support a largely common language definition, with a few significant differences I'll
cover in details throughout the book.

In the first few months of 2014, Embarcadero released a new development tool
based on the same core mobile technologies and called Appmethod. Appmethod
uses the same Object Pascal compiler previously found only in Delphi. In April 2014,
the company also released the XE6 version of Delphi, while September 2014 saw the
third release of Appmethod and Delphi XE7.

Marco Cantù, Object Pascal Handbook

